]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - tools/perf/util/auxtrace.c
perf auxtrace: Add CPU filter support
[mirror_ubuntu-bionic-kernel.git] / tools / perf / util / auxtrace.c
1 /*
2 * auxtrace.c: AUX area trace support
3 * Copyright (c) 2013-2015, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15
16 #include <inttypes.h>
17 #include <sys/types.h>
18 #include <sys/mman.h>
19 #include <stdbool.h>
20 #include <string.h>
21 #include <limits.h>
22 #include <errno.h>
23
24 #include <linux/kernel.h>
25 #include <linux/perf_event.h>
26 #include <linux/types.h>
27 #include <linux/bitops.h>
28 #include <linux/log2.h>
29 #include <linux/string.h>
30
31 #include <sys/param.h>
32 #include <stdlib.h>
33 #include <stdio.h>
34 #include <string.h>
35 #include <limits.h>
36 #include <errno.h>
37 #include <linux/list.h>
38
39 #include "../perf.h"
40 #include "util.h"
41 #include "evlist.h"
42 #include "dso.h"
43 #include "map.h"
44 #include "pmu.h"
45 #include "evsel.h"
46 #include "cpumap.h"
47 #include "thread_map.h"
48 #include "asm/bug.h"
49 #include "auxtrace.h"
50
51 #include <linux/hash.h>
52
53 #include "event.h"
54 #include "session.h"
55 #include "debug.h"
56 #include <subcmd/parse-options.h>
57
58 #include "intel-pt.h"
59 #include "intel-bts.h"
60
61 #include "sane_ctype.h"
62 #include "symbol/kallsyms.h"
63
64 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
65 struct auxtrace_mmap_params *mp,
66 void *userpg, int fd)
67 {
68 struct perf_event_mmap_page *pc = userpg;
69
70 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
71
72 mm->userpg = userpg;
73 mm->mask = mp->mask;
74 mm->len = mp->len;
75 mm->prev = 0;
76 mm->idx = mp->idx;
77 mm->tid = mp->tid;
78 mm->cpu = mp->cpu;
79
80 if (!mp->len) {
81 mm->base = NULL;
82 return 0;
83 }
84
85 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
86 pr_err("Cannot use AUX area tracing mmaps\n");
87 return -1;
88 #endif
89
90 pc->aux_offset = mp->offset;
91 pc->aux_size = mp->len;
92
93 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
94 if (mm->base == MAP_FAILED) {
95 pr_debug2("failed to mmap AUX area\n");
96 mm->base = NULL;
97 return -1;
98 }
99
100 return 0;
101 }
102
103 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
104 {
105 if (mm->base) {
106 munmap(mm->base, mm->len);
107 mm->base = NULL;
108 }
109 }
110
111 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
112 off_t auxtrace_offset,
113 unsigned int auxtrace_pages,
114 bool auxtrace_overwrite)
115 {
116 if (auxtrace_pages) {
117 mp->offset = auxtrace_offset;
118 mp->len = auxtrace_pages * (size_t)page_size;
119 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
120 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
121 pr_debug2("AUX area mmap length %zu\n", mp->len);
122 } else {
123 mp->len = 0;
124 }
125 }
126
127 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
128 struct perf_evlist *evlist, int idx,
129 bool per_cpu)
130 {
131 mp->idx = idx;
132
133 if (per_cpu) {
134 mp->cpu = evlist->cpus->map[idx];
135 if (evlist->threads)
136 mp->tid = thread_map__pid(evlist->threads, 0);
137 else
138 mp->tid = -1;
139 } else {
140 mp->cpu = -1;
141 mp->tid = thread_map__pid(evlist->threads, idx);
142 }
143 }
144
145 #define AUXTRACE_INIT_NR_QUEUES 32
146
147 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
148 {
149 struct auxtrace_queue *queue_array;
150 unsigned int max_nr_queues, i;
151
152 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
153 if (nr_queues > max_nr_queues)
154 return NULL;
155
156 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
157 if (!queue_array)
158 return NULL;
159
160 for (i = 0; i < nr_queues; i++) {
161 INIT_LIST_HEAD(&queue_array[i].head);
162 queue_array[i].priv = NULL;
163 }
164
165 return queue_array;
166 }
167
168 int auxtrace_queues__init(struct auxtrace_queues *queues)
169 {
170 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
171 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
172 if (!queues->queue_array)
173 return -ENOMEM;
174 return 0;
175 }
176
177 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
178 unsigned int new_nr_queues)
179 {
180 unsigned int nr_queues = queues->nr_queues;
181 struct auxtrace_queue *queue_array;
182 unsigned int i;
183
184 if (!nr_queues)
185 nr_queues = AUXTRACE_INIT_NR_QUEUES;
186
187 while (nr_queues && nr_queues < new_nr_queues)
188 nr_queues <<= 1;
189
190 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
191 return -EINVAL;
192
193 queue_array = auxtrace_alloc_queue_array(nr_queues);
194 if (!queue_array)
195 return -ENOMEM;
196
197 for (i = 0; i < queues->nr_queues; i++) {
198 list_splice_tail(&queues->queue_array[i].head,
199 &queue_array[i].head);
200 queue_array[i].priv = queues->queue_array[i].priv;
201 }
202
203 queues->nr_queues = nr_queues;
204 queues->queue_array = queue_array;
205
206 return 0;
207 }
208
209 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
210 {
211 int fd = perf_data_file__fd(session->file);
212 void *p;
213 ssize_t ret;
214
215 if (size > SSIZE_MAX)
216 return NULL;
217
218 p = malloc(size);
219 if (!p)
220 return NULL;
221
222 ret = readn(fd, p, size);
223 if (ret != (ssize_t)size) {
224 free(p);
225 return NULL;
226 }
227
228 return p;
229 }
230
231 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
232 unsigned int idx,
233 struct auxtrace_buffer *buffer)
234 {
235 struct auxtrace_queue *queue;
236 int err;
237
238 if (idx >= queues->nr_queues) {
239 err = auxtrace_queues__grow(queues, idx + 1);
240 if (err)
241 return err;
242 }
243
244 queue = &queues->queue_array[idx];
245
246 if (!queue->set) {
247 queue->set = true;
248 queue->tid = buffer->tid;
249 queue->cpu = buffer->cpu;
250 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
251 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
252 queue->cpu, queue->tid, buffer->cpu, buffer->tid);
253 return -EINVAL;
254 }
255
256 buffer->buffer_nr = queues->next_buffer_nr++;
257
258 list_add_tail(&buffer->list, &queue->head);
259
260 queues->new_data = true;
261 queues->populated = true;
262
263 return 0;
264 }
265
266 /* Limit buffers to 32MiB on 32-bit */
267 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
268
269 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
270 unsigned int idx,
271 struct auxtrace_buffer *buffer)
272 {
273 u64 sz = buffer->size;
274 bool consecutive = false;
275 struct auxtrace_buffer *b;
276 int err;
277
278 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
279 b = memdup(buffer, sizeof(struct auxtrace_buffer));
280 if (!b)
281 return -ENOMEM;
282 b->size = BUFFER_LIMIT_FOR_32_BIT;
283 b->consecutive = consecutive;
284 err = auxtrace_queues__add_buffer(queues, idx, b);
285 if (err) {
286 auxtrace_buffer__free(b);
287 return err;
288 }
289 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
290 sz -= BUFFER_LIMIT_FOR_32_BIT;
291 consecutive = true;
292 }
293
294 buffer->size = sz;
295 buffer->consecutive = consecutive;
296
297 return 0;
298 }
299
300 static int auxtrace_queues__add_event_buffer(struct auxtrace_queues *queues,
301 struct perf_session *session,
302 unsigned int idx,
303 struct auxtrace_buffer *buffer)
304 {
305 if (session->one_mmap) {
306 buffer->data = buffer->data_offset - session->one_mmap_offset +
307 session->one_mmap_addr;
308 } else if (perf_data_file__is_pipe(session->file)) {
309 buffer->data = auxtrace_copy_data(buffer->size, session);
310 if (!buffer->data)
311 return -ENOMEM;
312 buffer->data_needs_freeing = true;
313 } else if (BITS_PER_LONG == 32 &&
314 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
315 int err;
316
317 err = auxtrace_queues__split_buffer(queues, idx, buffer);
318 if (err)
319 return err;
320 }
321
322 return auxtrace_queues__add_buffer(queues, idx, buffer);
323 }
324
325 static bool filter_cpu(struct perf_session *session, int cpu)
326 {
327 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
328
329 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
330 }
331
332 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
333 struct perf_session *session,
334 union perf_event *event, off_t data_offset,
335 struct auxtrace_buffer **buffer_ptr)
336 {
337 struct auxtrace_buffer *buffer;
338 unsigned int idx;
339 int err;
340
341 if (filter_cpu(session, event->auxtrace.cpu))
342 return 0;
343
344 buffer = zalloc(sizeof(struct auxtrace_buffer));
345 if (!buffer)
346 return -ENOMEM;
347
348 buffer->pid = -1;
349 buffer->tid = event->auxtrace.tid;
350 buffer->cpu = event->auxtrace.cpu;
351 buffer->data_offset = data_offset;
352 buffer->offset = event->auxtrace.offset;
353 buffer->reference = event->auxtrace.reference;
354 buffer->size = event->auxtrace.size;
355 idx = event->auxtrace.idx;
356
357 err = auxtrace_queues__add_event_buffer(queues, session, idx, buffer);
358 if (err)
359 goto out_err;
360
361 if (buffer_ptr)
362 *buffer_ptr = buffer;
363
364 return 0;
365
366 out_err:
367 auxtrace_buffer__free(buffer);
368 return err;
369 }
370
371 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
372 struct perf_session *session,
373 off_t file_offset, size_t sz)
374 {
375 union perf_event *event;
376 int err;
377 char buf[PERF_SAMPLE_MAX_SIZE];
378
379 err = perf_session__peek_event(session, file_offset, buf,
380 PERF_SAMPLE_MAX_SIZE, &event, NULL);
381 if (err)
382 return err;
383
384 if (event->header.type == PERF_RECORD_AUXTRACE) {
385 if (event->header.size < sizeof(struct auxtrace_event) ||
386 event->header.size != sz) {
387 err = -EINVAL;
388 goto out;
389 }
390 file_offset += event->header.size;
391 err = auxtrace_queues__add_event(queues, session, event,
392 file_offset, NULL);
393 }
394 out:
395 return err;
396 }
397
398 void auxtrace_queues__free(struct auxtrace_queues *queues)
399 {
400 unsigned int i;
401
402 for (i = 0; i < queues->nr_queues; i++) {
403 while (!list_empty(&queues->queue_array[i].head)) {
404 struct auxtrace_buffer *buffer;
405
406 buffer = list_entry(queues->queue_array[i].head.next,
407 struct auxtrace_buffer, list);
408 list_del(&buffer->list);
409 auxtrace_buffer__free(buffer);
410 }
411 }
412
413 zfree(&queues->queue_array);
414 queues->nr_queues = 0;
415 }
416
417 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
418 unsigned int pos, unsigned int queue_nr,
419 u64 ordinal)
420 {
421 unsigned int parent;
422
423 while (pos) {
424 parent = (pos - 1) >> 1;
425 if (heap_array[parent].ordinal <= ordinal)
426 break;
427 heap_array[pos] = heap_array[parent];
428 pos = parent;
429 }
430 heap_array[pos].queue_nr = queue_nr;
431 heap_array[pos].ordinal = ordinal;
432 }
433
434 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
435 u64 ordinal)
436 {
437 struct auxtrace_heap_item *heap_array;
438
439 if (queue_nr >= heap->heap_sz) {
440 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
441
442 while (heap_sz <= queue_nr)
443 heap_sz <<= 1;
444 heap_array = realloc(heap->heap_array,
445 heap_sz * sizeof(struct auxtrace_heap_item));
446 if (!heap_array)
447 return -ENOMEM;
448 heap->heap_array = heap_array;
449 heap->heap_sz = heap_sz;
450 }
451
452 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
453
454 return 0;
455 }
456
457 void auxtrace_heap__free(struct auxtrace_heap *heap)
458 {
459 zfree(&heap->heap_array);
460 heap->heap_cnt = 0;
461 heap->heap_sz = 0;
462 }
463
464 void auxtrace_heap__pop(struct auxtrace_heap *heap)
465 {
466 unsigned int pos, last, heap_cnt = heap->heap_cnt;
467 struct auxtrace_heap_item *heap_array;
468
469 if (!heap_cnt)
470 return;
471
472 heap->heap_cnt -= 1;
473
474 heap_array = heap->heap_array;
475
476 pos = 0;
477 while (1) {
478 unsigned int left, right;
479
480 left = (pos << 1) + 1;
481 if (left >= heap_cnt)
482 break;
483 right = left + 1;
484 if (right >= heap_cnt) {
485 heap_array[pos] = heap_array[left];
486 return;
487 }
488 if (heap_array[left].ordinal < heap_array[right].ordinal) {
489 heap_array[pos] = heap_array[left];
490 pos = left;
491 } else {
492 heap_array[pos] = heap_array[right];
493 pos = right;
494 }
495 }
496
497 last = heap_cnt - 1;
498 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
499 heap_array[last].ordinal);
500 }
501
502 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
503 struct perf_evlist *evlist)
504 {
505 if (itr)
506 return itr->info_priv_size(itr, evlist);
507 return 0;
508 }
509
510 static int auxtrace_not_supported(void)
511 {
512 pr_err("AUX area tracing is not supported on this architecture\n");
513 return -EINVAL;
514 }
515
516 int auxtrace_record__info_fill(struct auxtrace_record *itr,
517 struct perf_session *session,
518 struct auxtrace_info_event *auxtrace_info,
519 size_t priv_size)
520 {
521 if (itr)
522 return itr->info_fill(itr, session, auxtrace_info, priv_size);
523 return auxtrace_not_supported();
524 }
525
526 void auxtrace_record__free(struct auxtrace_record *itr)
527 {
528 if (itr)
529 itr->free(itr);
530 }
531
532 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
533 {
534 if (itr && itr->snapshot_start)
535 return itr->snapshot_start(itr);
536 return 0;
537 }
538
539 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
540 {
541 if (itr && itr->snapshot_finish)
542 return itr->snapshot_finish(itr);
543 return 0;
544 }
545
546 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
547 struct auxtrace_mmap *mm,
548 unsigned char *data, u64 *head, u64 *old)
549 {
550 if (itr && itr->find_snapshot)
551 return itr->find_snapshot(itr, idx, mm, data, head, old);
552 return 0;
553 }
554
555 int auxtrace_record__options(struct auxtrace_record *itr,
556 struct perf_evlist *evlist,
557 struct record_opts *opts)
558 {
559 if (itr)
560 return itr->recording_options(itr, evlist, opts);
561 return 0;
562 }
563
564 u64 auxtrace_record__reference(struct auxtrace_record *itr)
565 {
566 if (itr)
567 return itr->reference(itr);
568 return 0;
569 }
570
571 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
572 struct record_opts *opts, const char *str)
573 {
574 if (!str)
575 return 0;
576
577 if (itr)
578 return itr->parse_snapshot_options(itr, opts, str);
579
580 pr_err("No AUX area tracing to snapshot\n");
581 return -EINVAL;
582 }
583
584 struct auxtrace_record *__weak
585 auxtrace_record__init(struct perf_evlist *evlist __maybe_unused, int *err)
586 {
587 *err = 0;
588 return NULL;
589 }
590
591 static int auxtrace_index__alloc(struct list_head *head)
592 {
593 struct auxtrace_index *auxtrace_index;
594
595 auxtrace_index = malloc(sizeof(struct auxtrace_index));
596 if (!auxtrace_index)
597 return -ENOMEM;
598
599 auxtrace_index->nr = 0;
600 INIT_LIST_HEAD(&auxtrace_index->list);
601
602 list_add_tail(&auxtrace_index->list, head);
603
604 return 0;
605 }
606
607 void auxtrace_index__free(struct list_head *head)
608 {
609 struct auxtrace_index *auxtrace_index, *n;
610
611 list_for_each_entry_safe(auxtrace_index, n, head, list) {
612 list_del(&auxtrace_index->list);
613 free(auxtrace_index);
614 }
615 }
616
617 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
618 {
619 struct auxtrace_index *auxtrace_index;
620 int err;
621
622 if (list_empty(head)) {
623 err = auxtrace_index__alloc(head);
624 if (err)
625 return NULL;
626 }
627
628 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
629
630 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
631 err = auxtrace_index__alloc(head);
632 if (err)
633 return NULL;
634 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
635 list);
636 }
637
638 return auxtrace_index;
639 }
640
641 int auxtrace_index__auxtrace_event(struct list_head *head,
642 union perf_event *event, off_t file_offset)
643 {
644 struct auxtrace_index *auxtrace_index;
645 size_t nr;
646
647 auxtrace_index = auxtrace_index__last(head);
648 if (!auxtrace_index)
649 return -ENOMEM;
650
651 nr = auxtrace_index->nr;
652 auxtrace_index->entries[nr].file_offset = file_offset;
653 auxtrace_index->entries[nr].sz = event->header.size;
654 auxtrace_index->nr += 1;
655
656 return 0;
657 }
658
659 static int auxtrace_index__do_write(int fd,
660 struct auxtrace_index *auxtrace_index)
661 {
662 struct auxtrace_index_entry ent;
663 size_t i;
664
665 for (i = 0; i < auxtrace_index->nr; i++) {
666 ent.file_offset = auxtrace_index->entries[i].file_offset;
667 ent.sz = auxtrace_index->entries[i].sz;
668 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
669 return -errno;
670 }
671 return 0;
672 }
673
674 int auxtrace_index__write(int fd, struct list_head *head)
675 {
676 struct auxtrace_index *auxtrace_index;
677 u64 total = 0;
678 int err;
679
680 list_for_each_entry(auxtrace_index, head, list)
681 total += auxtrace_index->nr;
682
683 if (writen(fd, &total, sizeof(total)) != sizeof(total))
684 return -errno;
685
686 list_for_each_entry(auxtrace_index, head, list) {
687 err = auxtrace_index__do_write(fd, auxtrace_index);
688 if (err)
689 return err;
690 }
691
692 return 0;
693 }
694
695 static int auxtrace_index__process_entry(int fd, struct list_head *head,
696 bool needs_swap)
697 {
698 struct auxtrace_index *auxtrace_index;
699 struct auxtrace_index_entry ent;
700 size_t nr;
701
702 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
703 return -1;
704
705 auxtrace_index = auxtrace_index__last(head);
706 if (!auxtrace_index)
707 return -1;
708
709 nr = auxtrace_index->nr;
710 if (needs_swap) {
711 auxtrace_index->entries[nr].file_offset =
712 bswap_64(ent.file_offset);
713 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
714 } else {
715 auxtrace_index->entries[nr].file_offset = ent.file_offset;
716 auxtrace_index->entries[nr].sz = ent.sz;
717 }
718
719 auxtrace_index->nr = nr + 1;
720
721 return 0;
722 }
723
724 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
725 bool needs_swap)
726 {
727 struct list_head *head = &session->auxtrace_index;
728 u64 nr;
729
730 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
731 return -1;
732
733 if (needs_swap)
734 nr = bswap_64(nr);
735
736 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
737 return -1;
738
739 while (nr--) {
740 int err;
741
742 err = auxtrace_index__process_entry(fd, head, needs_swap);
743 if (err)
744 return -1;
745 }
746
747 return 0;
748 }
749
750 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
751 struct perf_session *session,
752 struct auxtrace_index_entry *ent)
753 {
754 return auxtrace_queues__add_indexed_event(queues, session,
755 ent->file_offset, ent->sz);
756 }
757
758 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
759 struct perf_session *session)
760 {
761 struct auxtrace_index *auxtrace_index;
762 struct auxtrace_index_entry *ent;
763 size_t i;
764 int err;
765
766 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
767 for (i = 0; i < auxtrace_index->nr; i++) {
768 ent = &auxtrace_index->entries[i];
769 err = auxtrace_queues__process_index_entry(queues,
770 session,
771 ent);
772 if (err)
773 return err;
774 }
775 }
776 return 0;
777 }
778
779 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
780 struct auxtrace_buffer *buffer)
781 {
782 if (buffer) {
783 if (list_is_last(&buffer->list, &queue->head))
784 return NULL;
785 return list_entry(buffer->list.next, struct auxtrace_buffer,
786 list);
787 } else {
788 if (list_empty(&queue->head))
789 return NULL;
790 return list_entry(queue->head.next, struct auxtrace_buffer,
791 list);
792 }
793 }
794
795 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
796 {
797 size_t adj = buffer->data_offset & (page_size - 1);
798 size_t size = buffer->size + adj;
799 off_t file_offset = buffer->data_offset - adj;
800 void *addr;
801
802 if (buffer->data)
803 return buffer->data;
804
805 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
806 if (addr == MAP_FAILED)
807 return NULL;
808
809 buffer->mmap_addr = addr;
810 buffer->mmap_size = size;
811
812 buffer->data = addr + adj;
813
814 return buffer->data;
815 }
816
817 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
818 {
819 if (!buffer->data || !buffer->mmap_addr)
820 return;
821 munmap(buffer->mmap_addr, buffer->mmap_size);
822 buffer->mmap_addr = NULL;
823 buffer->mmap_size = 0;
824 buffer->data = NULL;
825 buffer->use_data = NULL;
826 }
827
828 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
829 {
830 auxtrace_buffer__put_data(buffer);
831 if (buffer->data_needs_freeing) {
832 buffer->data_needs_freeing = false;
833 zfree(&buffer->data);
834 buffer->use_data = NULL;
835 buffer->size = 0;
836 }
837 }
838
839 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
840 {
841 auxtrace_buffer__drop_data(buffer);
842 free(buffer);
843 }
844
845 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
846 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
847 const char *msg)
848 {
849 size_t size;
850
851 memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
852
853 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
854 auxtrace_error->type = type;
855 auxtrace_error->code = code;
856 auxtrace_error->cpu = cpu;
857 auxtrace_error->pid = pid;
858 auxtrace_error->tid = tid;
859 auxtrace_error->ip = ip;
860 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
861
862 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
863 strlen(auxtrace_error->msg) + 1;
864 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
865 }
866
867 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
868 struct perf_tool *tool,
869 struct perf_session *session,
870 perf_event__handler_t process)
871 {
872 union perf_event *ev;
873 size_t priv_size;
874 int err;
875
876 pr_debug2("Synthesizing auxtrace information\n");
877 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
878 ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
879 if (!ev)
880 return -ENOMEM;
881
882 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
883 ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
884 priv_size;
885 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
886 priv_size);
887 if (err)
888 goto out_free;
889
890 err = process(tool, ev, NULL, NULL);
891 out_free:
892 free(ev);
893 return err;
894 }
895
896 static bool auxtrace__dont_decode(struct perf_session *session)
897 {
898 return !session->itrace_synth_opts ||
899 session->itrace_synth_opts->dont_decode;
900 }
901
902 int perf_event__process_auxtrace_info(struct perf_tool *tool __maybe_unused,
903 union perf_event *event,
904 struct perf_session *session)
905 {
906 enum auxtrace_type type = event->auxtrace_info.type;
907
908 if (dump_trace)
909 fprintf(stdout, " type: %u\n", type);
910
911 switch (type) {
912 case PERF_AUXTRACE_INTEL_PT:
913 return intel_pt_process_auxtrace_info(event, session);
914 case PERF_AUXTRACE_INTEL_BTS:
915 return intel_bts_process_auxtrace_info(event, session);
916 case PERF_AUXTRACE_CS_ETM:
917 case PERF_AUXTRACE_UNKNOWN:
918 default:
919 return -EINVAL;
920 }
921 }
922
923 s64 perf_event__process_auxtrace(struct perf_tool *tool,
924 union perf_event *event,
925 struct perf_session *session)
926 {
927 s64 err;
928
929 if (dump_trace)
930 fprintf(stdout, " size: %#"PRIx64" offset: %#"PRIx64" ref: %#"PRIx64" idx: %u tid: %d cpu: %d\n",
931 event->auxtrace.size, event->auxtrace.offset,
932 event->auxtrace.reference, event->auxtrace.idx,
933 event->auxtrace.tid, event->auxtrace.cpu);
934
935 if (auxtrace__dont_decode(session))
936 return event->auxtrace.size;
937
938 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
939 return -EINVAL;
940
941 err = session->auxtrace->process_auxtrace_event(session, event, tool);
942 if (err < 0)
943 return err;
944
945 return event->auxtrace.size;
946 }
947
948 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
949 #define PERF_ITRACE_DEFAULT_PERIOD 100000
950 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
951 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
952 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
953 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
954
955 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts)
956 {
957 synth_opts->instructions = true;
958 synth_opts->branches = true;
959 synth_opts->transactions = true;
960 synth_opts->ptwrites = true;
961 synth_opts->pwr_events = true;
962 synth_opts->errors = true;
963 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
964 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
965 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
966 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
967 synth_opts->initial_skip = 0;
968 }
969
970 /*
971 * Please check tools/perf/Documentation/perf-script.txt for information
972 * about the options parsed here, which is introduced after this cset,
973 * when support in 'perf script' for these options is introduced.
974 */
975 int itrace_parse_synth_opts(const struct option *opt, const char *str,
976 int unset)
977 {
978 struct itrace_synth_opts *synth_opts = opt->value;
979 const char *p;
980 char *endptr;
981 bool period_type_set = false;
982 bool period_set = false;
983
984 synth_opts->set = true;
985
986 if (unset) {
987 synth_opts->dont_decode = true;
988 return 0;
989 }
990
991 if (!str) {
992 itrace_synth_opts__set_default(synth_opts);
993 return 0;
994 }
995
996 for (p = str; *p;) {
997 switch (*p++) {
998 case 'i':
999 synth_opts->instructions = true;
1000 while (*p == ' ' || *p == ',')
1001 p += 1;
1002 if (isdigit(*p)) {
1003 synth_opts->period = strtoull(p, &endptr, 10);
1004 period_set = true;
1005 p = endptr;
1006 while (*p == ' ' || *p == ',')
1007 p += 1;
1008 switch (*p++) {
1009 case 'i':
1010 synth_opts->period_type =
1011 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1012 period_type_set = true;
1013 break;
1014 case 't':
1015 synth_opts->period_type =
1016 PERF_ITRACE_PERIOD_TICKS;
1017 period_type_set = true;
1018 break;
1019 case 'm':
1020 synth_opts->period *= 1000;
1021 /* Fall through */
1022 case 'u':
1023 synth_opts->period *= 1000;
1024 /* Fall through */
1025 case 'n':
1026 if (*p++ != 's')
1027 goto out_err;
1028 synth_opts->period_type =
1029 PERF_ITRACE_PERIOD_NANOSECS;
1030 period_type_set = true;
1031 break;
1032 case '\0':
1033 goto out;
1034 default:
1035 goto out_err;
1036 }
1037 }
1038 break;
1039 case 'b':
1040 synth_opts->branches = true;
1041 break;
1042 case 'x':
1043 synth_opts->transactions = true;
1044 break;
1045 case 'w':
1046 synth_opts->ptwrites = true;
1047 break;
1048 case 'p':
1049 synth_opts->pwr_events = true;
1050 break;
1051 case 'e':
1052 synth_opts->errors = true;
1053 break;
1054 case 'd':
1055 synth_opts->log = true;
1056 break;
1057 case 'c':
1058 synth_opts->branches = true;
1059 synth_opts->calls = true;
1060 break;
1061 case 'r':
1062 synth_opts->branches = true;
1063 synth_opts->returns = true;
1064 break;
1065 case 'g':
1066 synth_opts->callchain = true;
1067 synth_opts->callchain_sz =
1068 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1069 while (*p == ' ' || *p == ',')
1070 p += 1;
1071 if (isdigit(*p)) {
1072 unsigned int val;
1073
1074 val = strtoul(p, &endptr, 10);
1075 p = endptr;
1076 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1077 goto out_err;
1078 synth_opts->callchain_sz = val;
1079 }
1080 break;
1081 case 'l':
1082 synth_opts->last_branch = true;
1083 synth_opts->last_branch_sz =
1084 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1085 while (*p == ' ' || *p == ',')
1086 p += 1;
1087 if (isdigit(*p)) {
1088 unsigned int val;
1089
1090 val = strtoul(p, &endptr, 10);
1091 p = endptr;
1092 if (!val ||
1093 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1094 goto out_err;
1095 synth_opts->last_branch_sz = val;
1096 }
1097 break;
1098 case 's':
1099 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1100 if (p == endptr)
1101 goto out_err;
1102 p = endptr;
1103 break;
1104 case ' ':
1105 case ',':
1106 break;
1107 default:
1108 goto out_err;
1109 }
1110 }
1111 out:
1112 if (synth_opts->instructions) {
1113 if (!period_type_set)
1114 synth_opts->period_type =
1115 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1116 if (!period_set)
1117 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1118 }
1119
1120 return 0;
1121
1122 out_err:
1123 pr_err("Bad Instruction Tracing options '%s'\n", str);
1124 return -EINVAL;
1125 }
1126
1127 static const char * const auxtrace_error_type_name[] = {
1128 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1129 };
1130
1131 static const char *auxtrace_error_name(int type)
1132 {
1133 const char *error_type_name = NULL;
1134
1135 if (type < PERF_AUXTRACE_ERROR_MAX)
1136 error_type_name = auxtrace_error_type_name[type];
1137 if (!error_type_name)
1138 error_type_name = "unknown AUX";
1139 return error_type_name;
1140 }
1141
1142 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1143 {
1144 struct auxtrace_error_event *e = &event->auxtrace_error;
1145 int ret;
1146
1147 ret = fprintf(fp, " %s error type %u",
1148 auxtrace_error_name(e->type), e->type);
1149 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1150 e->cpu, e->pid, e->tid, e->ip, e->code, e->msg);
1151 return ret;
1152 }
1153
1154 void perf_session__auxtrace_error_inc(struct perf_session *session,
1155 union perf_event *event)
1156 {
1157 struct auxtrace_error_event *e = &event->auxtrace_error;
1158
1159 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1160 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1161 }
1162
1163 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1164 {
1165 int i;
1166
1167 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1168 if (!stats->nr_auxtrace_errors[i])
1169 continue;
1170 ui__warning("%u %s errors\n",
1171 stats->nr_auxtrace_errors[i],
1172 auxtrace_error_name(i));
1173 }
1174 }
1175
1176 int perf_event__process_auxtrace_error(struct perf_tool *tool __maybe_unused,
1177 union perf_event *event,
1178 struct perf_session *session)
1179 {
1180 if (auxtrace__dont_decode(session))
1181 return 0;
1182
1183 perf_event__fprintf_auxtrace_error(event, stdout);
1184 return 0;
1185 }
1186
1187 static int __auxtrace_mmap__read(struct auxtrace_mmap *mm,
1188 struct auxtrace_record *itr,
1189 struct perf_tool *tool, process_auxtrace_t fn,
1190 bool snapshot, size_t snapshot_size)
1191 {
1192 u64 head, old = mm->prev, offset, ref;
1193 unsigned char *data = mm->base;
1194 size_t size, head_off, old_off, len1, len2, padding;
1195 union perf_event ev;
1196 void *data1, *data2;
1197
1198 if (snapshot) {
1199 head = auxtrace_mmap__read_snapshot_head(mm);
1200 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1201 &head, &old))
1202 return -1;
1203 } else {
1204 head = auxtrace_mmap__read_head(mm);
1205 }
1206
1207 if (old == head)
1208 return 0;
1209
1210 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1211 mm->idx, old, head, head - old);
1212
1213 if (mm->mask) {
1214 head_off = head & mm->mask;
1215 old_off = old & mm->mask;
1216 } else {
1217 head_off = head % mm->len;
1218 old_off = old % mm->len;
1219 }
1220
1221 if (head_off > old_off)
1222 size = head_off - old_off;
1223 else
1224 size = mm->len - (old_off - head_off);
1225
1226 if (snapshot && size > snapshot_size)
1227 size = snapshot_size;
1228
1229 ref = auxtrace_record__reference(itr);
1230
1231 if (head > old || size <= head || mm->mask) {
1232 offset = head - size;
1233 } else {
1234 /*
1235 * When the buffer size is not a power of 2, 'head' wraps at the
1236 * highest multiple of the buffer size, so we have to subtract
1237 * the remainder here.
1238 */
1239 u64 rem = (0ULL - mm->len) % mm->len;
1240
1241 offset = head - size - rem;
1242 }
1243
1244 if (size > head_off) {
1245 len1 = size - head_off;
1246 data1 = &data[mm->len - len1];
1247 len2 = head_off;
1248 data2 = &data[0];
1249 } else {
1250 len1 = size;
1251 data1 = &data[head_off - len1];
1252 len2 = 0;
1253 data2 = NULL;
1254 }
1255
1256 if (itr->alignment) {
1257 unsigned int unwanted = len1 % itr->alignment;
1258
1259 len1 -= unwanted;
1260 size -= unwanted;
1261 }
1262
1263 /* padding must be written by fn() e.g. record__process_auxtrace() */
1264 padding = size & 7;
1265 if (padding)
1266 padding = 8 - padding;
1267
1268 memset(&ev, 0, sizeof(ev));
1269 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1270 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1271 ev.auxtrace.size = size + padding;
1272 ev.auxtrace.offset = offset;
1273 ev.auxtrace.reference = ref;
1274 ev.auxtrace.idx = mm->idx;
1275 ev.auxtrace.tid = mm->tid;
1276 ev.auxtrace.cpu = mm->cpu;
1277
1278 if (fn(tool, &ev, data1, len1, data2, len2))
1279 return -1;
1280
1281 mm->prev = head;
1282
1283 if (!snapshot) {
1284 auxtrace_mmap__write_tail(mm, head);
1285 if (itr->read_finish) {
1286 int err;
1287
1288 err = itr->read_finish(itr, mm->idx);
1289 if (err < 0)
1290 return err;
1291 }
1292 }
1293
1294 return 1;
1295 }
1296
1297 int auxtrace_mmap__read(struct auxtrace_mmap *mm, struct auxtrace_record *itr,
1298 struct perf_tool *tool, process_auxtrace_t fn)
1299 {
1300 return __auxtrace_mmap__read(mm, itr, tool, fn, false, 0);
1301 }
1302
1303 int auxtrace_mmap__read_snapshot(struct auxtrace_mmap *mm,
1304 struct auxtrace_record *itr,
1305 struct perf_tool *tool, process_auxtrace_t fn,
1306 size_t snapshot_size)
1307 {
1308 return __auxtrace_mmap__read(mm, itr, tool, fn, true, snapshot_size);
1309 }
1310
1311 /**
1312 * struct auxtrace_cache - hash table to implement a cache
1313 * @hashtable: the hashtable
1314 * @sz: hashtable size (number of hlists)
1315 * @entry_size: size of an entry
1316 * @limit: limit the number of entries to this maximum, when reached the cache
1317 * is dropped and caching begins again with an empty cache
1318 * @cnt: current number of entries
1319 * @bits: hashtable size (@sz = 2^@bits)
1320 */
1321 struct auxtrace_cache {
1322 struct hlist_head *hashtable;
1323 size_t sz;
1324 size_t entry_size;
1325 size_t limit;
1326 size_t cnt;
1327 unsigned int bits;
1328 };
1329
1330 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1331 unsigned int limit_percent)
1332 {
1333 struct auxtrace_cache *c;
1334 struct hlist_head *ht;
1335 size_t sz, i;
1336
1337 c = zalloc(sizeof(struct auxtrace_cache));
1338 if (!c)
1339 return NULL;
1340
1341 sz = 1UL << bits;
1342
1343 ht = calloc(sz, sizeof(struct hlist_head));
1344 if (!ht)
1345 goto out_free;
1346
1347 for (i = 0; i < sz; i++)
1348 INIT_HLIST_HEAD(&ht[i]);
1349
1350 c->hashtable = ht;
1351 c->sz = sz;
1352 c->entry_size = entry_size;
1353 c->limit = (c->sz * limit_percent) / 100;
1354 c->bits = bits;
1355
1356 return c;
1357
1358 out_free:
1359 free(c);
1360 return NULL;
1361 }
1362
1363 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1364 {
1365 struct auxtrace_cache_entry *entry;
1366 struct hlist_node *tmp;
1367 size_t i;
1368
1369 if (!c)
1370 return;
1371
1372 for (i = 0; i < c->sz; i++) {
1373 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1374 hlist_del(&entry->hash);
1375 auxtrace_cache__free_entry(c, entry);
1376 }
1377 }
1378
1379 c->cnt = 0;
1380 }
1381
1382 void auxtrace_cache__free(struct auxtrace_cache *c)
1383 {
1384 if (!c)
1385 return;
1386
1387 auxtrace_cache__drop(c);
1388 free(c->hashtable);
1389 free(c);
1390 }
1391
1392 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1393 {
1394 return malloc(c->entry_size);
1395 }
1396
1397 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1398 void *entry)
1399 {
1400 free(entry);
1401 }
1402
1403 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1404 struct auxtrace_cache_entry *entry)
1405 {
1406 if (c->limit && ++c->cnt > c->limit)
1407 auxtrace_cache__drop(c);
1408
1409 entry->key = key;
1410 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1411
1412 return 0;
1413 }
1414
1415 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1416 {
1417 struct auxtrace_cache_entry *entry;
1418 struct hlist_head *hlist;
1419
1420 if (!c)
1421 return NULL;
1422
1423 hlist = &c->hashtable[hash_32(key, c->bits)];
1424 hlist_for_each_entry(entry, hlist, hash) {
1425 if (entry->key == key)
1426 return entry;
1427 }
1428
1429 return NULL;
1430 }
1431
1432 static void addr_filter__free_str(struct addr_filter *filt)
1433 {
1434 free(filt->str);
1435 filt->action = NULL;
1436 filt->sym_from = NULL;
1437 filt->sym_to = NULL;
1438 filt->filename = NULL;
1439 filt->str = NULL;
1440 }
1441
1442 static struct addr_filter *addr_filter__new(void)
1443 {
1444 struct addr_filter *filt = zalloc(sizeof(*filt));
1445
1446 if (filt)
1447 INIT_LIST_HEAD(&filt->list);
1448
1449 return filt;
1450 }
1451
1452 static void addr_filter__free(struct addr_filter *filt)
1453 {
1454 if (filt)
1455 addr_filter__free_str(filt);
1456 free(filt);
1457 }
1458
1459 static void addr_filters__add(struct addr_filters *filts,
1460 struct addr_filter *filt)
1461 {
1462 list_add_tail(&filt->list, &filts->head);
1463 filts->cnt += 1;
1464 }
1465
1466 static void addr_filters__del(struct addr_filters *filts,
1467 struct addr_filter *filt)
1468 {
1469 list_del_init(&filt->list);
1470 filts->cnt -= 1;
1471 }
1472
1473 void addr_filters__init(struct addr_filters *filts)
1474 {
1475 INIT_LIST_HEAD(&filts->head);
1476 filts->cnt = 0;
1477 }
1478
1479 void addr_filters__exit(struct addr_filters *filts)
1480 {
1481 struct addr_filter *filt, *n;
1482
1483 list_for_each_entry_safe(filt, n, &filts->head, list) {
1484 addr_filters__del(filts, filt);
1485 addr_filter__free(filt);
1486 }
1487 }
1488
1489 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1490 const char *str_delim)
1491 {
1492 *inp += strspn(*inp, " ");
1493
1494 if (isdigit(**inp)) {
1495 char *endptr;
1496
1497 if (!num)
1498 return -EINVAL;
1499 errno = 0;
1500 *num = strtoull(*inp, &endptr, 0);
1501 if (errno)
1502 return -errno;
1503 if (endptr == *inp)
1504 return -EINVAL;
1505 *inp = endptr;
1506 } else {
1507 size_t n;
1508
1509 if (!str)
1510 return -EINVAL;
1511 *inp += strspn(*inp, " ");
1512 *str = *inp;
1513 n = strcspn(*inp, str_delim);
1514 if (!n)
1515 return -EINVAL;
1516 *inp += n;
1517 if (**inp) {
1518 **inp = '\0';
1519 *inp += 1;
1520 }
1521 }
1522 return 0;
1523 }
1524
1525 static int parse_action(struct addr_filter *filt)
1526 {
1527 if (!strcmp(filt->action, "filter")) {
1528 filt->start = true;
1529 filt->range = true;
1530 } else if (!strcmp(filt->action, "start")) {
1531 filt->start = true;
1532 } else if (!strcmp(filt->action, "stop")) {
1533 filt->start = false;
1534 } else if (!strcmp(filt->action, "tracestop")) {
1535 filt->start = false;
1536 filt->range = true;
1537 filt->action += 5; /* Change 'tracestop' to 'stop' */
1538 } else {
1539 return -EINVAL;
1540 }
1541 return 0;
1542 }
1543
1544 static int parse_sym_idx(char **inp, int *idx)
1545 {
1546 *idx = -1;
1547
1548 *inp += strspn(*inp, " ");
1549
1550 if (**inp != '#')
1551 return 0;
1552
1553 *inp += 1;
1554
1555 if (**inp == 'g' || **inp == 'G') {
1556 *inp += 1;
1557 *idx = 0;
1558 } else {
1559 unsigned long num;
1560 char *endptr;
1561
1562 errno = 0;
1563 num = strtoul(*inp, &endptr, 0);
1564 if (errno)
1565 return -errno;
1566 if (endptr == *inp || num > INT_MAX)
1567 return -EINVAL;
1568 *inp = endptr;
1569 *idx = num;
1570 }
1571
1572 return 0;
1573 }
1574
1575 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1576 {
1577 int err = parse_num_or_str(inp, num, str, " ");
1578
1579 if (!err && *str)
1580 err = parse_sym_idx(inp, idx);
1581
1582 return err;
1583 }
1584
1585 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1586 {
1587 char *fstr;
1588 int err;
1589
1590 filt->str = fstr = strdup(*filter_inp);
1591 if (!fstr)
1592 return -ENOMEM;
1593
1594 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1595 if (err)
1596 goto out_err;
1597
1598 err = parse_action(filt);
1599 if (err)
1600 goto out_err;
1601
1602 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1603 &filt->sym_from_idx);
1604 if (err)
1605 goto out_err;
1606
1607 fstr += strspn(fstr, " ");
1608
1609 if (*fstr == '/') {
1610 fstr += 1;
1611 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1612 &filt->sym_to_idx);
1613 if (err)
1614 goto out_err;
1615 filt->range = true;
1616 }
1617
1618 fstr += strspn(fstr, " ");
1619
1620 if (*fstr == '@') {
1621 fstr += 1;
1622 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1623 if (err)
1624 goto out_err;
1625 }
1626
1627 fstr += strspn(fstr, " ,");
1628
1629 *filter_inp += fstr - filt->str;
1630
1631 return 0;
1632
1633 out_err:
1634 addr_filter__free_str(filt);
1635
1636 return err;
1637 }
1638
1639 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1640 const char *filter)
1641 {
1642 struct addr_filter *filt;
1643 const char *fstr = filter;
1644 int err;
1645
1646 while (*fstr) {
1647 filt = addr_filter__new();
1648 err = parse_one_filter(filt, &fstr);
1649 if (err) {
1650 addr_filter__free(filt);
1651 addr_filters__exit(filts);
1652 return err;
1653 }
1654 addr_filters__add(filts, filt);
1655 }
1656
1657 return 0;
1658 }
1659
1660 struct sym_args {
1661 const char *name;
1662 u64 start;
1663 u64 size;
1664 int idx;
1665 int cnt;
1666 bool started;
1667 bool global;
1668 bool selected;
1669 bool duplicate;
1670 bool near;
1671 };
1672
1673 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1674 {
1675 /* A function with the same name, and global or the n'th found or any */
1676 return symbol_type__is_a(type, MAP__FUNCTION) &&
1677 !strcmp(name, args->name) &&
1678 ((args->global && isupper(type)) ||
1679 (args->selected && ++(args->cnt) == args->idx) ||
1680 (!args->global && !args->selected));
1681 }
1682
1683 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1684 {
1685 struct sym_args *args = arg;
1686
1687 if (args->started) {
1688 if (!args->size)
1689 args->size = start - args->start;
1690 if (args->selected) {
1691 if (args->size)
1692 return 1;
1693 } else if (kern_sym_match(args, name, type)) {
1694 args->duplicate = true;
1695 return 1;
1696 }
1697 } else if (kern_sym_match(args, name, type)) {
1698 args->started = true;
1699 args->start = start;
1700 }
1701
1702 return 0;
1703 }
1704
1705 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1706 {
1707 struct sym_args *args = arg;
1708
1709 if (kern_sym_match(args, name, type)) {
1710 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1711 ++args->cnt, start, type, name);
1712 args->near = true;
1713 } else if (args->near) {
1714 args->near = false;
1715 pr_err("\t\twhich is near\t\t%s\n", name);
1716 }
1717
1718 return 0;
1719 }
1720
1721 static int sym_not_found_error(const char *sym_name, int idx)
1722 {
1723 if (idx > 0) {
1724 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1725 idx, sym_name);
1726 } else if (!idx) {
1727 pr_err("Global symbol '%s' not found.\n", sym_name);
1728 } else {
1729 pr_err("Symbol '%s' not found.\n", sym_name);
1730 }
1731 pr_err("Note that symbols must be functions.\n");
1732
1733 return -EINVAL;
1734 }
1735
1736 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1737 {
1738 struct sym_args args = {
1739 .name = sym_name,
1740 .idx = idx,
1741 .global = !idx,
1742 .selected = idx > 0,
1743 };
1744 int err;
1745
1746 *start = 0;
1747 *size = 0;
1748
1749 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1750 if (err < 0) {
1751 pr_err("Failed to parse /proc/kallsyms\n");
1752 return err;
1753 }
1754
1755 if (args.duplicate) {
1756 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1757 args.cnt = 0;
1758 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1759 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1760 sym_name);
1761 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1762 return -EINVAL;
1763 }
1764
1765 if (!args.started) {
1766 pr_err("Kernel symbol lookup: ");
1767 return sym_not_found_error(sym_name, idx);
1768 }
1769
1770 *start = args.start;
1771 *size = args.size;
1772
1773 return 0;
1774 }
1775
1776 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1777 char type, u64 start)
1778 {
1779 struct sym_args *args = arg;
1780
1781 if (!symbol_type__is_a(type, MAP__FUNCTION))
1782 return 0;
1783
1784 if (!args->started) {
1785 args->started = true;
1786 args->start = start;
1787 }
1788 /* Don't know exactly where the kernel ends, so we add a page */
1789 args->size = round_up(start, page_size) + page_size - args->start;
1790
1791 return 0;
1792 }
1793
1794 static int addr_filter__entire_kernel(struct addr_filter *filt)
1795 {
1796 struct sym_args args = { .started = false };
1797 int err;
1798
1799 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1800 if (err < 0 || !args.started) {
1801 pr_err("Failed to parse /proc/kallsyms\n");
1802 return err;
1803 }
1804
1805 filt->addr = args.start;
1806 filt->size = args.size;
1807
1808 return 0;
1809 }
1810
1811 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1812 {
1813 if (start + size >= filt->addr)
1814 return 0;
1815
1816 if (filt->sym_from) {
1817 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1818 filt->sym_to, start, filt->sym_from, filt->addr);
1819 } else {
1820 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1821 filt->sym_to, start, filt->addr);
1822 }
1823
1824 return -EINVAL;
1825 }
1826
1827 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1828 {
1829 bool no_size = false;
1830 u64 start, size;
1831 int err;
1832
1833 if (symbol_conf.kptr_restrict) {
1834 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1835 return -EINVAL;
1836 }
1837
1838 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1839 return addr_filter__entire_kernel(filt);
1840
1841 if (filt->sym_from) {
1842 err = find_kern_sym(filt->sym_from, &start, &size,
1843 filt->sym_from_idx);
1844 if (err)
1845 return err;
1846 filt->addr = start;
1847 if (filt->range && !filt->size && !filt->sym_to) {
1848 filt->size = size;
1849 no_size = !size;
1850 }
1851 }
1852
1853 if (filt->sym_to) {
1854 err = find_kern_sym(filt->sym_to, &start, &size,
1855 filt->sym_to_idx);
1856 if (err)
1857 return err;
1858
1859 err = check_end_after_start(filt, start, size);
1860 if (err)
1861 return err;
1862 filt->size = start + size - filt->addr;
1863 no_size = !size;
1864 }
1865
1866 /* The very last symbol in kallsyms does not imply a particular size */
1867 if (no_size) {
1868 pr_err("Cannot determine size of symbol '%s'\n",
1869 filt->sym_to ? filt->sym_to : filt->sym_from);
1870 return -EINVAL;
1871 }
1872
1873 return 0;
1874 }
1875
1876 static struct dso *load_dso(const char *name)
1877 {
1878 struct map *map;
1879 struct dso *dso;
1880
1881 map = dso__new_map(name);
1882 if (!map)
1883 return NULL;
1884
1885 map__load(map);
1886
1887 dso = dso__get(map->dso);
1888
1889 map__put(map);
1890
1891 return dso;
1892 }
1893
1894 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1895 int idx)
1896 {
1897 /* Same name, and global or the n'th found or any */
1898 return !arch__compare_symbol_names(name, sym->name) &&
1899 ((!idx && sym->binding == STB_GLOBAL) ||
1900 (idx > 0 && ++*cnt == idx) ||
1901 idx < 0);
1902 }
1903
1904 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1905 {
1906 struct symbol *sym;
1907 bool near = false;
1908 int cnt = 0;
1909
1910 pr_err("Multiple symbols with name '%s'\n", sym_name);
1911
1912 sym = dso__first_symbol(dso, MAP__FUNCTION);
1913 while (sym) {
1914 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1915 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1916 ++cnt, sym->start,
1917 sym->binding == STB_GLOBAL ? 'g' :
1918 sym->binding == STB_LOCAL ? 'l' : 'w',
1919 sym->name);
1920 near = true;
1921 } else if (near) {
1922 near = false;
1923 pr_err("\t\twhich is near\t\t%s\n", sym->name);
1924 }
1925 sym = dso__next_symbol(sym);
1926 }
1927
1928 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1929 sym_name);
1930 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1931 }
1932
1933 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1934 u64 *size, int idx)
1935 {
1936 struct symbol *sym;
1937 int cnt = 0;
1938
1939 *start = 0;
1940 *size = 0;
1941
1942 sym = dso__first_symbol(dso, MAP__FUNCTION);
1943 while (sym) {
1944 if (*start) {
1945 if (!*size)
1946 *size = sym->start - *start;
1947 if (idx > 0) {
1948 if (*size)
1949 return 1;
1950 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1951 print_duplicate_syms(dso, sym_name);
1952 return -EINVAL;
1953 }
1954 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1955 *start = sym->start;
1956 *size = sym->end - sym->start;
1957 }
1958 sym = dso__next_symbol(sym);
1959 }
1960
1961 if (!*start)
1962 return sym_not_found_error(sym_name, idx);
1963
1964 return 0;
1965 }
1966
1967 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1968 {
1969 struct symbol *first_sym = dso__first_symbol(dso, MAP__FUNCTION);
1970 struct symbol *last_sym = dso__last_symbol(dso, MAP__FUNCTION);
1971
1972 if (!first_sym || !last_sym) {
1973 pr_err("Failed to determine filter for %s\nNo symbols found.\n",
1974 filt->filename);
1975 return -EINVAL;
1976 }
1977
1978 filt->addr = first_sym->start;
1979 filt->size = last_sym->end - first_sym->start;
1980
1981 return 0;
1982 }
1983
1984 static int addr_filter__resolve_syms(struct addr_filter *filt)
1985 {
1986 u64 start, size;
1987 struct dso *dso;
1988 int err = 0;
1989
1990 if (!filt->sym_from && !filt->sym_to)
1991 return 0;
1992
1993 if (!filt->filename)
1994 return addr_filter__resolve_kernel_syms(filt);
1995
1996 dso = load_dso(filt->filename);
1997 if (!dso) {
1998 pr_err("Failed to load symbols from: %s\n", filt->filename);
1999 return -EINVAL;
2000 }
2001
2002 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2003 err = addr_filter__entire_dso(filt, dso);
2004 goto put_dso;
2005 }
2006
2007 if (filt->sym_from) {
2008 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2009 filt->sym_from_idx);
2010 if (err)
2011 goto put_dso;
2012 filt->addr = start;
2013 if (filt->range && !filt->size && !filt->sym_to)
2014 filt->size = size;
2015 }
2016
2017 if (filt->sym_to) {
2018 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2019 filt->sym_to_idx);
2020 if (err)
2021 goto put_dso;
2022
2023 err = check_end_after_start(filt, start, size);
2024 if (err)
2025 return err;
2026
2027 filt->size = start + size - filt->addr;
2028 }
2029
2030 put_dso:
2031 dso__put(dso);
2032
2033 return err;
2034 }
2035
2036 static char *addr_filter__to_str(struct addr_filter *filt)
2037 {
2038 char filename_buf[PATH_MAX];
2039 const char *at = "";
2040 const char *fn = "";
2041 char *filter;
2042 int err;
2043
2044 if (filt->filename) {
2045 at = "@";
2046 fn = realpath(filt->filename, filename_buf);
2047 if (!fn)
2048 return NULL;
2049 }
2050
2051 if (filt->range) {
2052 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2053 filt->action, filt->addr, filt->size, at, fn);
2054 } else {
2055 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2056 filt->action, filt->addr, at, fn);
2057 }
2058
2059 return err < 0 ? NULL : filter;
2060 }
2061
2062 static int parse_addr_filter(struct perf_evsel *evsel, const char *filter,
2063 int max_nr)
2064 {
2065 struct addr_filters filts;
2066 struct addr_filter *filt;
2067 int err;
2068
2069 addr_filters__init(&filts);
2070
2071 err = addr_filters__parse_bare_filter(&filts, filter);
2072 if (err)
2073 goto out_exit;
2074
2075 if (filts.cnt > max_nr) {
2076 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2077 filts.cnt, max_nr);
2078 err = -EINVAL;
2079 goto out_exit;
2080 }
2081
2082 list_for_each_entry(filt, &filts.head, list) {
2083 char *new_filter;
2084
2085 err = addr_filter__resolve_syms(filt);
2086 if (err)
2087 goto out_exit;
2088
2089 new_filter = addr_filter__to_str(filt);
2090 if (!new_filter) {
2091 err = -ENOMEM;
2092 goto out_exit;
2093 }
2094
2095 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2096 err = -ENOMEM;
2097 goto out_exit;
2098 }
2099 }
2100
2101 out_exit:
2102 addr_filters__exit(&filts);
2103
2104 if (err) {
2105 pr_err("Failed to parse address filter: '%s'\n", filter);
2106 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2107 pr_err("Where multiple filters are separated by space or comma.\n");
2108 }
2109
2110 return err;
2111 }
2112
2113 static struct perf_pmu *perf_evsel__find_pmu(struct perf_evsel *evsel)
2114 {
2115 struct perf_pmu *pmu = NULL;
2116
2117 while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2118 if (pmu->type == evsel->attr.type)
2119 break;
2120 }
2121
2122 return pmu;
2123 }
2124
2125 static int perf_evsel__nr_addr_filter(struct perf_evsel *evsel)
2126 {
2127 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2128 int nr_addr_filters = 0;
2129
2130 if (!pmu)
2131 return 0;
2132
2133 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2134
2135 return nr_addr_filters;
2136 }
2137
2138 int auxtrace_parse_filters(struct perf_evlist *evlist)
2139 {
2140 struct perf_evsel *evsel;
2141 char *filter;
2142 int err, max_nr;
2143
2144 evlist__for_each_entry(evlist, evsel) {
2145 filter = evsel->filter;
2146 max_nr = perf_evsel__nr_addr_filter(evsel);
2147 if (!filter || !max_nr)
2148 continue;
2149 evsel->filter = NULL;
2150 err = parse_addr_filter(evsel, filter, max_nr);
2151 free(filter);
2152 if (err)
2153 return err;
2154 pr_debug("Address filter: %s\n", evsel->filter);
2155 }
2156
2157 return 0;
2158 }