]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - tools/perf/util/cs-etm.c
perf machine: Fill map_symbol->maps in append_inlines() to fix segfault
[mirror_ubuntu-jammy-kernel.git] / tools / perf / util / cs-etm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2015-2018 Linaro Limited.
4 *
5 * Author: Tor Jeremiassen <tor@ti.com>
6 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
7 */
8
9 #include <linux/bitops.h>
10 #include <linux/err.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include <opencsd/ocsd_if_types.h>
17 #include <stdlib.h>
18
19 #include "auxtrace.h"
20 #include "color.h"
21 #include "cs-etm.h"
22 #include "cs-etm-decoder/cs-etm-decoder.h"
23 #include "debug.h"
24 #include "dso.h"
25 #include "evlist.h"
26 #include "intlist.h"
27 #include "machine.h"
28 #include "map.h"
29 #include "perf.h"
30 #include "session.h"
31 #include "map_symbol.h"
32 #include "branch.h"
33 #include "symbol.h"
34 #include "tool.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include <tools/libc_compat.h>
38 #include "util/synthetic-events.h"
39
40 #define MAX_TIMESTAMP (~0ULL)
41
42 struct cs_etm_auxtrace {
43 struct auxtrace auxtrace;
44 struct auxtrace_queues queues;
45 struct auxtrace_heap heap;
46 struct itrace_synth_opts synth_opts;
47 struct perf_session *session;
48 struct machine *machine;
49 struct thread *unknown_thread;
50
51 u8 timeless_decoding;
52 u8 snapshot_mode;
53 u8 data_queued;
54 u8 sample_branches;
55 u8 sample_instructions;
56
57 int num_cpu;
58 u32 auxtrace_type;
59 u64 branches_sample_type;
60 u64 branches_id;
61 u64 instructions_sample_type;
62 u64 instructions_sample_period;
63 u64 instructions_id;
64 u64 **metadata;
65 u64 kernel_start;
66 unsigned int pmu_type;
67 };
68
69 struct cs_etm_traceid_queue {
70 u8 trace_chan_id;
71 pid_t pid, tid;
72 u64 period_instructions;
73 size_t last_branch_pos;
74 union perf_event *event_buf;
75 struct thread *thread;
76 struct branch_stack *last_branch;
77 struct branch_stack *last_branch_rb;
78 struct cs_etm_packet *prev_packet;
79 struct cs_etm_packet *packet;
80 struct cs_etm_packet_queue packet_queue;
81 };
82
83 struct cs_etm_queue {
84 struct cs_etm_auxtrace *etm;
85 struct cs_etm_decoder *decoder;
86 struct auxtrace_buffer *buffer;
87 unsigned int queue_nr;
88 u8 pending_timestamp;
89 u64 offset;
90 const unsigned char *buf;
91 size_t buf_len, buf_used;
92 /* Conversion between traceID and index in traceid_queues array */
93 struct intlist *traceid_queues_list;
94 struct cs_etm_traceid_queue **traceid_queues;
95 };
96
97 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm);
98 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm);
99 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
100 pid_t tid);
101 static int cs_etm__get_data_block(struct cs_etm_queue *etmq);
102 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq);
103
104 /* PTMs ETMIDR [11:8] set to b0011 */
105 #define ETMIDR_PTM_VERSION 0x00000300
106
107 /*
108 * A struct auxtrace_heap_item only has a queue_nr and a timestamp to
109 * work with. One option is to modify to auxtrace_heap_XYZ() API or simply
110 * encode the etm queue number as the upper 16 bit and the channel as
111 * the lower 16 bit.
112 */
113 #define TO_CS_QUEUE_NR(queue_nr, trace_chan_id) \
114 (queue_nr << 16 | trace_chan_id)
115 #define TO_QUEUE_NR(cs_queue_nr) (cs_queue_nr >> 16)
116 #define TO_TRACE_CHAN_ID(cs_queue_nr) (cs_queue_nr & 0x0000ffff)
117
118 static u32 cs_etm__get_v7_protocol_version(u32 etmidr)
119 {
120 etmidr &= ETMIDR_PTM_VERSION;
121
122 if (etmidr == ETMIDR_PTM_VERSION)
123 return CS_ETM_PROTO_PTM;
124
125 return CS_ETM_PROTO_ETMV3;
126 }
127
128 static int cs_etm__get_magic(u8 trace_chan_id, u64 *magic)
129 {
130 struct int_node *inode;
131 u64 *metadata;
132
133 inode = intlist__find(traceid_list, trace_chan_id);
134 if (!inode)
135 return -EINVAL;
136
137 metadata = inode->priv;
138 *magic = metadata[CS_ETM_MAGIC];
139 return 0;
140 }
141
142 int cs_etm__get_cpu(u8 trace_chan_id, int *cpu)
143 {
144 struct int_node *inode;
145 u64 *metadata;
146
147 inode = intlist__find(traceid_list, trace_chan_id);
148 if (!inode)
149 return -EINVAL;
150
151 metadata = inode->priv;
152 *cpu = (int)metadata[CS_ETM_CPU];
153 return 0;
154 }
155
156 void cs_etm__etmq_set_traceid_queue_timestamp(struct cs_etm_queue *etmq,
157 u8 trace_chan_id)
158 {
159 /*
160 * Wnen a timestamp packet is encountered the backend code
161 * is stopped so that the front end has time to process packets
162 * that were accumulated in the traceID queue. Since there can
163 * be more than one channel per cs_etm_queue, we need to specify
164 * what traceID queue needs servicing.
165 */
166 etmq->pending_timestamp = trace_chan_id;
167 }
168
169 static u64 cs_etm__etmq_get_timestamp(struct cs_etm_queue *etmq,
170 u8 *trace_chan_id)
171 {
172 struct cs_etm_packet_queue *packet_queue;
173
174 if (!etmq->pending_timestamp)
175 return 0;
176
177 if (trace_chan_id)
178 *trace_chan_id = etmq->pending_timestamp;
179
180 packet_queue = cs_etm__etmq_get_packet_queue(etmq,
181 etmq->pending_timestamp);
182 if (!packet_queue)
183 return 0;
184
185 /* Acknowledge pending status */
186 etmq->pending_timestamp = 0;
187
188 /* See function cs_etm_decoder__do_{hard|soft}_timestamp() */
189 return packet_queue->timestamp;
190 }
191
192 static void cs_etm__clear_packet_queue(struct cs_etm_packet_queue *queue)
193 {
194 int i;
195
196 queue->head = 0;
197 queue->tail = 0;
198 queue->packet_count = 0;
199 for (i = 0; i < CS_ETM_PACKET_MAX_BUFFER; i++) {
200 queue->packet_buffer[i].isa = CS_ETM_ISA_UNKNOWN;
201 queue->packet_buffer[i].start_addr = CS_ETM_INVAL_ADDR;
202 queue->packet_buffer[i].end_addr = CS_ETM_INVAL_ADDR;
203 queue->packet_buffer[i].instr_count = 0;
204 queue->packet_buffer[i].last_instr_taken_branch = false;
205 queue->packet_buffer[i].last_instr_size = 0;
206 queue->packet_buffer[i].last_instr_type = 0;
207 queue->packet_buffer[i].last_instr_subtype = 0;
208 queue->packet_buffer[i].last_instr_cond = 0;
209 queue->packet_buffer[i].flags = 0;
210 queue->packet_buffer[i].exception_number = UINT32_MAX;
211 queue->packet_buffer[i].trace_chan_id = UINT8_MAX;
212 queue->packet_buffer[i].cpu = INT_MIN;
213 }
214 }
215
216 static void cs_etm__clear_all_packet_queues(struct cs_etm_queue *etmq)
217 {
218 int idx;
219 struct int_node *inode;
220 struct cs_etm_traceid_queue *tidq;
221 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
222
223 intlist__for_each_entry(inode, traceid_queues_list) {
224 idx = (int)(intptr_t)inode->priv;
225 tidq = etmq->traceid_queues[idx];
226 cs_etm__clear_packet_queue(&tidq->packet_queue);
227 }
228 }
229
230 static int cs_etm__init_traceid_queue(struct cs_etm_queue *etmq,
231 struct cs_etm_traceid_queue *tidq,
232 u8 trace_chan_id)
233 {
234 int rc = -ENOMEM;
235 struct auxtrace_queue *queue;
236 struct cs_etm_auxtrace *etm = etmq->etm;
237
238 cs_etm__clear_packet_queue(&tidq->packet_queue);
239
240 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
241 tidq->tid = queue->tid;
242 tidq->pid = -1;
243 tidq->trace_chan_id = trace_chan_id;
244
245 tidq->packet = zalloc(sizeof(struct cs_etm_packet));
246 if (!tidq->packet)
247 goto out;
248
249 tidq->prev_packet = zalloc(sizeof(struct cs_etm_packet));
250 if (!tidq->prev_packet)
251 goto out_free;
252
253 if (etm->synth_opts.last_branch) {
254 size_t sz = sizeof(struct branch_stack);
255
256 sz += etm->synth_opts.last_branch_sz *
257 sizeof(struct branch_entry);
258 tidq->last_branch = zalloc(sz);
259 if (!tidq->last_branch)
260 goto out_free;
261 tidq->last_branch_rb = zalloc(sz);
262 if (!tidq->last_branch_rb)
263 goto out_free;
264 }
265
266 tidq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
267 if (!tidq->event_buf)
268 goto out_free;
269
270 return 0;
271
272 out_free:
273 zfree(&tidq->last_branch_rb);
274 zfree(&tidq->last_branch);
275 zfree(&tidq->prev_packet);
276 zfree(&tidq->packet);
277 out:
278 return rc;
279 }
280
281 static struct cs_etm_traceid_queue
282 *cs_etm__etmq_get_traceid_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
283 {
284 int idx;
285 struct int_node *inode;
286 struct intlist *traceid_queues_list;
287 struct cs_etm_traceid_queue *tidq, **traceid_queues;
288 struct cs_etm_auxtrace *etm = etmq->etm;
289
290 if (etm->timeless_decoding)
291 trace_chan_id = CS_ETM_PER_THREAD_TRACEID;
292
293 traceid_queues_list = etmq->traceid_queues_list;
294
295 /*
296 * Check if the traceid_queue exist for this traceID by looking
297 * in the queue list.
298 */
299 inode = intlist__find(traceid_queues_list, trace_chan_id);
300 if (inode) {
301 idx = (int)(intptr_t)inode->priv;
302 return etmq->traceid_queues[idx];
303 }
304
305 /* We couldn't find a traceid_queue for this traceID, allocate one */
306 tidq = malloc(sizeof(*tidq));
307 if (!tidq)
308 return NULL;
309
310 memset(tidq, 0, sizeof(*tidq));
311
312 /* Get a valid index for the new traceid_queue */
313 idx = intlist__nr_entries(traceid_queues_list);
314 /* Memory for the inode is free'ed in cs_etm_free_traceid_queues () */
315 inode = intlist__findnew(traceid_queues_list, trace_chan_id);
316 if (!inode)
317 goto out_free;
318
319 /* Associate this traceID with this index */
320 inode->priv = (void *)(intptr_t)idx;
321
322 if (cs_etm__init_traceid_queue(etmq, tidq, trace_chan_id))
323 goto out_free;
324
325 /* Grow the traceid_queues array by one unit */
326 traceid_queues = etmq->traceid_queues;
327 traceid_queues = reallocarray(traceid_queues,
328 idx + 1,
329 sizeof(*traceid_queues));
330
331 /*
332 * On failure reallocarray() returns NULL and the original block of
333 * memory is left untouched.
334 */
335 if (!traceid_queues)
336 goto out_free;
337
338 traceid_queues[idx] = tidq;
339 etmq->traceid_queues = traceid_queues;
340
341 return etmq->traceid_queues[idx];
342
343 out_free:
344 /*
345 * Function intlist__remove() removes the inode from the list
346 * and delete the memory associated to it.
347 */
348 intlist__remove(traceid_queues_list, inode);
349 free(tidq);
350
351 return NULL;
352 }
353
354 struct cs_etm_packet_queue
355 *cs_etm__etmq_get_packet_queue(struct cs_etm_queue *etmq, u8 trace_chan_id)
356 {
357 struct cs_etm_traceid_queue *tidq;
358
359 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
360 if (tidq)
361 return &tidq->packet_queue;
362
363 return NULL;
364 }
365
366 static void cs_etm__packet_dump(const char *pkt_string)
367 {
368 const char *color = PERF_COLOR_BLUE;
369 int len = strlen(pkt_string);
370
371 if (len && (pkt_string[len-1] == '\n'))
372 color_fprintf(stdout, color, " %s", pkt_string);
373 else
374 color_fprintf(stdout, color, " %s\n", pkt_string);
375
376 fflush(stdout);
377 }
378
379 static void cs_etm__set_trace_param_etmv3(struct cs_etm_trace_params *t_params,
380 struct cs_etm_auxtrace *etm, int idx,
381 u32 etmidr)
382 {
383 u64 **metadata = etm->metadata;
384
385 t_params[idx].protocol = cs_etm__get_v7_protocol_version(etmidr);
386 t_params[idx].etmv3.reg_ctrl = metadata[idx][CS_ETM_ETMCR];
387 t_params[idx].etmv3.reg_trc_id = metadata[idx][CS_ETM_ETMTRACEIDR];
388 }
389
390 static void cs_etm__set_trace_param_etmv4(struct cs_etm_trace_params *t_params,
391 struct cs_etm_auxtrace *etm, int idx)
392 {
393 u64 **metadata = etm->metadata;
394
395 t_params[idx].protocol = CS_ETM_PROTO_ETMV4i;
396 t_params[idx].etmv4.reg_idr0 = metadata[idx][CS_ETMV4_TRCIDR0];
397 t_params[idx].etmv4.reg_idr1 = metadata[idx][CS_ETMV4_TRCIDR1];
398 t_params[idx].etmv4.reg_idr2 = metadata[idx][CS_ETMV4_TRCIDR2];
399 t_params[idx].etmv4.reg_idr8 = metadata[idx][CS_ETMV4_TRCIDR8];
400 t_params[idx].etmv4.reg_configr = metadata[idx][CS_ETMV4_TRCCONFIGR];
401 t_params[idx].etmv4.reg_traceidr = metadata[idx][CS_ETMV4_TRCTRACEIDR];
402 }
403
404 static int cs_etm__init_trace_params(struct cs_etm_trace_params *t_params,
405 struct cs_etm_auxtrace *etm)
406 {
407 int i;
408 u32 etmidr;
409 u64 architecture;
410
411 for (i = 0; i < etm->num_cpu; i++) {
412 architecture = etm->metadata[i][CS_ETM_MAGIC];
413
414 switch (architecture) {
415 case __perf_cs_etmv3_magic:
416 etmidr = etm->metadata[i][CS_ETM_ETMIDR];
417 cs_etm__set_trace_param_etmv3(t_params, etm, i, etmidr);
418 break;
419 case __perf_cs_etmv4_magic:
420 cs_etm__set_trace_param_etmv4(t_params, etm, i);
421 break;
422 default:
423 return -EINVAL;
424 }
425 }
426
427 return 0;
428 }
429
430 static int cs_etm__init_decoder_params(struct cs_etm_decoder_params *d_params,
431 struct cs_etm_queue *etmq,
432 enum cs_etm_decoder_operation mode)
433 {
434 int ret = -EINVAL;
435
436 if (!(mode < CS_ETM_OPERATION_MAX))
437 goto out;
438
439 d_params->packet_printer = cs_etm__packet_dump;
440 d_params->operation = mode;
441 d_params->data = etmq;
442 d_params->formatted = true;
443 d_params->fsyncs = false;
444 d_params->hsyncs = false;
445 d_params->frame_aligned = true;
446
447 ret = 0;
448 out:
449 return ret;
450 }
451
452 static void cs_etm__dump_event(struct cs_etm_auxtrace *etm,
453 struct auxtrace_buffer *buffer)
454 {
455 int ret;
456 const char *color = PERF_COLOR_BLUE;
457 struct cs_etm_decoder_params d_params;
458 struct cs_etm_trace_params *t_params;
459 struct cs_etm_decoder *decoder;
460 size_t buffer_used = 0;
461
462 fprintf(stdout, "\n");
463 color_fprintf(stdout, color,
464 ". ... CoreSight ETM Trace data: size %zu bytes\n",
465 buffer->size);
466
467 /* Use metadata to fill in trace parameters for trace decoder */
468 t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
469
470 if (!t_params)
471 return;
472
473 if (cs_etm__init_trace_params(t_params, etm))
474 goto out_free;
475
476 /* Set decoder parameters to simply print the trace packets */
477 if (cs_etm__init_decoder_params(&d_params, NULL,
478 CS_ETM_OPERATION_PRINT))
479 goto out_free;
480
481 decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
482
483 if (!decoder)
484 goto out_free;
485 do {
486 size_t consumed;
487
488 ret = cs_etm_decoder__process_data_block(
489 decoder, buffer->offset,
490 &((u8 *)buffer->data)[buffer_used],
491 buffer->size - buffer_used, &consumed);
492 if (ret)
493 break;
494
495 buffer_used += consumed;
496 } while (buffer_used < buffer->size);
497
498 cs_etm_decoder__free(decoder);
499
500 out_free:
501 zfree(&t_params);
502 }
503
504 static int cs_etm__flush_events(struct perf_session *session,
505 struct perf_tool *tool)
506 {
507 int ret;
508 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
509 struct cs_etm_auxtrace,
510 auxtrace);
511 if (dump_trace)
512 return 0;
513
514 if (!tool->ordered_events)
515 return -EINVAL;
516
517 ret = cs_etm__update_queues(etm);
518
519 if (ret < 0)
520 return ret;
521
522 if (etm->timeless_decoding)
523 return cs_etm__process_timeless_queues(etm, -1);
524
525 return cs_etm__process_queues(etm);
526 }
527
528 static void cs_etm__free_traceid_queues(struct cs_etm_queue *etmq)
529 {
530 int idx;
531 uintptr_t priv;
532 struct int_node *inode, *tmp;
533 struct cs_etm_traceid_queue *tidq;
534 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
535
536 intlist__for_each_entry_safe(inode, tmp, traceid_queues_list) {
537 priv = (uintptr_t)inode->priv;
538 idx = priv;
539
540 /* Free this traceid_queue from the array */
541 tidq = etmq->traceid_queues[idx];
542 thread__zput(tidq->thread);
543 zfree(&tidq->event_buf);
544 zfree(&tidq->last_branch);
545 zfree(&tidq->last_branch_rb);
546 zfree(&tidq->prev_packet);
547 zfree(&tidq->packet);
548 zfree(&tidq);
549
550 /*
551 * Function intlist__remove() removes the inode from the list
552 * and delete the memory associated to it.
553 */
554 intlist__remove(traceid_queues_list, inode);
555 }
556
557 /* Then the RB tree itself */
558 intlist__delete(traceid_queues_list);
559 etmq->traceid_queues_list = NULL;
560
561 /* finally free the traceid_queues array */
562 zfree(&etmq->traceid_queues);
563 }
564
565 static void cs_etm__free_queue(void *priv)
566 {
567 struct cs_etm_queue *etmq = priv;
568
569 if (!etmq)
570 return;
571
572 cs_etm_decoder__free(etmq->decoder);
573 cs_etm__free_traceid_queues(etmq);
574 free(etmq);
575 }
576
577 static void cs_etm__free_events(struct perf_session *session)
578 {
579 unsigned int i;
580 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
581 struct cs_etm_auxtrace,
582 auxtrace);
583 struct auxtrace_queues *queues = &aux->queues;
584
585 for (i = 0; i < queues->nr_queues; i++) {
586 cs_etm__free_queue(queues->queue_array[i].priv);
587 queues->queue_array[i].priv = NULL;
588 }
589
590 auxtrace_queues__free(queues);
591 }
592
593 static void cs_etm__free(struct perf_session *session)
594 {
595 int i;
596 struct int_node *inode, *tmp;
597 struct cs_etm_auxtrace *aux = container_of(session->auxtrace,
598 struct cs_etm_auxtrace,
599 auxtrace);
600 cs_etm__free_events(session);
601 session->auxtrace = NULL;
602
603 /* First remove all traceID/metadata nodes for the RB tree */
604 intlist__for_each_entry_safe(inode, tmp, traceid_list)
605 intlist__remove(traceid_list, inode);
606 /* Then the RB tree itself */
607 intlist__delete(traceid_list);
608
609 for (i = 0; i < aux->num_cpu; i++)
610 zfree(&aux->metadata[i]);
611
612 thread__zput(aux->unknown_thread);
613 zfree(&aux->metadata);
614 zfree(&aux);
615 }
616
617 static u8 cs_etm__cpu_mode(struct cs_etm_queue *etmq, u64 address)
618 {
619 struct machine *machine;
620
621 machine = etmq->etm->machine;
622
623 if (address >= etmq->etm->kernel_start) {
624 if (machine__is_host(machine))
625 return PERF_RECORD_MISC_KERNEL;
626 else
627 return PERF_RECORD_MISC_GUEST_KERNEL;
628 } else {
629 if (machine__is_host(machine))
630 return PERF_RECORD_MISC_USER;
631 else if (perf_guest)
632 return PERF_RECORD_MISC_GUEST_USER;
633 else
634 return PERF_RECORD_MISC_HYPERVISOR;
635 }
636 }
637
638 static u32 cs_etm__mem_access(struct cs_etm_queue *etmq, u8 trace_chan_id,
639 u64 address, size_t size, u8 *buffer)
640 {
641 u8 cpumode;
642 u64 offset;
643 int len;
644 struct thread *thread;
645 struct machine *machine;
646 struct addr_location al;
647 struct cs_etm_traceid_queue *tidq;
648
649 if (!etmq)
650 return 0;
651
652 machine = etmq->etm->machine;
653 cpumode = cs_etm__cpu_mode(etmq, address);
654 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
655 if (!tidq)
656 return 0;
657
658 thread = tidq->thread;
659 if (!thread) {
660 if (cpumode != PERF_RECORD_MISC_KERNEL)
661 return 0;
662 thread = etmq->etm->unknown_thread;
663 }
664
665 if (!thread__find_map(thread, cpumode, address, &al) || !al.map->dso)
666 return 0;
667
668 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
669 dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE))
670 return 0;
671
672 offset = al.map->map_ip(al.map, address);
673
674 map__load(al.map);
675
676 len = dso__data_read_offset(al.map->dso, machine, offset, buffer, size);
677
678 if (len <= 0)
679 return 0;
680
681 return len;
682 }
683
684 static struct cs_etm_queue *cs_etm__alloc_queue(struct cs_etm_auxtrace *etm)
685 {
686 struct cs_etm_decoder_params d_params;
687 struct cs_etm_trace_params *t_params = NULL;
688 struct cs_etm_queue *etmq;
689
690 etmq = zalloc(sizeof(*etmq));
691 if (!etmq)
692 return NULL;
693
694 etmq->traceid_queues_list = intlist__new(NULL);
695 if (!etmq->traceid_queues_list)
696 goto out_free;
697
698 /* Use metadata to fill in trace parameters for trace decoder */
699 t_params = zalloc(sizeof(*t_params) * etm->num_cpu);
700
701 if (!t_params)
702 goto out_free;
703
704 if (cs_etm__init_trace_params(t_params, etm))
705 goto out_free;
706
707 /* Set decoder parameters to decode trace packets */
708 if (cs_etm__init_decoder_params(&d_params, etmq,
709 CS_ETM_OPERATION_DECODE))
710 goto out_free;
711
712 etmq->decoder = cs_etm_decoder__new(etm->num_cpu, &d_params, t_params);
713
714 if (!etmq->decoder)
715 goto out_free;
716
717 /*
718 * Register a function to handle all memory accesses required by
719 * the trace decoder library.
720 */
721 if (cs_etm_decoder__add_mem_access_cb(etmq->decoder,
722 0x0L, ((u64) -1L),
723 cs_etm__mem_access))
724 goto out_free_decoder;
725
726 zfree(&t_params);
727 return etmq;
728
729 out_free_decoder:
730 cs_etm_decoder__free(etmq->decoder);
731 out_free:
732 intlist__delete(etmq->traceid_queues_list);
733 free(etmq);
734
735 return NULL;
736 }
737
738 static int cs_etm__setup_queue(struct cs_etm_auxtrace *etm,
739 struct auxtrace_queue *queue,
740 unsigned int queue_nr)
741 {
742 int ret = 0;
743 unsigned int cs_queue_nr;
744 u8 trace_chan_id;
745 u64 timestamp;
746 struct cs_etm_queue *etmq = queue->priv;
747
748 if (list_empty(&queue->head) || etmq)
749 goto out;
750
751 etmq = cs_etm__alloc_queue(etm);
752
753 if (!etmq) {
754 ret = -ENOMEM;
755 goto out;
756 }
757
758 queue->priv = etmq;
759 etmq->etm = etm;
760 etmq->queue_nr = queue_nr;
761 etmq->offset = 0;
762
763 if (etm->timeless_decoding)
764 goto out;
765
766 /*
767 * We are under a CPU-wide trace scenario. As such we need to know
768 * when the code that generated the traces started to execute so that
769 * it can be correlated with execution on other CPUs. So we get a
770 * handle on the beginning of traces and decode until we find a
771 * timestamp. The timestamp is then added to the auxtrace min heap
772 * in order to know what nibble (of all the etmqs) to decode first.
773 */
774 while (1) {
775 /*
776 * Fetch an aux_buffer from this etmq. Bail if no more
777 * blocks or an error has been encountered.
778 */
779 ret = cs_etm__get_data_block(etmq);
780 if (ret <= 0)
781 goto out;
782
783 /*
784 * Run decoder on the trace block. The decoder will stop when
785 * encountering a timestamp, a full packet queue or the end of
786 * trace for that block.
787 */
788 ret = cs_etm__decode_data_block(etmq);
789 if (ret)
790 goto out;
791
792 /*
793 * Function cs_etm_decoder__do_{hard|soft}_timestamp() does all
794 * the timestamp calculation for us.
795 */
796 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
797
798 /* We found a timestamp, no need to continue. */
799 if (timestamp)
800 break;
801
802 /*
803 * We didn't find a timestamp so empty all the traceid packet
804 * queues before looking for another timestamp packet, either
805 * in the current data block or a new one. Packets that were
806 * just decoded are useless since no timestamp has been
807 * associated with them. As such simply discard them.
808 */
809 cs_etm__clear_all_packet_queues(etmq);
810 }
811
812 /*
813 * We have a timestamp. Add it to the min heap to reflect when
814 * instructions conveyed by the range packets of this traceID queue
815 * started to execute. Once the same has been done for all the traceID
816 * queues of each etmq, redenring and decoding can start in
817 * chronological order.
818 *
819 * Note that packets decoded above are still in the traceID's packet
820 * queue and will be processed in cs_etm__process_queues().
821 */
822 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
823 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
824 out:
825 return ret;
826 }
827
828 static int cs_etm__setup_queues(struct cs_etm_auxtrace *etm)
829 {
830 unsigned int i;
831 int ret;
832
833 if (!etm->kernel_start)
834 etm->kernel_start = machine__kernel_start(etm->machine);
835
836 for (i = 0; i < etm->queues.nr_queues; i++) {
837 ret = cs_etm__setup_queue(etm, &etm->queues.queue_array[i], i);
838 if (ret)
839 return ret;
840 }
841
842 return 0;
843 }
844
845 static int cs_etm__update_queues(struct cs_etm_auxtrace *etm)
846 {
847 if (etm->queues.new_data) {
848 etm->queues.new_data = false;
849 return cs_etm__setup_queues(etm);
850 }
851
852 return 0;
853 }
854
855 static inline
856 void cs_etm__copy_last_branch_rb(struct cs_etm_queue *etmq,
857 struct cs_etm_traceid_queue *tidq)
858 {
859 struct branch_stack *bs_src = tidq->last_branch_rb;
860 struct branch_stack *bs_dst = tidq->last_branch;
861 size_t nr = 0;
862
863 /*
864 * Set the number of records before early exit: ->nr is used to
865 * determine how many branches to copy from ->entries.
866 */
867 bs_dst->nr = bs_src->nr;
868
869 /*
870 * Early exit when there is nothing to copy.
871 */
872 if (!bs_src->nr)
873 return;
874
875 /*
876 * As bs_src->entries is a circular buffer, we need to copy from it in
877 * two steps. First, copy the branches from the most recently inserted
878 * branch ->last_branch_pos until the end of bs_src->entries buffer.
879 */
880 nr = etmq->etm->synth_opts.last_branch_sz - tidq->last_branch_pos;
881 memcpy(&bs_dst->entries[0],
882 &bs_src->entries[tidq->last_branch_pos],
883 sizeof(struct branch_entry) * nr);
884
885 /*
886 * If we wrapped around at least once, the branches from the beginning
887 * of the bs_src->entries buffer and until the ->last_branch_pos element
888 * are older valid branches: copy them over. The total number of
889 * branches copied over will be equal to the number of branches asked by
890 * the user in last_branch_sz.
891 */
892 if (bs_src->nr >= etmq->etm->synth_opts.last_branch_sz) {
893 memcpy(&bs_dst->entries[nr],
894 &bs_src->entries[0],
895 sizeof(struct branch_entry) * tidq->last_branch_pos);
896 }
897 }
898
899 static inline
900 void cs_etm__reset_last_branch_rb(struct cs_etm_traceid_queue *tidq)
901 {
902 tidq->last_branch_pos = 0;
903 tidq->last_branch_rb->nr = 0;
904 }
905
906 static inline int cs_etm__t32_instr_size(struct cs_etm_queue *etmq,
907 u8 trace_chan_id, u64 addr)
908 {
909 u8 instrBytes[2];
910
911 cs_etm__mem_access(etmq, trace_chan_id, addr,
912 ARRAY_SIZE(instrBytes), instrBytes);
913 /*
914 * T32 instruction size is indicated by bits[15:11] of the first
915 * 16-bit word of the instruction: 0b11101, 0b11110 and 0b11111
916 * denote a 32-bit instruction.
917 */
918 return ((instrBytes[1] & 0xF8) >= 0xE8) ? 4 : 2;
919 }
920
921 static inline u64 cs_etm__first_executed_instr(struct cs_etm_packet *packet)
922 {
923 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
924 if (packet->sample_type == CS_ETM_DISCONTINUITY)
925 return 0;
926
927 return packet->start_addr;
928 }
929
930 static inline
931 u64 cs_etm__last_executed_instr(const struct cs_etm_packet *packet)
932 {
933 /* Returns 0 for the CS_ETM_DISCONTINUITY packet */
934 if (packet->sample_type == CS_ETM_DISCONTINUITY)
935 return 0;
936
937 return packet->end_addr - packet->last_instr_size;
938 }
939
940 static inline u64 cs_etm__instr_addr(struct cs_etm_queue *etmq,
941 u64 trace_chan_id,
942 const struct cs_etm_packet *packet,
943 u64 offset)
944 {
945 if (packet->isa == CS_ETM_ISA_T32) {
946 u64 addr = packet->start_addr;
947
948 while (offset > 0) {
949 addr += cs_etm__t32_instr_size(etmq,
950 trace_chan_id, addr);
951 offset--;
952 }
953 return addr;
954 }
955
956 /* Assume a 4 byte instruction size (A32/A64) */
957 return packet->start_addr + offset * 4;
958 }
959
960 static void cs_etm__update_last_branch_rb(struct cs_etm_queue *etmq,
961 struct cs_etm_traceid_queue *tidq)
962 {
963 struct branch_stack *bs = tidq->last_branch_rb;
964 struct branch_entry *be;
965
966 /*
967 * The branches are recorded in a circular buffer in reverse
968 * chronological order: we start recording from the last element of the
969 * buffer down. After writing the first element of the stack, move the
970 * insert position back to the end of the buffer.
971 */
972 if (!tidq->last_branch_pos)
973 tidq->last_branch_pos = etmq->etm->synth_opts.last_branch_sz;
974
975 tidq->last_branch_pos -= 1;
976
977 be = &bs->entries[tidq->last_branch_pos];
978 be->from = cs_etm__last_executed_instr(tidq->prev_packet);
979 be->to = cs_etm__first_executed_instr(tidq->packet);
980 /* No support for mispredict */
981 be->flags.mispred = 0;
982 be->flags.predicted = 1;
983
984 /*
985 * Increment bs->nr until reaching the number of last branches asked by
986 * the user on the command line.
987 */
988 if (bs->nr < etmq->etm->synth_opts.last_branch_sz)
989 bs->nr += 1;
990 }
991
992 static int cs_etm__inject_event(union perf_event *event,
993 struct perf_sample *sample, u64 type)
994 {
995 event->header.size = perf_event__sample_event_size(sample, type, 0);
996 return perf_event__synthesize_sample(event, type, 0, sample);
997 }
998
999
1000 static int
1001 cs_etm__get_trace(struct cs_etm_queue *etmq)
1002 {
1003 struct auxtrace_buffer *aux_buffer = etmq->buffer;
1004 struct auxtrace_buffer *old_buffer = aux_buffer;
1005 struct auxtrace_queue *queue;
1006
1007 queue = &etmq->etm->queues.queue_array[etmq->queue_nr];
1008
1009 aux_buffer = auxtrace_buffer__next(queue, aux_buffer);
1010
1011 /* If no more data, drop the previous auxtrace_buffer and return */
1012 if (!aux_buffer) {
1013 if (old_buffer)
1014 auxtrace_buffer__drop_data(old_buffer);
1015 etmq->buf_len = 0;
1016 return 0;
1017 }
1018
1019 etmq->buffer = aux_buffer;
1020
1021 /* If the aux_buffer doesn't have data associated, try to load it */
1022 if (!aux_buffer->data) {
1023 /* get the file desc associated with the perf data file */
1024 int fd = perf_data__fd(etmq->etm->session->data);
1025
1026 aux_buffer->data = auxtrace_buffer__get_data(aux_buffer, fd);
1027 if (!aux_buffer->data)
1028 return -ENOMEM;
1029 }
1030
1031 /* If valid, drop the previous buffer */
1032 if (old_buffer)
1033 auxtrace_buffer__drop_data(old_buffer);
1034
1035 etmq->buf_used = 0;
1036 etmq->buf_len = aux_buffer->size;
1037 etmq->buf = aux_buffer->data;
1038
1039 return etmq->buf_len;
1040 }
1041
1042 static void cs_etm__set_pid_tid_cpu(struct cs_etm_auxtrace *etm,
1043 struct cs_etm_traceid_queue *tidq)
1044 {
1045 if ((!tidq->thread) && (tidq->tid != -1))
1046 tidq->thread = machine__find_thread(etm->machine, -1,
1047 tidq->tid);
1048
1049 if (tidq->thread)
1050 tidq->pid = tidq->thread->pid_;
1051 }
1052
1053 int cs_etm__etmq_set_tid(struct cs_etm_queue *etmq,
1054 pid_t tid, u8 trace_chan_id)
1055 {
1056 int cpu, err = -EINVAL;
1057 struct cs_etm_auxtrace *etm = etmq->etm;
1058 struct cs_etm_traceid_queue *tidq;
1059
1060 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
1061 if (!tidq)
1062 return err;
1063
1064 if (cs_etm__get_cpu(trace_chan_id, &cpu) < 0)
1065 return err;
1066
1067 err = machine__set_current_tid(etm->machine, cpu, tid, tid);
1068 if (err)
1069 return err;
1070
1071 tidq->tid = tid;
1072 thread__zput(tidq->thread);
1073
1074 cs_etm__set_pid_tid_cpu(etm, tidq);
1075 return 0;
1076 }
1077
1078 bool cs_etm__etmq_is_timeless(struct cs_etm_queue *etmq)
1079 {
1080 return !!etmq->etm->timeless_decoding;
1081 }
1082
1083 static void cs_etm__copy_insn(struct cs_etm_queue *etmq,
1084 u64 trace_chan_id,
1085 const struct cs_etm_packet *packet,
1086 struct perf_sample *sample)
1087 {
1088 /*
1089 * It's pointless to read instructions for the CS_ETM_DISCONTINUITY
1090 * packet, so directly bail out with 'insn_len' = 0.
1091 */
1092 if (packet->sample_type == CS_ETM_DISCONTINUITY) {
1093 sample->insn_len = 0;
1094 return;
1095 }
1096
1097 /*
1098 * T32 instruction size might be 32-bit or 16-bit, decide by calling
1099 * cs_etm__t32_instr_size().
1100 */
1101 if (packet->isa == CS_ETM_ISA_T32)
1102 sample->insn_len = cs_etm__t32_instr_size(etmq, trace_chan_id,
1103 sample->ip);
1104 /* Otherwise, A64 and A32 instruction size are always 32-bit. */
1105 else
1106 sample->insn_len = 4;
1107
1108 cs_etm__mem_access(etmq, trace_chan_id, sample->ip,
1109 sample->insn_len, (void *)sample->insn);
1110 }
1111
1112 static int cs_etm__synth_instruction_sample(struct cs_etm_queue *etmq,
1113 struct cs_etm_traceid_queue *tidq,
1114 u64 addr, u64 period)
1115 {
1116 int ret = 0;
1117 struct cs_etm_auxtrace *etm = etmq->etm;
1118 union perf_event *event = tidq->event_buf;
1119 struct perf_sample sample = {.ip = 0,};
1120
1121 event->sample.header.type = PERF_RECORD_SAMPLE;
1122 event->sample.header.misc = cs_etm__cpu_mode(etmq, addr);
1123 event->sample.header.size = sizeof(struct perf_event_header);
1124
1125 sample.ip = addr;
1126 sample.pid = tidq->pid;
1127 sample.tid = tidq->tid;
1128 sample.id = etmq->etm->instructions_id;
1129 sample.stream_id = etmq->etm->instructions_id;
1130 sample.period = period;
1131 sample.cpu = tidq->packet->cpu;
1132 sample.flags = tidq->prev_packet->flags;
1133 sample.cpumode = event->sample.header.misc;
1134
1135 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->packet, &sample);
1136
1137 if (etm->synth_opts.last_branch) {
1138 cs_etm__copy_last_branch_rb(etmq, tidq);
1139 sample.branch_stack = tidq->last_branch;
1140 }
1141
1142 if (etm->synth_opts.inject) {
1143 ret = cs_etm__inject_event(event, &sample,
1144 etm->instructions_sample_type);
1145 if (ret)
1146 return ret;
1147 }
1148
1149 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1150
1151 if (ret)
1152 pr_err(
1153 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1154 ret);
1155
1156 if (etm->synth_opts.last_branch)
1157 cs_etm__reset_last_branch_rb(tidq);
1158
1159 return ret;
1160 }
1161
1162 /*
1163 * The cs etm packet encodes an instruction range between a branch target
1164 * and the next taken branch. Generate sample accordingly.
1165 */
1166 static int cs_etm__synth_branch_sample(struct cs_etm_queue *etmq,
1167 struct cs_etm_traceid_queue *tidq)
1168 {
1169 int ret = 0;
1170 struct cs_etm_auxtrace *etm = etmq->etm;
1171 struct perf_sample sample = {.ip = 0,};
1172 union perf_event *event = tidq->event_buf;
1173 struct dummy_branch_stack {
1174 u64 nr;
1175 struct branch_entry entries;
1176 } dummy_bs;
1177 u64 ip;
1178
1179 ip = cs_etm__last_executed_instr(tidq->prev_packet);
1180
1181 event->sample.header.type = PERF_RECORD_SAMPLE;
1182 event->sample.header.misc = cs_etm__cpu_mode(etmq, ip);
1183 event->sample.header.size = sizeof(struct perf_event_header);
1184
1185 sample.ip = ip;
1186 sample.pid = tidq->pid;
1187 sample.tid = tidq->tid;
1188 sample.addr = cs_etm__first_executed_instr(tidq->packet);
1189 sample.id = etmq->etm->branches_id;
1190 sample.stream_id = etmq->etm->branches_id;
1191 sample.period = 1;
1192 sample.cpu = tidq->packet->cpu;
1193 sample.flags = tidq->prev_packet->flags;
1194 sample.cpumode = event->sample.header.misc;
1195
1196 cs_etm__copy_insn(etmq, tidq->trace_chan_id, tidq->prev_packet,
1197 &sample);
1198
1199 /*
1200 * perf report cannot handle events without a branch stack
1201 */
1202 if (etm->synth_opts.last_branch) {
1203 dummy_bs = (struct dummy_branch_stack){
1204 .nr = 1,
1205 .entries = {
1206 .from = sample.ip,
1207 .to = sample.addr,
1208 },
1209 };
1210 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1211 }
1212
1213 if (etm->synth_opts.inject) {
1214 ret = cs_etm__inject_event(event, &sample,
1215 etm->branches_sample_type);
1216 if (ret)
1217 return ret;
1218 }
1219
1220 ret = perf_session__deliver_synth_event(etm->session, event, &sample);
1221
1222 if (ret)
1223 pr_err(
1224 "CS ETM Trace: failed to deliver instruction event, error %d\n",
1225 ret);
1226
1227 return ret;
1228 }
1229
1230 struct cs_etm_synth {
1231 struct perf_tool dummy_tool;
1232 struct perf_session *session;
1233 };
1234
1235 static int cs_etm__event_synth(struct perf_tool *tool,
1236 union perf_event *event,
1237 struct perf_sample *sample __maybe_unused,
1238 struct machine *machine __maybe_unused)
1239 {
1240 struct cs_etm_synth *cs_etm_synth =
1241 container_of(tool, struct cs_etm_synth, dummy_tool);
1242
1243 return perf_session__deliver_synth_event(cs_etm_synth->session,
1244 event, NULL);
1245 }
1246
1247 static int cs_etm__synth_event(struct perf_session *session,
1248 struct perf_event_attr *attr, u64 id)
1249 {
1250 struct cs_etm_synth cs_etm_synth;
1251
1252 memset(&cs_etm_synth, 0, sizeof(struct cs_etm_synth));
1253 cs_etm_synth.session = session;
1254
1255 return perf_event__synthesize_attr(&cs_etm_synth.dummy_tool, attr, 1,
1256 &id, cs_etm__event_synth);
1257 }
1258
1259 static int cs_etm__synth_events(struct cs_etm_auxtrace *etm,
1260 struct perf_session *session)
1261 {
1262 struct evlist *evlist = session->evlist;
1263 struct evsel *evsel;
1264 struct perf_event_attr attr;
1265 bool found = false;
1266 u64 id;
1267 int err;
1268
1269 evlist__for_each_entry(evlist, evsel) {
1270 if (evsel->core.attr.type == etm->pmu_type) {
1271 found = true;
1272 break;
1273 }
1274 }
1275
1276 if (!found) {
1277 pr_debug("No selected events with CoreSight Trace data\n");
1278 return 0;
1279 }
1280
1281 memset(&attr, 0, sizeof(struct perf_event_attr));
1282 attr.size = sizeof(struct perf_event_attr);
1283 attr.type = PERF_TYPE_HARDWARE;
1284 attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
1285 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
1286 PERF_SAMPLE_PERIOD;
1287 if (etm->timeless_decoding)
1288 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
1289 else
1290 attr.sample_type |= PERF_SAMPLE_TIME;
1291
1292 attr.exclude_user = evsel->core.attr.exclude_user;
1293 attr.exclude_kernel = evsel->core.attr.exclude_kernel;
1294 attr.exclude_hv = evsel->core.attr.exclude_hv;
1295 attr.exclude_host = evsel->core.attr.exclude_host;
1296 attr.exclude_guest = evsel->core.attr.exclude_guest;
1297 attr.sample_id_all = evsel->core.attr.sample_id_all;
1298 attr.read_format = evsel->core.attr.read_format;
1299
1300 /* create new id val to be a fixed offset from evsel id */
1301 id = evsel->core.id[0] + 1000000000;
1302
1303 if (!id)
1304 id = 1;
1305
1306 if (etm->synth_opts.branches) {
1307 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
1308 attr.sample_period = 1;
1309 attr.sample_type |= PERF_SAMPLE_ADDR;
1310 err = cs_etm__synth_event(session, &attr, id);
1311 if (err)
1312 return err;
1313 etm->sample_branches = true;
1314 etm->branches_sample_type = attr.sample_type;
1315 etm->branches_id = id;
1316 id += 1;
1317 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
1318 }
1319
1320 if (etm->synth_opts.last_branch)
1321 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
1322
1323 if (etm->synth_opts.instructions) {
1324 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
1325 attr.sample_period = etm->synth_opts.period;
1326 etm->instructions_sample_period = attr.sample_period;
1327 err = cs_etm__synth_event(session, &attr, id);
1328 if (err)
1329 return err;
1330 etm->sample_instructions = true;
1331 etm->instructions_sample_type = attr.sample_type;
1332 etm->instructions_id = id;
1333 id += 1;
1334 }
1335
1336 return 0;
1337 }
1338
1339 static int cs_etm__sample(struct cs_etm_queue *etmq,
1340 struct cs_etm_traceid_queue *tidq)
1341 {
1342 struct cs_etm_auxtrace *etm = etmq->etm;
1343 struct cs_etm_packet *tmp;
1344 int ret;
1345 u8 trace_chan_id = tidq->trace_chan_id;
1346 u64 instrs_executed = tidq->packet->instr_count;
1347
1348 tidq->period_instructions += instrs_executed;
1349
1350 /*
1351 * Record a branch when the last instruction in
1352 * PREV_PACKET is a branch.
1353 */
1354 if (etm->synth_opts.last_branch &&
1355 tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1356 tidq->prev_packet->last_instr_taken_branch)
1357 cs_etm__update_last_branch_rb(etmq, tidq);
1358
1359 if (etm->sample_instructions &&
1360 tidq->period_instructions >= etm->instructions_sample_period) {
1361 /*
1362 * Emit instruction sample periodically
1363 * TODO: allow period to be defined in cycles and clock time
1364 */
1365
1366 /* Get number of instructions executed after the sample point */
1367 u64 instrs_over = tidq->period_instructions -
1368 etm->instructions_sample_period;
1369
1370 /*
1371 * Calculate the address of the sampled instruction (-1 as
1372 * sample is reported as though instruction has just been
1373 * executed, but PC has not advanced to next instruction)
1374 */
1375 u64 offset = (instrs_executed - instrs_over - 1);
1376 u64 addr = cs_etm__instr_addr(etmq, trace_chan_id,
1377 tidq->packet, offset);
1378
1379 ret = cs_etm__synth_instruction_sample(
1380 etmq, tidq, addr, etm->instructions_sample_period);
1381 if (ret)
1382 return ret;
1383
1384 /* Carry remaining instructions into next sample period */
1385 tidq->period_instructions = instrs_over;
1386 }
1387
1388 if (etm->sample_branches) {
1389 bool generate_sample = false;
1390
1391 /* Generate sample for tracing on packet */
1392 if (tidq->prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1393 generate_sample = true;
1394
1395 /* Generate sample for branch taken packet */
1396 if (tidq->prev_packet->sample_type == CS_ETM_RANGE &&
1397 tidq->prev_packet->last_instr_taken_branch)
1398 generate_sample = true;
1399
1400 if (generate_sample) {
1401 ret = cs_etm__synth_branch_sample(etmq, tidq);
1402 if (ret)
1403 return ret;
1404 }
1405 }
1406
1407 if (etm->sample_branches || etm->synth_opts.last_branch) {
1408 /*
1409 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1410 * the next incoming packet.
1411 */
1412 tmp = tidq->packet;
1413 tidq->packet = tidq->prev_packet;
1414 tidq->prev_packet = tmp;
1415 }
1416
1417 return 0;
1418 }
1419
1420 static int cs_etm__exception(struct cs_etm_traceid_queue *tidq)
1421 {
1422 /*
1423 * When the exception packet is inserted, whether the last instruction
1424 * in previous range packet is taken branch or not, we need to force
1425 * to set 'prev_packet->last_instr_taken_branch' to true. This ensures
1426 * to generate branch sample for the instruction range before the
1427 * exception is trapped to kernel or before the exception returning.
1428 *
1429 * The exception packet includes the dummy address values, so don't
1430 * swap PACKET with PREV_PACKET. This keeps PREV_PACKET to be useful
1431 * for generating instruction and branch samples.
1432 */
1433 if (tidq->prev_packet->sample_type == CS_ETM_RANGE)
1434 tidq->prev_packet->last_instr_taken_branch = true;
1435
1436 return 0;
1437 }
1438
1439 static int cs_etm__flush(struct cs_etm_queue *etmq,
1440 struct cs_etm_traceid_queue *tidq)
1441 {
1442 int err = 0;
1443 struct cs_etm_auxtrace *etm = etmq->etm;
1444 struct cs_etm_packet *tmp;
1445
1446 /* Handle start tracing packet */
1447 if (tidq->prev_packet->sample_type == CS_ETM_EMPTY)
1448 goto swap_packet;
1449
1450 if (etmq->etm->synth_opts.last_branch &&
1451 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1452 /*
1453 * Generate a last branch event for the branches left in the
1454 * circular buffer at the end of the trace.
1455 *
1456 * Use the address of the end of the last reported execution
1457 * range
1458 */
1459 u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1460
1461 err = cs_etm__synth_instruction_sample(
1462 etmq, tidq, addr,
1463 tidq->period_instructions);
1464 if (err)
1465 return err;
1466
1467 tidq->period_instructions = 0;
1468
1469 }
1470
1471 if (etm->sample_branches &&
1472 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1473 err = cs_etm__synth_branch_sample(etmq, tidq);
1474 if (err)
1475 return err;
1476 }
1477
1478 swap_packet:
1479 if (etm->sample_branches || etm->synth_opts.last_branch) {
1480 /*
1481 * Swap PACKET with PREV_PACKET: PACKET becomes PREV_PACKET for
1482 * the next incoming packet.
1483 */
1484 tmp = tidq->packet;
1485 tidq->packet = tidq->prev_packet;
1486 tidq->prev_packet = tmp;
1487 }
1488
1489 return err;
1490 }
1491
1492 static int cs_etm__end_block(struct cs_etm_queue *etmq,
1493 struct cs_etm_traceid_queue *tidq)
1494 {
1495 int err;
1496
1497 /*
1498 * It has no new packet coming and 'etmq->packet' contains the stale
1499 * packet which was set at the previous time with packets swapping;
1500 * so skip to generate branch sample to avoid stale packet.
1501 *
1502 * For this case only flush branch stack and generate a last branch
1503 * event for the branches left in the circular buffer at the end of
1504 * the trace.
1505 */
1506 if (etmq->etm->synth_opts.last_branch &&
1507 tidq->prev_packet->sample_type == CS_ETM_RANGE) {
1508 /*
1509 * Use the address of the end of the last reported execution
1510 * range.
1511 */
1512 u64 addr = cs_etm__last_executed_instr(tidq->prev_packet);
1513
1514 err = cs_etm__synth_instruction_sample(
1515 etmq, tidq, addr,
1516 tidq->period_instructions);
1517 if (err)
1518 return err;
1519
1520 tidq->period_instructions = 0;
1521 }
1522
1523 return 0;
1524 }
1525 /*
1526 * cs_etm__get_data_block: Fetch a block from the auxtrace_buffer queue
1527 * if need be.
1528 * Returns: < 0 if error
1529 * = 0 if no more auxtrace_buffer to read
1530 * > 0 if the current buffer isn't empty yet
1531 */
1532 static int cs_etm__get_data_block(struct cs_etm_queue *etmq)
1533 {
1534 int ret;
1535
1536 if (!etmq->buf_len) {
1537 ret = cs_etm__get_trace(etmq);
1538 if (ret <= 0)
1539 return ret;
1540 /*
1541 * We cannot assume consecutive blocks in the data file
1542 * are contiguous, reset the decoder to force re-sync.
1543 */
1544 ret = cs_etm_decoder__reset(etmq->decoder);
1545 if (ret)
1546 return ret;
1547 }
1548
1549 return etmq->buf_len;
1550 }
1551
1552 static bool cs_etm__is_svc_instr(struct cs_etm_queue *etmq, u8 trace_chan_id,
1553 struct cs_etm_packet *packet,
1554 u64 end_addr)
1555 {
1556 /* Initialise to keep compiler happy */
1557 u16 instr16 = 0;
1558 u32 instr32 = 0;
1559 u64 addr;
1560
1561 switch (packet->isa) {
1562 case CS_ETM_ISA_T32:
1563 /*
1564 * The SVC of T32 is defined in ARM DDI 0487D.a, F5.1.247:
1565 *
1566 * b'15 b'8
1567 * +-----------------+--------+
1568 * | 1 1 0 1 1 1 1 1 | imm8 |
1569 * +-----------------+--------+
1570 *
1571 * According to the specifiction, it only defines SVC for T32
1572 * with 16 bits instruction and has no definition for 32bits;
1573 * so below only read 2 bytes as instruction size for T32.
1574 */
1575 addr = end_addr - 2;
1576 cs_etm__mem_access(etmq, trace_chan_id, addr,
1577 sizeof(instr16), (u8 *)&instr16);
1578 if ((instr16 & 0xFF00) == 0xDF00)
1579 return true;
1580
1581 break;
1582 case CS_ETM_ISA_A32:
1583 /*
1584 * The SVC of A32 is defined in ARM DDI 0487D.a, F5.1.247:
1585 *
1586 * b'31 b'28 b'27 b'24
1587 * +---------+---------+-------------------------+
1588 * | !1111 | 1 1 1 1 | imm24 |
1589 * +---------+---------+-------------------------+
1590 */
1591 addr = end_addr - 4;
1592 cs_etm__mem_access(etmq, trace_chan_id, addr,
1593 sizeof(instr32), (u8 *)&instr32);
1594 if ((instr32 & 0x0F000000) == 0x0F000000 &&
1595 (instr32 & 0xF0000000) != 0xF0000000)
1596 return true;
1597
1598 break;
1599 case CS_ETM_ISA_A64:
1600 /*
1601 * The SVC of A64 is defined in ARM DDI 0487D.a, C6.2.294:
1602 *
1603 * b'31 b'21 b'4 b'0
1604 * +-----------------------+---------+-----------+
1605 * | 1 1 0 1 0 1 0 0 0 0 0 | imm16 | 0 0 0 0 1 |
1606 * +-----------------------+---------+-----------+
1607 */
1608 addr = end_addr - 4;
1609 cs_etm__mem_access(etmq, trace_chan_id, addr,
1610 sizeof(instr32), (u8 *)&instr32);
1611 if ((instr32 & 0xFFE0001F) == 0xd4000001)
1612 return true;
1613
1614 break;
1615 case CS_ETM_ISA_UNKNOWN:
1616 default:
1617 break;
1618 }
1619
1620 return false;
1621 }
1622
1623 static bool cs_etm__is_syscall(struct cs_etm_queue *etmq,
1624 struct cs_etm_traceid_queue *tidq, u64 magic)
1625 {
1626 u8 trace_chan_id = tidq->trace_chan_id;
1627 struct cs_etm_packet *packet = tidq->packet;
1628 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1629
1630 if (magic == __perf_cs_etmv3_magic)
1631 if (packet->exception_number == CS_ETMV3_EXC_SVC)
1632 return true;
1633
1634 /*
1635 * ETMv4 exception type CS_ETMV4_EXC_CALL covers SVC, SMC and
1636 * HVC cases; need to check if it's SVC instruction based on
1637 * packet address.
1638 */
1639 if (magic == __perf_cs_etmv4_magic) {
1640 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1641 cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1642 prev_packet->end_addr))
1643 return true;
1644 }
1645
1646 return false;
1647 }
1648
1649 static bool cs_etm__is_async_exception(struct cs_etm_traceid_queue *tidq,
1650 u64 magic)
1651 {
1652 struct cs_etm_packet *packet = tidq->packet;
1653
1654 if (magic == __perf_cs_etmv3_magic)
1655 if (packet->exception_number == CS_ETMV3_EXC_DEBUG_HALT ||
1656 packet->exception_number == CS_ETMV3_EXC_ASYNC_DATA_ABORT ||
1657 packet->exception_number == CS_ETMV3_EXC_PE_RESET ||
1658 packet->exception_number == CS_ETMV3_EXC_IRQ ||
1659 packet->exception_number == CS_ETMV3_EXC_FIQ)
1660 return true;
1661
1662 if (magic == __perf_cs_etmv4_magic)
1663 if (packet->exception_number == CS_ETMV4_EXC_RESET ||
1664 packet->exception_number == CS_ETMV4_EXC_DEBUG_HALT ||
1665 packet->exception_number == CS_ETMV4_EXC_SYSTEM_ERROR ||
1666 packet->exception_number == CS_ETMV4_EXC_INST_DEBUG ||
1667 packet->exception_number == CS_ETMV4_EXC_DATA_DEBUG ||
1668 packet->exception_number == CS_ETMV4_EXC_IRQ ||
1669 packet->exception_number == CS_ETMV4_EXC_FIQ)
1670 return true;
1671
1672 return false;
1673 }
1674
1675 static bool cs_etm__is_sync_exception(struct cs_etm_queue *etmq,
1676 struct cs_etm_traceid_queue *tidq,
1677 u64 magic)
1678 {
1679 u8 trace_chan_id = tidq->trace_chan_id;
1680 struct cs_etm_packet *packet = tidq->packet;
1681 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1682
1683 if (magic == __perf_cs_etmv3_magic)
1684 if (packet->exception_number == CS_ETMV3_EXC_SMC ||
1685 packet->exception_number == CS_ETMV3_EXC_HYP ||
1686 packet->exception_number == CS_ETMV3_EXC_JAZELLE_THUMBEE ||
1687 packet->exception_number == CS_ETMV3_EXC_UNDEFINED_INSTR ||
1688 packet->exception_number == CS_ETMV3_EXC_PREFETCH_ABORT ||
1689 packet->exception_number == CS_ETMV3_EXC_DATA_FAULT ||
1690 packet->exception_number == CS_ETMV3_EXC_GENERIC)
1691 return true;
1692
1693 if (magic == __perf_cs_etmv4_magic) {
1694 if (packet->exception_number == CS_ETMV4_EXC_TRAP ||
1695 packet->exception_number == CS_ETMV4_EXC_ALIGNMENT ||
1696 packet->exception_number == CS_ETMV4_EXC_INST_FAULT ||
1697 packet->exception_number == CS_ETMV4_EXC_DATA_FAULT)
1698 return true;
1699
1700 /*
1701 * For CS_ETMV4_EXC_CALL, except SVC other instructions
1702 * (SMC, HVC) are taken as sync exceptions.
1703 */
1704 if (packet->exception_number == CS_ETMV4_EXC_CALL &&
1705 !cs_etm__is_svc_instr(etmq, trace_chan_id, prev_packet,
1706 prev_packet->end_addr))
1707 return true;
1708
1709 /*
1710 * ETMv4 has 5 bits for exception number; if the numbers
1711 * are in the range ( CS_ETMV4_EXC_FIQ, CS_ETMV4_EXC_END ]
1712 * they are implementation defined exceptions.
1713 *
1714 * For this case, simply take it as sync exception.
1715 */
1716 if (packet->exception_number > CS_ETMV4_EXC_FIQ &&
1717 packet->exception_number <= CS_ETMV4_EXC_END)
1718 return true;
1719 }
1720
1721 return false;
1722 }
1723
1724 static int cs_etm__set_sample_flags(struct cs_etm_queue *etmq,
1725 struct cs_etm_traceid_queue *tidq)
1726 {
1727 struct cs_etm_packet *packet = tidq->packet;
1728 struct cs_etm_packet *prev_packet = tidq->prev_packet;
1729 u8 trace_chan_id = tidq->trace_chan_id;
1730 u64 magic;
1731 int ret;
1732
1733 switch (packet->sample_type) {
1734 case CS_ETM_RANGE:
1735 /*
1736 * Immediate branch instruction without neither link nor
1737 * return flag, it's normal branch instruction within
1738 * the function.
1739 */
1740 if (packet->last_instr_type == OCSD_INSTR_BR &&
1741 packet->last_instr_subtype == OCSD_S_INSTR_NONE) {
1742 packet->flags = PERF_IP_FLAG_BRANCH;
1743
1744 if (packet->last_instr_cond)
1745 packet->flags |= PERF_IP_FLAG_CONDITIONAL;
1746 }
1747
1748 /*
1749 * Immediate branch instruction with link (e.g. BL), this is
1750 * branch instruction for function call.
1751 */
1752 if (packet->last_instr_type == OCSD_INSTR_BR &&
1753 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1754 packet->flags = PERF_IP_FLAG_BRANCH |
1755 PERF_IP_FLAG_CALL;
1756
1757 /*
1758 * Indirect branch instruction with link (e.g. BLR), this is
1759 * branch instruction for function call.
1760 */
1761 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1762 packet->last_instr_subtype == OCSD_S_INSTR_BR_LINK)
1763 packet->flags = PERF_IP_FLAG_BRANCH |
1764 PERF_IP_FLAG_CALL;
1765
1766 /*
1767 * Indirect branch instruction with subtype of
1768 * OCSD_S_INSTR_V7_IMPLIED_RET, this is explicit hint for
1769 * function return for A32/T32.
1770 */
1771 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1772 packet->last_instr_subtype == OCSD_S_INSTR_V7_IMPLIED_RET)
1773 packet->flags = PERF_IP_FLAG_BRANCH |
1774 PERF_IP_FLAG_RETURN;
1775
1776 /*
1777 * Indirect branch instruction without link (e.g. BR), usually
1778 * this is used for function return, especially for functions
1779 * within dynamic link lib.
1780 */
1781 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1782 packet->last_instr_subtype == OCSD_S_INSTR_NONE)
1783 packet->flags = PERF_IP_FLAG_BRANCH |
1784 PERF_IP_FLAG_RETURN;
1785
1786 /* Return instruction for function return. */
1787 if (packet->last_instr_type == OCSD_INSTR_BR_INDIRECT &&
1788 packet->last_instr_subtype == OCSD_S_INSTR_V8_RET)
1789 packet->flags = PERF_IP_FLAG_BRANCH |
1790 PERF_IP_FLAG_RETURN;
1791
1792 /*
1793 * Decoder might insert a discontinuity in the middle of
1794 * instruction packets, fixup prev_packet with flag
1795 * PERF_IP_FLAG_TRACE_BEGIN to indicate restarting trace.
1796 */
1797 if (prev_packet->sample_type == CS_ETM_DISCONTINUITY)
1798 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1799 PERF_IP_FLAG_TRACE_BEGIN;
1800
1801 /*
1802 * If the previous packet is an exception return packet
1803 * and the return address just follows SVC instuction,
1804 * it needs to calibrate the previous packet sample flags
1805 * as PERF_IP_FLAG_SYSCALLRET.
1806 */
1807 if (prev_packet->flags == (PERF_IP_FLAG_BRANCH |
1808 PERF_IP_FLAG_RETURN |
1809 PERF_IP_FLAG_INTERRUPT) &&
1810 cs_etm__is_svc_instr(etmq, trace_chan_id,
1811 packet, packet->start_addr))
1812 prev_packet->flags = PERF_IP_FLAG_BRANCH |
1813 PERF_IP_FLAG_RETURN |
1814 PERF_IP_FLAG_SYSCALLRET;
1815 break;
1816 case CS_ETM_DISCONTINUITY:
1817 /*
1818 * The trace is discontinuous, if the previous packet is
1819 * instruction packet, set flag PERF_IP_FLAG_TRACE_END
1820 * for previous packet.
1821 */
1822 if (prev_packet->sample_type == CS_ETM_RANGE)
1823 prev_packet->flags |= PERF_IP_FLAG_BRANCH |
1824 PERF_IP_FLAG_TRACE_END;
1825 break;
1826 case CS_ETM_EXCEPTION:
1827 ret = cs_etm__get_magic(packet->trace_chan_id, &magic);
1828 if (ret)
1829 return ret;
1830
1831 /* The exception is for system call. */
1832 if (cs_etm__is_syscall(etmq, tidq, magic))
1833 packet->flags = PERF_IP_FLAG_BRANCH |
1834 PERF_IP_FLAG_CALL |
1835 PERF_IP_FLAG_SYSCALLRET;
1836 /*
1837 * The exceptions are triggered by external signals from bus,
1838 * interrupt controller, debug module, PE reset or halt.
1839 */
1840 else if (cs_etm__is_async_exception(tidq, magic))
1841 packet->flags = PERF_IP_FLAG_BRANCH |
1842 PERF_IP_FLAG_CALL |
1843 PERF_IP_FLAG_ASYNC |
1844 PERF_IP_FLAG_INTERRUPT;
1845 /*
1846 * Otherwise, exception is caused by trap, instruction &
1847 * data fault, or alignment errors.
1848 */
1849 else if (cs_etm__is_sync_exception(etmq, tidq, magic))
1850 packet->flags = PERF_IP_FLAG_BRANCH |
1851 PERF_IP_FLAG_CALL |
1852 PERF_IP_FLAG_INTERRUPT;
1853
1854 /*
1855 * When the exception packet is inserted, since exception
1856 * packet is not used standalone for generating samples
1857 * and it's affiliation to the previous instruction range
1858 * packet; so set previous range packet flags to tell perf
1859 * it is an exception taken branch.
1860 */
1861 if (prev_packet->sample_type == CS_ETM_RANGE)
1862 prev_packet->flags = packet->flags;
1863 break;
1864 case CS_ETM_EXCEPTION_RET:
1865 /*
1866 * When the exception return packet is inserted, since
1867 * exception return packet is not used standalone for
1868 * generating samples and it's affiliation to the previous
1869 * instruction range packet; so set previous range packet
1870 * flags to tell perf it is an exception return branch.
1871 *
1872 * The exception return can be for either system call or
1873 * other exception types; unfortunately the packet doesn't
1874 * contain exception type related info so we cannot decide
1875 * the exception type purely based on exception return packet.
1876 * If we record the exception number from exception packet and
1877 * reuse it for excpetion return packet, this is not reliable
1878 * due the trace can be discontinuity or the interrupt can
1879 * be nested, thus the recorded exception number cannot be
1880 * used for exception return packet for these two cases.
1881 *
1882 * For exception return packet, we only need to distinguish the
1883 * packet is for system call or for other types. Thus the
1884 * decision can be deferred when receive the next packet which
1885 * contains the return address, based on the return address we
1886 * can read out the previous instruction and check if it's a
1887 * system call instruction and then calibrate the sample flag
1888 * as needed.
1889 */
1890 if (prev_packet->sample_type == CS_ETM_RANGE)
1891 prev_packet->flags = PERF_IP_FLAG_BRANCH |
1892 PERF_IP_FLAG_RETURN |
1893 PERF_IP_FLAG_INTERRUPT;
1894 break;
1895 case CS_ETM_EMPTY:
1896 default:
1897 break;
1898 }
1899
1900 return 0;
1901 }
1902
1903 static int cs_etm__decode_data_block(struct cs_etm_queue *etmq)
1904 {
1905 int ret = 0;
1906 size_t processed = 0;
1907
1908 /*
1909 * Packets are decoded and added to the decoder's packet queue
1910 * until the decoder packet processing callback has requested that
1911 * processing stops or there is nothing left in the buffer. Normal
1912 * operations that stop processing are a timestamp packet or a full
1913 * decoder buffer queue.
1914 */
1915 ret = cs_etm_decoder__process_data_block(etmq->decoder,
1916 etmq->offset,
1917 &etmq->buf[etmq->buf_used],
1918 etmq->buf_len,
1919 &processed);
1920 if (ret)
1921 goto out;
1922
1923 etmq->offset += processed;
1924 etmq->buf_used += processed;
1925 etmq->buf_len -= processed;
1926
1927 out:
1928 return ret;
1929 }
1930
1931 static int cs_etm__process_traceid_queue(struct cs_etm_queue *etmq,
1932 struct cs_etm_traceid_queue *tidq)
1933 {
1934 int ret;
1935 struct cs_etm_packet_queue *packet_queue;
1936
1937 packet_queue = &tidq->packet_queue;
1938
1939 /* Process each packet in this chunk */
1940 while (1) {
1941 ret = cs_etm_decoder__get_packet(packet_queue,
1942 tidq->packet);
1943 if (ret <= 0)
1944 /*
1945 * Stop processing this chunk on
1946 * end of data or error
1947 */
1948 break;
1949
1950 /*
1951 * Since packet addresses are swapped in packet
1952 * handling within below switch() statements,
1953 * thus setting sample flags must be called
1954 * prior to switch() statement to use address
1955 * information before packets swapping.
1956 */
1957 ret = cs_etm__set_sample_flags(etmq, tidq);
1958 if (ret < 0)
1959 break;
1960
1961 switch (tidq->packet->sample_type) {
1962 case CS_ETM_RANGE:
1963 /*
1964 * If the packet contains an instruction
1965 * range, generate instruction sequence
1966 * events.
1967 */
1968 cs_etm__sample(etmq, tidq);
1969 break;
1970 case CS_ETM_EXCEPTION:
1971 case CS_ETM_EXCEPTION_RET:
1972 /*
1973 * If the exception packet is coming,
1974 * make sure the previous instruction
1975 * range packet to be handled properly.
1976 */
1977 cs_etm__exception(tidq);
1978 break;
1979 case CS_ETM_DISCONTINUITY:
1980 /*
1981 * Discontinuity in trace, flush
1982 * previous branch stack
1983 */
1984 cs_etm__flush(etmq, tidq);
1985 break;
1986 case CS_ETM_EMPTY:
1987 /*
1988 * Should not receive empty packet,
1989 * report error.
1990 */
1991 pr_err("CS ETM Trace: empty packet\n");
1992 return -EINVAL;
1993 default:
1994 break;
1995 }
1996 }
1997
1998 return ret;
1999 }
2000
2001 static void cs_etm__clear_all_traceid_queues(struct cs_etm_queue *etmq)
2002 {
2003 int idx;
2004 struct int_node *inode;
2005 struct cs_etm_traceid_queue *tidq;
2006 struct intlist *traceid_queues_list = etmq->traceid_queues_list;
2007
2008 intlist__for_each_entry(inode, traceid_queues_list) {
2009 idx = (int)(intptr_t)inode->priv;
2010 tidq = etmq->traceid_queues[idx];
2011
2012 /* Ignore return value */
2013 cs_etm__process_traceid_queue(etmq, tidq);
2014
2015 /*
2016 * Generate an instruction sample with the remaining
2017 * branchstack entries.
2018 */
2019 cs_etm__flush(etmq, tidq);
2020 }
2021 }
2022
2023 static int cs_etm__run_decoder(struct cs_etm_queue *etmq)
2024 {
2025 int err = 0;
2026 struct cs_etm_traceid_queue *tidq;
2027
2028 tidq = cs_etm__etmq_get_traceid_queue(etmq, CS_ETM_PER_THREAD_TRACEID);
2029 if (!tidq)
2030 return -EINVAL;
2031
2032 /* Go through each buffer in the queue and decode them one by one */
2033 while (1) {
2034 err = cs_etm__get_data_block(etmq);
2035 if (err <= 0)
2036 return err;
2037
2038 /* Run trace decoder until buffer consumed or end of trace */
2039 do {
2040 err = cs_etm__decode_data_block(etmq);
2041 if (err)
2042 return err;
2043
2044 /*
2045 * Process each packet in this chunk, nothing to do if
2046 * an error occurs other than hoping the next one will
2047 * be better.
2048 */
2049 err = cs_etm__process_traceid_queue(etmq, tidq);
2050
2051 } while (etmq->buf_len);
2052
2053 if (err == 0)
2054 /* Flush any remaining branch stack entries */
2055 err = cs_etm__end_block(etmq, tidq);
2056 }
2057
2058 return err;
2059 }
2060
2061 static int cs_etm__process_timeless_queues(struct cs_etm_auxtrace *etm,
2062 pid_t tid)
2063 {
2064 unsigned int i;
2065 struct auxtrace_queues *queues = &etm->queues;
2066
2067 for (i = 0; i < queues->nr_queues; i++) {
2068 struct auxtrace_queue *queue = &etm->queues.queue_array[i];
2069 struct cs_etm_queue *etmq = queue->priv;
2070 struct cs_etm_traceid_queue *tidq;
2071
2072 if (!etmq)
2073 continue;
2074
2075 tidq = cs_etm__etmq_get_traceid_queue(etmq,
2076 CS_ETM_PER_THREAD_TRACEID);
2077
2078 if (!tidq)
2079 continue;
2080
2081 if ((tid == -1) || (tidq->tid == tid)) {
2082 cs_etm__set_pid_tid_cpu(etm, tidq);
2083 cs_etm__run_decoder(etmq);
2084 }
2085 }
2086
2087 return 0;
2088 }
2089
2090 static int cs_etm__process_queues(struct cs_etm_auxtrace *etm)
2091 {
2092 int ret = 0;
2093 unsigned int cs_queue_nr, queue_nr;
2094 u8 trace_chan_id;
2095 u64 timestamp;
2096 struct auxtrace_queue *queue;
2097 struct cs_etm_queue *etmq;
2098 struct cs_etm_traceid_queue *tidq;
2099
2100 while (1) {
2101 if (!etm->heap.heap_cnt)
2102 goto out;
2103
2104 /* Take the entry at the top of the min heap */
2105 cs_queue_nr = etm->heap.heap_array[0].queue_nr;
2106 queue_nr = TO_QUEUE_NR(cs_queue_nr);
2107 trace_chan_id = TO_TRACE_CHAN_ID(cs_queue_nr);
2108 queue = &etm->queues.queue_array[queue_nr];
2109 etmq = queue->priv;
2110
2111 /*
2112 * Remove the top entry from the heap since we are about
2113 * to process it.
2114 */
2115 auxtrace_heap__pop(&etm->heap);
2116
2117 tidq = cs_etm__etmq_get_traceid_queue(etmq, trace_chan_id);
2118 if (!tidq) {
2119 /*
2120 * No traceID queue has been allocated for this traceID,
2121 * which means something somewhere went very wrong. No
2122 * other choice than simply exit.
2123 */
2124 ret = -EINVAL;
2125 goto out;
2126 }
2127
2128 /*
2129 * Packets associated with this timestamp are already in
2130 * the etmq's traceID queue, so process them.
2131 */
2132 ret = cs_etm__process_traceid_queue(etmq, tidq);
2133 if (ret < 0)
2134 goto out;
2135
2136 /*
2137 * Packets for this timestamp have been processed, time to
2138 * move on to the next timestamp, fetching a new auxtrace_buffer
2139 * if need be.
2140 */
2141 refetch:
2142 ret = cs_etm__get_data_block(etmq);
2143 if (ret < 0)
2144 goto out;
2145
2146 /*
2147 * No more auxtrace_buffers to process in this etmq, simply
2148 * move on to another entry in the auxtrace_heap.
2149 */
2150 if (!ret)
2151 continue;
2152
2153 ret = cs_etm__decode_data_block(etmq);
2154 if (ret)
2155 goto out;
2156
2157 timestamp = cs_etm__etmq_get_timestamp(etmq, &trace_chan_id);
2158
2159 if (!timestamp) {
2160 /*
2161 * Function cs_etm__decode_data_block() returns when
2162 * there is no more traces to decode in the current
2163 * auxtrace_buffer OR when a timestamp has been
2164 * encountered on any of the traceID queues. Since we
2165 * did not get a timestamp, there is no more traces to
2166 * process in this auxtrace_buffer. As such empty and
2167 * flush all traceID queues.
2168 */
2169 cs_etm__clear_all_traceid_queues(etmq);
2170
2171 /* Fetch another auxtrace_buffer for this etmq */
2172 goto refetch;
2173 }
2174
2175 /*
2176 * Add to the min heap the timestamp for packets that have
2177 * just been decoded. They will be processed and synthesized
2178 * during the next call to cs_etm__process_traceid_queue() for
2179 * this queue/traceID.
2180 */
2181 cs_queue_nr = TO_CS_QUEUE_NR(queue_nr, trace_chan_id);
2182 ret = auxtrace_heap__add(&etm->heap, cs_queue_nr, timestamp);
2183 }
2184
2185 out:
2186 return ret;
2187 }
2188
2189 static int cs_etm__process_itrace_start(struct cs_etm_auxtrace *etm,
2190 union perf_event *event)
2191 {
2192 struct thread *th;
2193
2194 if (etm->timeless_decoding)
2195 return 0;
2196
2197 /*
2198 * Add the tid/pid to the log so that we can get a match when
2199 * we get a contextID from the decoder.
2200 */
2201 th = machine__findnew_thread(etm->machine,
2202 event->itrace_start.pid,
2203 event->itrace_start.tid);
2204 if (!th)
2205 return -ENOMEM;
2206
2207 thread__put(th);
2208
2209 return 0;
2210 }
2211
2212 static int cs_etm__process_switch_cpu_wide(struct cs_etm_auxtrace *etm,
2213 union perf_event *event)
2214 {
2215 struct thread *th;
2216 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
2217
2218 /*
2219 * Context switch in per-thread mode are irrelevant since perf
2220 * will start/stop tracing as the process is scheduled.
2221 */
2222 if (etm->timeless_decoding)
2223 return 0;
2224
2225 /*
2226 * SWITCH_IN events carry the next process to be switched out while
2227 * SWITCH_OUT events carry the process to be switched in. As such
2228 * we don't care about IN events.
2229 */
2230 if (!out)
2231 return 0;
2232
2233 /*
2234 * Add the tid/pid to the log so that we can get a match when
2235 * we get a contextID from the decoder.
2236 */
2237 th = machine__findnew_thread(etm->machine,
2238 event->context_switch.next_prev_pid,
2239 event->context_switch.next_prev_tid);
2240 if (!th)
2241 return -ENOMEM;
2242
2243 thread__put(th);
2244
2245 return 0;
2246 }
2247
2248 static int cs_etm__process_event(struct perf_session *session,
2249 union perf_event *event,
2250 struct perf_sample *sample,
2251 struct perf_tool *tool)
2252 {
2253 int err = 0;
2254 u64 timestamp;
2255 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2256 struct cs_etm_auxtrace,
2257 auxtrace);
2258
2259 if (dump_trace)
2260 return 0;
2261
2262 if (!tool->ordered_events) {
2263 pr_err("CoreSight ETM Trace requires ordered events\n");
2264 return -EINVAL;
2265 }
2266
2267 if (sample->time && (sample->time != (u64) -1))
2268 timestamp = sample->time;
2269 else
2270 timestamp = 0;
2271
2272 if (timestamp || etm->timeless_decoding) {
2273 err = cs_etm__update_queues(etm);
2274 if (err)
2275 return err;
2276 }
2277
2278 if (etm->timeless_decoding &&
2279 event->header.type == PERF_RECORD_EXIT)
2280 return cs_etm__process_timeless_queues(etm,
2281 event->fork.tid);
2282
2283 if (event->header.type == PERF_RECORD_ITRACE_START)
2284 return cs_etm__process_itrace_start(etm, event);
2285 else if (event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2286 return cs_etm__process_switch_cpu_wide(etm, event);
2287
2288 if (!etm->timeless_decoding &&
2289 event->header.type == PERF_RECORD_AUX)
2290 return cs_etm__process_queues(etm);
2291
2292 return 0;
2293 }
2294
2295 static int cs_etm__process_auxtrace_event(struct perf_session *session,
2296 union perf_event *event,
2297 struct perf_tool *tool __maybe_unused)
2298 {
2299 struct cs_etm_auxtrace *etm = container_of(session->auxtrace,
2300 struct cs_etm_auxtrace,
2301 auxtrace);
2302 if (!etm->data_queued) {
2303 struct auxtrace_buffer *buffer;
2304 off_t data_offset;
2305 int fd = perf_data__fd(session->data);
2306 bool is_pipe = perf_data__is_pipe(session->data);
2307 int err;
2308
2309 if (is_pipe)
2310 data_offset = 0;
2311 else {
2312 data_offset = lseek(fd, 0, SEEK_CUR);
2313 if (data_offset == -1)
2314 return -errno;
2315 }
2316
2317 err = auxtrace_queues__add_event(&etm->queues, session,
2318 event, data_offset, &buffer);
2319 if (err)
2320 return err;
2321
2322 if (dump_trace)
2323 if (auxtrace_buffer__get_data(buffer, fd)) {
2324 cs_etm__dump_event(etm, buffer);
2325 auxtrace_buffer__put_data(buffer);
2326 }
2327 }
2328
2329 return 0;
2330 }
2331
2332 static bool cs_etm__is_timeless_decoding(struct cs_etm_auxtrace *etm)
2333 {
2334 struct evsel *evsel;
2335 struct evlist *evlist = etm->session->evlist;
2336 bool timeless_decoding = true;
2337
2338 /*
2339 * Circle through the list of event and complain if we find one
2340 * with the time bit set.
2341 */
2342 evlist__for_each_entry(evlist, evsel) {
2343 if ((evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
2344 timeless_decoding = false;
2345 }
2346
2347 return timeless_decoding;
2348 }
2349
2350 static const char * const cs_etm_global_header_fmts[] = {
2351 [CS_HEADER_VERSION_0] = " Header version %llx\n",
2352 [CS_PMU_TYPE_CPUS] = " PMU type/num cpus %llx\n",
2353 [CS_ETM_SNAPSHOT] = " Snapshot %llx\n",
2354 };
2355
2356 static const char * const cs_etm_priv_fmts[] = {
2357 [CS_ETM_MAGIC] = " Magic number %llx\n",
2358 [CS_ETM_CPU] = " CPU %lld\n",
2359 [CS_ETM_ETMCR] = " ETMCR %llx\n",
2360 [CS_ETM_ETMTRACEIDR] = " ETMTRACEIDR %llx\n",
2361 [CS_ETM_ETMCCER] = " ETMCCER %llx\n",
2362 [CS_ETM_ETMIDR] = " ETMIDR %llx\n",
2363 };
2364
2365 static const char * const cs_etmv4_priv_fmts[] = {
2366 [CS_ETM_MAGIC] = " Magic number %llx\n",
2367 [CS_ETM_CPU] = " CPU %lld\n",
2368 [CS_ETMV4_TRCCONFIGR] = " TRCCONFIGR %llx\n",
2369 [CS_ETMV4_TRCTRACEIDR] = " TRCTRACEIDR %llx\n",
2370 [CS_ETMV4_TRCIDR0] = " TRCIDR0 %llx\n",
2371 [CS_ETMV4_TRCIDR1] = " TRCIDR1 %llx\n",
2372 [CS_ETMV4_TRCIDR2] = " TRCIDR2 %llx\n",
2373 [CS_ETMV4_TRCIDR8] = " TRCIDR8 %llx\n",
2374 [CS_ETMV4_TRCAUTHSTATUS] = " TRCAUTHSTATUS %llx\n",
2375 };
2376
2377 static void cs_etm__print_auxtrace_info(__u64 *val, int num)
2378 {
2379 int i, j, cpu = 0;
2380
2381 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2382 fprintf(stdout, cs_etm_global_header_fmts[i], val[i]);
2383
2384 for (i = CS_HEADER_VERSION_0_MAX; cpu < num; cpu++) {
2385 if (val[i] == __perf_cs_etmv3_magic)
2386 for (j = 0; j < CS_ETM_PRIV_MAX; j++, i++)
2387 fprintf(stdout, cs_etm_priv_fmts[j], val[i]);
2388 else if (val[i] == __perf_cs_etmv4_magic)
2389 for (j = 0; j < CS_ETMV4_PRIV_MAX; j++, i++)
2390 fprintf(stdout, cs_etmv4_priv_fmts[j], val[i]);
2391 else
2392 /* failure.. return */
2393 return;
2394 }
2395 }
2396
2397 int cs_etm__process_auxtrace_info(union perf_event *event,
2398 struct perf_session *session)
2399 {
2400 struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
2401 struct cs_etm_auxtrace *etm = NULL;
2402 struct int_node *inode;
2403 unsigned int pmu_type;
2404 int event_header_size = sizeof(struct perf_event_header);
2405 int info_header_size;
2406 int total_size = auxtrace_info->header.size;
2407 int priv_size = 0;
2408 int num_cpu;
2409 int err = 0, idx = -1;
2410 int i, j, k;
2411 u64 *ptr, *hdr = NULL;
2412 u64 **metadata = NULL;
2413
2414 /*
2415 * sizeof(auxtrace_info_event::type) +
2416 * sizeof(auxtrace_info_event::reserved) == 8
2417 */
2418 info_header_size = 8;
2419
2420 if (total_size < (event_header_size + info_header_size))
2421 return -EINVAL;
2422
2423 priv_size = total_size - event_header_size - info_header_size;
2424
2425 /* First the global part */
2426 ptr = (u64 *) auxtrace_info->priv;
2427
2428 /* Look for version '0' of the header */
2429 if (ptr[0] != 0)
2430 return -EINVAL;
2431
2432 hdr = zalloc(sizeof(*hdr) * CS_HEADER_VERSION_0_MAX);
2433 if (!hdr)
2434 return -ENOMEM;
2435
2436 /* Extract header information - see cs-etm.h for format */
2437 for (i = 0; i < CS_HEADER_VERSION_0_MAX; i++)
2438 hdr[i] = ptr[i];
2439 num_cpu = hdr[CS_PMU_TYPE_CPUS] & 0xffffffff;
2440 pmu_type = (unsigned int) ((hdr[CS_PMU_TYPE_CPUS] >> 32) &
2441 0xffffffff);
2442
2443 /*
2444 * Create an RB tree for traceID-metadata tuple. Since the conversion
2445 * has to be made for each packet that gets decoded, optimizing access
2446 * in anything other than a sequential array is worth doing.
2447 */
2448 traceid_list = intlist__new(NULL);
2449 if (!traceid_list) {
2450 err = -ENOMEM;
2451 goto err_free_hdr;
2452 }
2453
2454 metadata = zalloc(sizeof(*metadata) * num_cpu);
2455 if (!metadata) {
2456 err = -ENOMEM;
2457 goto err_free_traceid_list;
2458 }
2459
2460 /*
2461 * The metadata is stored in the auxtrace_info section and encodes
2462 * the configuration of the ARM embedded trace macrocell which is
2463 * required by the trace decoder to properly decode the trace due
2464 * to its highly compressed nature.
2465 */
2466 for (j = 0; j < num_cpu; j++) {
2467 if (ptr[i] == __perf_cs_etmv3_magic) {
2468 metadata[j] = zalloc(sizeof(*metadata[j]) *
2469 CS_ETM_PRIV_MAX);
2470 if (!metadata[j]) {
2471 err = -ENOMEM;
2472 goto err_free_metadata;
2473 }
2474 for (k = 0; k < CS_ETM_PRIV_MAX; k++)
2475 metadata[j][k] = ptr[i + k];
2476
2477 /* The traceID is our handle */
2478 idx = metadata[j][CS_ETM_ETMTRACEIDR];
2479 i += CS_ETM_PRIV_MAX;
2480 } else if (ptr[i] == __perf_cs_etmv4_magic) {
2481 metadata[j] = zalloc(sizeof(*metadata[j]) *
2482 CS_ETMV4_PRIV_MAX);
2483 if (!metadata[j]) {
2484 err = -ENOMEM;
2485 goto err_free_metadata;
2486 }
2487 for (k = 0; k < CS_ETMV4_PRIV_MAX; k++)
2488 metadata[j][k] = ptr[i + k];
2489
2490 /* The traceID is our handle */
2491 idx = metadata[j][CS_ETMV4_TRCTRACEIDR];
2492 i += CS_ETMV4_PRIV_MAX;
2493 }
2494
2495 /* Get an RB node for this CPU */
2496 inode = intlist__findnew(traceid_list, idx);
2497
2498 /* Something went wrong, no need to continue */
2499 if (!inode) {
2500 err = -ENOMEM;
2501 goto err_free_metadata;
2502 }
2503
2504 /*
2505 * The node for that CPU should not be taken.
2506 * Back out if that's the case.
2507 */
2508 if (inode->priv) {
2509 err = -EINVAL;
2510 goto err_free_metadata;
2511 }
2512 /* All good, associate the traceID with the metadata pointer */
2513 inode->priv = metadata[j];
2514 }
2515
2516 /*
2517 * Each of CS_HEADER_VERSION_0_MAX, CS_ETM_PRIV_MAX and
2518 * CS_ETMV4_PRIV_MAX mark how many double words are in the
2519 * global metadata, and each cpu's metadata respectively.
2520 * The following tests if the correct number of double words was
2521 * present in the auxtrace info section.
2522 */
2523 if (i * 8 != priv_size) {
2524 err = -EINVAL;
2525 goto err_free_metadata;
2526 }
2527
2528 etm = zalloc(sizeof(*etm));
2529
2530 if (!etm) {
2531 err = -ENOMEM;
2532 goto err_free_metadata;
2533 }
2534
2535 err = auxtrace_queues__init(&etm->queues);
2536 if (err)
2537 goto err_free_etm;
2538
2539 etm->session = session;
2540 etm->machine = &session->machines.host;
2541
2542 etm->num_cpu = num_cpu;
2543 etm->pmu_type = pmu_type;
2544 etm->snapshot_mode = (hdr[CS_ETM_SNAPSHOT] != 0);
2545 etm->metadata = metadata;
2546 etm->auxtrace_type = auxtrace_info->type;
2547 etm->timeless_decoding = cs_etm__is_timeless_decoding(etm);
2548
2549 etm->auxtrace.process_event = cs_etm__process_event;
2550 etm->auxtrace.process_auxtrace_event = cs_etm__process_auxtrace_event;
2551 etm->auxtrace.flush_events = cs_etm__flush_events;
2552 etm->auxtrace.free_events = cs_etm__free_events;
2553 etm->auxtrace.free = cs_etm__free;
2554 session->auxtrace = &etm->auxtrace;
2555
2556 etm->unknown_thread = thread__new(999999999, 999999999);
2557 if (!etm->unknown_thread) {
2558 err = -ENOMEM;
2559 goto err_free_queues;
2560 }
2561
2562 /*
2563 * Initialize list node so that at thread__zput() we can avoid
2564 * segmentation fault at list_del_init().
2565 */
2566 INIT_LIST_HEAD(&etm->unknown_thread->node);
2567
2568 err = thread__set_comm(etm->unknown_thread, "unknown", 0);
2569 if (err)
2570 goto err_delete_thread;
2571
2572 if (thread__init_maps(etm->unknown_thread, etm->machine)) {
2573 err = -ENOMEM;
2574 goto err_delete_thread;
2575 }
2576
2577 if (dump_trace) {
2578 cs_etm__print_auxtrace_info(auxtrace_info->priv, num_cpu);
2579 return 0;
2580 }
2581
2582 if (session->itrace_synth_opts->set) {
2583 etm->synth_opts = *session->itrace_synth_opts;
2584 } else {
2585 itrace_synth_opts__set_default(&etm->synth_opts,
2586 session->itrace_synth_opts->default_no_sample);
2587 etm->synth_opts.callchain = false;
2588 }
2589
2590 err = cs_etm__synth_events(etm, session);
2591 if (err)
2592 goto err_delete_thread;
2593
2594 err = auxtrace_queues__process_index(&etm->queues, session);
2595 if (err)
2596 goto err_delete_thread;
2597
2598 etm->data_queued = etm->queues.populated;
2599
2600 return 0;
2601
2602 err_delete_thread:
2603 thread__zput(etm->unknown_thread);
2604 err_free_queues:
2605 auxtrace_queues__free(&etm->queues);
2606 session->auxtrace = NULL;
2607 err_free_etm:
2608 zfree(&etm);
2609 err_free_metadata:
2610 /* No need to check @metadata[j], free(NULL) is supported */
2611 for (j = 0; j < num_cpu; j++)
2612 zfree(&metadata[j]);
2613 zfree(&metadata);
2614 err_free_traceid_list:
2615 intlist__delete(traceid_list);
2616 err_free_hdr:
2617 zfree(&hdr);
2618
2619 return err;
2620 }