]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - tools/perf/builtin-timechart.c
Merge tag 'asm-generic-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd...
[mirror_ubuntu-artful-kernel.git] / tools / perf / builtin-timechart.c
1 /*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15 #include <traceevent/event-parse.h>
16
17 #include "builtin.h"
18
19 #include "util/util.h"
20
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30
31 #include "perf.h"
32 #include "util/header.h"
33 #include <subcmd/parse-options.h>
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40 #include "util/debug.h"
41
42 #define SUPPORT_OLD_POWER_EVENTS 1
43 #define PWR_EVENT_EXIT -1
44
45 struct per_pid;
46 struct power_event;
47 struct wake_event;
48
49 struct timechart {
50 struct perf_tool tool;
51 struct per_pid *all_data;
52 struct power_event *power_events;
53 struct wake_event *wake_events;
54 int proc_num;
55 unsigned int numcpus;
56 u64 min_freq, /* Lowest CPU frequency seen */
57 max_freq, /* Highest CPU frequency seen */
58 turbo_frequency,
59 first_time, last_time;
60 bool power_only,
61 tasks_only,
62 with_backtrace,
63 topology;
64 bool force;
65 /* IO related settings */
66 bool io_only,
67 skip_eagain;
68 u64 io_events;
69 u64 min_time,
70 merge_dist;
71 };
72
73 struct per_pidcomm;
74 struct cpu_sample;
75 struct io_sample;
76
77 /*
78 * Datastructure layout:
79 * We keep an list of "pid"s, matching the kernels notion of a task struct.
80 * Each "pid" entry, has a list of "comm"s.
81 * this is because we want to track different programs different, while
82 * exec will reuse the original pid (by design).
83 * Each comm has a list of samples that will be used to draw
84 * final graph.
85 */
86
87 struct per_pid {
88 struct per_pid *next;
89
90 int pid;
91 int ppid;
92
93 u64 start_time;
94 u64 end_time;
95 u64 total_time;
96 u64 total_bytes;
97 int display;
98
99 struct per_pidcomm *all;
100 struct per_pidcomm *current;
101 };
102
103
104 struct per_pidcomm {
105 struct per_pidcomm *next;
106
107 u64 start_time;
108 u64 end_time;
109 u64 total_time;
110 u64 max_bytes;
111 u64 total_bytes;
112
113 int Y;
114 int display;
115
116 long state;
117 u64 state_since;
118
119 char *comm;
120
121 struct cpu_sample *samples;
122 struct io_sample *io_samples;
123 };
124
125 struct sample_wrapper {
126 struct sample_wrapper *next;
127
128 u64 timestamp;
129 unsigned char data[0];
130 };
131
132 #define TYPE_NONE 0
133 #define TYPE_RUNNING 1
134 #define TYPE_WAITING 2
135 #define TYPE_BLOCKED 3
136
137 struct cpu_sample {
138 struct cpu_sample *next;
139
140 u64 start_time;
141 u64 end_time;
142 int type;
143 int cpu;
144 const char *backtrace;
145 };
146
147 enum {
148 IOTYPE_READ,
149 IOTYPE_WRITE,
150 IOTYPE_SYNC,
151 IOTYPE_TX,
152 IOTYPE_RX,
153 IOTYPE_POLL,
154 };
155
156 struct io_sample {
157 struct io_sample *next;
158
159 u64 start_time;
160 u64 end_time;
161 u64 bytes;
162 int type;
163 int fd;
164 int err;
165 int merges;
166 };
167
168 #define CSTATE 1
169 #define PSTATE 2
170
171 struct power_event {
172 struct power_event *next;
173 int type;
174 int state;
175 u64 start_time;
176 u64 end_time;
177 int cpu;
178 };
179
180 struct wake_event {
181 struct wake_event *next;
182 int waker;
183 int wakee;
184 u64 time;
185 const char *backtrace;
186 };
187
188 struct process_filter {
189 char *name;
190 int pid;
191 struct process_filter *next;
192 };
193
194 static struct process_filter *process_filter;
195
196
197 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
198 {
199 struct per_pid *cursor = tchart->all_data;
200
201 while (cursor) {
202 if (cursor->pid == pid)
203 return cursor;
204 cursor = cursor->next;
205 }
206 cursor = zalloc(sizeof(*cursor));
207 assert(cursor != NULL);
208 cursor->pid = pid;
209 cursor->next = tchart->all_data;
210 tchart->all_data = cursor;
211 return cursor;
212 }
213
214 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
215 {
216 struct per_pid *p;
217 struct per_pidcomm *c;
218 p = find_create_pid(tchart, pid);
219 c = p->all;
220 while (c) {
221 if (c->comm && strcmp(c->comm, comm) == 0) {
222 p->current = c;
223 return;
224 }
225 if (!c->comm) {
226 c->comm = strdup(comm);
227 p->current = c;
228 return;
229 }
230 c = c->next;
231 }
232 c = zalloc(sizeof(*c));
233 assert(c != NULL);
234 c->comm = strdup(comm);
235 p->current = c;
236 c->next = p->all;
237 p->all = c;
238 }
239
240 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
241 {
242 struct per_pid *p, *pp;
243 p = find_create_pid(tchart, pid);
244 pp = find_create_pid(tchart, ppid);
245 p->ppid = ppid;
246 if (pp->current && pp->current->comm && !p->current)
247 pid_set_comm(tchart, pid, pp->current->comm);
248
249 p->start_time = timestamp;
250 if (p->current && !p->current->start_time) {
251 p->current->start_time = timestamp;
252 p->current->state_since = timestamp;
253 }
254 }
255
256 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
257 {
258 struct per_pid *p;
259 p = find_create_pid(tchart, pid);
260 p->end_time = timestamp;
261 if (p->current)
262 p->current->end_time = timestamp;
263 }
264
265 static void pid_put_sample(struct timechart *tchart, int pid, int type,
266 unsigned int cpu, u64 start, u64 end,
267 const char *backtrace)
268 {
269 struct per_pid *p;
270 struct per_pidcomm *c;
271 struct cpu_sample *sample;
272
273 p = find_create_pid(tchart, pid);
274 c = p->current;
275 if (!c) {
276 c = zalloc(sizeof(*c));
277 assert(c != NULL);
278 p->current = c;
279 c->next = p->all;
280 p->all = c;
281 }
282
283 sample = zalloc(sizeof(*sample));
284 assert(sample != NULL);
285 sample->start_time = start;
286 sample->end_time = end;
287 sample->type = type;
288 sample->next = c->samples;
289 sample->cpu = cpu;
290 sample->backtrace = backtrace;
291 c->samples = sample;
292
293 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
294 c->total_time += (end-start);
295 p->total_time += (end-start);
296 }
297
298 if (c->start_time == 0 || c->start_time > start)
299 c->start_time = start;
300 if (p->start_time == 0 || p->start_time > start)
301 p->start_time = start;
302 }
303
304 #define MAX_CPUS 4096
305
306 static u64 cpus_cstate_start_times[MAX_CPUS];
307 static int cpus_cstate_state[MAX_CPUS];
308 static u64 cpus_pstate_start_times[MAX_CPUS];
309 static u64 cpus_pstate_state[MAX_CPUS];
310
311 static int process_comm_event(struct perf_tool *tool,
312 union perf_event *event,
313 struct perf_sample *sample __maybe_unused,
314 struct machine *machine __maybe_unused)
315 {
316 struct timechart *tchart = container_of(tool, struct timechart, tool);
317 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
318 return 0;
319 }
320
321 static int process_fork_event(struct perf_tool *tool,
322 union perf_event *event,
323 struct perf_sample *sample __maybe_unused,
324 struct machine *machine __maybe_unused)
325 {
326 struct timechart *tchart = container_of(tool, struct timechart, tool);
327 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
328 return 0;
329 }
330
331 static int process_exit_event(struct perf_tool *tool,
332 union perf_event *event,
333 struct perf_sample *sample __maybe_unused,
334 struct machine *machine __maybe_unused)
335 {
336 struct timechart *tchart = container_of(tool, struct timechart, tool);
337 pid_exit(tchart, event->fork.pid, event->fork.time);
338 return 0;
339 }
340
341 #ifdef SUPPORT_OLD_POWER_EVENTS
342 static int use_old_power_events;
343 #endif
344
345 static void c_state_start(int cpu, u64 timestamp, int state)
346 {
347 cpus_cstate_start_times[cpu] = timestamp;
348 cpus_cstate_state[cpu] = state;
349 }
350
351 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
352 {
353 struct power_event *pwr = zalloc(sizeof(*pwr));
354
355 if (!pwr)
356 return;
357
358 pwr->state = cpus_cstate_state[cpu];
359 pwr->start_time = cpus_cstate_start_times[cpu];
360 pwr->end_time = timestamp;
361 pwr->cpu = cpu;
362 pwr->type = CSTATE;
363 pwr->next = tchart->power_events;
364
365 tchart->power_events = pwr;
366 }
367
368 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
369 {
370 struct power_event *pwr;
371
372 if (new_freq > 8000000) /* detect invalid data */
373 return;
374
375 pwr = zalloc(sizeof(*pwr));
376 if (!pwr)
377 return;
378
379 pwr->state = cpus_pstate_state[cpu];
380 pwr->start_time = cpus_pstate_start_times[cpu];
381 pwr->end_time = timestamp;
382 pwr->cpu = cpu;
383 pwr->type = PSTATE;
384 pwr->next = tchart->power_events;
385
386 if (!pwr->start_time)
387 pwr->start_time = tchart->first_time;
388
389 tchart->power_events = pwr;
390
391 cpus_pstate_state[cpu] = new_freq;
392 cpus_pstate_start_times[cpu] = timestamp;
393
394 if ((u64)new_freq > tchart->max_freq)
395 tchart->max_freq = new_freq;
396
397 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
398 tchart->min_freq = new_freq;
399
400 if (new_freq == tchart->max_freq - 1000)
401 tchart->turbo_frequency = tchart->max_freq;
402 }
403
404 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
405 int waker, int wakee, u8 flags, const char *backtrace)
406 {
407 struct per_pid *p;
408 struct wake_event *we = zalloc(sizeof(*we));
409
410 if (!we)
411 return;
412
413 we->time = timestamp;
414 we->waker = waker;
415 we->backtrace = backtrace;
416
417 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
418 we->waker = -1;
419
420 we->wakee = wakee;
421 we->next = tchart->wake_events;
422 tchart->wake_events = we;
423 p = find_create_pid(tchart, we->wakee);
424
425 if (p && p->current && p->current->state == TYPE_NONE) {
426 p->current->state_since = timestamp;
427 p->current->state = TYPE_WAITING;
428 }
429 if (p && p->current && p->current->state == TYPE_BLOCKED) {
430 pid_put_sample(tchart, p->pid, p->current->state, cpu,
431 p->current->state_since, timestamp, NULL);
432 p->current->state_since = timestamp;
433 p->current->state = TYPE_WAITING;
434 }
435 }
436
437 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
438 int prev_pid, int next_pid, u64 prev_state,
439 const char *backtrace)
440 {
441 struct per_pid *p = NULL, *prev_p;
442
443 prev_p = find_create_pid(tchart, prev_pid);
444
445 p = find_create_pid(tchart, next_pid);
446
447 if (prev_p->current && prev_p->current->state != TYPE_NONE)
448 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
449 prev_p->current->state_since, timestamp,
450 backtrace);
451 if (p && p->current) {
452 if (p->current->state != TYPE_NONE)
453 pid_put_sample(tchart, next_pid, p->current->state, cpu,
454 p->current->state_since, timestamp,
455 backtrace);
456
457 p->current->state_since = timestamp;
458 p->current->state = TYPE_RUNNING;
459 }
460
461 if (prev_p->current) {
462 prev_p->current->state = TYPE_NONE;
463 prev_p->current->state_since = timestamp;
464 if (prev_state & 2)
465 prev_p->current->state = TYPE_BLOCKED;
466 if (prev_state == 0)
467 prev_p->current->state = TYPE_WAITING;
468 }
469 }
470
471 static const char *cat_backtrace(union perf_event *event,
472 struct perf_sample *sample,
473 struct machine *machine)
474 {
475 struct addr_location al;
476 unsigned int i;
477 char *p = NULL;
478 size_t p_len;
479 u8 cpumode = PERF_RECORD_MISC_USER;
480 struct addr_location tal;
481 struct ip_callchain *chain = sample->callchain;
482 FILE *f = open_memstream(&p, &p_len);
483
484 if (!f) {
485 perror("open_memstream error");
486 return NULL;
487 }
488
489 if (!chain)
490 goto exit;
491
492 if (machine__resolve(machine, &al, sample) < 0) {
493 fprintf(stderr, "problem processing %d event, skipping it.\n",
494 event->header.type);
495 goto exit;
496 }
497
498 for (i = 0; i < chain->nr; i++) {
499 u64 ip;
500
501 if (callchain_param.order == ORDER_CALLEE)
502 ip = chain->ips[i];
503 else
504 ip = chain->ips[chain->nr - i - 1];
505
506 if (ip >= PERF_CONTEXT_MAX) {
507 switch (ip) {
508 case PERF_CONTEXT_HV:
509 cpumode = PERF_RECORD_MISC_HYPERVISOR;
510 break;
511 case PERF_CONTEXT_KERNEL:
512 cpumode = PERF_RECORD_MISC_KERNEL;
513 break;
514 case PERF_CONTEXT_USER:
515 cpumode = PERF_RECORD_MISC_USER;
516 break;
517 default:
518 pr_debug("invalid callchain context: "
519 "%"PRId64"\n", (s64) ip);
520
521 /*
522 * It seems the callchain is corrupted.
523 * Discard all.
524 */
525 zfree(&p);
526 goto exit_put;
527 }
528 continue;
529 }
530
531 tal.filtered = 0;
532 thread__find_addr_location(al.thread, cpumode,
533 MAP__FUNCTION, ip, &tal);
534
535 if (tal.sym)
536 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
537 tal.sym->name);
538 else
539 fprintf(f, "..... %016" PRIx64 "\n", ip);
540 }
541 exit_put:
542 addr_location__put(&al);
543 exit:
544 fclose(f);
545
546 return p;
547 }
548
549 typedef int (*tracepoint_handler)(struct timechart *tchart,
550 struct perf_evsel *evsel,
551 struct perf_sample *sample,
552 const char *backtrace);
553
554 static int process_sample_event(struct perf_tool *tool,
555 union perf_event *event,
556 struct perf_sample *sample,
557 struct perf_evsel *evsel,
558 struct machine *machine)
559 {
560 struct timechart *tchart = container_of(tool, struct timechart, tool);
561
562 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
563 if (!tchart->first_time || tchart->first_time > sample->time)
564 tchart->first_time = sample->time;
565 if (tchart->last_time < sample->time)
566 tchart->last_time = sample->time;
567 }
568
569 if (evsel->handler != NULL) {
570 tracepoint_handler f = evsel->handler;
571 return f(tchart, evsel, sample,
572 cat_backtrace(event, sample, machine));
573 }
574
575 return 0;
576 }
577
578 static int
579 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
580 struct perf_evsel *evsel,
581 struct perf_sample *sample,
582 const char *backtrace __maybe_unused)
583 {
584 u32 state = perf_evsel__intval(evsel, sample, "state");
585 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
586
587 if (state == (u32)PWR_EVENT_EXIT)
588 c_state_end(tchart, cpu_id, sample->time);
589 else
590 c_state_start(cpu_id, sample->time, state);
591 return 0;
592 }
593
594 static int
595 process_sample_cpu_frequency(struct timechart *tchart,
596 struct perf_evsel *evsel,
597 struct perf_sample *sample,
598 const char *backtrace __maybe_unused)
599 {
600 u32 state = perf_evsel__intval(evsel, sample, "state");
601 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
602
603 p_state_change(tchart, cpu_id, sample->time, state);
604 return 0;
605 }
606
607 static int
608 process_sample_sched_wakeup(struct timechart *tchart,
609 struct perf_evsel *evsel,
610 struct perf_sample *sample,
611 const char *backtrace)
612 {
613 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
614 int waker = perf_evsel__intval(evsel, sample, "common_pid");
615 int wakee = perf_evsel__intval(evsel, sample, "pid");
616
617 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
618 return 0;
619 }
620
621 static int
622 process_sample_sched_switch(struct timechart *tchart,
623 struct perf_evsel *evsel,
624 struct perf_sample *sample,
625 const char *backtrace)
626 {
627 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
628 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
629 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
630
631 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
632 prev_state, backtrace);
633 return 0;
634 }
635
636 #ifdef SUPPORT_OLD_POWER_EVENTS
637 static int
638 process_sample_power_start(struct timechart *tchart __maybe_unused,
639 struct perf_evsel *evsel,
640 struct perf_sample *sample,
641 const char *backtrace __maybe_unused)
642 {
643 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
644 u64 value = perf_evsel__intval(evsel, sample, "value");
645
646 c_state_start(cpu_id, sample->time, value);
647 return 0;
648 }
649
650 static int
651 process_sample_power_end(struct timechart *tchart,
652 struct perf_evsel *evsel __maybe_unused,
653 struct perf_sample *sample,
654 const char *backtrace __maybe_unused)
655 {
656 c_state_end(tchart, sample->cpu, sample->time);
657 return 0;
658 }
659
660 static int
661 process_sample_power_frequency(struct timechart *tchart,
662 struct perf_evsel *evsel,
663 struct perf_sample *sample,
664 const char *backtrace __maybe_unused)
665 {
666 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
667 u64 value = perf_evsel__intval(evsel, sample, "value");
668
669 p_state_change(tchart, cpu_id, sample->time, value);
670 return 0;
671 }
672 #endif /* SUPPORT_OLD_POWER_EVENTS */
673
674 /*
675 * After the last sample we need to wrap up the current C/P state
676 * and close out each CPU for these.
677 */
678 static void end_sample_processing(struct timechart *tchart)
679 {
680 u64 cpu;
681 struct power_event *pwr;
682
683 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
684 /* C state */
685 #if 0
686 pwr = zalloc(sizeof(*pwr));
687 if (!pwr)
688 return;
689
690 pwr->state = cpus_cstate_state[cpu];
691 pwr->start_time = cpus_cstate_start_times[cpu];
692 pwr->end_time = tchart->last_time;
693 pwr->cpu = cpu;
694 pwr->type = CSTATE;
695 pwr->next = tchart->power_events;
696
697 tchart->power_events = pwr;
698 #endif
699 /* P state */
700
701 pwr = zalloc(sizeof(*pwr));
702 if (!pwr)
703 return;
704
705 pwr->state = cpus_pstate_state[cpu];
706 pwr->start_time = cpus_pstate_start_times[cpu];
707 pwr->end_time = tchart->last_time;
708 pwr->cpu = cpu;
709 pwr->type = PSTATE;
710 pwr->next = tchart->power_events;
711
712 if (!pwr->start_time)
713 pwr->start_time = tchart->first_time;
714 if (!pwr->state)
715 pwr->state = tchart->min_freq;
716 tchart->power_events = pwr;
717 }
718 }
719
720 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
721 u64 start, int fd)
722 {
723 struct per_pid *p = find_create_pid(tchart, pid);
724 struct per_pidcomm *c = p->current;
725 struct io_sample *sample;
726 struct io_sample *prev;
727
728 if (!c) {
729 c = zalloc(sizeof(*c));
730 if (!c)
731 return -ENOMEM;
732 p->current = c;
733 c->next = p->all;
734 p->all = c;
735 }
736
737 prev = c->io_samples;
738
739 if (prev && prev->start_time && !prev->end_time) {
740 pr_warning("Skip invalid start event: "
741 "previous event already started!\n");
742
743 /* remove previous event that has been started,
744 * we are not sure we will ever get an end for it */
745 c->io_samples = prev->next;
746 free(prev);
747 return 0;
748 }
749
750 sample = zalloc(sizeof(*sample));
751 if (!sample)
752 return -ENOMEM;
753 sample->start_time = start;
754 sample->type = type;
755 sample->fd = fd;
756 sample->next = c->io_samples;
757 c->io_samples = sample;
758
759 if (c->start_time == 0 || c->start_time > start)
760 c->start_time = start;
761
762 return 0;
763 }
764
765 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
766 u64 end, long ret)
767 {
768 struct per_pid *p = find_create_pid(tchart, pid);
769 struct per_pidcomm *c = p->current;
770 struct io_sample *sample, *prev;
771
772 if (!c) {
773 pr_warning("Invalid pidcomm!\n");
774 return -1;
775 }
776
777 sample = c->io_samples;
778
779 if (!sample) /* skip partially captured events */
780 return 0;
781
782 if (sample->end_time) {
783 pr_warning("Skip invalid end event: "
784 "previous event already ended!\n");
785 return 0;
786 }
787
788 if (sample->type != type) {
789 pr_warning("Skip invalid end event: invalid event type!\n");
790 return 0;
791 }
792
793 sample->end_time = end;
794 prev = sample->next;
795
796 /* we want to be able to see small and fast transfers, so make them
797 * at least min_time long, but don't overlap them */
798 if (sample->end_time - sample->start_time < tchart->min_time)
799 sample->end_time = sample->start_time + tchart->min_time;
800 if (prev && sample->start_time < prev->end_time) {
801 if (prev->err) /* try to make errors more visible */
802 sample->start_time = prev->end_time;
803 else
804 prev->end_time = sample->start_time;
805 }
806
807 if (ret < 0) {
808 sample->err = ret;
809 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
810 type == IOTYPE_TX || type == IOTYPE_RX) {
811
812 if ((u64)ret > c->max_bytes)
813 c->max_bytes = ret;
814
815 c->total_bytes += ret;
816 p->total_bytes += ret;
817 sample->bytes = ret;
818 }
819
820 /* merge two requests to make svg smaller and render-friendly */
821 if (prev &&
822 prev->type == sample->type &&
823 prev->err == sample->err &&
824 prev->fd == sample->fd &&
825 prev->end_time + tchart->merge_dist >= sample->start_time) {
826
827 sample->bytes += prev->bytes;
828 sample->merges += prev->merges + 1;
829
830 sample->start_time = prev->start_time;
831 sample->next = prev->next;
832 free(prev);
833
834 if (!sample->err && sample->bytes > c->max_bytes)
835 c->max_bytes = sample->bytes;
836 }
837
838 tchart->io_events++;
839
840 return 0;
841 }
842
843 static int
844 process_enter_read(struct timechart *tchart,
845 struct perf_evsel *evsel,
846 struct perf_sample *sample)
847 {
848 long fd = perf_evsel__intval(evsel, sample, "fd");
849 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
850 sample->time, fd);
851 }
852
853 static int
854 process_exit_read(struct timechart *tchart,
855 struct perf_evsel *evsel,
856 struct perf_sample *sample)
857 {
858 long ret = perf_evsel__intval(evsel, sample, "ret");
859 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
860 sample->time, ret);
861 }
862
863 static int
864 process_enter_write(struct timechart *tchart,
865 struct perf_evsel *evsel,
866 struct perf_sample *sample)
867 {
868 long fd = perf_evsel__intval(evsel, sample, "fd");
869 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
870 sample->time, fd);
871 }
872
873 static int
874 process_exit_write(struct timechart *tchart,
875 struct perf_evsel *evsel,
876 struct perf_sample *sample)
877 {
878 long ret = perf_evsel__intval(evsel, sample, "ret");
879 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
880 sample->time, ret);
881 }
882
883 static int
884 process_enter_sync(struct timechart *tchart,
885 struct perf_evsel *evsel,
886 struct perf_sample *sample)
887 {
888 long fd = perf_evsel__intval(evsel, sample, "fd");
889 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
890 sample->time, fd);
891 }
892
893 static int
894 process_exit_sync(struct timechart *tchart,
895 struct perf_evsel *evsel,
896 struct perf_sample *sample)
897 {
898 long ret = perf_evsel__intval(evsel, sample, "ret");
899 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
900 sample->time, ret);
901 }
902
903 static int
904 process_enter_tx(struct timechart *tchart,
905 struct perf_evsel *evsel,
906 struct perf_sample *sample)
907 {
908 long fd = perf_evsel__intval(evsel, sample, "fd");
909 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
910 sample->time, fd);
911 }
912
913 static int
914 process_exit_tx(struct timechart *tchart,
915 struct perf_evsel *evsel,
916 struct perf_sample *sample)
917 {
918 long ret = perf_evsel__intval(evsel, sample, "ret");
919 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
920 sample->time, ret);
921 }
922
923 static int
924 process_enter_rx(struct timechart *tchart,
925 struct perf_evsel *evsel,
926 struct perf_sample *sample)
927 {
928 long fd = perf_evsel__intval(evsel, sample, "fd");
929 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
930 sample->time, fd);
931 }
932
933 static int
934 process_exit_rx(struct timechart *tchart,
935 struct perf_evsel *evsel,
936 struct perf_sample *sample)
937 {
938 long ret = perf_evsel__intval(evsel, sample, "ret");
939 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
940 sample->time, ret);
941 }
942
943 static int
944 process_enter_poll(struct timechart *tchart,
945 struct perf_evsel *evsel,
946 struct perf_sample *sample)
947 {
948 long fd = perf_evsel__intval(evsel, sample, "fd");
949 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
950 sample->time, fd);
951 }
952
953 static int
954 process_exit_poll(struct timechart *tchart,
955 struct perf_evsel *evsel,
956 struct perf_sample *sample)
957 {
958 long ret = perf_evsel__intval(evsel, sample, "ret");
959 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
960 sample->time, ret);
961 }
962
963 /*
964 * Sort the pid datastructure
965 */
966 static void sort_pids(struct timechart *tchart)
967 {
968 struct per_pid *new_list, *p, *cursor, *prev;
969 /* sort by ppid first, then by pid, lowest to highest */
970
971 new_list = NULL;
972
973 while (tchart->all_data) {
974 p = tchart->all_data;
975 tchart->all_data = p->next;
976 p->next = NULL;
977
978 if (new_list == NULL) {
979 new_list = p;
980 p->next = NULL;
981 continue;
982 }
983 prev = NULL;
984 cursor = new_list;
985 while (cursor) {
986 if (cursor->ppid > p->ppid ||
987 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
988 /* must insert before */
989 if (prev) {
990 p->next = prev->next;
991 prev->next = p;
992 cursor = NULL;
993 continue;
994 } else {
995 p->next = new_list;
996 new_list = p;
997 cursor = NULL;
998 continue;
999 }
1000 }
1001
1002 prev = cursor;
1003 cursor = cursor->next;
1004 if (!cursor)
1005 prev->next = p;
1006 }
1007 }
1008 tchart->all_data = new_list;
1009 }
1010
1011
1012 static void draw_c_p_states(struct timechart *tchart)
1013 {
1014 struct power_event *pwr;
1015 pwr = tchart->power_events;
1016
1017 /*
1018 * two pass drawing so that the P state bars are on top of the C state blocks
1019 */
1020 while (pwr) {
1021 if (pwr->type == CSTATE)
1022 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1023 pwr = pwr->next;
1024 }
1025
1026 pwr = tchart->power_events;
1027 while (pwr) {
1028 if (pwr->type == PSTATE) {
1029 if (!pwr->state)
1030 pwr->state = tchart->min_freq;
1031 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1032 }
1033 pwr = pwr->next;
1034 }
1035 }
1036
1037 static void draw_wakeups(struct timechart *tchart)
1038 {
1039 struct wake_event *we;
1040 struct per_pid *p;
1041 struct per_pidcomm *c;
1042
1043 we = tchart->wake_events;
1044 while (we) {
1045 int from = 0, to = 0;
1046 char *task_from = NULL, *task_to = NULL;
1047
1048 /* locate the column of the waker and wakee */
1049 p = tchart->all_data;
1050 while (p) {
1051 if (p->pid == we->waker || p->pid == we->wakee) {
1052 c = p->all;
1053 while (c) {
1054 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1055 if (p->pid == we->waker && !from) {
1056 from = c->Y;
1057 task_from = strdup(c->comm);
1058 }
1059 if (p->pid == we->wakee && !to) {
1060 to = c->Y;
1061 task_to = strdup(c->comm);
1062 }
1063 }
1064 c = c->next;
1065 }
1066 c = p->all;
1067 while (c) {
1068 if (p->pid == we->waker && !from) {
1069 from = c->Y;
1070 task_from = strdup(c->comm);
1071 }
1072 if (p->pid == we->wakee && !to) {
1073 to = c->Y;
1074 task_to = strdup(c->comm);
1075 }
1076 c = c->next;
1077 }
1078 }
1079 p = p->next;
1080 }
1081
1082 if (!task_from) {
1083 task_from = malloc(40);
1084 sprintf(task_from, "[%i]", we->waker);
1085 }
1086 if (!task_to) {
1087 task_to = malloc(40);
1088 sprintf(task_to, "[%i]", we->wakee);
1089 }
1090
1091 if (we->waker == -1)
1092 svg_interrupt(we->time, to, we->backtrace);
1093 else if (from && to && abs(from - to) == 1)
1094 svg_wakeline(we->time, from, to, we->backtrace);
1095 else
1096 svg_partial_wakeline(we->time, from, task_from, to,
1097 task_to, we->backtrace);
1098 we = we->next;
1099
1100 free(task_from);
1101 free(task_to);
1102 }
1103 }
1104
1105 static void draw_cpu_usage(struct timechart *tchart)
1106 {
1107 struct per_pid *p;
1108 struct per_pidcomm *c;
1109 struct cpu_sample *sample;
1110 p = tchart->all_data;
1111 while (p) {
1112 c = p->all;
1113 while (c) {
1114 sample = c->samples;
1115 while (sample) {
1116 if (sample->type == TYPE_RUNNING) {
1117 svg_process(sample->cpu,
1118 sample->start_time,
1119 sample->end_time,
1120 p->pid,
1121 c->comm,
1122 sample->backtrace);
1123 }
1124
1125 sample = sample->next;
1126 }
1127 c = c->next;
1128 }
1129 p = p->next;
1130 }
1131 }
1132
1133 static void draw_io_bars(struct timechart *tchart)
1134 {
1135 const char *suf;
1136 double bytes;
1137 char comm[256];
1138 struct per_pid *p;
1139 struct per_pidcomm *c;
1140 struct io_sample *sample;
1141 int Y = 1;
1142
1143 p = tchart->all_data;
1144 while (p) {
1145 c = p->all;
1146 while (c) {
1147 if (!c->display) {
1148 c->Y = 0;
1149 c = c->next;
1150 continue;
1151 }
1152
1153 svg_box(Y, c->start_time, c->end_time, "process3");
1154 sample = c->io_samples;
1155 for (sample = c->io_samples; sample; sample = sample->next) {
1156 double h = (double)sample->bytes / c->max_bytes;
1157
1158 if (tchart->skip_eagain &&
1159 sample->err == -EAGAIN)
1160 continue;
1161
1162 if (sample->err)
1163 h = 1;
1164
1165 if (sample->type == IOTYPE_SYNC)
1166 svg_fbox(Y,
1167 sample->start_time,
1168 sample->end_time,
1169 1,
1170 sample->err ? "error" : "sync",
1171 sample->fd,
1172 sample->err,
1173 sample->merges);
1174 else if (sample->type == IOTYPE_POLL)
1175 svg_fbox(Y,
1176 sample->start_time,
1177 sample->end_time,
1178 1,
1179 sample->err ? "error" : "poll",
1180 sample->fd,
1181 sample->err,
1182 sample->merges);
1183 else if (sample->type == IOTYPE_READ)
1184 svg_ubox(Y,
1185 sample->start_time,
1186 sample->end_time,
1187 h,
1188 sample->err ? "error" : "disk",
1189 sample->fd,
1190 sample->err,
1191 sample->merges);
1192 else if (sample->type == IOTYPE_WRITE)
1193 svg_lbox(Y,
1194 sample->start_time,
1195 sample->end_time,
1196 h,
1197 sample->err ? "error" : "disk",
1198 sample->fd,
1199 sample->err,
1200 sample->merges);
1201 else if (sample->type == IOTYPE_RX)
1202 svg_ubox(Y,
1203 sample->start_time,
1204 sample->end_time,
1205 h,
1206 sample->err ? "error" : "net",
1207 sample->fd,
1208 sample->err,
1209 sample->merges);
1210 else if (sample->type == IOTYPE_TX)
1211 svg_lbox(Y,
1212 sample->start_time,
1213 sample->end_time,
1214 h,
1215 sample->err ? "error" : "net",
1216 sample->fd,
1217 sample->err,
1218 sample->merges);
1219 }
1220
1221 suf = "";
1222 bytes = c->total_bytes;
1223 if (bytes > 1024) {
1224 bytes = bytes / 1024;
1225 suf = "K";
1226 }
1227 if (bytes > 1024) {
1228 bytes = bytes / 1024;
1229 suf = "M";
1230 }
1231 if (bytes > 1024) {
1232 bytes = bytes / 1024;
1233 suf = "G";
1234 }
1235
1236
1237 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1238 svg_text(Y, c->start_time, comm);
1239
1240 c->Y = Y;
1241 Y++;
1242 c = c->next;
1243 }
1244 p = p->next;
1245 }
1246 }
1247
1248 static void draw_process_bars(struct timechart *tchart)
1249 {
1250 struct per_pid *p;
1251 struct per_pidcomm *c;
1252 struct cpu_sample *sample;
1253 int Y = 0;
1254
1255 Y = 2 * tchart->numcpus + 2;
1256
1257 p = tchart->all_data;
1258 while (p) {
1259 c = p->all;
1260 while (c) {
1261 if (!c->display) {
1262 c->Y = 0;
1263 c = c->next;
1264 continue;
1265 }
1266
1267 svg_box(Y, c->start_time, c->end_time, "process");
1268 sample = c->samples;
1269 while (sample) {
1270 if (sample->type == TYPE_RUNNING)
1271 svg_running(Y, sample->cpu,
1272 sample->start_time,
1273 sample->end_time,
1274 sample->backtrace);
1275 if (sample->type == TYPE_BLOCKED)
1276 svg_blocked(Y, sample->cpu,
1277 sample->start_time,
1278 sample->end_time,
1279 sample->backtrace);
1280 if (sample->type == TYPE_WAITING)
1281 svg_waiting(Y, sample->cpu,
1282 sample->start_time,
1283 sample->end_time,
1284 sample->backtrace);
1285 sample = sample->next;
1286 }
1287
1288 if (c->comm) {
1289 char comm[256];
1290 if (c->total_time > 5000000000) /* 5 seconds */
1291 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
1292 else
1293 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
1294
1295 svg_text(Y, c->start_time, comm);
1296 }
1297 c->Y = Y;
1298 Y++;
1299 c = c->next;
1300 }
1301 p = p->next;
1302 }
1303 }
1304
1305 static void add_process_filter(const char *string)
1306 {
1307 int pid = strtoull(string, NULL, 10);
1308 struct process_filter *filt = malloc(sizeof(*filt));
1309
1310 if (!filt)
1311 return;
1312
1313 filt->name = strdup(string);
1314 filt->pid = pid;
1315 filt->next = process_filter;
1316
1317 process_filter = filt;
1318 }
1319
1320 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1321 {
1322 struct process_filter *filt;
1323 if (!process_filter)
1324 return 1;
1325
1326 filt = process_filter;
1327 while (filt) {
1328 if (filt->pid && p->pid == filt->pid)
1329 return 1;
1330 if (strcmp(filt->name, c->comm) == 0)
1331 return 1;
1332 filt = filt->next;
1333 }
1334 return 0;
1335 }
1336
1337 static int determine_display_tasks_filtered(struct timechart *tchart)
1338 {
1339 struct per_pid *p;
1340 struct per_pidcomm *c;
1341 int count = 0;
1342
1343 p = tchart->all_data;
1344 while (p) {
1345 p->display = 0;
1346 if (p->start_time == 1)
1347 p->start_time = tchart->first_time;
1348
1349 /* no exit marker, task kept running to the end */
1350 if (p->end_time == 0)
1351 p->end_time = tchart->last_time;
1352
1353 c = p->all;
1354
1355 while (c) {
1356 c->display = 0;
1357
1358 if (c->start_time == 1)
1359 c->start_time = tchart->first_time;
1360
1361 if (passes_filter(p, c)) {
1362 c->display = 1;
1363 p->display = 1;
1364 count++;
1365 }
1366
1367 if (c->end_time == 0)
1368 c->end_time = tchart->last_time;
1369
1370 c = c->next;
1371 }
1372 p = p->next;
1373 }
1374 return count;
1375 }
1376
1377 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1378 {
1379 struct per_pid *p;
1380 struct per_pidcomm *c;
1381 int count = 0;
1382
1383 p = tchart->all_data;
1384 while (p) {
1385 p->display = 0;
1386 if (p->start_time == 1)
1387 p->start_time = tchart->first_time;
1388
1389 /* no exit marker, task kept running to the end */
1390 if (p->end_time == 0)
1391 p->end_time = tchart->last_time;
1392 if (p->total_time >= threshold)
1393 p->display = 1;
1394
1395 c = p->all;
1396
1397 while (c) {
1398 c->display = 0;
1399
1400 if (c->start_time == 1)
1401 c->start_time = tchart->first_time;
1402
1403 if (c->total_time >= threshold) {
1404 c->display = 1;
1405 count++;
1406 }
1407
1408 if (c->end_time == 0)
1409 c->end_time = tchart->last_time;
1410
1411 c = c->next;
1412 }
1413 p = p->next;
1414 }
1415 return count;
1416 }
1417
1418 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1419 {
1420 struct per_pid *p;
1421 struct per_pidcomm *c;
1422 int count = 0;
1423
1424 p = timechart->all_data;
1425 while (p) {
1426 /* no exit marker, task kept running to the end */
1427 if (p->end_time == 0)
1428 p->end_time = timechart->last_time;
1429
1430 c = p->all;
1431
1432 while (c) {
1433 c->display = 0;
1434
1435 if (c->total_bytes >= threshold) {
1436 c->display = 1;
1437 count++;
1438 }
1439
1440 if (c->end_time == 0)
1441 c->end_time = timechart->last_time;
1442
1443 c = c->next;
1444 }
1445 p = p->next;
1446 }
1447 return count;
1448 }
1449
1450 #define BYTES_THRESH (1 * 1024 * 1024)
1451 #define TIME_THRESH 10000000
1452
1453 static void write_svg_file(struct timechart *tchart, const char *filename)
1454 {
1455 u64 i;
1456 int count;
1457 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1458
1459 if (tchart->power_only)
1460 tchart->proc_num = 0;
1461
1462 /* We'd like to show at least proc_num tasks;
1463 * be less picky if we have fewer */
1464 do {
1465 if (process_filter)
1466 count = determine_display_tasks_filtered(tchart);
1467 else if (tchart->io_events)
1468 count = determine_display_io_tasks(tchart, thresh);
1469 else
1470 count = determine_display_tasks(tchart, thresh);
1471 thresh /= 10;
1472 } while (!process_filter && thresh && count < tchart->proc_num);
1473
1474 if (!tchart->proc_num)
1475 count = 0;
1476
1477 if (tchart->io_events) {
1478 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1479
1480 svg_time_grid(0.5);
1481 svg_io_legenda();
1482
1483 draw_io_bars(tchart);
1484 } else {
1485 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1486
1487 svg_time_grid(0);
1488
1489 svg_legenda();
1490
1491 for (i = 0; i < tchart->numcpus; i++)
1492 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1493
1494 draw_cpu_usage(tchart);
1495 if (tchart->proc_num)
1496 draw_process_bars(tchart);
1497 if (!tchart->tasks_only)
1498 draw_c_p_states(tchart);
1499 if (tchart->proc_num)
1500 draw_wakeups(tchart);
1501 }
1502
1503 svg_close();
1504 }
1505
1506 static int process_header(struct perf_file_section *section __maybe_unused,
1507 struct perf_header *ph,
1508 int feat,
1509 int fd __maybe_unused,
1510 void *data)
1511 {
1512 struct timechart *tchart = data;
1513
1514 switch (feat) {
1515 case HEADER_NRCPUS:
1516 tchart->numcpus = ph->env.nr_cpus_avail;
1517 break;
1518
1519 case HEADER_CPU_TOPOLOGY:
1520 if (!tchart->topology)
1521 break;
1522
1523 if (svg_build_topology_map(ph->env.sibling_cores,
1524 ph->env.nr_sibling_cores,
1525 ph->env.sibling_threads,
1526 ph->env.nr_sibling_threads))
1527 fprintf(stderr, "problem building topology\n");
1528 break;
1529
1530 default:
1531 break;
1532 }
1533
1534 return 0;
1535 }
1536
1537 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1538 {
1539 const struct perf_evsel_str_handler power_tracepoints[] = {
1540 { "power:cpu_idle", process_sample_cpu_idle },
1541 { "power:cpu_frequency", process_sample_cpu_frequency },
1542 { "sched:sched_wakeup", process_sample_sched_wakeup },
1543 { "sched:sched_switch", process_sample_sched_switch },
1544 #ifdef SUPPORT_OLD_POWER_EVENTS
1545 { "power:power_start", process_sample_power_start },
1546 { "power:power_end", process_sample_power_end },
1547 { "power:power_frequency", process_sample_power_frequency },
1548 #endif
1549
1550 { "syscalls:sys_enter_read", process_enter_read },
1551 { "syscalls:sys_enter_pread64", process_enter_read },
1552 { "syscalls:sys_enter_readv", process_enter_read },
1553 { "syscalls:sys_enter_preadv", process_enter_read },
1554 { "syscalls:sys_enter_write", process_enter_write },
1555 { "syscalls:sys_enter_pwrite64", process_enter_write },
1556 { "syscalls:sys_enter_writev", process_enter_write },
1557 { "syscalls:sys_enter_pwritev", process_enter_write },
1558 { "syscalls:sys_enter_sync", process_enter_sync },
1559 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1560 { "syscalls:sys_enter_fsync", process_enter_sync },
1561 { "syscalls:sys_enter_msync", process_enter_sync },
1562 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1563 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1564 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1565 { "syscalls:sys_enter_sendto", process_enter_tx },
1566 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1567 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1568 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1569 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1570 { "syscalls:sys_enter_poll", process_enter_poll },
1571 { "syscalls:sys_enter_ppoll", process_enter_poll },
1572 { "syscalls:sys_enter_pselect6", process_enter_poll },
1573 { "syscalls:sys_enter_select", process_enter_poll },
1574
1575 { "syscalls:sys_exit_read", process_exit_read },
1576 { "syscalls:sys_exit_pread64", process_exit_read },
1577 { "syscalls:sys_exit_readv", process_exit_read },
1578 { "syscalls:sys_exit_preadv", process_exit_read },
1579 { "syscalls:sys_exit_write", process_exit_write },
1580 { "syscalls:sys_exit_pwrite64", process_exit_write },
1581 { "syscalls:sys_exit_writev", process_exit_write },
1582 { "syscalls:sys_exit_pwritev", process_exit_write },
1583 { "syscalls:sys_exit_sync", process_exit_sync },
1584 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1585 { "syscalls:sys_exit_fsync", process_exit_sync },
1586 { "syscalls:sys_exit_msync", process_exit_sync },
1587 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1588 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1589 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1590 { "syscalls:sys_exit_sendto", process_exit_tx },
1591 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1592 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1593 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1594 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1595 { "syscalls:sys_exit_poll", process_exit_poll },
1596 { "syscalls:sys_exit_ppoll", process_exit_poll },
1597 { "syscalls:sys_exit_pselect6", process_exit_poll },
1598 { "syscalls:sys_exit_select", process_exit_poll },
1599 };
1600 struct perf_data_file file = {
1601 .path = input_name,
1602 .mode = PERF_DATA_MODE_READ,
1603 .force = tchart->force,
1604 };
1605
1606 struct perf_session *session = perf_session__new(&file, false,
1607 &tchart->tool);
1608 int ret = -EINVAL;
1609
1610 if (session == NULL)
1611 return -1;
1612
1613 symbol__init(&session->header.env);
1614
1615 (void)perf_header__process_sections(&session->header,
1616 perf_data_file__fd(session->file),
1617 tchart,
1618 process_header);
1619
1620 if (!perf_session__has_traces(session, "timechart record"))
1621 goto out_delete;
1622
1623 if (perf_session__set_tracepoints_handlers(session,
1624 power_tracepoints)) {
1625 pr_err("Initializing session tracepoint handlers failed\n");
1626 goto out_delete;
1627 }
1628
1629 ret = perf_session__process_events(session);
1630 if (ret)
1631 goto out_delete;
1632
1633 end_sample_processing(tchart);
1634
1635 sort_pids(tchart);
1636
1637 write_svg_file(tchart, output_name);
1638
1639 pr_info("Written %2.1f seconds of trace to %s.\n",
1640 (tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1641 out_delete:
1642 perf_session__delete(session);
1643 return ret;
1644 }
1645
1646 static int timechart__io_record(int argc, const char **argv)
1647 {
1648 unsigned int rec_argc, i;
1649 const char **rec_argv;
1650 const char **p;
1651 char *filter = NULL;
1652
1653 const char * const common_args[] = {
1654 "record", "-a", "-R", "-c", "1",
1655 };
1656 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1657
1658 const char * const disk_events[] = {
1659 "syscalls:sys_enter_read",
1660 "syscalls:sys_enter_pread64",
1661 "syscalls:sys_enter_readv",
1662 "syscalls:sys_enter_preadv",
1663 "syscalls:sys_enter_write",
1664 "syscalls:sys_enter_pwrite64",
1665 "syscalls:sys_enter_writev",
1666 "syscalls:sys_enter_pwritev",
1667 "syscalls:sys_enter_sync",
1668 "syscalls:sys_enter_sync_file_range",
1669 "syscalls:sys_enter_fsync",
1670 "syscalls:sys_enter_msync",
1671
1672 "syscalls:sys_exit_read",
1673 "syscalls:sys_exit_pread64",
1674 "syscalls:sys_exit_readv",
1675 "syscalls:sys_exit_preadv",
1676 "syscalls:sys_exit_write",
1677 "syscalls:sys_exit_pwrite64",
1678 "syscalls:sys_exit_writev",
1679 "syscalls:sys_exit_pwritev",
1680 "syscalls:sys_exit_sync",
1681 "syscalls:sys_exit_sync_file_range",
1682 "syscalls:sys_exit_fsync",
1683 "syscalls:sys_exit_msync",
1684 };
1685 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1686
1687 const char * const net_events[] = {
1688 "syscalls:sys_enter_recvfrom",
1689 "syscalls:sys_enter_recvmmsg",
1690 "syscalls:sys_enter_recvmsg",
1691 "syscalls:sys_enter_sendto",
1692 "syscalls:sys_enter_sendmsg",
1693 "syscalls:sys_enter_sendmmsg",
1694
1695 "syscalls:sys_exit_recvfrom",
1696 "syscalls:sys_exit_recvmmsg",
1697 "syscalls:sys_exit_recvmsg",
1698 "syscalls:sys_exit_sendto",
1699 "syscalls:sys_exit_sendmsg",
1700 "syscalls:sys_exit_sendmmsg",
1701 };
1702 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1703
1704 const char * const poll_events[] = {
1705 "syscalls:sys_enter_epoll_pwait",
1706 "syscalls:sys_enter_epoll_wait",
1707 "syscalls:sys_enter_poll",
1708 "syscalls:sys_enter_ppoll",
1709 "syscalls:sys_enter_pselect6",
1710 "syscalls:sys_enter_select",
1711
1712 "syscalls:sys_exit_epoll_pwait",
1713 "syscalls:sys_exit_epoll_wait",
1714 "syscalls:sys_exit_poll",
1715 "syscalls:sys_exit_ppoll",
1716 "syscalls:sys_exit_pselect6",
1717 "syscalls:sys_exit_select",
1718 };
1719 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1720
1721 rec_argc = common_args_nr +
1722 disk_events_nr * 4 +
1723 net_events_nr * 4 +
1724 poll_events_nr * 4 +
1725 argc;
1726 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1727
1728 if (rec_argv == NULL)
1729 return -ENOMEM;
1730
1731 if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1732 return -ENOMEM;
1733
1734 p = rec_argv;
1735 for (i = 0; i < common_args_nr; i++)
1736 *p++ = strdup(common_args[i]);
1737
1738 for (i = 0; i < disk_events_nr; i++) {
1739 if (!is_valid_tracepoint(disk_events[i])) {
1740 rec_argc -= 4;
1741 continue;
1742 }
1743
1744 *p++ = "-e";
1745 *p++ = strdup(disk_events[i]);
1746 *p++ = "--filter";
1747 *p++ = filter;
1748 }
1749 for (i = 0; i < net_events_nr; i++) {
1750 if (!is_valid_tracepoint(net_events[i])) {
1751 rec_argc -= 4;
1752 continue;
1753 }
1754
1755 *p++ = "-e";
1756 *p++ = strdup(net_events[i]);
1757 *p++ = "--filter";
1758 *p++ = filter;
1759 }
1760 for (i = 0; i < poll_events_nr; i++) {
1761 if (!is_valid_tracepoint(poll_events[i])) {
1762 rec_argc -= 4;
1763 continue;
1764 }
1765
1766 *p++ = "-e";
1767 *p++ = strdup(poll_events[i]);
1768 *p++ = "--filter";
1769 *p++ = filter;
1770 }
1771
1772 for (i = 0; i < (unsigned int)argc; i++)
1773 *p++ = argv[i];
1774
1775 return cmd_record(rec_argc, rec_argv, NULL);
1776 }
1777
1778
1779 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1780 {
1781 unsigned int rec_argc, i, j;
1782 const char **rec_argv;
1783 const char **p;
1784 unsigned int record_elems;
1785
1786 const char * const common_args[] = {
1787 "record", "-a", "-R", "-c", "1",
1788 };
1789 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1790
1791 const char * const backtrace_args[] = {
1792 "-g",
1793 };
1794 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1795
1796 const char * const power_args[] = {
1797 "-e", "power:cpu_frequency",
1798 "-e", "power:cpu_idle",
1799 };
1800 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1801
1802 const char * const old_power_args[] = {
1803 #ifdef SUPPORT_OLD_POWER_EVENTS
1804 "-e", "power:power_start",
1805 "-e", "power:power_end",
1806 "-e", "power:power_frequency",
1807 #endif
1808 };
1809 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1810
1811 const char * const tasks_args[] = {
1812 "-e", "sched:sched_wakeup",
1813 "-e", "sched:sched_switch",
1814 };
1815 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1816
1817 #ifdef SUPPORT_OLD_POWER_EVENTS
1818 if (!is_valid_tracepoint("power:cpu_idle") &&
1819 is_valid_tracepoint("power:power_start")) {
1820 use_old_power_events = 1;
1821 power_args_nr = 0;
1822 } else {
1823 old_power_args_nr = 0;
1824 }
1825 #endif
1826
1827 if (tchart->power_only)
1828 tasks_args_nr = 0;
1829
1830 if (tchart->tasks_only) {
1831 power_args_nr = 0;
1832 old_power_args_nr = 0;
1833 }
1834
1835 if (!tchart->with_backtrace)
1836 backtrace_args_no = 0;
1837
1838 record_elems = common_args_nr + tasks_args_nr +
1839 power_args_nr + old_power_args_nr + backtrace_args_no;
1840
1841 rec_argc = record_elems + argc;
1842 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1843
1844 if (rec_argv == NULL)
1845 return -ENOMEM;
1846
1847 p = rec_argv;
1848 for (i = 0; i < common_args_nr; i++)
1849 *p++ = strdup(common_args[i]);
1850
1851 for (i = 0; i < backtrace_args_no; i++)
1852 *p++ = strdup(backtrace_args[i]);
1853
1854 for (i = 0; i < tasks_args_nr; i++)
1855 *p++ = strdup(tasks_args[i]);
1856
1857 for (i = 0; i < power_args_nr; i++)
1858 *p++ = strdup(power_args[i]);
1859
1860 for (i = 0; i < old_power_args_nr; i++)
1861 *p++ = strdup(old_power_args[i]);
1862
1863 for (j = 0; j < (unsigned int)argc; j++)
1864 *p++ = argv[j];
1865
1866 return cmd_record(rec_argc, rec_argv, NULL);
1867 }
1868
1869 static int
1870 parse_process(const struct option *opt __maybe_unused, const char *arg,
1871 int __maybe_unused unset)
1872 {
1873 if (arg)
1874 add_process_filter(arg);
1875 return 0;
1876 }
1877
1878 static int
1879 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1880 int __maybe_unused unset)
1881 {
1882 unsigned long duration = strtoul(arg, NULL, 0);
1883
1884 if (svg_highlight || svg_highlight_name)
1885 return -1;
1886
1887 if (duration)
1888 svg_highlight = duration;
1889 else
1890 svg_highlight_name = strdup(arg);
1891
1892 return 0;
1893 }
1894
1895 static int
1896 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1897 {
1898 char unit = 'n';
1899 u64 *value = opt->value;
1900
1901 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1902 switch (unit) {
1903 case 'm':
1904 *value *= 1000000;
1905 break;
1906 case 'u':
1907 *value *= 1000;
1908 break;
1909 case 'n':
1910 break;
1911 default:
1912 return -1;
1913 }
1914 }
1915
1916 return 0;
1917 }
1918
1919 int cmd_timechart(int argc, const char **argv,
1920 const char *prefix __maybe_unused)
1921 {
1922 struct timechart tchart = {
1923 .tool = {
1924 .comm = process_comm_event,
1925 .fork = process_fork_event,
1926 .exit = process_exit_event,
1927 .sample = process_sample_event,
1928 .ordered_events = true,
1929 },
1930 .proc_num = 15,
1931 .min_time = 1000000,
1932 .merge_dist = 1000,
1933 };
1934 const char *output_name = "output.svg";
1935 const struct option timechart_options[] = {
1936 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1937 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1938 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1939 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1940 "highlight tasks. Pass duration in ns or process name.",
1941 parse_highlight),
1942 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1943 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1944 "output processes data only"),
1945 OPT_CALLBACK('p', "process", NULL, "process",
1946 "process selector. Pass a pid or process name.",
1947 parse_process),
1948 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1949 "Look for files with symbols relative to this directory"),
1950 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1951 "min. number of tasks to print"),
1952 OPT_BOOLEAN('t', "topology", &tchart.topology,
1953 "sort CPUs according to topology"),
1954 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1955 "skip EAGAIN errors"),
1956 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1957 "all IO faster than min-time will visually appear longer",
1958 parse_time),
1959 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1960 "merge events that are merge-dist us apart",
1961 parse_time),
1962 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1963 OPT_END()
1964 };
1965 const char * const timechart_subcommands[] = { "record", NULL };
1966 const char *timechart_usage[] = {
1967 "perf timechart [<options>] {record}",
1968 NULL
1969 };
1970
1971 const struct option timechart_record_options[] = {
1972 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1973 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1974 "output processes data only"),
1975 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1976 "record only IO data"),
1977 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1978 OPT_END()
1979 };
1980 const char * const timechart_record_usage[] = {
1981 "perf timechart record [<options>]",
1982 NULL
1983 };
1984 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1985 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1986
1987 if (tchart.power_only && tchart.tasks_only) {
1988 pr_err("-P and -T options cannot be used at the same time.\n");
1989 return -1;
1990 }
1991
1992 if (argc && !strncmp(argv[0], "rec", 3)) {
1993 argc = parse_options(argc, argv, timechart_record_options,
1994 timechart_record_usage,
1995 PARSE_OPT_STOP_AT_NON_OPTION);
1996
1997 if (tchart.power_only && tchart.tasks_only) {
1998 pr_err("-P and -T options cannot be used at the same time.\n");
1999 return -1;
2000 }
2001
2002 if (tchart.io_only)
2003 return timechart__io_record(argc, argv);
2004 else
2005 return timechart__record(&tchart, argc, argv);
2006 } else if (argc)
2007 usage_with_options(timechart_usage, timechart_options);
2008
2009 setup_pager();
2010
2011 return __cmd_timechart(&tchart, output_name);
2012 }