]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - tools/perf/util/auxtrace.c
libperf: Move perf_event_attr field from perf's evsel to libperf's perf_evsel
[mirror_ubuntu-hirsute-kernel.git] / tools / perf / util / auxtrace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * auxtrace.c: AUX area trace support
4 * Copyright (c) 2013-2015, Intel Corporation.
5 */
6
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28
29 #include "../perf.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "cpumap.h"
36 #include "symbol.h"
37 #include "thread_map.h"
38 #include "asm/bug.h"
39 #include "auxtrace.h"
40
41 #include <linux/hash.h>
42
43 #include "event.h"
44 #include "session.h"
45 #include "debug.h"
46 #include <subcmd/parse-options.h>
47
48 #include "cs-etm.h"
49 #include "intel-pt.h"
50 #include "intel-bts.h"
51 #include "arm-spe.h"
52 #include "s390-cpumsf.h"
53
54 #include <linux/ctype.h>
55 #include "symbol/kallsyms.h"
56
57 static bool auxtrace__dont_decode(struct perf_session *session)
58 {
59 return !session->itrace_synth_opts ||
60 session->itrace_synth_opts->dont_decode;
61 }
62
63 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
64 struct auxtrace_mmap_params *mp,
65 void *userpg, int fd)
66 {
67 struct perf_event_mmap_page *pc = userpg;
68
69 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
70
71 mm->userpg = userpg;
72 mm->mask = mp->mask;
73 mm->len = mp->len;
74 mm->prev = 0;
75 mm->idx = mp->idx;
76 mm->tid = mp->tid;
77 mm->cpu = mp->cpu;
78
79 if (!mp->len) {
80 mm->base = NULL;
81 return 0;
82 }
83
84 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
85 pr_err("Cannot use AUX area tracing mmaps\n");
86 return -1;
87 #endif
88
89 pc->aux_offset = mp->offset;
90 pc->aux_size = mp->len;
91
92 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
93 if (mm->base == MAP_FAILED) {
94 pr_debug2("failed to mmap AUX area\n");
95 mm->base = NULL;
96 return -1;
97 }
98
99 return 0;
100 }
101
102 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
103 {
104 if (mm->base) {
105 munmap(mm->base, mm->len);
106 mm->base = NULL;
107 }
108 }
109
110 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
111 off_t auxtrace_offset,
112 unsigned int auxtrace_pages,
113 bool auxtrace_overwrite)
114 {
115 if (auxtrace_pages) {
116 mp->offset = auxtrace_offset;
117 mp->len = auxtrace_pages * (size_t)page_size;
118 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
119 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
120 pr_debug2("AUX area mmap length %zu\n", mp->len);
121 } else {
122 mp->len = 0;
123 }
124 }
125
126 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
127 struct evlist *evlist, int idx,
128 bool per_cpu)
129 {
130 mp->idx = idx;
131
132 if (per_cpu) {
133 mp->cpu = evlist->cpus->map[idx];
134 if (evlist->threads)
135 mp->tid = thread_map__pid(evlist->threads, 0);
136 else
137 mp->tid = -1;
138 } else {
139 mp->cpu = -1;
140 mp->tid = thread_map__pid(evlist->threads, idx);
141 }
142 }
143
144 #define AUXTRACE_INIT_NR_QUEUES 32
145
146 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
147 {
148 struct auxtrace_queue *queue_array;
149 unsigned int max_nr_queues, i;
150
151 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
152 if (nr_queues > max_nr_queues)
153 return NULL;
154
155 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
156 if (!queue_array)
157 return NULL;
158
159 for (i = 0; i < nr_queues; i++) {
160 INIT_LIST_HEAD(&queue_array[i].head);
161 queue_array[i].priv = NULL;
162 }
163
164 return queue_array;
165 }
166
167 int auxtrace_queues__init(struct auxtrace_queues *queues)
168 {
169 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
170 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
171 if (!queues->queue_array)
172 return -ENOMEM;
173 return 0;
174 }
175
176 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
177 unsigned int new_nr_queues)
178 {
179 unsigned int nr_queues = queues->nr_queues;
180 struct auxtrace_queue *queue_array;
181 unsigned int i;
182
183 if (!nr_queues)
184 nr_queues = AUXTRACE_INIT_NR_QUEUES;
185
186 while (nr_queues && nr_queues < new_nr_queues)
187 nr_queues <<= 1;
188
189 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
190 return -EINVAL;
191
192 queue_array = auxtrace_alloc_queue_array(nr_queues);
193 if (!queue_array)
194 return -ENOMEM;
195
196 for (i = 0; i < queues->nr_queues; i++) {
197 list_splice_tail(&queues->queue_array[i].head,
198 &queue_array[i].head);
199 queue_array[i].tid = queues->queue_array[i].tid;
200 queue_array[i].cpu = queues->queue_array[i].cpu;
201 queue_array[i].set = queues->queue_array[i].set;
202 queue_array[i].priv = queues->queue_array[i].priv;
203 }
204
205 queues->nr_queues = nr_queues;
206 queues->queue_array = queue_array;
207
208 return 0;
209 }
210
211 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
212 {
213 int fd = perf_data__fd(session->data);
214 void *p;
215 ssize_t ret;
216
217 if (size > SSIZE_MAX)
218 return NULL;
219
220 p = malloc(size);
221 if (!p)
222 return NULL;
223
224 ret = readn(fd, p, size);
225 if (ret != (ssize_t)size) {
226 free(p);
227 return NULL;
228 }
229
230 return p;
231 }
232
233 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
234 unsigned int idx,
235 struct auxtrace_buffer *buffer)
236 {
237 struct auxtrace_queue *queue;
238 int err;
239
240 if (idx >= queues->nr_queues) {
241 err = auxtrace_queues__grow(queues, idx + 1);
242 if (err)
243 return err;
244 }
245
246 queue = &queues->queue_array[idx];
247
248 if (!queue->set) {
249 queue->set = true;
250 queue->tid = buffer->tid;
251 queue->cpu = buffer->cpu;
252 } else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
253 pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
254 queue->cpu, queue->tid, buffer->cpu, buffer->tid);
255 return -EINVAL;
256 }
257
258 buffer->buffer_nr = queues->next_buffer_nr++;
259
260 list_add_tail(&buffer->list, &queue->head);
261
262 queues->new_data = true;
263 queues->populated = true;
264
265 return 0;
266 }
267
268 /* Limit buffers to 32MiB on 32-bit */
269 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
270
271 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
272 unsigned int idx,
273 struct auxtrace_buffer *buffer)
274 {
275 u64 sz = buffer->size;
276 bool consecutive = false;
277 struct auxtrace_buffer *b;
278 int err;
279
280 while (sz > BUFFER_LIMIT_FOR_32_BIT) {
281 b = memdup(buffer, sizeof(struct auxtrace_buffer));
282 if (!b)
283 return -ENOMEM;
284 b->size = BUFFER_LIMIT_FOR_32_BIT;
285 b->consecutive = consecutive;
286 err = auxtrace_queues__queue_buffer(queues, idx, b);
287 if (err) {
288 auxtrace_buffer__free(b);
289 return err;
290 }
291 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
292 sz -= BUFFER_LIMIT_FOR_32_BIT;
293 consecutive = true;
294 }
295
296 buffer->size = sz;
297 buffer->consecutive = consecutive;
298
299 return 0;
300 }
301
302 static bool filter_cpu(struct perf_session *session, int cpu)
303 {
304 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
305
306 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
307 }
308
309 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
310 struct perf_session *session,
311 unsigned int idx,
312 struct auxtrace_buffer *buffer,
313 struct auxtrace_buffer **buffer_ptr)
314 {
315 int err = -ENOMEM;
316
317 if (filter_cpu(session, buffer->cpu))
318 return 0;
319
320 buffer = memdup(buffer, sizeof(*buffer));
321 if (!buffer)
322 return -ENOMEM;
323
324 if (session->one_mmap) {
325 buffer->data = buffer->data_offset - session->one_mmap_offset +
326 session->one_mmap_addr;
327 } else if (perf_data__is_pipe(session->data)) {
328 buffer->data = auxtrace_copy_data(buffer->size, session);
329 if (!buffer->data)
330 goto out_free;
331 buffer->data_needs_freeing = true;
332 } else if (BITS_PER_LONG == 32 &&
333 buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
334 err = auxtrace_queues__split_buffer(queues, idx, buffer);
335 if (err)
336 goto out_free;
337 }
338
339 err = auxtrace_queues__queue_buffer(queues, idx, buffer);
340 if (err)
341 goto out_free;
342
343 /* FIXME: Doesn't work for split buffer */
344 if (buffer_ptr)
345 *buffer_ptr = buffer;
346
347 return 0;
348
349 out_free:
350 auxtrace_buffer__free(buffer);
351 return err;
352 }
353
354 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
355 struct perf_session *session,
356 union perf_event *event, off_t data_offset,
357 struct auxtrace_buffer **buffer_ptr)
358 {
359 struct auxtrace_buffer buffer = {
360 .pid = -1,
361 .tid = event->auxtrace.tid,
362 .cpu = event->auxtrace.cpu,
363 .data_offset = data_offset,
364 .offset = event->auxtrace.offset,
365 .reference = event->auxtrace.reference,
366 .size = event->auxtrace.size,
367 };
368 unsigned int idx = event->auxtrace.idx;
369
370 return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
371 buffer_ptr);
372 }
373
374 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
375 struct perf_session *session,
376 off_t file_offset, size_t sz)
377 {
378 union perf_event *event;
379 int err;
380 char buf[PERF_SAMPLE_MAX_SIZE];
381
382 err = perf_session__peek_event(session, file_offset, buf,
383 PERF_SAMPLE_MAX_SIZE, &event, NULL);
384 if (err)
385 return err;
386
387 if (event->header.type == PERF_RECORD_AUXTRACE) {
388 if (event->header.size < sizeof(struct auxtrace_event) ||
389 event->header.size != sz) {
390 err = -EINVAL;
391 goto out;
392 }
393 file_offset += event->header.size;
394 err = auxtrace_queues__add_event(queues, session, event,
395 file_offset, NULL);
396 }
397 out:
398 return err;
399 }
400
401 void auxtrace_queues__free(struct auxtrace_queues *queues)
402 {
403 unsigned int i;
404
405 for (i = 0; i < queues->nr_queues; i++) {
406 while (!list_empty(&queues->queue_array[i].head)) {
407 struct auxtrace_buffer *buffer;
408
409 buffer = list_entry(queues->queue_array[i].head.next,
410 struct auxtrace_buffer, list);
411 list_del_init(&buffer->list);
412 auxtrace_buffer__free(buffer);
413 }
414 }
415
416 zfree(&queues->queue_array);
417 queues->nr_queues = 0;
418 }
419
420 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
421 unsigned int pos, unsigned int queue_nr,
422 u64 ordinal)
423 {
424 unsigned int parent;
425
426 while (pos) {
427 parent = (pos - 1) >> 1;
428 if (heap_array[parent].ordinal <= ordinal)
429 break;
430 heap_array[pos] = heap_array[parent];
431 pos = parent;
432 }
433 heap_array[pos].queue_nr = queue_nr;
434 heap_array[pos].ordinal = ordinal;
435 }
436
437 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
438 u64 ordinal)
439 {
440 struct auxtrace_heap_item *heap_array;
441
442 if (queue_nr >= heap->heap_sz) {
443 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
444
445 while (heap_sz <= queue_nr)
446 heap_sz <<= 1;
447 heap_array = realloc(heap->heap_array,
448 heap_sz * sizeof(struct auxtrace_heap_item));
449 if (!heap_array)
450 return -ENOMEM;
451 heap->heap_array = heap_array;
452 heap->heap_sz = heap_sz;
453 }
454
455 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
456
457 return 0;
458 }
459
460 void auxtrace_heap__free(struct auxtrace_heap *heap)
461 {
462 zfree(&heap->heap_array);
463 heap->heap_cnt = 0;
464 heap->heap_sz = 0;
465 }
466
467 void auxtrace_heap__pop(struct auxtrace_heap *heap)
468 {
469 unsigned int pos, last, heap_cnt = heap->heap_cnt;
470 struct auxtrace_heap_item *heap_array;
471
472 if (!heap_cnt)
473 return;
474
475 heap->heap_cnt -= 1;
476
477 heap_array = heap->heap_array;
478
479 pos = 0;
480 while (1) {
481 unsigned int left, right;
482
483 left = (pos << 1) + 1;
484 if (left >= heap_cnt)
485 break;
486 right = left + 1;
487 if (right >= heap_cnt) {
488 heap_array[pos] = heap_array[left];
489 return;
490 }
491 if (heap_array[left].ordinal < heap_array[right].ordinal) {
492 heap_array[pos] = heap_array[left];
493 pos = left;
494 } else {
495 heap_array[pos] = heap_array[right];
496 pos = right;
497 }
498 }
499
500 last = heap_cnt - 1;
501 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
502 heap_array[last].ordinal);
503 }
504
505 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
506 struct evlist *evlist)
507 {
508 if (itr)
509 return itr->info_priv_size(itr, evlist);
510 return 0;
511 }
512
513 static int auxtrace_not_supported(void)
514 {
515 pr_err("AUX area tracing is not supported on this architecture\n");
516 return -EINVAL;
517 }
518
519 int auxtrace_record__info_fill(struct auxtrace_record *itr,
520 struct perf_session *session,
521 struct auxtrace_info_event *auxtrace_info,
522 size_t priv_size)
523 {
524 if (itr)
525 return itr->info_fill(itr, session, auxtrace_info, priv_size);
526 return auxtrace_not_supported();
527 }
528
529 void auxtrace_record__free(struct auxtrace_record *itr)
530 {
531 if (itr)
532 itr->free(itr);
533 }
534
535 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
536 {
537 if (itr && itr->snapshot_start)
538 return itr->snapshot_start(itr);
539 return 0;
540 }
541
542 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr)
543 {
544 if (itr && itr->snapshot_finish)
545 return itr->snapshot_finish(itr);
546 return 0;
547 }
548
549 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
550 struct auxtrace_mmap *mm,
551 unsigned char *data, u64 *head, u64 *old)
552 {
553 if (itr && itr->find_snapshot)
554 return itr->find_snapshot(itr, idx, mm, data, head, old);
555 return 0;
556 }
557
558 int auxtrace_record__options(struct auxtrace_record *itr,
559 struct evlist *evlist,
560 struct record_opts *opts)
561 {
562 if (itr)
563 return itr->recording_options(itr, evlist, opts);
564 return 0;
565 }
566
567 u64 auxtrace_record__reference(struct auxtrace_record *itr)
568 {
569 if (itr)
570 return itr->reference(itr);
571 return 0;
572 }
573
574 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
575 struct record_opts *opts, const char *str)
576 {
577 if (!str)
578 return 0;
579
580 if (itr)
581 return itr->parse_snapshot_options(itr, opts, str);
582
583 pr_err("No AUX area tracing to snapshot\n");
584 return -EINVAL;
585 }
586
587 struct auxtrace_record *__weak
588 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
589 {
590 *err = 0;
591 return NULL;
592 }
593
594 static int auxtrace_index__alloc(struct list_head *head)
595 {
596 struct auxtrace_index *auxtrace_index;
597
598 auxtrace_index = malloc(sizeof(struct auxtrace_index));
599 if (!auxtrace_index)
600 return -ENOMEM;
601
602 auxtrace_index->nr = 0;
603 INIT_LIST_HEAD(&auxtrace_index->list);
604
605 list_add_tail(&auxtrace_index->list, head);
606
607 return 0;
608 }
609
610 void auxtrace_index__free(struct list_head *head)
611 {
612 struct auxtrace_index *auxtrace_index, *n;
613
614 list_for_each_entry_safe(auxtrace_index, n, head, list) {
615 list_del_init(&auxtrace_index->list);
616 free(auxtrace_index);
617 }
618 }
619
620 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
621 {
622 struct auxtrace_index *auxtrace_index;
623 int err;
624
625 if (list_empty(head)) {
626 err = auxtrace_index__alloc(head);
627 if (err)
628 return NULL;
629 }
630
631 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
632
633 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
634 err = auxtrace_index__alloc(head);
635 if (err)
636 return NULL;
637 auxtrace_index = list_entry(head->prev, struct auxtrace_index,
638 list);
639 }
640
641 return auxtrace_index;
642 }
643
644 int auxtrace_index__auxtrace_event(struct list_head *head,
645 union perf_event *event, off_t file_offset)
646 {
647 struct auxtrace_index *auxtrace_index;
648 size_t nr;
649
650 auxtrace_index = auxtrace_index__last(head);
651 if (!auxtrace_index)
652 return -ENOMEM;
653
654 nr = auxtrace_index->nr;
655 auxtrace_index->entries[nr].file_offset = file_offset;
656 auxtrace_index->entries[nr].sz = event->header.size;
657 auxtrace_index->nr += 1;
658
659 return 0;
660 }
661
662 static int auxtrace_index__do_write(int fd,
663 struct auxtrace_index *auxtrace_index)
664 {
665 struct auxtrace_index_entry ent;
666 size_t i;
667
668 for (i = 0; i < auxtrace_index->nr; i++) {
669 ent.file_offset = auxtrace_index->entries[i].file_offset;
670 ent.sz = auxtrace_index->entries[i].sz;
671 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
672 return -errno;
673 }
674 return 0;
675 }
676
677 int auxtrace_index__write(int fd, struct list_head *head)
678 {
679 struct auxtrace_index *auxtrace_index;
680 u64 total = 0;
681 int err;
682
683 list_for_each_entry(auxtrace_index, head, list)
684 total += auxtrace_index->nr;
685
686 if (writen(fd, &total, sizeof(total)) != sizeof(total))
687 return -errno;
688
689 list_for_each_entry(auxtrace_index, head, list) {
690 err = auxtrace_index__do_write(fd, auxtrace_index);
691 if (err)
692 return err;
693 }
694
695 return 0;
696 }
697
698 static int auxtrace_index__process_entry(int fd, struct list_head *head,
699 bool needs_swap)
700 {
701 struct auxtrace_index *auxtrace_index;
702 struct auxtrace_index_entry ent;
703 size_t nr;
704
705 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
706 return -1;
707
708 auxtrace_index = auxtrace_index__last(head);
709 if (!auxtrace_index)
710 return -1;
711
712 nr = auxtrace_index->nr;
713 if (needs_swap) {
714 auxtrace_index->entries[nr].file_offset =
715 bswap_64(ent.file_offset);
716 auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
717 } else {
718 auxtrace_index->entries[nr].file_offset = ent.file_offset;
719 auxtrace_index->entries[nr].sz = ent.sz;
720 }
721
722 auxtrace_index->nr = nr + 1;
723
724 return 0;
725 }
726
727 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
728 bool needs_swap)
729 {
730 struct list_head *head = &session->auxtrace_index;
731 u64 nr;
732
733 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
734 return -1;
735
736 if (needs_swap)
737 nr = bswap_64(nr);
738
739 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
740 return -1;
741
742 while (nr--) {
743 int err;
744
745 err = auxtrace_index__process_entry(fd, head, needs_swap);
746 if (err)
747 return -1;
748 }
749
750 return 0;
751 }
752
753 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
754 struct perf_session *session,
755 struct auxtrace_index_entry *ent)
756 {
757 return auxtrace_queues__add_indexed_event(queues, session,
758 ent->file_offset, ent->sz);
759 }
760
761 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
762 struct perf_session *session)
763 {
764 struct auxtrace_index *auxtrace_index;
765 struct auxtrace_index_entry *ent;
766 size_t i;
767 int err;
768
769 if (auxtrace__dont_decode(session))
770 return 0;
771
772 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
773 for (i = 0; i < auxtrace_index->nr; i++) {
774 ent = &auxtrace_index->entries[i];
775 err = auxtrace_queues__process_index_entry(queues,
776 session,
777 ent);
778 if (err)
779 return err;
780 }
781 }
782 return 0;
783 }
784
785 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
786 struct auxtrace_buffer *buffer)
787 {
788 if (buffer) {
789 if (list_is_last(&buffer->list, &queue->head))
790 return NULL;
791 return list_entry(buffer->list.next, struct auxtrace_buffer,
792 list);
793 } else {
794 if (list_empty(&queue->head))
795 return NULL;
796 return list_entry(queue->head.next, struct auxtrace_buffer,
797 list);
798 }
799 }
800
801 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
802 {
803 size_t adj = buffer->data_offset & (page_size - 1);
804 size_t size = buffer->size + adj;
805 off_t file_offset = buffer->data_offset - adj;
806 void *addr;
807
808 if (buffer->data)
809 return buffer->data;
810
811 addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
812 if (addr == MAP_FAILED)
813 return NULL;
814
815 buffer->mmap_addr = addr;
816 buffer->mmap_size = size;
817
818 buffer->data = addr + adj;
819
820 return buffer->data;
821 }
822
823 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
824 {
825 if (!buffer->data || !buffer->mmap_addr)
826 return;
827 munmap(buffer->mmap_addr, buffer->mmap_size);
828 buffer->mmap_addr = NULL;
829 buffer->mmap_size = 0;
830 buffer->data = NULL;
831 buffer->use_data = NULL;
832 }
833
834 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
835 {
836 auxtrace_buffer__put_data(buffer);
837 if (buffer->data_needs_freeing) {
838 buffer->data_needs_freeing = false;
839 zfree(&buffer->data);
840 buffer->use_data = NULL;
841 buffer->size = 0;
842 }
843 }
844
845 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
846 {
847 auxtrace_buffer__drop_data(buffer);
848 free(buffer);
849 }
850
851 void auxtrace_synth_error(struct auxtrace_error_event *auxtrace_error, int type,
852 int code, int cpu, pid_t pid, pid_t tid, u64 ip,
853 const char *msg, u64 timestamp)
854 {
855 size_t size;
856
857 memset(auxtrace_error, 0, sizeof(struct auxtrace_error_event));
858
859 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
860 auxtrace_error->type = type;
861 auxtrace_error->code = code;
862 auxtrace_error->cpu = cpu;
863 auxtrace_error->pid = pid;
864 auxtrace_error->tid = tid;
865 auxtrace_error->fmt = 1;
866 auxtrace_error->ip = ip;
867 auxtrace_error->time = timestamp;
868 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
869
870 size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
871 strlen(auxtrace_error->msg) + 1;
872 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
873 }
874
875 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
876 struct perf_tool *tool,
877 struct perf_session *session,
878 perf_event__handler_t process)
879 {
880 union perf_event *ev;
881 size_t priv_size;
882 int err;
883
884 pr_debug2("Synthesizing auxtrace information\n");
885 priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
886 ev = zalloc(sizeof(struct auxtrace_info_event) + priv_size);
887 if (!ev)
888 return -ENOMEM;
889
890 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
891 ev->auxtrace_info.header.size = sizeof(struct auxtrace_info_event) +
892 priv_size;
893 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
894 priv_size);
895 if (err)
896 goto out_free;
897
898 err = process(tool, ev, NULL, NULL);
899 out_free:
900 free(ev);
901 return err;
902 }
903
904 int perf_event__process_auxtrace_info(struct perf_session *session,
905 union perf_event *event)
906 {
907 enum auxtrace_type type = event->auxtrace_info.type;
908
909 if (dump_trace)
910 fprintf(stdout, " type: %u\n", type);
911
912 switch (type) {
913 case PERF_AUXTRACE_INTEL_PT:
914 return intel_pt_process_auxtrace_info(event, session);
915 case PERF_AUXTRACE_INTEL_BTS:
916 return intel_bts_process_auxtrace_info(event, session);
917 case PERF_AUXTRACE_ARM_SPE:
918 return arm_spe_process_auxtrace_info(event, session);
919 case PERF_AUXTRACE_CS_ETM:
920 return cs_etm__process_auxtrace_info(event, session);
921 case PERF_AUXTRACE_S390_CPUMSF:
922 return s390_cpumsf_process_auxtrace_info(event, session);
923 case PERF_AUXTRACE_UNKNOWN:
924 default:
925 return -EINVAL;
926 }
927 }
928
929 s64 perf_event__process_auxtrace(struct perf_session *session,
930 union perf_event *event)
931 {
932 s64 err;
933
934 if (dump_trace)
935 fprintf(stdout, " size: %#"PRIx64" offset: %#"PRIx64" ref: %#"PRIx64" idx: %u tid: %d cpu: %d\n",
936 event->auxtrace.size, event->auxtrace.offset,
937 event->auxtrace.reference, event->auxtrace.idx,
938 event->auxtrace.tid, event->auxtrace.cpu);
939
940 if (auxtrace__dont_decode(session))
941 return event->auxtrace.size;
942
943 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
944 return -EINVAL;
945
946 err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
947 if (err < 0)
948 return err;
949
950 return event->auxtrace.size;
951 }
952
953 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS
954 #define PERF_ITRACE_DEFAULT_PERIOD 100000
955 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16
956 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024
957 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64
958 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024
959
960 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
961 bool no_sample)
962 {
963 synth_opts->branches = true;
964 synth_opts->transactions = true;
965 synth_opts->ptwrites = true;
966 synth_opts->pwr_events = true;
967 synth_opts->errors = true;
968 if (no_sample) {
969 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
970 synth_opts->period = 1;
971 synth_opts->calls = true;
972 } else {
973 synth_opts->instructions = true;
974 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
975 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
976 }
977 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
978 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
979 synth_opts->initial_skip = 0;
980 }
981
982 /*
983 * Please check tools/perf/Documentation/perf-script.txt for information
984 * about the options parsed here, which is introduced after this cset,
985 * when support in 'perf script' for these options is introduced.
986 */
987 int itrace_parse_synth_opts(const struct option *opt, const char *str,
988 int unset)
989 {
990 struct itrace_synth_opts *synth_opts = opt->value;
991 const char *p;
992 char *endptr;
993 bool period_type_set = false;
994 bool period_set = false;
995
996 synth_opts->set = true;
997
998 if (unset) {
999 synth_opts->dont_decode = true;
1000 return 0;
1001 }
1002
1003 if (!str) {
1004 itrace_synth_opts__set_default(synth_opts,
1005 synth_opts->default_no_sample);
1006 return 0;
1007 }
1008
1009 for (p = str; *p;) {
1010 switch (*p++) {
1011 case 'i':
1012 synth_opts->instructions = true;
1013 while (*p == ' ' || *p == ',')
1014 p += 1;
1015 if (isdigit(*p)) {
1016 synth_opts->period = strtoull(p, &endptr, 10);
1017 period_set = true;
1018 p = endptr;
1019 while (*p == ' ' || *p == ',')
1020 p += 1;
1021 switch (*p++) {
1022 case 'i':
1023 synth_opts->period_type =
1024 PERF_ITRACE_PERIOD_INSTRUCTIONS;
1025 period_type_set = true;
1026 break;
1027 case 't':
1028 synth_opts->period_type =
1029 PERF_ITRACE_PERIOD_TICKS;
1030 period_type_set = true;
1031 break;
1032 case 'm':
1033 synth_opts->period *= 1000;
1034 /* Fall through */
1035 case 'u':
1036 synth_opts->period *= 1000;
1037 /* Fall through */
1038 case 'n':
1039 if (*p++ != 's')
1040 goto out_err;
1041 synth_opts->period_type =
1042 PERF_ITRACE_PERIOD_NANOSECS;
1043 period_type_set = true;
1044 break;
1045 case '\0':
1046 goto out;
1047 default:
1048 goto out_err;
1049 }
1050 }
1051 break;
1052 case 'b':
1053 synth_opts->branches = true;
1054 break;
1055 case 'x':
1056 synth_opts->transactions = true;
1057 break;
1058 case 'w':
1059 synth_opts->ptwrites = true;
1060 break;
1061 case 'p':
1062 synth_opts->pwr_events = true;
1063 break;
1064 case 'e':
1065 synth_opts->errors = true;
1066 break;
1067 case 'd':
1068 synth_opts->log = true;
1069 break;
1070 case 'c':
1071 synth_opts->branches = true;
1072 synth_opts->calls = true;
1073 break;
1074 case 'r':
1075 synth_opts->branches = true;
1076 synth_opts->returns = true;
1077 break;
1078 case 'g':
1079 synth_opts->callchain = true;
1080 synth_opts->callchain_sz =
1081 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1082 while (*p == ' ' || *p == ',')
1083 p += 1;
1084 if (isdigit(*p)) {
1085 unsigned int val;
1086
1087 val = strtoul(p, &endptr, 10);
1088 p = endptr;
1089 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1090 goto out_err;
1091 synth_opts->callchain_sz = val;
1092 }
1093 break;
1094 case 'l':
1095 synth_opts->last_branch = true;
1096 synth_opts->last_branch_sz =
1097 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1098 while (*p == ' ' || *p == ',')
1099 p += 1;
1100 if (isdigit(*p)) {
1101 unsigned int val;
1102
1103 val = strtoul(p, &endptr, 10);
1104 p = endptr;
1105 if (!val ||
1106 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1107 goto out_err;
1108 synth_opts->last_branch_sz = val;
1109 }
1110 break;
1111 case 's':
1112 synth_opts->initial_skip = strtoul(p, &endptr, 10);
1113 if (p == endptr)
1114 goto out_err;
1115 p = endptr;
1116 break;
1117 case ' ':
1118 case ',':
1119 break;
1120 default:
1121 goto out_err;
1122 }
1123 }
1124 out:
1125 if (synth_opts->instructions) {
1126 if (!period_type_set)
1127 synth_opts->period_type =
1128 PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1129 if (!period_set)
1130 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1131 }
1132
1133 return 0;
1134
1135 out_err:
1136 pr_err("Bad Instruction Tracing options '%s'\n", str);
1137 return -EINVAL;
1138 }
1139
1140 static const char * const auxtrace_error_type_name[] = {
1141 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1142 };
1143
1144 static const char *auxtrace_error_name(int type)
1145 {
1146 const char *error_type_name = NULL;
1147
1148 if (type < PERF_AUXTRACE_ERROR_MAX)
1149 error_type_name = auxtrace_error_type_name[type];
1150 if (!error_type_name)
1151 error_type_name = "unknown AUX";
1152 return error_type_name;
1153 }
1154
1155 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1156 {
1157 struct auxtrace_error_event *e = &event->auxtrace_error;
1158 unsigned long long nsecs = e->time;
1159 const char *msg = e->msg;
1160 int ret;
1161
1162 ret = fprintf(fp, " %s error type %u",
1163 auxtrace_error_name(e->type), e->type);
1164
1165 if (e->fmt && nsecs) {
1166 unsigned long secs = nsecs / NSEC_PER_SEC;
1167
1168 nsecs -= secs * NSEC_PER_SEC;
1169 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1170 } else {
1171 ret += fprintf(fp, " time 0");
1172 }
1173
1174 if (!e->fmt)
1175 msg = (const char *)&e->time;
1176
1177 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRIx64" code %u: %s\n",
1178 e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1179 return ret;
1180 }
1181
1182 void perf_session__auxtrace_error_inc(struct perf_session *session,
1183 union perf_event *event)
1184 {
1185 struct auxtrace_error_event *e = &event->auxtrace_error;
1186
1187 if (e->type < PERF_AUXTRACE_ERROR_MAX)
1188 session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1189 }
1190
1191 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1192 {
1193 int i;
1194
1195 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1196 if (!stats->nr_auxtrace_errors[i])
1197 continue;
1198 ui__warning("%u %s errors\n",
1199 stats->nr_auxtrace_errors[i],
1200 auxtrace_error_name(i));
1201 }
1202 }
1203
1204 int perf_event__process_auxtrace_error(struct perf_session *session,
1205 union perf_event *event)
1206 {
1207 if (auxtrace__dont_decode(session))
1208 return 0;
1209
1210 perf_event__fprintf_auxtrace_error(event, stdout);
1211 return 0;
1212 }
1213
1214 static int __auxtrace_mmap__read(struct perf_mmap *map,
1215 struct auxtrace_record *itr,
1216 struct perf_tool *tool, process_auxtrace_t fn,
1217 bool snapshot, size_t snapshot_size)
1218 {
1219 struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1220 u64 head, old = mm->prev, offset, ref;
1221 unsigned char *data = mm->base;
1222 size_t size, head_off, old_off, len1, len2, padding;
1223 union perf_event ev;
1224 void *data1, *data2;
1225
1226 if (snapshot) {
1227 head = auxtrace_mmap__read_snapshot_head(mm);
1228 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1229 &head, &old))
1230 return -1;
1231 } else {
1232 head = auxtrace_mmap__read_head(mm);
1233 }
1234
1235 if (old == head)
1236 return 0;
1237
1238 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1239 mm->idx, old, head, head - old);
1240
1241 if (mm->mask) {
1242 head_off = head & mm->mask;
1243 old_off = old & mm->mask;
1244 } else {
1245 head_off = head % mm->len;
1246 old_off = old % mm->len;
1247 }
1248
1249 if (head_off > old_off)
1250 size = head_off - old_off;
1251 else
1252 size = mm->len - (old_off - head_off);
1253
1254 if (snapshot && size > snapshot_size)
1255 size = snapshot_size;
1256
1257 ref = auxtrace_record__reference(itr);
1258
1259 if (head > old || size <= head || mm->mask) {
1260 offset = head - size;
1261 } else {
1262 /*
1263 * When the buffer size is not a power of 2, 'head' wraps at the
1264 * highest multiple of the buffer size, so we have to subtract
1265 * the remainder here.
1266 */
1267 u64 rem = (0ULL - mm->len) % mm->len;
1268
1269 offset = head - size - rem;
1270 }
1271
1272 if (size > head_off) {
1273 len1 = size - head_off;
1274 data1 = &data[mm->len - len1];
1275 len2 = head_off;
1276 data2 = &data[0];
1277 } else {
1278 len1 = size;
1279 data1 = &data[head_off - len1];
1280 len2 = 0;
1281 data2 = NULL;
1282 }
1283
1284 if (itr->alignment) {
1285 unsigned int unwanted = len1 % itr->alignment;
1286
1287 len1 -= unwanted;
1288 size -= unwanted;
1289 }
1290
1291 /* padding must be written by fn() e.g. record__process_auxtrace() */
1292 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1293 if (padding)
1294 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1295
1296 memset(&ev, 0, sizeof(ev));
1297 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1298 ev.auxtrace.header.size = sizeof(ev.auxtrace);
1299 ev.auxtrace.size = size + padding;
1300 ev.auxtrace.offset = offset;
1301 ev.auxtrace.reference = ref;
1302 ev.auxtrace.idx = mm->idx;
1303 ev.auxtrace.tid = mm->tid;
1304 ev.auxtrace.cpu = mm->cpu;
1305
1306 if (fn(tool, map, &ev, data1, len1, data2, len2))
1307 return -1;
1308
1309 mm->prev = head;
1310
1311 if (!snapshot) {
1312 auxtrace_mmap__write_tail(mm, head);
1313 if (itr->read_finish) {
1314 int err;
1315
1316 err = itr->read_finish(itr, mm->idx);
1317 if (err < 0)
1318 return err;
1319 }
1320 }
1321
1322 return 1;
1323 }
1324
1325 int auxtrace_mmap__read(struct perf_mmap *map, struct auxtrace_record *itr,
1326 struct perf_tool *tool, process_auxtrace_t fn)
1327 {
1328 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1329 }
1330
1331 int auxtrace_mmap__read_snapshot(struct perf_mmap *map,
1332 struct auxtrace_record *itr,
1333 struct perf_tool *tool, process_auxtrace_t fn,
1334 size_t snapshot_size)
1335 {
1336 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1337 }
1338
1339 /**
1340 * struct auxtrace_cache - hash table to implement a cache
1341 * @hashtable: the hashtable
1342 * @sz: hashtable size (number of hlists)
1343 * @entry_size: size of an entry
1344 * @limit: limit the number of entries to this maximum, when reached the cache
1345 * is dropped and caching begins again with an empty cache
1346 * @cnt: current number of entries
1347 * @bits: hashtable size (@sz = 2^@bits)
1348 */
1349 struct auxtrace_cache {
1350 struct hlist_head *hashtable;
1351 size_t sz;
1352 size_t entry_size;
1353 size_t limit;
1354 size_t cnt;
1355 unsigned int bits;
1356 };
1357
1358 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1359 unsigned int limit_percent)
1360 {
1361 struct auxtrace_cache *c;
1362 struct hlist_head *ht;
1363 size_t sz, i;
1364
1365 c = zalloc(sizeof(struct auxtrace_cache));
1366 if (!c)
1367 return NULL;
1368
1369 sz = 1UL << bits;
1370
1371 ht = calloc(sz, sizeof(struct hlist_head));
1372 if (!ht)
1373 goto out_free;
1374
1375 for (i = 0; i < sz; i++)
1376 INIT_HLIST_HEAD(&ht[i]);
1377
1378 c->hashtable = ht;
1379 c->sz = sz;
1380 c->entry_size = entry_size;
1381 c->limit = (c->sz * limit_percent) / 100;
1382 c->bits = bits;
1383
1384 return c;
1385
1386 out_free:
1387 free(c);
1388 return NULL;
1389 }
1390
1391 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1392 {
1393 struct auxtrace_cache_entry *entry;
1394 struct hlist_node *tmp;
1395 size_t i;
1396
1397 if (!c)
1398 return;
1399
1400 for (i = 0; i < c->sz; i++) {
1401 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1402 hlist_del(&entry->hash);
1403 auxtrace_cache__free_entry(c, entry);
1404 }
1405 }
1406
1407 c->cnt = 0;
1408 }
1409
1410 void auxtrace_cache__free(struct auxtrace_cache *c)
1411 {
1412 if (!c)
1413 return;
1414
1415 auxtrace_cache__drop(c);
1416 zfree(&c->hashtable);
1417 free(c);
1418 }
1419
1420 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1421 {
1422 return malloc(c->entry_size);
1423 }
1424
1425 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1426 void *entry)
1427 {
1428 free(entry);
1429 }
1430
1431 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1432 struct auxtrace_cache_entry *entry)
1433 {
1434 if (c->limit && ++c->cnt > c->limit)
1435 auxtrace_cache__drop(c);
1436
1437 entry->key = key;
1438 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1439
1440 return 0;
1441 }
1442
1443 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1444 {
1445 struct auxtrace_cache_entry *entry;
1446 struct hlist_head *hlist;
1447
1448 if (!c)
1449 return NULL;
1450
1451 hlist = &c->hashtable[hash_32(key, c->bits)];
1452 hlist_for_each_entry(entry, hlist, hash) {
1453 if (entry->key == key)
1454 return entry;
1455 }
1456
1457 return NULL;
1458 }
1459
1460 static void addr_filter__free_str(struct addr_filter *filt)
1461 {
1462 zfree(&filt->str);
1463 filt->action = NULL;
1464 filt->sym_from = NULL;
1465 filt->sym_to = NULL;
1466 filt->filename = NULL;
1467 }
1468
1469 static struct addr_filter *addr_filter__new(void)
1470 {
1471 struct addr_filter *filt = zalloc(sizeof(*filt));
1472
1473 if (filt)
1474 INIT_LIST_HEAD(&filt->list);
1475
1476 return filt;
1477 }
1478
1479 static void addr_filter__free(struct addr_filter *filt)
1480 {
1481 if (filt)
1482 addr_filter__free_str(filt);
1483 free(filt);
1484 }
1485
1486 static void addr_filters__add(struct addr_filters *filts,
1487 struct addr_filter *filt)
1488 {
1489 list_add_tail(&filt->list, &filts->head);
1490 filts->cnt += 1;
1491 }
1492
1493 static void addr_filters__del(struct addr_filters *filts,
1494 struct addr_filter *filt)
1495 {
1496 list_del_init(&filt->list);
1497 filts->cnt -= 1;
1498 }
1499
1500 void addr_filters__init(struct addr_filters *filts)
1501 {
1502 INIT_LIST_HEAD(&filts->head);
1503 filts->cnt = 0;
1504 }
1505
1506 void addr_filters__exit(struct addr_filters *filts)
1507 {
1508 struct addr_filter *filt, *n;
1509
1510 list_for_each_entry_safe(filt, n, &filts->head, list) {
1511 addr_filters__del(filts, filt);
1512 addr_filter__free(filt);
1513 }
1514 }
1515
1516 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1517 const char *str_delim)
1518 {
1519 *inp += strspn(*inp, " ");
1520
1521 if (isdigit(**inp)) {
1522 char *endptr;
1523
1524 if (!num)
1525 return -EINVAL;
1526 errno = 0;
1527 *num = strtoull(*inp, &endptr, 0);
1528 if (errno)
1529 return -errno;
1530 if (endptr == *inp)
1531 return -EINVAL;
1532 *inp = endptr;
1533 } else {
1534 size_t n;
1535
1536 if (!str)
1537 return -EINVAL;
1538 *inp += strspn(*inp, " ");
1539 *str = *inp;
1540 n = strcspn(*inp, str_delim);
1541 if (!n)
1542 return -EINVAL;
1543 *inp += n;
1544 if (**inp) {
1545 **inp = '\0';
1546 *inp += 1;
1547 }
1548 }
1549 return 0;
1550 }
1551
1552 static int parse_action(struct addr_filter *filt)
1553 {
1554 if (!strcmp(filt->action, "filter")) {
1555 filt->start = true;
1556 filt->range = true;
1557 } else if (!strcmp(filt->action, "start")) {
1558 filt->start = true;
1559 } else if (!strcmp(filt->action, "stop")) {
1560 filt->start = false;
1561 } else if (!strcmp(filt->action, "tracestop")) {
1562 filt->start = false;
1563 filt->range = true;
1564 filt->action += 5; /* Change 'tracestop' to 'stop' */
1565 } else {
1566 return -EINVAL;
1567 }
1568 return 0;
1569 }
1570
1571 static int parse_sym_idx(char **inp, int *idx)
1572 {
1573 *idx = -1;
1574
1575 *inp += strspn(*inp, " ");
1576
1577 if (**inp != '#')
1578 return 0;
1579
1580 *inp += 1;
1581
1582 if (**inp == 'g' || **inp == 'G') {
1583 *inp += 1;
1584 *idx = 0;
1585 } else {
1586 unsigned long num;
1587 char *endptr;
1588
1589 errno = 0;
1590 num = strtoul(*inp, &endptr, 0);
1591 if (errno)
1592 return -errno;
1593 if (endptr == *inp || num > INT_MAX)
1594 return -EINVAL;
1595 *inp = endptr;
1596 *idx = num;
1597 }
1598
1599 return 0;
1600 }
1601
1602 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1603 {
1604 int err = parse_num_or_str(inp, num, str, " ");
1605
1606 if (!err && *str)
1607 err = parse_sym_idx(inp, idx);
1608
1609 return err;
1610 }
1611
1612 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1613 {
1614 char *fstr;
1615 int err;
1616
1617 filt->str = fstr = strdup(*filter_inp);
1618 if (!fstr)
1619 return -ENOMEM;
1620
1621 err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1622 if (err)
1623 goto out_err;
1624
1625 err = parse_action(filt);
1626 if (err)
1627 goto out_err;
1628
1629 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1630 &filt->sym_from_idx);
1631 if (err)
1632 goto out_err;
1633
1634 fstr += strspn(fstr, " ");
1635
1636 if (*fstr == '/') {
1637 fstr += 1;
1638 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1639 &filt->sym_to_idx);
1640 if (err)
1641 goto out_err;
1642 filt->range = true;
1643 }
1644
1645 fstr += strspn(fstr, " ");
1646
1647 if (*fstr == '@') {
1648 fstr += 1;
1649 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1650 if (err)
1651 goto out_err;
1652 }
1653
1654 fstr += strspn(fstr, " ,");
1655
1656 *filter_inp += fstr - filt->str;
1657
1658 return 0;
1659
1660 out_err:
1661 addr_filter__free_str(filt);
1662
1663 return err;
1664 }
1665
1666 int addr_filters__parse_bare_filter(struct addr_filters *filts,
1667 const char *filter)
1668 {
1669 struct addr_filter *filt;
1670 const char *fstr = filter;
1671 int err;
1672
1673 while (*fstr) {
1674 filt = addr_filter__new();
1675 err = parse_one_filter(filt, &fstr);
1676 if (err) {
1677 addr_filter__free(filt);
1678 addr_filters__exit(filts);
1679 return err;
1680 }
1681 addr_filters__add(filts, filt);
1682 }
1683
1684 return 0;
1685 }
1686
1687 struct sym_args {
1688 const char *name;
1689 u64 start;
1690 u64 size;
1691 int idx;
1692 int cnt;
1693 bool started;
1694 bool global;
1695 bool selected;
1696 bool duplicate;
1697 bool near;
1698 };
1699
1700 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
1701 {
1702 /* A function with the same name, and global or the n'th found or any */
1703 return kallsyms__is_function(type) &&
1704 !strcmp(name, args->name) &&
1705 ((args->global && isupper(type)) ||
1706 (args->selected && ++(args->cnt) == args->idx) ||
1707 (!args->global && !args->selected));
1708 }
1709
1710 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1711 {
1712 struct sym_args *args = arg;
1713
1714 if (args->started) {
1715 if (!args->size)
1716 args->size = start - args->start;
1717 if (args->selected) {
1718 if (args->size)
1719 return 1;
1720 } else if (kern_sym_match(args, name, type)) {
1721 args->duplicate = true;
1722 return 1;
1723 }
1724 } else if (kern_sym_match(args, name, type)) {
1725 args->started = true;
1726 args->start = start;
1727 }
1728
1729 return 0;
1730 }
1731
1732 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
1733 {
1734 struct sym_args *args = arg;
1735
1736 if (kern_sym_match(args, name, type)) {
1737 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1738 ++args->cnt, start, type, name);
1739 args->near = true;
1740 } else if (args->near) {
1741 args->near = false;
1742 pr_err("\t\twhich is near\t\t%s\n", name);
1743 }
1744
1745 return 0;
1746 }
1747
1748 static int sym_not_found_error(const char *sym_name, int idx)
1749 {
1750 if (idx > 0) {
1751 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
1752 idx, sym_name);
1753 } else if (!idx) {
1754 pr_err("Global symbol '%s' not found.\n", sym_name);
1755 } else {
1756 pr_err("Symbol '%s' not found.\n", sym_name);
1757 }
1758 pr_err("Note that symbols must be functions.\n");
1759
1760 return -EINVAL;
1761 }
1762
1763 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
1764 {
1765 struct sym_args args = {
1766 .name = sym_name,
1767 .idx = idx,
1768 .global = !idx,
1769 .selected = idx > 0,
1770 };
1771 int err;
1772
1773 *start = 0;
1774 *size = 0;
1775
1776 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
1777 if (err < 0) {
1778 pr_err("Failed to parse /proc/kallsyms\n");
1779 return err;
1780 }
1781
1782 if (args.duplicate) {
1783 pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
1784 args.cnt = 0;
1785 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
1786 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1787 sym_name);
1788 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1789 return -EINVAL;
1790 }
1791
1792 if (!args.started) {
1793 pr_err("Kernel symbol lookup: ");
1794 return sym_not_found_error(sym_name, idx);
1795 }
1796
1797 *start = args.start;
1798 *size = args.size;
1799
1800 return 0;
1801 }
1802
1803 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
1804 char type, u64 start)
1805 {
1806 struct sym_args *args = arg;
1807
1808 if (!kallsyms__is_function(type))
1809 return 0;
1810
1811 if (!args->started) {
1812 args->started = true;
1813 args->start = start;
1814 }
1815 /* Don't know exactly where the kernel ends, so we add a page */
1816 args->size = round_up(start, page_size) + page_size - args->start;
1817
1818 return 0;
1819 }
1820
1821 static int addr_filter__entire_kernel(struct addr_filter *filt)
1822 {
1823 struct sym_args args = { .started = false };
1824 int err;
1825
1826 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
1827 if (err < 0 || !args.started) {
1828 pr_err("Failed to parse /proc/kallsyms\n");
1829 return err;
1830 }
1831
1832 filt->addr = args.start;
1833 filt->size = args.size;
1834
1835 return 0;
1836 }
1837
1838 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
1839 {
1840 if (start + size >= filt->addr)
1841 return 0;
1842
1843 if (filt->sym_from) {
1844 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
1845 filt->sym_to, start, filt->sym_from, filt->addr);
1846 } else {
1847 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
1848 filt->sym_to, start, filt->addr);
1849 }
1850
1851 return -EINVAL;
1852 }
1853
1854 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
1855 {
1856 bool no_size = false;
1857 u64 start, size;
1858 int err;
1859
1860 if (symbol_conf.kptr_restrict) {
1861 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
1862 return -EINVAL;
1863 }
1864
1865 if (filt->sym_from && !strcmp(filt->sym_from, "*"))
1866 return addr_filter__entire_kernel(filt);
1867
1868 if (filt->sym_from) {
1869 err = find_kern_sym(filt->sym_from, &start, &size,
1870 filt->sym_from_idx);
1871 if (err)
1872 return err;
1873 filt->addr = start;
1874 if (filt->range && !filt->size && !filt->sym_to) {
1875 filt->size = size;
1876 no_size = !size;
1877 }
1878 }
1879
1880 if (filt->sym_to) {
1881 err = find_kern_sym(filt->sym_to, &start, &size,
1882 filt->sym_to_idx);
1883 if (err)
1884 return err;
1885
1886 err = check_end_after_start(filt, start, size);
1887 if (err)
1888 return err;
1889 filt->size = start + size - filt->addr;
1890 no_size = !size;
1891 }
1892
1893 /* The very last symbol in kallsyms does not imply a particular size */
1894 if (no_size) {
1895 pr_err("Cannot determine size of symbol '%s'\n",
1896 filt->sym_to ? filt->sym_to : filt->sym_from);
1897 return -EINVAL;
1898 }
1899
1900 return 0;
1901 }
1902
1903 static struct dso *load_dso(const char *name)
1904 {
1905 struct map *map;
1906 struct dso *dso;
1907
1908 map = dso__new_map(name);
1909 if (!map)
1910 return NULL;
1911
1912 if (map__load(map) < 0)
1913 pr_err("File '%s' not found or has no symbols.\n", name);
1914
1915 dso = dso__get(map->dso);
1916
1917 map__put(map);
1918
1919 return dso;
1920 }
1921
1922 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
1923 int idx)
1924 {
1925 /* Same name, and global or the n'th found or any */
1926 return !arch__compare_symbol_names(name, sym->name) &&
1927 ((!idx && sym->binding == STB_GLOBAL) ||
1928 (idx > 0 && ++*cnt == idx) ||
1929 idx < 0);
1930 }
1931
1932 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
1933 {
1934 struct symbol *sym;
1935 bool near = false;
1936 int cnt = 0;
1937
1938 pr_err("Multiple symbols with name '%s'\n", sym_name);
1939
1940 sym = dso__first_symbol(dso);
1941 while (sym) {
1942 if (dso_sym_match(sym, sym_name, &cnt, -1)) {
1943 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
1944 ++cnt, sym->start,
1945 sym->binding == STB_GLOBAL ? 'g' :
1946 sym->binding == STB_LOCAL ? 'l' : 'w',
1947 sym->name);
1948 near = true;
1949 } else if (near) {
1950 near = false;
1951 pr_err("\t\twhich is near\t\t%s\n", sym->name);
1952 }
1953 sym = dso__next_symbol(sym);
1954 }
1955
1956 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
1957 sym_name);
1958 pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
1959 }
1960
1961 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
1962 u64 *size, int idx)
1963 {
1964 struct symbol *sym;
1965 int cnt = 0;
1966
1967 *start = 0;
1968 *size = 0;
1969
1970 sym = dso__first_symbol(dso);
1971 while (sym) {
1972 if (*start) {
1973 if (!*size)
1974 *size = sym->start - *start;
1975 if (idx > 0) {
1976 if (*size)
1977 return 1;
1978 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1979 print_duplicate_syms(dso, sym_name);
1980 return -EINVAL;
1981 }
1982 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
1983 *start = sym->start;
1984 *size = sym->end - sym->start;
1985 }
1986 sym = dso__next_symbol(sym);
1987 }
1988
1989 if (!*start)
1990 return sym_not_found_error(sym_name, idx);
1991
1992 return 0;
1993 }
1994
1995 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
1996 {
1997 if (dso__data_file_size(dso, NULL)) {
1998 pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
1999 filt->filename);
2000 return -EINVAL;
2001 }
2002
2003 filt->addr = 0;
2004 filt->size = dso->data.file_size;
2005
2006 return 0;
2007 }
2008
2009 static int addr_filter__resolve_syms(struct addr_filter *filt)
2010 {
2011 u64 start, size;
2012 struct dso *dso;
2013 int err = 0;
2014
2015 if (!filt->sym_from && !filt->sym_to)
2016 return 0;
2017
2018 if (!filt->filename)
2019 return addr_filter__resolve_kernel_syms(filt);
2020
2021 dso = load_dso(filt->filename);
2022 if (!dso) {
2023 pr_err("Failed to load symbols from: %s\n", filt->filename);
2024 return -EINVAL;
2025 }
2026
2027 if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2028 err = addr_filter__entire_dso(filt, dso);
2029 goto put_dso;
2030 }
2031
2032 if (filt->sym_from) {
2033 err = find_dso_sym(dso, filt->sym_from, &start, &size,
2034 filt->sym_from_idx);
2035 if (err)
2036 goto put_dso;
2037 filt->addr = start;
2038 if (filt->range && !filt->size && !filt->sym_to)
2039 filt->size = size;
2040 }
2041
2042 if (filt->sym_to) {
2043 err = find_dso_sym(dso, filt->sym_to, &start, &size,
2044 filt->sym_to_idx);
2045 if (err)
2046 goto put_dso;
2047
2048 err = check_end_after_start(filt, start, size);
2049 if (err)
2050 return err;
2051
2052 filt->size = start + size - filt->addr;
2053 }
2054
2055 put_dso:
2056 dso__put(dso);
2057
2058 return err;
2059 }
2060
2061 static char *addr_filter__to_str(struct addr_filter *filt)
2062 {
2063 char filename_buf[PATH_MAX];
2064 const char *at = "";
2065 const char *fn = "";
2066 char *filter;
2067 int err;
2068
2069 if (filt->filename) {
2070 at = "@";
2071 fn = realpath(filt->filename, filename_buf);
2072 if (!fn)
2073 return NULL;
2074 }
2075
2076 if (filt->range) {
2077 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2078 filt->action, filt->addr, filt->size, at, fn);
2079 } else {
2080 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2081 filt->action, filt->addr, at, fn);
2082 }
2083
2084 return err < 0 ? NULL : filter;
2085 }
2086
2087 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2088 int max_nr)
2089 {
2090 struct addr_filters filts;
2091 struct addr_filter *filt;
2092 int err;
2093
2094 addr_filters__init(&filts);
2095
2096 err = addr_filters__parse_bare_filter(&filts, filter);
2097 if (err)
2098 goto out_exit;
2099
2100 if (filts.cnt > max_nr) {
2101 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2102 filts.cnt, max_nr);
2103 err = -EINVAL;
2104 goto out_exit;
2105 }
2106
2107 list_for_each_entry(filt, &filts.head, list) {
2108 char *new_filter;
2109
2110 err = addr_filter__resolve_syms(filt);
2111 if (err)
2112 goto out_exit;
2113
2114 new_filter = addr_filter__to_str(filt);
2115 if (!new_filter) {
2116 err = -ENOMEM;
2117 goto out_exit;
2118 }
2119
2120 if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2121 err = -ENOMEM;
2122 goto out_exit;
2123 }
2124 }
2125
2126 out_exit:
2127 addr_filters__exit(&filts);
2128
2129 if (err) {
2130 pr_err("Failed to parse address filter: '%s'\n", filter);
2131 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2132 pr_err("Where multiple filters are separated by space or comma.\n");
2133 }
2134
2135 return err;
2136 }
2137
2138 static struct perf_pmu *perf_evsel__find_pmu(struct evsel *evsel)
2139 {
2140 struct perf_pmu *pmu = NULL;
2141
2142 while ((pmu = perf_pmu__scan(pmu)) != NULL) {
2143 if (pmu->type == evsel->core.attr.type)
2144 break;
2145 }
2146
2147 return pmu;
2148 }
2149
2150 static int perf_evsel__nr_addr_filter(struct evsel *evsel)
2151 {
2152 struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2153 int nr_addr_filters = 0;
2154
2155 if (!pmu)
2156 return 0;
2157
2158 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2159
2160 return nr_addr_filters;
2161 }
2162
2163 int auxtrace_parse_filters(struct evlist *evlist)
2164 {
2165 struct evsel *evsel;
2166 char *filter;
2167 int err, max_nr;
2168
2169 evlist__for_each_entry(evlist, evsel) {
2170 filter = evsel->filter;
2171 max_nr = perf_evsel__nr_addr_filter(evsel);
2172 if (!filter || !max_nr)
2173 continue;
2174 evsel->filter = NULL;
2175 err = parse_addr_filter(evsel, filter, max_nr);
2176 free(filter);
2177 if (err)
2178 return err;
2179 pr_debug("Address filter: %s\n", evsel->filter);
2180 }
2181
2182 return 0;
2183 }