]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - tools/perf/builtin-timechart.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / tools / perf / builtin-timechart.c
1 /*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15 #include <errno.h>
16 #include <inttypes.h>
17 #include <traceevent/event-parse.h>
18
19 #include "builtin.h"
20
21 #include "util/util.h"
22
23 #include "util/color.h"
24 #include <linux/list.h>
25 #include "util/cache.h"
26 #include "util/evlist.h"
27 #include "util/evsel.h"
28 #include <linux/kernel.h>
29 #include <linux/rbtree.h>
30 #include <linux/time64.h>
31 #include "util/symbol.h"
32 #include "util/thread.h"
33 #include "util/callchain.h"
34
35 #include "perf.h"
36 #include "util/header.h"
37 #include <subcmd/parse-options.h>
38 #include "util/parse-events.h"
39 #include "util/event.h"
40 #include "util/session.h"
41 #include "util/svghelper.h"
42 #include "util/tool.h"
43 #include "util/data.h"
44 #include "util/debug.h"
45
46 #ifdef LACKS_OPEN_MEMSTREAM_PROTOTYPE
47 FILE *open_memstream(char **ptr, size_t *sizeloc);
48 #endif
49
50 #define SUPPORT_OLD_POWER_EVENTS 1
51 #define PWR_EVENT_EXIT -1
52
53 struct per_pid;
54 struct power_event;
55 struct wake_event;
56
57 struct timechart {
58 struct perf_tool tool;
59 struct per_pid *all_data;
60 struct power_event *power_events;
61 struct wake_event *wake_events;
62 int proc_num;
63 unsigned int numcpus;
64 u64 min_freq, /* Lowest CPU frequency seen */
65 max_freq, /* Highest CPU frequency seen */
66 turbo_frequency,
67 first_time, last_time;
68 bool power_only,
69 tasks_only,
70 with_backtrace,
71 topology;
72 bool force;
73 /* IO related settings */
74 bool io_only,
75 skip_eagain;
76 u64 io_events;
77 u64 min_time,
78 merge_dist;
79 };
80
81 struct per_pidcomm;
82 struct cpu_sample;
83 struct io_sample;
84
85 /*
86 * Datastructure layout:
87 * We keep an list of "pid"s, matching the kernels notion of a task struct.
88 * Each "pid" entry, has a list of "comm"s.
89 * this is because we want to track different programs different, while
90 * exec will reuse the original pid (by design).
91 * Each comm has a list of samples that will be used to draw
92 * final graph.
93 */
94
95 struct per_pid {
96 struct per_pid *next;
97
98 int pid;
99 int ppid;
100
101 u64 start_time;
102 u64 end_time;
103 u64 total_time;
104 u64 total_bytes;
105 int display;
106
107 struct per_pidcomm *all;
108 struct per_pidcomm *current;
109 };
110
111
112 struct per_pidcomm {
113 struct per_pidcomm *next;
114
115 u64 start_time;
116 u64 end_time;
117 u64 total_time;
118 u64 max_bytes;
119 u64 total_bytes;
120
121 int Y;
122 int display;
123
124 long state;
125 u64 state_since;
126
127 char *comm;
128
129 struct cpu_sample *samples;
130 struct io_sample *io_samples;
131 };
132
133 struct sample_wrapper {
134 struct sample_wrapper *next;
135
136 u64 timestamp;
137 unsigned char data[0];
138 };
139
140 #define TYPE_NONE 0
141 #define TYPE_RUNNING 1
142 #define TYPE_WAITING 2
143 #define TYPE_BLOCKED 3
144
145 struct cpu_sample {
146 struct cpu_sample *next;
147
148 u64 start_time;
149 u64 end_time;
150 int type;
151 int cpu;
152 const char *backtrace;
153 };
154
155 enum {
156 IOTYPE_READ,
157 IOTYPE_WRITE,
158 IOTYPE_SYNC,
159 IOTYPE_TX,
160 IOTYPE_RX,
161 IOTYPE_POLL,
162 };
163
164 struct io_sample {
165 struct io_sample *next;
166
167 u64 start_time;
168 u64 end_time;
169 u64 bytes;
170 int type;
171 int fd;
172 int err;
173 int merges;
174 };
175
176 #define CSTATE 1
177 #define PSTATE 2
178
179 struct power_event {
180 struct power_event *next;
181 int type;
182 int state;
183 u64 start_time;
184 u64 end_time;
185 int cpu;
186 };
187
188 struct wake_event {
189 struct wake_event *next;
190 int waker;
191 int wakee;
192 u64 time;
193 const char *backtrace;
194 };
195
196 struct process_filter {
197 char *name;
198 int pid;
199 struct process_filter *next;
200 };
201
202 static struct process_filter *process_filter;
203
204
205 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
206 {
207 struct per_pid *cursor = tchart->all_data;
208
209 while (cursor) {
210 if (cursor->pid == pid)
211 return cursor;
212 cursor = cursor->next;
213 }
214 cursor = zalloc(sizeof(*cursor));
215 assert(cursor != NULL);
216 cursor->pid = pid;
217 cursor->next = tchart->all_data;
218 tchart->all_data = cursor;
219 return cursor;
220 }
221
222 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
223 {
224 struct per_pid *p;
225 struct per_pidcomm *c;
226 p = find_create_pid(tchart, pid);
227 c = p->all;
228 while (c) {
229 if (c->comm && strcmp(c->comm, comm) == 0) {
230 p->current = c;
231 return;
232 }
233 if (!c->comm) {
234 c->comm = strdup(comm);
235 p->current = c;
236 return;
237 }
238 c = c->next;
239 }
240 c = zalloc(sizeof(*c));
241 assert(c != NULL);
242 c->comm = strdup(comm);
243 p->current = c;
244 c->next = p->all;
245 p->all = c;
246 }
247
248 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
249 {
250 struct per_pid *p, *pp;
251 p = find_create_pid(tchart, pid);
252 pp = find_create_pid(tchart, ppid);
253 p->ppid = ppid;
254 if (pp->current && pp->current->comm && !p->current)
255 pid_set_comm(tchart, pid, pp->current->comm);
256
257 p->start_time = timestamp;
258 if (p->current && !p->current->start_time) {
259 p->current->start_time = timestamp;
260 p->current->state_since = timestamp;
261 }
262 }
263
264 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
265 {
266 struct per_pid *p;
267 p = find_create_pid(tchart, pid);
268 p->end_time = timestamp;
269 if (p->current)
270 p->current->end_time = timestamp;
271 }
272
273 static void pid_put_sample(struct timechart *tchart, int pid, int type,
274 unsigned int cpu, u64 start, u64 end,
275 const char *backtrace)
276 {
277 struct per_pid *p;
278 struct per_pidcomm *c;
279 struct cpu_sample *sample;
280
281 p = find_create_pid(tchart, pid);
282 c = p->current;
283 if (!c) {
284 c = zalloc(sizeof(*c));
285 assert(c != NULL);
286 p->current = c;
287 c->next = p->all;
288 p->all = c;
289 }
290
291 sample = zalloc(sizeof(*sample));
292 assert(sample != NULL);
293 sample->start_time = start;
294 sample->end_time = end;
295 sample->type = type;
296 sample->next = c->samples;
297 sample->cpu = cpu;
298 sample->backtrace = backtrace;
299 c->samples = sample;
300
301 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
302 c->total_time += (end-start);
303 p->total_time += (end-start);
304 }
305
306 if (c->start_time == 0 || c->start_time > start)
307 c->start_time = start;
308 if (p->start_time == 0 || p->start_time > start)
309 p->start_time = start;
310 }
311
312 #define MAX_CPUS 4096
313
314 static u64 cpus_cstate_start_times[MAX_CPUS];
315 static int cpus_cstate_state[MAX_CPUS];
316 static u64 cpus_pstate_start_times[MAX_CPUS];
317 static u64 cpus_pstate_state[MAX_CPUS];
318
319 static int process_comm_event(struct perf_tool *tool,
320 union perf_event *event,
321 struct perf_sample *sample __maybe_unused,
322 struct machine *machine __maybe_unused)
323 {
324 struct timechart *tchart = container_of(tool, struct timechart, tool);
325 pid_set_comm(tchart, event->comm.tid, event->comm.comm);
326 return 0;
327 }
328
329 static int process_fork_event(struct perf_tool *tool,
330 union perf_event *event,
331 struct perf_sample *sample __maybe_unused,
332 struct machine *machine __maybe_unused)
333 {
334 struct timechart *tchart = container_of(tool, struct timechart, tool);
335 pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
336 return 0;
337 }
338
339 static int process_exit_event(struct perf_tool *tool,
340 union perf_event *event,
341 struct perf_sample *sample __maybe_unused,
342 struct machine *machine __maybe_unused)
343 {
344 struct timechart *tchart = container_of(tool, struct timechart, tool);
345 pid_exit(tchart, event->fork.pid, event->fork.time);
346 return 0;
347 }
348
349 #ifdef SUPPORT_OLD_POWER_EVENTS
350 static int use_old_power_events;
351 #endif
352
353 static void c_state_start(int cpu, u64 timestamp, int state)
354 {
355 cpus_cstate_start_times[cpu] = timestamp;
356 cpus_cstate_state[cpu] = state;
357 }
358
359 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
360 {
361 struct power_event *pwr = zalloc(sizeof(*pwr));
362
363 if (!pwr)
364 return;
365
366 pwr->state = cpus_cstate_state[cpu];
367 pwr->start_time = cpus_cstate_start_times[cpu];
368 pwr->end_time = timestamp;
369 pwr->cpu = cpu;
370 pwr->type = CSTATE;
371 pwr->next = tchart->power_events;
372
373 tchart->power_events = pwr;
374 }
375
376 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
377 {
378 struct power_event *pwr;
379
380 if (new_freq > 8000000) /* detect invalid data */
381 return;
382
383 pwr = zalloc(sizeof(*pwr));
384 if (!pwr)
385 return;
386
387 pwr->state = cpus_pstate_state[cpu];
388 pwr->start_time = cpus_pstate_start_times[cpu];
389 pwr->end_time = timestamp;
390 pwr->cpu = cpu;
391 pwr->type = PSTATE;
392 pwr->next = tchart->power_events;
393
394 if (!pwr->start_time)
395 pwr->start_time = tchart->first_time;
396
397 tchart->power_events = pwr;
398
399 cpus_pstate_state[cpu] = new_freq;
400 cpus_pstate_start_times[cpu] = timestamp;
401
402 if ((u64)new_freq > tchart->max_freq)
403 tchart->max_freq = new_freq;
404
405 if (new_freq < tchart->min_freq || tchart->min_freq == 0)
406 tchart->min_freq = new_freq;
407
408 if (new_freq == tchart->max_freq - 1000)
409 tchart->turbo_frequency = tchart->max_freq;
410 }
411
412 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
413 int waker, int wakee, u8 flags, const char *backtrace)
414 {
415 struct per_pid *p;
416 struct wake_event *we = zalloc(sizeof(*we));
417
418 if (!we)
419 return;
420
421 we->time = timestamp;
422 we->waker = waker;
423 we->backtrace = backtrace;
424
425 if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
426 we->waker = -1;
427
428 we->wakee = wakee;
429 we->next = tchart->wake_events;
430 tchart->wake_events = we;
431 p = find_create_pid(tchart, we->wakee);
432
433 if (p && p->current && p->current->state == TYPE_NONE) {
434 p->current->state_since = timestamp;
435 p->current->state = TYPE_WAITING;
436 }
437 if (p && p->current && p->current->state == TYPE_BLOCKED) {
438 pid_put_sample(tchart, p->pid, p->current->state, cpu,
439 p->current->state_since, timestamp, NULL);
440 p->current->state_since = timestamp;
441 p->current->state = TYPE_WAITING;
442 }
443 }
444
445 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
446 int prev_pid, int next_pid, u64 prev_state,
447 const char *backtrace)
448 {
449 struct per_pid *p = NULL, *prev_p;
450
451 prev_p = find_create_pid(tchart, prev_pid);
452
453 p = find_create_pid(tchart, next_pid);
454
455 if (prev_p->current && prev_p->current->state != TYPE_NONE)
456 pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
457 prev_p->current->state_since, timestamp,
458 backtrace);
459 if (p && p->current) {
460 if (p->current->state != TYPE_NONE)
461 pid_put_sample(tchart, next_pid, p->current->state, cpu,
462 p->current->state_since, timestamp,
463 backtrace);
464
465 p->current->state_since = timestamp;
466 p->current->state = TYPE_RUNNING;
467 }
468
469 if (prev_p->current) {
470 prev_p->current->state = TYPE_NONE;
471 prev_p->current->state_since = timestamp;
472 if (prev_state & 2)
473 prev_p->current->state = TYPE_BLOCKED;
474 if (prev_state == 0)
475 prev_p->current->state = TYPE_WAITING;
476 }
477 }
478
479 static const char *cat_backtrace(union perf_event *event,
480 struct perf_sample *sample,
481 struct machine *machine)
482 {
483 struct addr_location al;
484 unsigned int i;
485 char *p = NULL;
486 size_t p_len;
487 u8 cpumode = PERF_RECORD_MISC_USER;
488 struct addr_location tal;
489 struct ip_callchain *chain = sample->callchain;
490 FILE *f = open_memstream(&p, &p_len);
491
492 if (!f) {
493 perror("open_memstream error");
494 return NULL;
495 }
496
497 if (!chain)
498 goto exit;
499
500 if (machine__resolve(machine, &al, sample) < 0) {
501 fprintf(stderr, "problem processing %d event, skipping it.\n",
502 event->header.type);
503 goto exit;
504 }
505
506 for (i = 0; i < chain->nr; i++) {
507 u64 ip;
508
509 if (callchain_param.order == ORDER_CALLEE)
510 ip = chain->ips[i];
511 else
512 ip = chain->ips[chain->nr - i - 1];
513
514 if (ip >= PERF_CONTEXT_MAX) {
515 switch (ip) {
516 case PERF_CONTEXT_HV:
517 cpumode = PERF_RECORD_MISC_HYPERVISOR;
518 break;
519 case PERF_CONTEXT_KERNEL:
520 cpumode = PERF_RECORD_MISC_KERNEL;
521 break;
522 case PERF_CONTEXT_USER:
523 cpumode = PERF_RECORD_MISC_USER;
524 break;
525 default:
526 pr_debug("invalid callchain context: "
527 "%"PRId64"\n", (s64) ip);
528
529 /*
530 * It seems the callchain is corrupted.
531 * Discard all.
532 */
533 zfree(&p);
534 goto exit_put;
535 }
536 continue;
537 }
538
539 tal.filtered = 0;
540 thread__find_addr_location(al.thread, cpumode,
541 MAP__FUNCTION, ip, &tal);
542
543 if (tal.sym)
544 fprintf(f, "..... %016" PRIx64 " %s\n", ip,
545 tal.sym->name);
546 else
547 fprintf(f, "..... %016" PRIx64 "\n", ip);
548 }
549 exit_put:
550 addr_location__put(&al);
551 exit:
552 fclose(f);
553
554 return p;
555 }
556
557 typedef int (*tracepoint_handler)(struct timechart *tchart,
558 struct perf_evsel *evsel,
559 struct perf_sample *sample,
560 const char *backtrace);
561
562 static int process_sample_event(struct perf_tool *tool,
563 union perf_event *event,
564 struct perf_sample *sample,
565 struct perf_evsel *evsel,
566 struct machine *machine)
567 {
568 struct timechart *tchart = container_of(tool, struct timechart, tool);
569
570 if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
571 if (!tchart->first_time || tchart->first_time > sample->time)
572 tchart->first_time = sample->time;
573 if (tchart->last_time < sample->time)
574 tchart->last_time = sample->time;
575 }
576
577 if (evsel->handler != NULL) {
578 tracepoint_handler f = evsel->handler;
579 return f(tchart, evsel, sample,
580 cat_backtrace(event, sample, machine));
581 }
582
583 return 0;
584 }
585
586 static int
587 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
588 struct perf_evsel *evsel,
589 struct perf_sample *sample,
590 const char *backtrace __maybe_unused)
591 {
592 u32 state = perf_evsel__intval(evsel, sample, "state");
593 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
594
595 if (state == (u32)PWR_EVENT_EXIT)
596 c_state_end(tchart, cpu_id, sample->time);
597 else
598 c_state_start(cpu_id, sample->time, state);
599 return 0;
600 }
601
602 static int
603 process_sample_cpu_frequency(struct timechart *tchart,
604 struct perf_evsel *evsel,
605 struct perf_sample *sample,
606 const char *backtrace __maybe_unused)
607 {
608 u32 state = perf_evsel__intval(evsel, sample, "state");
609 u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
610
611 p_state_change(tchart, cpu_id, sample->time, state);
612 return 0;
613 }
614
615 static int
616 process_sample_sched_wakeup(struct timechart *tchart,
617 struct perf_evsel *evsel,
618 struct perf_sample *sample,
619 const char *backtrace)
620 {
621 u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
622 int waker = perf_evsel__intval(evsel, sample, "common_pid");
623 int wakee = perf_evsel__intval(evsel, sample, "pid");
624
625 sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
626 return 0;
627 }
628
629 static int
630 process_sample_sched_switch(struct timechart *tchart,
631 struct perf_evsel *evsel,
632 struct perf_sample *sample,
633 const char *backtrace)
634 {
635 int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
636 int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
637 u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
638
639 sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
640 prev_state, backtrace);
641 return 0;
642 }
643
644 #ifdef SUPPORT_OLD_POWER_EVENTS
645 static int
646 process_sample_power_start(struct timechart *tchart __maybe_unused,
647 struct perf_evsel *evsel,
648 struct perf_sample *sample,
649 const char *backtrace __maybe_unused)
650 {
651 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
652 u64 value = perf_evsel__intval(evsel, sample, "value");
653
654 c_state_start(cpu_id, sample->time, value);
655 return 0;
656 }
657
658 static int
659 process_sample_power_end(struct timechart *tchart,
660 struct perf_evsel *evsel __maybe_unused,
661 struct perf_sample *sample,
662 const char *backtrace __maybe_unused)
663 {
664 c_state_end(tchart, sample->cpu, sample->time);
665 return 0;
666 }
667
668 static int
669 process_sample_power_frequency(struct timechart *tchart,
670 struct perf_evsel *evsel,
671 struct perf_sample *sample,
672 const char *backtrace __maybe_unused)
673 {
674 u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
675 u64 value = perf_evsel__intval(evsel, sample, "value");
676
677 p_state_change(tchart, cpu_id, sample->time, value);
678 return 0;
679 }
680 #endif /* SUPPORT_OLD_POWER_EVENTS */
681
682 /*
683 * After the last sample we need to wrap up the current C/P state
684 * and close out each CPU for these.
685 */
686 static void end_sample_processing(struct timechart *tchart)
687 {
688 u64 cpu;
689 struct power_event *pwr;
690
691 for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
692 /* C state */
693 #if 0
694 pwr = zalloc(sizeof(*pwr));
695 if (!pwr)
696 return;
697
698 pwr->state = cpus_cstate_state[cpu];
699 pwr->start_time = cpus_cstate_start_times[cpu];
700 pwr->end_time = tchart->last_time;
701 pwr->cpu = cpu;
702 pwr->type = CSTATE;
703 pwr->next = tchart->power_events;
704
705 tchart->power_events = pwr;
706 #endif
707 /* P state */
708
709 pwr = zalloc(sizeof(*pwr));
710 if (!pwr)
711 return;
712
713 pwr->state = cpus_pstate_state[cpu];
714 pwr->start_time = cpus_pstate_start_times[cpu];
715 pwr->end_time = tchart->last_time;
716 pwr->cpu = cpu;
717 pwr->type = PSTATE;
718 pwr->next = tchart->power_events;
719
720 if (!pwr->start_time)
721 pwr->start_time = tchart->first_time;
722 if (!pwr->state)
723 pwr->state = tchart->min_freq;
724 tchart->power_events = pwr;
725 }
726 }
727
728 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
729 u64 start, int fd)
730 {
731 struct per_pid *p = find_create_pid(tchart, pid);
732 struct per_pidcomm *c = p->current;
733 struct io_sample *sample;
734 struct io_sample *prev;
735
736 if (!c) {
737 c = zalloc(sizeof(*c));
738 if (!c)
739 return -ENOMEM;
740 p->current = c;
741 c->next = p->all;
742 p->all = c;
743 }
744
745 prev = c->io_samples;
746
747 if (prev && prev->start_time && !prev->end_time) {
748 pr_warning("Skip invalid start event: "
749 "previous event already started!\n");
750
751 /* remove previous event that has been started,
752 * we are not sure we will ever get an end for it */
753 c->io_samples = prev->next;
754 free(prev);
755 return 0;
756 }
757
758 sample = zalloc(sizeof(*sample));
759 if (!sample)
760 return -ENOMEM;
761 sample->start_time = start;
762 sample->type = type;
763 sample->fd = fd;
764 sample->next = c->io_samples;
765 c->io_samples = sample;
766
767 if (c->start_time == 0 || c->start_time > start)
768 c->start_time = start;
769
770 return 0;
771 }
772
773 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
774 u64 end, long ret)
775 {
776 struct per_pid *p = find_create_pid(tchart, pid);
777 struct per_pidcomm *c = p->current;
778 struct io_sample *sample, *prev;
779
780 if (!c) {
781 pr_warning("Invalid pidcomm!\n");
782 return -1;
783 }
784
785 sample = c->io_samples;
786
787 if (!sample) /* skip partially captured events */
788 return 0;
789
790 if (sample->end_time) {
791 pr_warning("Skip invalid end event: "
792 "previous event already ended!\n");
793 return 0;
794 }
795
796 if (sample->type != type) {
797 pr_warning("Skip invalid end event: invalid event type!\n");
798 return 0;
799 }
800
801 sample->end_time = end;
802 prev = sample->next;
803
804 /* we want to be able to see small and fast transfers, so make them
805 * at least min_time long, but don't overlap them */
806 if (sample->end_time - sample->start_time < tchart->min_time)
807 sample->end_time = sample->start_time + tchart->min_time;
808 if (prev && sample->start_time < prev->end_time) {
809 if (prev->err) /* try to make errors more visible */
810 sample->start_time = prev->end_time;
811 else
812 prev->end_time = sample->start_time;
813 }
814
815 if (ret < 0) {
816 sample->err = ret;
817 } else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
818 type == IOTYPE_TX || type == IOTYPE_RX) {
819
820 if ((u64)ret > c->max_bytes)
821 c->max_bytes = ret;
822
823 c->total_bytes += ret;
824 p->total_bytes += ret;
825 sample->bytes = ret;
826 }
827
828 /* merge two requests to make svg smaller and render-friendly */
829 if (prev &&
830 prev->type == sample->type &&
831 prev->err == sample->err &&
832 prev->fd == sample->fd &&
833 prev->end_time + tchart->merge_dist >= sample->start_time) {
834
835 sample->bytes += prev->bytes;
836 sample->merges += prev->merges + 1;
837
838 sample->start_time = prev->start_time;
839 sample->next = prev->next;
840 free(prev);
841
842 if (!sample->err && sample->bytes > c->max_bytes)
843 c->max_bytes = sample->bytes;
844 }
845
846 tchart->io_events++;
847
848 return 0;
849 }
850
851 static int
852 process_enter_read(struct timechart *tchart,
853 struct perf_evsel *evsel,
854 struct perf_sample *sample)
855 {
856 long fd = perf_evsel__intval(evsel, sample, "fd");
857 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
858 sample->time, fd);
859 }
860
861 static int
862 process_exit_read(struct timechart *tchart,
863 struct perf_evsel *evsel,
864 struct perf_sample *sample)
865 {
866 long ret = perf_evsel__intval(evsel, sample, "ret");
867 return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
868 sample->time, ret);
869 }
870
871 static int
872 process_enter_write(struct timechart *tchart,
873 struct perf_evsel *evsel,
874 struct perf_sample *sample)
875 {
876 long fd = perf_evsel__intval(evsel, sample, "fd");
877 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
878 sample->time, fd);
879 }
880
881 static int
882 process_exit_write(struct timechart *tchart,
883 struct perf_evsel *evsel,
884 struct perf_sample *sample)
885 {
886 long ret = perf_evsel__intval(evsel, sample, "ret");
887 return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
888 sample->time, ret);
889 }
890
891 static int
892 process_enter_sync(struct timechart *tchart,
893 struct perf_evsel *evsel,
894 struct perf_sample *sample)
895 {
896 long fd = perf_evsel__intval(evsel, sample, "fd");
897 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
898 sample->time, fd);
899 }
900
901 static int
902 process_exit_sync(struct timechart *tchart,
903 struct perf_evsel *evsel,
904 struct perf_sample *sample)
905 {
906 long ret = perf_evsel__intval(evsel, sample, "ret");
907 return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
908 sample->time, ret);
909 }
910
911 static int
912 process_enter_tx(struct timechart *tchart,
913 struct perf_evsel *evsel,
914 struct perf_sample *sample)
915 {
916 long fd = perf_evsel__intval(evsel, sample, "fd");
917 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
918 sample->time, fd);
919 }
920
921 static int
922 process_exit_tx(struct timechart *tchart,
923 struct perf_evsel *evsel,
924 struct perf_sample *sample)
925 {
926 long ret = perf_evsel__intval(evsel, sample, "ret");
927 return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
928 sample->time, ret);
929 }
930
931 static int
932 process_enter_rx(struct timechart *tchart,
933 struct perf_evsel *evsel,
934 struct perf_sample *sample)
935 {
936 long fd = perf_evsel__intval(evsel, sample, "fd");
937 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
938 sample->time, fd);
939 }
940
941 static int
942 process_exit_rx(struct timechart *tchart,
943 struct perf_evsel *evsel,
944 struct perf_sample *sample)
945 {
946 long ret = perf_evsel__intval(evsel, sample, "ret");
947 return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
948 sample->time, ret);
949 }
950
951 static int
952 process_enter_poll(struct timechart *tchart,
953 struct perf_evsel *evsel,
954 struct perf_sample *sample)
955 {
956 long fd = perf_evsel__intval(evsel, sample, "fd");
957 return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
958 sample->time, fd);
959 }
960
961 static int
962 process_exit_poll(struct timechart *tchart,
963 struct perf_evsel *evsel,
964 struct perf_sample *sample)
965 {
966 long ret = perf_evsel__intval(evsel, sample, "ret");
967 return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
968 sample->time, ret);
969 }
970
971 /*
972 * Sort the pid datastructure
973 */
974 static void sort_pids(struct timechart *tchart)
975 {
976 struct per_pid *new_list, *p, *cursor, *prev;
977 /* sort by ppid first, then by pid, lowest to highest */
978
979 new_list = NULL;
980
981 while (tchart->all_data) {
982 p = tchart->all_data;
983 tchart->all_data = p->next;
984 p->next = NULL;
985
986 if (new_list == NULL) {
987 new_list = p;
988 p->next = NULL;
989 continue;
990 }
991 prev = NULL;
992 cursor = new_list;
993 while (cursor) {
994 if (cursor->ppid > p->ppid ||
995 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
996 /* must insert before */
997 if (prev) {
998 p->next = prev->next;
999 prev->next = p;
1000 cursor = NULL;
1001 continue;
1002 } else {
1003 p->next = new_list;
1004 new_list = p;
1005 cursor = NULL;
1006 continue;
1007 }
1008 }
1009
1010 prev = cursor;
1011 cursor = cursor->next;
1012 if (!cursor)
1013 prev->next = p;
1014 }
1015 }
1016 tchart->all_data = new_list;
1017 }
1018
1019
1020 static void draw_c_p_states(struct timechart *tchart)
1021 {
1022 struct power_event *pwr;
1023 pwr = tchart->power_events;
1024
1025 /*
1026 * two pass drawing so that the P state bars are on top of the C state blocks
1027 */
1028 while (pwr) {
1029 if (pwr->type == CSTATE)
1030 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1031 pwr = pwr->next;
1032 }
1033
1034 pwr = tchart->power_events;
1035 while (pwr) {
1036 if (pwr->type == PSTATE) {
1037 if (!pwr->state)
1038 pwr->state = tchart->min_freq;
1039 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1040 }
1041 pwr = pwr->next;
1042 }
1043 }
1044
1045 static void draw_wakeups(struct timechart *tchart)
1046 {
1047 struct wake_event *we;
1048 struct per_pid *p;
1049 struct per_pidcomm *c;
1050
1051 we = tchart->wake_events;
1052 while (we) {
1053 int from = 0, to = 0;
1054 char *task_from = NULL, *task_to = NULL;
1055
1056 /* locate the column of the waker and wakee */
1057 p = tchart->all_data;
1058 while (p) {
1059 if (p->pid == we->waker || p->pid == we->wakee) {
1060 c = p->all;
1061 while (c) {
1062 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1063 if (p->pid == we->waker && !from) {
1064 from = c->Y;
1065 task_from = strdup(c->comm);
1066 }
1067 if (p->pid == we->wakee && !to) {
1068 to = c->Y;
1069 task_to = strdup(c->comm);
1070 }
1071 }
1072 c = c->next;
1073 }
1074 c = p->all;
1075 while (c) {
1076 if (p->pid == we->waker && !from) {
1077 from = c->Y;
1078 task_from = strdup(c->comm);
1079 }
1080 if (p->pid == we->wakee && !to) {
1081 to = c->Y;
1082 task_to = strdup(c->comm);
1083 }
1084 c = c->next;
1085 }
1086 }
1087 p = p->next;
1088 }
1089
1090 if (!task_from) {
1091 task_from = malloc(40);
1092 sprintf(task_from, "[%i]", we->waker);
1093 }
1094 if (!task_to) {
1095 task_to = malloc(40);
1096 sprintf(task_to, "[%i]", we->wakee);
1097 }
1098
1099 if (we->waker == -1)
1100 svg_interrupt(we->time, to, we->backtrace);
1101 else if (from && to && abs(from - to) == 1)
1102 svg_wakeline(we->time, from, to, we->backtrace);
1103 else
1104 svg_partial_wakeline(we->time, from, task_from, to,
1105 task_to, we->backtrace);
1106 we = we->next;
1107
1108 free(task_from);
1109 free(task_to);
1110 }
1111 }
1112
1113 static void draw_cpu_usage(struct timechart *tchart)
1114 {
1115 struct per_pid *p;
1116 struct per_pidcomm *c;
1117 struct cpu_sample *sample;
1118 p = tchart->all_data;
1119 while (p) {
1120 c = p->all;
1121 while (c) {
1122 sample = c->samples;
1123 while (sample) {
1124 if (sample->type == TYPE_RUNNING) {
1125 svg_process(sample->cpu,
1126 sample->start_time,
1127 sample->end_time,
1128 p->pid,
1129 c->comm,
1130 sample->backtrace);
1131 }
1132
1133 sample = sample->next;
1134 }
1135 c = c->next;
1136 }
1137 p = p->next;
1138 }
1139 }
1140
1141 static void draw_io_bars(struct timechart *tchart)
1142 {
1143 const char *suf;
1144 double bytes;
1145 char comm[256];
1146 struct per_pid *p;
1147 struct per_pidcomm *c;
1148 struct io_sample *sample;
1149 int Y = 1;
1150
1151 p = tchart->all_data;
1152 while (p) {
1153 c = p->all;
1154 while (c) {
1155 if (!c->display) {
1156 c->Y = 0;
1157 c = c->next;
1158 continue;
1159 }
1160
1161 svg_box(Y, c->start_time, c->end_time, "process3");
1162 sample = c->io_samples;
1163 for (sample = c->io_samples; sample; sample = sample->next) {
1164 double h = (double)sample->bytes / c->max_bytes;
1165
1166 if (tchart->skip_eagain &&
1167 sample->err == -EAGAIN)
1168 continue;
1169
1170 if (sample->err)
1171 h = 1;
1172
1173 if (sample->type == IOTYPE_SYNC)
1174 svg_fbox(Y,
1175 sample->start_time,
1176 sample->end_time,
1177 1,
1178 sample->err ? "error" : "sync",
1179 sample->fd,
1180 sample->err,
1181 sample->merges);
1182 else if (sample->type == IOTYPE_POLL)
1183 svg_fbox(Y,
1184 sample->start_time,
1185 sample->end_time,
1186 1,
1187 sample->err ? "error" : "poll",
1188 sample->fd,
1189 sample->err,
1190 sample->merges);
1191 else if (sample->type == IOTYPE_READ)
1192 svg_ubox(Y,
1193 sample->start_time,
1194 sample->end_time,
1195 h,
1196 sample->err ? "error" : "disk",
1197 sample->fd,
1198 sample->err,
1199 sample->merges);
1200 else if (sample->type == IOTYPE_WRITE)
1201 svg_lbox(Y,
1202 sample->start_time,
1203 sample->end_time,
1204 h,
1205 sample->err ? "error" : "disk",
1206 sample->fd,
1207 sample->err,
1208 sample->merges);
1209 else if (sample->type == IOTYPE_RX)
1210 svg_ubox(Y,
1211 sample->start_time,
1212 sample->end_time,
1213 h,
1214 sample->err ? "error" : "net",
1215 sample->fd,
1216 sample->err,
1217 sample->merges);
1218 else if (sample->type == IOTYPE_TX)
1219 svg_lbox(Y,
1220 sample->start_time,
1221 sample->end_time,
1222 h,
1223 sample->err ? "error" : "net",
1224 sample->fd,
1225 sample->err,
1226 sample->merges);
1227 }
1228
1229 suf = "";
1230 bytes = c->total_bytes;
1231 if (bytes > 1024) {
1232 bytes = bytes / 1024;
1233 suf = "K";
1234 }
1235 if (bytes > 1024) {
1236 bytes = bytes / 1024;
1237 suf = "M";
1238 }
1239 if (bytes > 1024) {
1240 bytes = bytes / 1024;
1241 suf = "G";
1242 }
1243
1244
1245 sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1246 svg_text(Y, c->start_time, comm);
1247
1248 c->Y = Y;
1249 Y++;
1250 c = c->next;
1251 }
1252 p = p->next;
1253 }
1254 }
1255
1256 static void draw_process_bars(struct timechart *tchart)
1257 {
1258 struct per_pid *p;
1259 struct per_pidcomm *c;
1260 struct cpu_sample *sample;
1261 int Y = 0;
1262
1263 Y = 2 * tchart->numcpus + 2;
1264
1265 p = tchart->all_data;
1266 while (p) {
1267 c = p->all;
1268 while (c) {
1269 if (!c->display) {
1270 c->Y = 0;
1271 c = c->next;
1272 continue;
1273 }
1274
1275 svg_box(Y, c->start_time, c->end_time, "process");
1276 sample = c->samples;
1277 while (sample) {
1278 if (sample->type == TYPE_RUNNING)
1279 svg_running(Y, sample->cpu,
1280 sample->start_time,
1281 sample->end_time,
1282 sample->backtrace);
1283 if (sample->type == TYPE_BLOCKED)
1284 svg_blocked(Y, sample->cpu,
1285 sample->start_time,
1286 sample->end_time,
1287 sample->backtrace);
1288 if (sample->type == TYPE_WAITING)
1289 svg_waiting(Y, sample->cpu,
1290 sample->start_time,
1291 sample->end_time,
1292 sample->backtrace);
1293 sample = sample->next;
1294 }
1295
1296 if (c->comm) {
1297 char comm[256];
1298 if (c->total_time > 5000000000) /* 5 seconds */
1299 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / (double)NSEC_PER_SEC);
1300 else
1301 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / (double)NSEC_PER_MSEC);
1302
1303 svg_text(Y, c->start_time, comm);
1304 }
1305 c->Y = Y;
1306 Y++;
1307 c = c->next;
1308 }
1309 p = p->next;
1310 }
1311 }
1312
1313 static void add_process_filter(const char *string)
1314 {
1315 int pid = strtoull(string, NULL, 10);
1316 struct process_filter *filt = malloc(sizeof(*filt));
1317
1318 if (!filt)
1319 return;
1320
1321 filt->name = strdup(string);
1322 filt->pid = pid;
1323 filt->next = process_filter;
1324
1325 process_filter = filt;
1326 }
1327
1328 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1329 {
1330 struct process_filter *filt;
1331 if (!process_filter)
1332 return 1;
1333
1334 filt = process_filter;
1335 while (filt) {
1336 if (filt->pid && p->pid == filt->pid)
1337 return 1;
1338 if (strcmp(filt->name, c->comm) == 0)
1339 return 1;
1340 filt = filt->next;
1341 }
1342 return 0;
1343 }
1344
1345 static int determine_display_tasks_filtered(struct timechart *tchart)
1346 {
1347 struct per_pid *p;
1348 struct per_pidcomm *c;
1349 int count = 0;
1350
1351 p = tchart->all_data;
1352 while (p) {
1353 p->display = 0;
1354 if (p->start_time == 1)
1355 p->start_time = tchart->first_time;
1356
1357 /* no exit marker, task kept running to the end */
1358 if (p->end_time == 0)
1359 p->end_time = tchart->last_time;
1360
1361 c = p->all;
1362
1363 while (c) {
1364 c->display = 0;
1365
1366 if (c->start_time == 1)
1367 c->start_time = tchart->first_time;
1368
1369 if (passes_filter(p, c)) {
1370 c->display = 1;
1371 p->display = 1;
1372 count++;
1373 }
1374
1375 if (c->end_time == 0)
1376 c->end_time = tchart->last_time;
1377
1378 c = c->next;
1379 }
1380 p = p->next;
1381 }
1382 return count;
1383 }
1384
1385 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1386 {
1387 struct per_pid *p;
1388 struct per_pidcomm *c;
1389 int count = 0;
1390
1391 p = tchart->all_data;
1392 while (p) {
1393 p->display = 0;
1394 if (p->start_time == 1)
1395 p->start_time = tchart->first_time;
1396
1397 /* no exit marker, task kept running to the end */
1398 if (p->end_time == 0)
1399 p->end_time = tchart->last_time;
1400 if (p->total_time >= threshold)
1401 p->display = 1;
1402
1403 c = p->all;
1404
1405 while (c) {
1406 c->display = 0;
1407
1408 if (c->start_time == 1)
1409 c->start_time = tchart->first_time;
1410
1411 if (c->total_time >= threshold) {
1412 c->display = 1;
1413 count++;
1414 }
1415
1416 if (c->end_time == 0)
1417 c->end_time = tchart->last_time;
1418
1419 c = c->next;
1420 }
1421 p = p->next;
1422 }
1423 return count;
1424 }
1425
1426 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1427 {
1428 struct per_pid *p;
1429 struct per_pidcomm *c;
1430 int count = 0;
1431
1432 p = timechart->all_data;
1433 while (p) {
1434 /* no exit marker, task kept running to the end */
1435 if (p->end_time == 0)
1436 p->end_time = timechart->last_time;
1437
1438 c = p->all;
1439
1440 while (c) {
1441 c->display = 0;
1442
1443 if (c->total_bytes >= threshold) {
1444 c->display = 1;
1445 count++;
1446 }
1447
1448 if (c->end_time == 0)
1449 c->end_time = timechart->last_time;
1450
1451 c = c->next;
1452 }
1453 p = p->next;
1454 }
1455 return count;
1456 }
1457
1458 #define BYTES_THRESH (1 * 1024 * 1024)
1459 #define TIME_THRESH 10000000
1460
1461 static void write_svg_file(struct timechart *tchart, const char *filename)
1462 {
1463 u64 i;
1464 int count;
1465 int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1466
1467 if (tchart->power_only)
1468 tchart->proc_num = 0;
1469
1470 /* We'd like to show at least proc_num tasks;
1471 * be less picky if we have fewer */
1472 do {
1473 if (process_filter)
1474 count = determine_display_tasks_filtered(tchart);
1475 else if (tchart->io_events)
1476 count = determine_display_io_tasks(tchart, thresh);
1477 else
1478 count = determine_display_tasks(tchart, thresh);
1479 thresh /= 10;
1480 } while (!process_filter && thresh && count < tchart->proc_num);
1481
1482 if (!tchart->proc_num)
1483 count = 0;
1484
1485 if (tchart->io_events) {
1486 open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1487
1488 svg_time_grid(0.5);
1489 svg_io_legenda();
1490
1491 draw_io_bars(tchart);
1492 } else {
1493 open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1494
1495 svg_time_grid(0);
1496
1497 svg_legenda();
1498
1499 for (i = 0; i < tchart->numcpus; i++)
1500 svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1501
1502 draw_cpu_usage(tchart);
1503 if (tchart->proc_num)
1504 draw_process_bars(tchart);
1505 if (!tchart->tasks_only)
1506 draw_c_p_states(tchart);
1507 if (tchart->proc_num)
1508 draw_wakeups(tchart);
1509 }
1510
1511 svg_close();
1512 }
1513
1514 static int process_header(struct perf_file_section *section __maybe_unused,
1515 struct perf_header *ph,
1516 int feat,
1517 int fd __maybe_unused,
1518 void *data)
1519 {
1520 struct timechart *tchart = data;
1521
1522 switch (feat) {
1523 case HEADER_NRCPUS:
1524 tchart->numcpus = ph->env.nr_cpus_avail;
1525 break;
1526
1527 case HEADER_CPU_TOPOLOGY:
1528 if (!tchart->topology)
1529 break;
1530
1531 if (svg_build_topology_map(ph->env.sibling_cores,
1532 ph->env.nr_sibling_cores,
1533 ph->env.sibling_threads,
1534 ph->env.nr_sibling_threads))
1535 fprintf(stderr, "problem building topology\n");
1536 break;
1537
1538 default:
1539 break;
1540 }
1541
1542 return 0;
1543 }
1544
1545 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1546 {
1547 const struct perf_evsel_str_handler power_tracepoints[] = {
1548 { "power:cpu_idle", process_sample_cpu_idle },
1549 { "power:cpu_frequency", process_sample_cpu_frequency },
1550 { "sched:sched_wakeup", process_sample_sched_wakeup },
1551 { "sched:sched_switch", process_sample_sched_switch },
1552 #ifdef SUPPORT_OLD_POWER_EVENTS
1553 { "power:power_start", process_sample_power_start },
1554 { "power:power_end", process_sample_power_end },
1555 { "power:power_frequency", process_sample_power_frequency },
1556 #endif
1557
1558 { "syscalls:sys_enter_read", process_enter_read },
1559 { "syscalls:sys_enter_pread64", process_enter_read },
1560 { "syscalls:sys_enter_readv", process_enter_read },
1561 { "syscalls:sys_enter_preadv", process_enter_read },
1562 { "syscalls:sys_enter_write", process_enter_write },
1563 { "syscalls:sys_enter_pwrite64", process_enter_write },
1564 { "syscalls:sys_enter_writev", process_enter_write },
1565 { "syscalls:sys_enter_pwritev", process_enter_write },
1566 { "syscalls:sys_enter_sync", process_enter_sync },
1567 { "syscalls:sys_enter_sync_file_range", process_enter_sync },
1568 { "syscalls:sys_enter_fsync", process_enter_sync },
1569 { "syscalls:sys_enter_msync", process_enter_sync },
1570 { "syscalls:sys_enter_recvfrom", process_enter_rx },
1571 { "syscalls:sys_enter_recvmmsg", process_enter_rx },
1572 { "syscalls:sys_enter_recvmsg", process_enter_rx },
1573 { "syscalls:sys_enter_sendto", process_enter_tx },
1574 { "syscalls:sys_enter_sendmsg", process_enter_tx },
1575 { "syscalls:sys_enter_sendmmsg", process_enter_tx },
1576 { "syscalls:sys_enter_epoll_pwait", process_enter_poll },
1577 { "syscalls:sys_enter_epoll_wait", process_enter_poll },
1578 { "syscalls:sys_enter_poll", process_enter_poll },
1579 { "syscalls:sys_enter_ppoll", process_enter_poll },
1580 { "syscalls:sys_enter_pselect6", process_enter_poll },
1581 { "syscalls:sys_enter_select", process_enter_poll },
1582
1583 { "syscalls:sys_exit_read", process_exit_read },
1584 { "syscalls:sys_exit_pread64", process_exit_read },
1585 { "syscalls:sys_exit_readv", process_exit_read },
1586 { "syscalls:sys_exit_preadv", process_exit_read },
1587 { "syscalls:sys_exit_write", process_exit_write },
1588 { "syscalls:sys_exit_pwrite64", process_exit_write },
1589 { "syscalls:sys_exit_writev", process_exit_write },
1590 { "syscalls:sys_exit_pwritev", process_exit_write },
1591 { "syscalls:sys_exit_sync", process_exit_sync },
1592 { "syscalls:sys_exit_sync_file_range", process_exit_sync },
1593 { "syscalls:sys_exit_fsync", process_exit_sync },
1594 { "syscalls:sys_exit_msync", process_exit_sync },
1595 { "syscalls:sys_exit_recvfrom", process_exit_rx },
1596 { "syscalls:sys_exit_recvmmsg", process_exit_rx },
1597 { "syscalls:sys_exit_recvmsg", process_exit_rx },
1598 { "syscalls:sys_exit_sendto", process_exit_tx },
1599 { "syscalls:sys_exit_sendmsg", process_exit_tx },
1600 { "syscalls:sys_exit_sendmmsg", process_exit_tx },
1601 { "syscalls:sys_exit_epoll_pwait", process_exit_poll },
1602 { "syscalls:sys_exit_epoll_wait", process_exit_poll },
1603 { "syscalls:sys_exit_poll", process_exit_poll },
1604 { "syscalls:sys_exit_ppoll", process_exit_poll },
1605 { "syscalls:sys_exit_pselect6", process_exit_poll },
1606 { "syscalls:sys_exit_select", process_exit_poll },
1607 };
1608 struct perf_data data = {
1609 .file = {
1610 .path = input_name,
1611 },
1612 .mode = PERF_DATA_MODE_READ,
1613 .force = tchart->force,
1614 };
1615
1616 struct perf_session *session = perf_session__new(&data, false,
1617 &tchart->tool);
1618 int ret = -EINVAL;
1619
1620 if (session == NULL)
1621 return -1;
1622
1623 symbol__init(&session->header.env);
1624
1625 (void)perf_header__process_sections(&session->header,
1626 perf_data__fd(session->data),
1627 tchart,
1628 process_header);
1629
1630 if (!perf_session__has_traces(session, "timechart record"))
1631 goto out_delete;
1632
1633 if (perf_session__set_tracepoints_handlers(session,
1634 power_tracepoints)) {
1635 pr_err("Initializing session tracepoint handlers failed\n");
1636 goto out_delete;
1637 }
1638
1639 ret = perf_session__process_events(session);
1640 if (ret)
1641 goto out_delete;
1642
1643 end_sample_processing(tchart);
1644
1645 sort_pids(tchart);
1646
1647 write_svg_file(tchart, output_name);
1648
1649 pr_info("Written %2.1f seconds of trace to %s.\n",
1650 (tchart->last_time - tchart->first_time) / (double)NSEC_PER_SEC, output_name);
1651 out_delete:
1652 perf_session__delete(session);
1653 return ret;
1654 }
1655
1656 static int timechart__io_record(int argc, const char **argv)
1657 {
1658 unsigned int rec_argc, i;
1659 const char **rec_argv;
1660 const char **p;
1661 char *filter = NULL;
1662
1663 const char * const common_args[] = {
1664 "record", "-a", "-R", "-c", "1",
1665 };
1666 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1667
1668 const char * const disk_events[] = {
1669 "syscalls:sys_enter_read",
1670 "syscalls:sys_enter_pread64",
1671 "syscalls:sys_enter_readv",
1672 "syscalls:sys_enter_preadv",
1673 "syscalls:sys_enter_write",
1674 "syscalls:sys_enter_pwrite64",
1675 "syscalls:sys_enter_writev",
1676 "syscalls:sys_enter_pwritev",
1677 "syscalls:sys_enter_sync",
1678 "syscalls:sys_enter_sync_file_range",
1679 "syscalls:sys_enter_fsync",
1680 "syscalls:sys_enter_msync",
1681
1682 "syscalls:sys_exit_read",
1683 "syscalls:sys_exit_pread64",
1684 "syscalls:sys_exit_readv",
1685 "syscalls:sys_exit_preadv",
1686 "syscalls:sys_exit_write",
1687 "syscalls:sys_exit_pwrite64",
1688 "syscalls:sys_exit_writev",
1689 "syscalls:sys_exit_pwritev",
1690 "syscalls:sys_exit_sync",
1691 "syscalls:sys_exit_sync_file_range",
1692 "syscalls:sys_exit_fsync",
1693 "syscalls:sys_exit_msync",
1694 };
1695 unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1696
1697 const char * const net_events[] = {
1698 "syscalls:sys_enter_recvfrom",
1699 "syscalls:sys_enter_recvmmsg",
1700 "syscalls:sys_enter_recvmsg",
1701 "syscalls:sys_enter_sendto",
1702 "syscalls:sys_enter_sendmsg",
1703 "syscalls:sys_enter_sendmmsg",
1704
1705 "syscalls:sys_exit_recvfrom",
1706 "syscalls:sys_exit_recvmmsg",
1707 "syscalls:sys_exit_recvmsg",
1708 "syscalls:sys_exit_sendto",
1709 "syscalls:sys_exit_sendmsg",
1710 "syscalls:sys_exit_sendmmsg",
1711 };
1712 unsigned int net_events_nr = ARRAY_SIZE(net_events);
1713
1714 const char * const poll_events[] = {
1715 "syscalls:sys_enter_epoll_pwait",
1716 "syscalls:sys_enter_epoll_wait",
1717 "syscalls:sys_enter_poll",
1718 "syscalls:sys_enter_ppoll",
1719 "syscalls:sys_enter_pselect6",
1720 "syscalls:sys_enter_select",
1721
1722 "syscalls:sys_exit_epoll_pwait",
1723 "syscalls:sys_exit_epoll_wait",
1724 "syscalls:sys_exit_poll",
1725 "syscalls:sys_exit_ppoll",
1726 "syscalls:sys_exit_pselect6",
1727 "syscalls:sys_exit_select",
1728 };
1729 unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1730
1731 rec_argc = common_args_nr +
1732 disk_events_nr * 4 +
1733 net_events_nr * 4 +
1734 poll_events_nr * 4 +
1735 argc;
1736 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1737
1738 if (rec_argv == NULL)
1739 return -ENOMEM;
1740
1741 if (asprintf(&filter, "common_pid != %d", getpid()) < 0) {
1742 free(rec_argv);
1743 return -ENOMEM;
1744 }
1745
1746 p = rec_argv;
1747 for (i = 0; i < common_args_nr; i++)
1748 *p++ = strdup(common_args[i]);
1749
1750 for (i = 0; i < disk_events_nr; i++) {
1751 if (!is_valid_tracepoint(disk_events[i])) {
1752 rec_argc -= 4;
1753 continue;
1754 }
1755
1756 *p++ = "-e";
1757 *p++ = strdup(disk_events[i]);
1758 *p++ = "--filter";
1759 *p++ = filter;
1760 }
1761 for (i = 0; i < net_events_nr; i++) {
1762 if (!is_valid_tracepoint(net_events[i])) {
1763 rec_argc -= 4;
1764 continue;
1765 }
1766
1767 *p++ = "-e";
1768 *p++ = strdup(net_events[i]);
1769 *p++ = "--filter";
1770 *p++ = filter;
1771 }
1772 for (i = 0; i < poll_events_nr; i++) {
1773 if (!is_valid_tracepoint(poll_events[i])) {
1774 rec_argc -= 4;
1775 continue;
1776 }
1777
1778 *p++ = "-e";
1779 *p++ = strdup(poll_events[i]);
1780 *p++ = "--filter";
1781 *p++ = filter;
1782 }
1783
1784 for (i = 0; i < (unsigned int)argc; i++)
1785 *p++ = argv[i];
1786
1787 return cmd_record(rec_argc, rec_argv);
1788 }
1789
1790
1791 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1792 {
1793 unsigned int rec_argc, i, j;
1794 const char **rec_argv;
1795 const char **p;
1796 unsigned int record_elems;
1797
1798 const char * const common_args[] = {
1799 "record", "-a", "-R", "-c", "1",
1800 };
1801 unsigned int common_args_nr = ARRAY_SIZE(common_args);
1802
1803 const char * const backtrace_args[] = {
1804 "-g",
1805 };
1806 unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1807
1808 const char * const power_args[] = {
1809 "-e", "power:cpu_frequency",
1810 "-e", "power:cpu_idle",
1811 };
1812 unsigned int power_args_nr = ARRAY_SIZE(power_args);
1813
1814 const char * const old_power_args[] = {
1815 #ifdef SUPPORT_OLD_POWER_EVENTS
1816 "-e", "power:power_start",
1817 "-e", "power:power_end",
1818 "-e", "power:power_frequency",
1819 #endif
1820 };
1821 unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1822
1823 const char * const tasks_args[] = {
1824 "-e", "sched:sched_wakeup",
1825 "-e", "sched:sched_switch",
1826 };
1827 unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1828
1829 #ifdef SUPPORT_OLD_POWER_EVENTS
1830 if (!is_valid_tracepoint("power:cpu_idle") &&
1831 is_valid_tracepoint("power:power_start")) {
1832 use_old_power_events = 1;
1833 power_args_nr = 0;
1834 } else {
1835 old_power_args_nr = 0;
1836 }
1837 #endif
1838
1839 if (tchart->power_only)
1840 tasks_args_nr = 0;
1841
1842 if (tchart->tasks_only) {
1843 power_args_nr = 0;
1844 old_power_args_nr = 0;
1845 }
1846
1847 if (!tchart->with_backtrace)
1848 backtrace_args_no = 0;
1849
1850 record_elems = common_args_nr + tasks_args_nr +
1851 power_args_nr + old_power_args_nr + backtrace_args_no;
1852
1853 rec_argc = record_elems + argc;
1854 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1855
1856 if (rec_argv == NULL)
1857 return -ENOMEM;
1858
1859 p = rec_argv;
1860 for (i = 0; i < common_args_nr; i++)
1861 *p++ = strdup(common_args[i]);
1862
1863 for (i = 0; i < backtrace_args_no; i++)
1864 *p++ = strdup(backtrace_args[i]);
1865
1866 for (i = 0; i < tasks_args_nr; i++)
1867 *p++ = strdup(tasks_args[i]);
1868
1869 for (i = 0; i < power_args_nr; i++)
1870 *p++ = strdup(power_args[i]);
1871
1872 for (i = 0; i < old_power_args_nr; i++)
1873 *p++ = strdup(old_power_args[i]);
1874
1875 for (j = 0; j < (unsigned int)argc; j++)
1876 *p++ = argv[j];
1877
1878 return cmd_record(rec_argc, rec_argv);
1879 }
1880
1881 static int
1882 parse_process(const struct option *opt __maybe_unused, const char *arg,
1883 int __maybe_unused unset)
1884 {
1885 if (arg)
1886 add_process_filter(arg);
1887 return 0;
1888 }
1889
1890 static int
1891 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1892 int __maybe_unused unset)
1893 {
1894 unsigned long duration = strtoul(arg, NULL, 0);
1895
1896 if (svg_highlight || svg_highlight_name)
1897 return -1;
1898
1899 if (duration)
1900 svg_highlight = duration;
1901 else
1902 svg_highlight_name = strdup(arg);
1903
1904 return 0;
1905 }
1906
1907 static int
1908 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1909 {
1910 char unit = 'n';
1911 u64 *value = opt->value;
1912
1913 if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1914 switch (unit) {
1915 case 'm':
1916 *value *= NSEC_PER_MSEC;
1917 break;
1918 case 'u':
1919 *value *= NSEC_PER_USEC;
1920 break;
1921 case 'n':
1922 break;
1923 default:
1924 return -1;
1925 }
1926 }
1927
1928 return 0;
1929 }
1930
1931 int cmd_timechart(int argc, const char **argv)
1932 {
1933 struct timechart tchart = {
1934 .tool = {
1935 .comm = process_comm_event,
1936 .fork = process_fork_event,
1937 .exit = process_exit_event,
1938 .sample = process_sample_event,
1939 .ordered_events = true,
1940 },
1941 .proc_num = 15,
1942 .min_time = NSEC_PER_MSEC,
1943 .merge_dist = 1000,
1944 };
1945 const char *output_name = "output.svg";
1946 const struct option timechart_common_options[] = {
1947 OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1948 OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only, "output processes data only"),
1949 OPT_END()
1950 };
1951 const struct option timechart_options[] = {
1952 OPT_STRING('i', "input", &input_name, "file", "input file name"),
1953 OPT_STRING('o', "output", &output_name, "file", "output file name"),
1954 OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1955 OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1956 "highlight tasks. Pass duration in ns or process name.",
1957 parse_highlight),
1958 OPT_CALLBACK('p', "process", NULL, "process",
1959 "process selector. Pass a pid or process name.",
1960 parse_process),
1961 OPT_CALLBACK(0, "symfs", NULL, "directory",
1962 "Look for files with symbols relative to this directory",
1963 symbol__config_symfs),
1964 OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1965 "min. number of tasks to print"),
1966 OPT_BOOLEAN('t', "topology", &tchart.topology,
1967 "sort CPUs according to topology"),
1968 OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1969 "skip EAGAIN errors"),
1970 OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1971 "all IO faster than min-time will visually appear longer",
1972 parse_time),
1973 OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1974 "merge events that are merge-dist us apart",
1975 parse_time),
1976 OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1977 OPT_PARENT(timechart_common_options),
1978 };
1979 const char * const timechart_subcommands[] = { "record", NULL };
1980 const char *timechart_usage[] = {
1981 "perf timechart [<options>] {record}",
1982 NULL
1983 };
1984 const struct option timechart_record_options[] = {
1985 OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1986 "record only IO data"),
1987 OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1988 OPT_PARENT(timechart_common_options),
1989 };
1990 const char * const timechart_record_usage[] = {
1991 "perf timechart record [<options>]",
1992 NULL
1993 };
1994 argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1995 timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1996
1997 if (tchart.power_only && tchart.tasks_only) {
1998 pr_err("-P and -T options cannot be used at the same time.\n");
1999 return -1;
2000 }
2001
2002 if (argc && !strncmp(argv[0], "rec", 3)) {
2003 argc = parse_options(argc, argv, timechart_record_options,
2004 timechart_record_usage,
2005 PARSE_OPT_STOP_AT_NON_OPTION);
2006
2007 if (tchart.power_only && tchart.tasks_only) {
2008 pr_err("-P and -T options cannot be used at the same time.\n");
2009 return -1;
2010 }
2011
2012 if (tchart.io_only)
2013 return timechart__io_record(argc, argv);
2014 else
2015 return timechart__record(&tchart, argc, argv);
2016 } else if (argc)
2017 usage_with_options(timechart_usage, timechart_options);
2018
2019 setup_pager();
2020
2021 return __cmd_timechart(&tchart, output_name);
2022 }