]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - tools/perf/util/evlist.c
perf evlist: Make {pause,resume} internal helpers
[mirror_ubuntu-jammy-kernel.git] / tools / perf / util / evlist.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9 #include "util.h"
10 #include <api/fs/fs.h>
11 #include <poll.h>
12 #include "cpumap.h"
13 #include "thread_map.h"
14 #include "target.h"
15 #include "evlist.h"
16 #include "evsel.h"
17 #include "debug.h"
18 #include "asm/bug.h"
19 #include <unistd.h>
20
21 #include "parse-events.h"
22 #include <subcmd/parse-options.h>
23
24 #include <sys/mman.h>
25
26 #include <linux/bitops.h>
27 #include <linux/hash.h>
28 #include <linux/log2.h>
29 #include <linux/err.h>
30
31 static void perf_mmap__munmap(struct perf_mmap *map);
32 static void perf_mmap__put(struct perf_mmap *map);
33
34 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
35 #define SID(e, x, y) xyarray__entry(e->sample_id, x, y)
36
37 void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus,
38 struct thread_map *threads)
39 {
40 int i;
41
42 for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i)
43 INIT_HLIST_HEAD(&evlist->heads[i]);
44 INIT_LIST_HEAD(&evlist->entries);
45 perf_evlist__set_maps(evlist, cpus, threads);
46 fdarray__init(&evlist->pollfd, 64);
47 evlist->workload.pid = -1;
48 evlist->bkw_mmap_state = BKW_MMAP_NOTREADY;
49 }
50
51 struct perf_evlist *perf_evlist__new(void)
52 {
53 struct perf_evlist *evlist = zalloc(sizeof(*evlist));
54
55 if (evlist != NULL)
56 perf_evlist__init(evlist, NULL, NULL);
57
58 return evlist;
59 }
60
61 struct perf_evlist *perf_evlist__new_default(void)
62 {
63 struct perf_evlist *evlist = perf_evlist__new();
64
65 if (evlist && perf_evlist__add_default(evlist)) {
66 perf_evlist__delete(evlist);
67 evlist = NULL;
68 }
69
70 return evlist;
71 }
72
73 struct perf_evlist *perf_evlist__new_dummy(void)
74 {
75 struct perf_evlist *evlist = perf_evlist__new();
76
77 if (evlist && perf_evlist__add_dummy(evlist)) {
78 perf_evlist__delete(evlist);
79 evlist = NULL;
80 }
81
82 return evlist;
83 }
84
85 /**
86 * perf_evlist__set_id_pos - set the positions of event ids.
87 * @evlist: selected event list
88 *
89 * Events with compatible sample types all have the same id_pos
90 * and is_pos. For convenience, put a copy on evlist.
91 */
92 void perf_evlist__set_id_pos(struct perf_evlist *evlist)
93 {
94 struct perf_evsel *first = perf_evlist__first(evlist);
95
96 evlist->id_pos = first->id_pos;
97 evlist->is_pos = first->is_pos;
98 }
99
100 static void perf_evlist__update_id_pos(struct perf_evlist *evlist)
101 {
102 struct perf_evsel *evsel;
103
104 evlist__for_each_entry(evlist, evsel)
105 perf_evsel__calc_id_pos(evsel);
106
107 perf_evlist__set_id_pos(evlist);
108 }
109
110 static void perf_evlist__purge(struct perf_evlist *evlist)
111 {
112 struct perf_evsel *pos, *n;
113
114 evlist__for_each_entry_safe(evlist, n, pos) {
115 list_del_init(&pos->node);
116 pos->evlist = NULL;
117 perf_evsel__delete(pos);
118 }
119
120 evlist->nr_entries = 0;
121 }
122
123 void perf_evlist__exit(struct perf_evlist *evlist)
124 {
125 zfree(&evlist->mmap);
126 zfree(&evlist->backward_mmap);
127 fdarray__exit(&evlist->pollfd);
128 }
129
130 void perf_evlist__delete(struct perf_evlist *evlist)
131 {
132 if (evlist == NULL)
133 return;
134
135 perf_evlist__munmap(evlist);
136 perf_evlist__close(evlist);
137 cpu_map__put(evlist->cpus);
138 thread_map__put(evlist->threads);
139 evlist->cpus = NULL;
140 evlist->threads = NULL;
141 perf_evlist__purge(evlist);
142 perf_evlist__exit(evlist);
143 free(evlist);
144 }
145
146 static void __perf_evlist__propagate_maps(struct perf_evlist *evlist,
147 struct perf_evsel *evsel)
148 {
149 /*
150 * We already have cpus for evsel (via PMU sysfs) so
151 * keep it, if there's no target cpu list defined.
152 */
153 if (!evsel->own_cpus || evlist->has_user_cpus) {
154 cpu_map__put(evsel->cpus);
155 evsel->cpus = cpu_map__get(evlist->cpus);
156 } else if (evsel->cpus != evsel->own_cpus) {
157 cpu_map__put(evsel->cpus);
158 evsel->cpus = cpu_map__get(evsel->own_cpus);
159 }
160
161 thread_map__put(evsel->threads);
162 evsel->threads = thread_map__get(evlist->threads);
163 }
164
165 static void perf_evlist__propagate_maps(struct perf_evlist *evlist)
166 {
167 struct perf_evsel *evsel;
168
169 evlist__for_each_entry(evlist, evsel)
170 __perf_evlist__propagate_maps(evlist, evsel);
171 }
172
173 void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry)
174 {
175 entry->evlist = evlist;
176 list_add_tail(&entry->node, &evlist->entries);
177 entry->idx = evlist->nr_entries;
178 entry->tracking = !entry->idx;
179
180 if (!evlist->nr_entries++)
181 perf_evlist__set_id_pos(evlist);
182
183 __perf_evlist__propagate_maps(evlist, entry);
184 }
185
186 void perf_evlist__remove(struct perf_evlist *evlist, struct perf_evsel *evsel)
187 {
188 evsel->evlist = NULL;
189 list_del_init(&evsel->node);
190 evlist->nr_entries -= 1;
191 }
192
193 void perf_evlist__splice_list_tail(struct perf_evlist *evlist,
194 struct list_head *list)
195 {
196 struct perf_evsel *evsel, *temp;
197
198 __evlist__for_each_entry_safe(list, temp, evsel) {
199 list_del_init(&evsel->node);
200 perf_evlist__add(evlist, evsel);
201 }
202 }
203
204 void __perf_evlist__set_leader(struct list_head *list)
205 {
206 struct perf_evsel *evsel, *leader;
207
208 leader = list_entry(list->next, struct perf_evsel, node);
209 evsel = list_entry(list->prev, struct perf_evsel, node);
210
211 leader->nr_members = evsel->idx - leader->idx + 1;
212
213 __evlist__for_each_entry(list, evsel) {
214 evsel->leader = leader;
215 }
216 }
217
218 void perf_evlist__set_leader(struct perf_evlist *evlist)
219 {
220 if (evlist->nr_entries) {
221 evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0;
222 __perf_evlist__set_leader(&evlist->entries);
223 }
224 }
225
226 void perf_event_attr__set_max_precise_ip(struct perf_event_attr *attr)
227 {
228 attr->precise_ip = 3;
229
230 while (attr->precise_ip != 0) {
231 int fd = sys_perf_event_open(attr, 0, -1, -1, 0);
232 if (fd != -1) {
233 close(fd);
234 break;
235 }
236 --attr->precise_ip;
237 }
238 }
239
240 int perf_evlist__add_default(struct perf_evlist *evlist)
241 {
242 struct perf_event_attr attr = {
243 .type = PERF_TYPE_HARDWARE,
244 .config = PERF_COUNT_HW_CPU_CYCLES,
245 };
246 struct perf_evsel *evsel;
247
248 event_attr_init(&attr);
249
250 perf_event_attr__set_max_precise_ip(&attr);
251
252 evsel = perf_evsel__new(&attr);
253 if (evsel == NULL)
254 goto error;
255
256 /* use asprintf() because free(evsel) assumes name is allocated */
257 if (asprintf(&evsel->name, "cycles%.*s",
258 attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
259 goto error_free;
260
261 perf_evlist__add(evlist, evsel);
262 return 0;
263 error_free:
264 perf_evsel__delete(evsel);
265 error:
266 return -ENOMEM;
267 }
268
269 int perf_evlist__add_dummy(struct perf_evlist *evlist)
270 {
271 struct perf_event_attr attr = {
272 .type = PERF_TYPE_SOFTWARE,
273 .config = PERF_COUNT_SW_DUMMY,
274 .size = sizeof(attr), /* to capture ABI version */
275 };
276 struct perf_evsel *evsel = perf_evsel__new(&attr);
277
278 if (evsel == NULL)
279 return -ENOMEM;
280
281 perf_evlist__add(evlist, evsel);
282 return 0;
283 }
284
285 static int perf_evlist__add_attrs(struct perf_evlist *evlist,
286 struct perf_event_attr *attrs, size_t nr_attrs)
287 {
288 struct perf_evsel *evsel, *n;
289 LIST_HEAD(head);
290 size_t i;
291
292 for (i = 0; i < nr_attrs; i++) {
293 evsel = perf_evsel__new_idx(attrs + i, evlist->nr_entries + i);
294 if (evsel == NULL)
295 goto out_delete_partial_list;
296 list_add_tail(&evsel->node, &head);
297 }
298
299 perf_evlist__splice_list_tail(evlist, &head);
300
301 return 0;
302
303 out_delete_partial_list:
304 __evlist__for_each_entry_safe(&head, n, evsel)
305 perf_evsel__delete(evsel);
306 return -1;
307 }
308
309 int __perf_evlist__add_default_attrs(struct perf_evlist *evlist,
310 struct perf_event_attr *attrs, size_t nr_attrs)
311 {
312 size_t i;
313
314 for (i = 0; i < nr_attrs; i++)
315 event_attr_init(attrs + i);
316
317 return perf_evlist__add_attrs(evlist, attrs, nr_attrs);
318 }
319
320 struct perf_evsel *
321 perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id)
322 {
323 struct perf_evsel *evsel;
324
325 evlist__for_each_entry(evlist, evsel) {
326 if (evsel->attr.type == PERF_TYPE_TRACEPOINT &&
327 (int)evsel->attr.config == id)
328 return evsel;
329 }
330
331 return NULL;
332 }
333
334 struct perf_evsel *
335 perf_evlist__find_tracepoint_by_name(struct perf_evlist *evlist,
336 const char *name)
337 {
338 struct perf_evsel *evsel;
339
340 evlist__for_each_entry(evlist, evsel) {
341 if ((evsel->attr.type == PERF_TYPE_TRACEPOINT) &&
342 (strcmp(evsel->name, name) == 0))
343 return evsel;
344 }
345
346 return NULL;
347 }
348
349 int perf_evlist__add_newtp(struct perf_evlist *evlist,
350 const char *sys, const char *name, void *handler)
351 {
352 struct perf_evsel *evsel = perf_evsel__newtp(sys, name);
353
354 if (IS_ERR(evsel))
355 return -1;
356
357 evsel->handler = handler;
358 perf_evlist__add(evlist, evsel);
359 return 0;
360 }
361
362 static int perf_evlist__nr_threads(struct perf_evlist *evlist,
363 struct perf_evsel *evsel)
364 {
365 if (evsel->system_wide)
366 return 1;
367 else
368 return thread_map__nr(evlist->threads);
369 }
370
371 void perf_evlist__disable(struct perf_evlist *evlist)
372 {
373 struct perf_evsel *pos;
374
375 evlist__for_each_entry(evlist, pos) {
376 if (!perf_evsel__is_group_leader(pos) || !pos->fd)
377 continue;
378 perf_evsel__disable(pos);
379 }
380
381 evlist->enabled = false;
382 }
383
384 void perf_evlist__enable(struct perf_evlist *evlist)
385 {
386 struct perf_evsel *pos;
387
388 evlist__for_each_entry(evlist, pos) {
389 if (!perf_evsel__is_group_leader(pos) || !pos->fd)
390 continue;
391 perf_evsel__enable(pos);
392 }
393
394 evlist->enabled = true;
395 }
396
397 void perf_evlist__toggle_enable(struct perf_evlist *evlist)
398 {
399 (evlist->enabled ? perf_evlist__disable : perf_evlist__enable)(evlist);
400 }
401
402 static int perf_evlist__enable_event_cpu(struct perf_evlist *evlist,
403 struct perf_evsel *evsel, int cpu)
404 {
405 int thread, err;
406 int nr_threads = perf_evlist__nr_threads(evlist, evsel);
407
408 if (!evsel->fd)
409 return -EINVAL;
410
411 for (thread = 0; thread < nr_threads; thread++) {
412 err = ioctl(FD(evsel, cpu, thread),
413 PERF_EVENT_IOC_ENABLE, 0);
414 if (err)
415 return err;
416 }
417 return 0;
418 }
419
420 static int perf_evlist__enable_event_thread(struct perf_evlist *evlist,
421 struct perf_evsel *evsel,
422 int thread)
423 {
424 int cpu, err;
425 int nr_cpus = cpu_map__nr(evlist->cpus);
426
427 if (!evsel->fd)
428 return -EINVAL;
429
430 for (cpu = 0; cpu < nr_cpus; cpu++) {
431 err = ioctl(FD(evsel, cpu, thread), PERF_EVENT_IOC_ENABLE, 0);
432 if (err)
433 return err;
434 }
435 return 0;
436 }
437
438 int perf_evlist__enable_event_idx(struct perf_evlist *evlist,
439 struct perf_evsel *evsel, int idx)
440 {
441 bool per_cpu_mmaps = !cpu_map__empty(evlist->cpus);
442
443 if (per_cpu_mmaps)
444 return perf_evlist__enable_event_cpu(evlist, evsel, idx);
445 else
446 return perf_evlist__enable_event_thread(evlist, evsel, idx);
447 }
448
449 int perf_evlist__alloc_pollfd(struct perf_evlist *evlist)
450 {
451 int nr_cpus = cpu_map__nr(evlist->cpus);
452 int nr_threads = thread_map__nr(evlist->threads);
453 int nfds = 0;
454 struct perf_evsel *evsel;
455
456 evlist__for_each_entry(evlist, evsel) {
457 if (evsel->system_wide)
458 nfds += nr_cpus;
459 else
460 nfds += nr_cpus * nr_threads;
461 }
462
463 if (fdarray__available_entries(&evlist->pollfd) < nfds &&
464 fdarray__grow(&evlist->pollfd, nfds) < 0)
465 return -ENOMEM;
466
467 return 0;
468 }
469
470 static int __perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd,
471 struct perf_mmap *map, short revent)
472 {
473 int pos = fdarray__add(&evlist->pollfd, fd, revent | POLLERR | POLLHUP);
474 /*
475 * Save the idx so that when we filter out fds POLLHUP'ed we can
476 * close the associated evlist->mmap[] entry.
477 */
478 if (pos >= 0) {
479 evlist->pollfd.priv[pos].ptr = map;
480
481 fcntl(fd, F_SETFL, O_NONBLOCK);
482 }
483
484 return pos;
485 }
486
487 int perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd)
488 {
489 return __perf_evlist__add_pollfd(evlist, fd, NULL, POLLIN);
490 }
491
492 static void perf_evlist__munmap_filtered(struct fdarray *fda, int fd,
493 void *arg __maybe_unused)
494 {
495 struct perf_mmap *map = fda->priv[fd].ptr;
496
497 if (map)
498 perf_mmap__put(map);
499 }
500
501 int perf_evlist__filter_pollfd(struct perf_evlist *evlist, short revents_and_mask)
502 {
503 return fdarray__filter(&evlist->pollfd, revents_and_mask,
504 perf_evlist__munmap_filtered, NULL);
505 }
506
507 int perf_evlist__poll(struct perf_evlist *evlist, int timeout)
508 {
509 return fdarray__poll(&evlist->pollfd, timeout);
510 }
511
512 static void perf_evlist__id_hash(struct perf_evlist *evlist,
513 struct perf_evsel *evsel,
514 int cpu, int thread, u64 id)
515 {
516 int hash;
517 struct perf_sample_id *sid = SID(evsel, cpu, thread);
518
519 sid->id = id;
520 sid->evsel = evsel;
521 hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS);
522 hlist_add_head(&sid->node, &evlist->heads[hash]);
523 }
524
525 void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel,
526 int cpu, int thread, u64 id)
527 {
528 perf_evlist__id_hash(evlist, evsel, cpu, thread, id);
529 evsel->id[evsel->ids++] = id;
530 }
531
532 int perf_evlist__id_add_fd(struct perf_evlist *evlist,
533 struct perf_evsel *evsel,
534 int cpu, int thread, int fd)
535 {
536 u64 read_data[4] = { 0, };
537 int id_idx = 1; /* The first entry is the counter value */
538 u64 id;
539 int ret;
540
541 ret = ioctl(fd, PERF_EVENT_IOC_ID, &id);
542 if (!ret)
543 goto add;
544
545 if (errno != ENOTTY)
546 return -1;
547
548 /* Legacy way to get event id.. All hail to old kernels! */
549
550 /*
551 * This way does not work with group format read, so bail
552 * out in that case.
553 */
554 if (perf_evlist__read_format(evlist) & PERF_FORMAT_GROUP)
555 return -1;
556
557 if (!(evsel->attr.read_format & PERF_FORMAT_ID) ||
558 read(fd, &read_data, sizeof(read_data)) == -1)
559 return -1;
560
561 if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
562 ++id_idx;
563 if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
564 ++id_idx;
565
566 id = read_data[id_idx];
567
568 add:
569 perf_evlist__id_add(evlist, evsel, cpu, thread, id);
570 return 0;
571 }
572
573 static void perf_evlist__set_sid_idx(struct perf_evlist *evlist,
574 struct perf_evsel *evsel, int idx, int cpu,
575 int thread)
576 {
577 struct perf_sample_id *sid = SID(evsel, cpu, thread);
578 sid->idx = idx;
579 if (evlist->cpus && cpu >= 0)
580 sid->cpu = evlist->cpus->map[cpu];
581 else
582 sid->cpu = -1;
583 if (!evsel->system_wide && evlist->threads && thread >= 0)
584 sid->tid = thread_map__pid(evlist->threads, thread);
585 else
586 sid->tid = -1;
587 }
588
589 struct perf_sample_id *perf_evlist__id2sid(struct perf_evlist *evlist, u64 id)
590 {
591 struct hlist_head *head;
592 struct perf_sample_id *sid;
593 int hash;
594
595 hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
596 head = &evlist->heads[hash];
597
598 hlist_for_each_entry(sid, head, node)
599 if (sid->id == id)
600 return sid;
601
602 return NULL;
603 }
604
605 struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id)
606 {
607 struct perf_sample_id *sid;
608
609 if (evlist->nr_entries == 1 || !id)
610 return perf_evlist__first(evlist);
611
612 sid = perf_evlist__id2sid(evlist, id);
613 if (sid)
614 return sid->evsel;
615
616 if (!perf_evlist__sample_id_all(evlist))
617 return perf_evlist__first(evlist);
618
619 return NULL;
620 }
621
622 struct perf_evsel *perf_evlist__id2evsel_strict(struct perf_evlist *evlist,
623 u64 id)
624 {
625 struct perf_sample_id *sid;
626
627 if (!id)
628 return NULL;
629
630 sid = perf_evlist__id2sid(evlist, id);
631 if (sid)
632 return sid->evsel;
633
634 return NULL;
635 }
636
637 static int perf_evlist__event2id(struct perf_evlist *evlist,
638 union perf_event *event, u64 *id)
639 {
640 const u64 *array = event->sample.array;
641 ssize_t n;
642
643 n = (event->header.size - sizeof(event->header)) >> 3;
644
645 if (event->header.type == PERF_RECORD_SAMPLE) {
646 if (evlist->id_pos >= n)
647 return -1;
648 *id = array[evlist->id_pos];
649 } else {
650 if (evlist->is_pos > n)
651 return -1;
652 n -= evlist->is_pos;
653 *id = array[n];
654 }
655 return 0;
656 }
657
658 struct perf_evsel *perf_evlist__event2evsel(struct perf_evlist *evlist,
659 union perf_event *event)
660 {
661 struct perf_evsel *first = perf_evlist__first(evlist);
662 struct hlist_head *head;
663 struct perf_sample_id *sid;
664 int hash;
665 u64 id;
666
667 if (evlist->nr_entries == 1)
668 return first;
669
670 if (!first->attr.sample_id_all &&
671 event->header.type != PERF_RECORD_SAMPLE)
672 return first;
673
674 if (perf_evlist__event2id(evlist, event, &id))
675 return NULL;
676
677 /* Synthesized events have an id of zero */
678 if (!id)
679 return first;
680
681 hash = hash_64(id, PERF_EVLIST__HLIST_BITS);
682 head = &evlist->heads[hash];
683
684 hlist_for_each_entry(sid, head, node) {
685 if (sid->id == id)
686 return sid->evsel;
687 }
688 return NULL;
689 }
690
691 static int perf_evlist__set_paused(struct perf_evlist *evlist, bool value)
692 {
693 int i;
694
695 if (!evlist->backward_mmap)
696 return 0;
697
698 for (i = 0; i < evlist->nr_mmaps; i++) {
699 int fd = evlist->backward_mmap[i].fd;
700 int err;
701
702 if (fd < 0)
703 continue;
704 err = ioctl(fd, PERF_EVENT_IOC_PAUSE_OUTPUT, value ? 1 : 0);
705 if (err)
706 return err;
707 }
708 return 0;
709 }
710
711 static int perf_evlist__pause(struct perf_evlist *evlist)
712 {
713 return perf_evlist__set_paused(evlist, true);
714 }
715
716 static int perf_evlist__resume(struct perf_evlist *evlist)
717 {
718 return perf_evlist__set_paused(evlist, false);
719 }
720
721 /* When check_messup is true, 'end' must points to a good entry */
722 static union perf_event *
723 perf_mmap__read(struct perf_mmap *md, bool check_messup, u64 start,
724 u64 end, u64 *prev)
725 {
726 unsigned char *data = md->base + page_size;
727 union perf_event *event = NULL;
728 int diff = end - start;
729
730 if (check_messup) {
731 /*
732 * If we're further behind than half the buffer, there's a chance
733 * the writer will bite our tail and mess up the samples under us.
734 *
735 * If we somehow ended up ahead of the 'end', we got messed up.
736 *
737 * In either case, truncate and restart at 'end'.
738 */
739 if (diff > md->mask / 2 || diff < 0) {
740 fprintf(stderr, "WARNING: failed to keep up with mmap data.\n");
741
742 /*
743 * 'end' points to a known good entry, start there.
744 */
745 start = end;
746 diff = 0;
747 }
748 }
749
750 if (diff >= (int)sizeof(event->header)) {
751 size_t size;
752
753 event = (union perf_event *)&data[start & md->mask];
754 size = event->header.size;
755
756 if (size < sizeof(event->header) || diff < (int)size) {
757 event = NULL;
758 goto broken_event;
759 }
760
761 /*
762 * Event straddles the mmap boundary -- header should always
763 * be inside due to u64 alignment of output.
764 */
765 if ((start & md->mask) + size != ((start + size) & md->mask)) {
766 unsigned int offset = start;
767 unsigned int len = min(sizeof(*event), size), cpy;
768 void *dst = md->event_copy;
769
770 do {
771 cpy = min(md->mask + 1 - (offset & md->mask), len);
772 memcpy(dst, &data[offset & md->mask], cpy);
773 offset += cpy;
774 dst += cpy;
775 len -= cpy;
776 } while (len);
777
778 event = (union perf_event *) md->event_copy;
779 }
780
781 start += size;
782 }
783
784 broken_event:
785 if (prev)
786 *prev = start;
787
788 return event;
789 }
790
791 union perf_event *perf_mmap__read_forward(struct perf_mmap *md, bool check_messup)
792 {
793 u64 head;
794 u64 old = md->prev;
795
796 /*
797 * Check if event was unmapped due to a POLLHUP/POLLERR.
798 */
799 if (!atomic_read(&md->refcnt))
800 return NULL;
801
802 head = perf_mmap__read_head(md);
803
804 return perf_mmap__read(md, check_messup, old, head, &md->prev);
805 }
806
807 union perf_event *
808 perf_mmap__read_backward(struct perf_mmap *md)
809 {
810 u64 head, end;
811 u64 start = md->prev;
812
813 /*
814 * Check if event was unmapped due to a POLLHUP/POLLERR.
815 */
816 if (!atomic_read(&md->refcnt))
817 return NULL;
818
819 head = perf_mmap__read_head(md);
820 if (!head)
821 return NULL;
822
823 /*
824 * 'head' pointer starts from 0. Kernel minus sizeof(record) form
825 * it each time when kernel writes to it, so in fact 'head' is
826 * negative. 'end' pointer is made manually by adding the size of
827 * the ring buffer to 'head' pointer, means the validate data can
828 * read is the whole ring buffer. If 'end' is positive, the ring
829 * buffer has not fully filled, so we must adjust 'end' to 0.
830 *
831 * However, since both 'head' and 'end' is unsigned, we can't
832 * simply compare 'end' against 0. Here we compare '-head' and
833 * the size of the ring buffer, where -head is the number of bytes
834 * kernel write to the ring buffer.
835 */
836 if (-head < (u64)(md->mask + 1))
837 end = 0;
838 else
839 end = head + md->mask + 1;
840
841 return perf_mmap__read(md, false, start, end, &md->prev);
842 }
843
844 union perf_event *perf_evlist__mmap_read_forward(struct perf_evlist *evlist, int idx)
845 {
846 struct perf_mmap *md = &evlist->mmap[idx];
847
848 /*
849 * Check messup is required for forward overwritable ring buffer:
850 * memory pointed by md->prev can be overwritten in this case.
851 * No need for read-write ring buffer: kernel stop outputting when
852 * it hit md->prev (perf_mmap__consume()).
853 */
854 return perf_mmap__read_forward(md, evlist->overwrite);
855 }
856
857 union perf_event *perf_evlist__mmap_read_backward(struct perf_evlist *evlist, int idx)
858 {
859 struct perf_mmap *md = &evlist->mmap[idx];
860
861 /*
862 * No need to check messup for backward ring buffer:
863 * We can always read arbitrary long data from a backward
864 * ring buffer unless we forget to pause it before reading.
865 */
866 return perf_mmap__read_backward(md);
867 }
868
869 union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx)
870 {
871 return perf_evlist__mmap_read_forward(evlist, idx);
872 }
873
874 void perf_mmap__read_catchup(struct perf_mmap *md)
875 {
876 u64 head;
877
878 if (!atomic_read(&md->refcnt))
879 return;
880
881 head = perf_mmap__read_head(md);
882 md->prev = head;
883 }
884
885 void perf_evlist__mmap_read_catchup(struct perf_evlist *evlist, int idx)
886 {
887 perf_mmap__read_catchup(&evlist->mmap[idx]);
888 }
889
890 static bool perf_mmap__empty(struct perf_mmap *md)
891 {
892 return perf_mmap__read_head(md) == md->prev && !md->auxtrace_mmap.base;
893 }
894
895 static void perf_mmap__get(struct perf_mmap *map)
896 {
897 atomic_inc(&map->refcnt);
898 }
899
900 static void perf_mmap__put(struct perf_mmap *md)
901 {
902 BUG_ON(md->base && atomic_read(&md->refcnt) == 0);
903
904 if (atomic_dec_and_test(&md->refcnt))
905 perf_mmap__munmap(md);
906 }
907
908 void perf_mmap__consume(struct perf_mmap *md, bool overwrite)
909 {
910 if (!overwrite) {
911 u64 old = md->prev;
912
913 perf_mmap__write_tail(md, old);
914 }
915
916 if (atomic_read(&md->refcnt) == 1 && perf_mmap__empty(md))
917 perf_mmap__put(md);
918 }
919
920 void perf_evlist__mmap_consume(struct perf_evlist *evlist, int idx)
921 {
922 perf_mmap__consume(&evlist->mmap[idx], evlist->overwrite);
923 }
924
925 int __weak auxtrace_mmap__mmap(struct auxtrace_mmap *mm __maybe_unused,
926 struct auxtrace_mmap_params *mp __maybe_unused,
927 void *userpg __maybe_unused,
928 int fd __maybe_unused)
929 {
930 return 0;
931 }
932
933 void __weak auxtrace_mmap__munmap(struct auxtrace_mmap *mm __maybe_unused)
934 {
935 }
936
937 void __weak auxtrace_mmap_params__init(
938 struct auxtrace_mmap_params *mp __maybe_unused,
939 off_t auxtrace_offset __maybe_unused,
940 unsigned int auxtrace_pages __maybe_unused,
941 bool auxtrace_overwrite __maybe_unused)
942 {
943 }
944
945 void __weak auxtrace_mmap_params__set_idx(
946 struct auxtrace_mmap_params *mp __maybe_unused,
947 struct perf_evlist *evlist __maybe_unused,
948 int idx __maybe_unused,
949 bool per_cpu __maybe_unused)
950 {
951 }
952
953 static void perf_mmap__munmap(struct perf_mmap *map)
954 {
955 if (map->base != NULL) {
956 munmap(map->base, perf_mmap__mmap_len(map));
957 map->base = NULL;
958 map->fd = -1;
959 atomic_set(&map->refcnt, 0);
960 }
961 auxtrace_mmap__munmap(&map->auxtrace_mmap);
962 }
963
964 static void perf_evlist__munmap_nofree(struct perf_evlist *evlist)
965 {
966 int i;
967
968 if (evlist->mmap)
969 for (i = 0; i < evlist->nr_mmaps; i++)
970 perf_mmap__munmap(&evlist->mmap[i]);
971
972 if (evlist->backward_mmap)
973 for (i = 0; i < evlist->nr_mmaps; i++)
974 perf_mmap__munmap(&evlist->backward_mmap[i]);
975 }
976
977 void perf_evlist__munmap(struct perf_evlist *evlist)
978 {
979 perf_evlist__munmap_nofree(evlist);
980 zfree(&evlist->mmap);
981 zfree(&evlist->backward_mmap);
982 }
983
984 static struct perf_mmap *perf_evlist__alloc_mmap(struct perf_evlist *evlist)
985 {
986 int i;
987 struct perf_mmap *map;
988
989 evlist->nr_mmaps = cpu_map__nr(evlist->cpus);
990 if (cpu_map__empty(evlist->cpus))
991 evlist->nr_mmaps = thread_map__nr(evlist->threads);
992 map = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap));
993 if (!map)
994 return NULL;
995
996 for (i = 0; i < evlist->nr_mmaps; i++)
997 map[i].fd = -1;
998 return map;
999 }
1000
1001 struct mmap_params {
1002 int prot;
1003 int mask;
1004 struct auxtrace_mmap_params auxtrace_mp;
1005 };
1006
1007 static int perf_mmap__mmap(struct perf_mmap *map,
1008 struct mmap_params *mp, int fd)
1009 {
1010 /*
1011 * The last one will be done at perf_evlist__mmap_consume(), so that we
1012 * make sure we don't prevent tools from consuming every last event in
1013 * the ring buffer.
1014 *
1015 * I.e. we can get the POLLHUP meaning that the fd doesn't exist
1016 * anymore, but the last events for it are still in the ring buffer,
1017 * waiting to be consumed.
1018 *
1019 * Tools can chose to ignore this at their own discretion, but the
1020 * evlist layer can't just drop it when filtering events in
1021 * perf_evlist__filter_pollfd().
1022 */
1023 atomic_set(&map->refcnt, 2);
1024 map->prev = 0;
1025 map->mask = mp->mask;
1026 map->base = mmap(NULL, perf_mmap__mmap_len(map), mp->prot,
1027 MAP_SHARED, fd, 0);
1028 if (map->base == MAP_FAILED) {
1029 pr_debug2("failed to mmap perf event ring buffer, error %d\n",
1030 errno);
1031 map->base = NULL;
1032 return -1;
1033 }
1034 map->fd = fd;
1035
1036 if (auxtrace_mmap__mmap(&map->auxtrace_mmap,
1037 &mp->auxtrace_mp, map->base, fd))
1038 return -1;
1039
1040 return 0;
1041 }
1042
1043 static bool
1044 perf_evlist__should_poll(struct perf_evlist *evlist __maybe_unused,
1045 struct perf_evsel *evsel)
1046 {
1047 if (evsel->attr.write_backward)
1048 return false;
1049 return true;
1050 }
1051
1052 static int perf_evlist__mmap_per_evsel(struct perf_evlist *evlist, int idx,
1053 struct mmap_params *mp, int cpu,
1054 int thread, int *_output, int *_output_backward)
1055 {
1056 struct perf_evsel *evsel;
1057 int revent;
1058
1059 evlist__for_each_entry(evlist, evsel) {
1060 struct perf_mmap *maps = evlist->mmap;
1061 int *output = _output;
1062 int fd;
1063
1064 if (evsel->attr.write_backward) {
1065 output = _output_backward;
1066 maps = evlist->backward_mmap;
1067
1068 if (!maps) {
1069 maps = perf_evlist__alloc_mmap(evlist);
1070 if (!maps)
1071 return -1;
1072 evlist->backward_mmap = maps;
1073 if (evlist->bkw_mmap_state == BKW_MMAP_NOTREADY)
1074 perf_evlist__toggle_bkw_mmap(evlist, BKW_MMAP_RUNNING);
1075 }
1076 }
1077
1078 if (evsel->system_wide && thread)
1079 continue;
1080
1081 fd = FD(evsel, cpu, thread);
1082
1083 if (*output == -1) {
1084 *output = fd;
1085
1086 if (perf_mmap__mmap(&maps[idx], mp, *output) < 0)
1087 return -1;
1088 } else {
1089 if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, *output) != 0)
1090 return -1;
1091
1092 perf_mmap__get(&maps[idx]);
1093 }
1094
1095 revent = perf_evlist__should_poll(evlist, evsel) ? POLLIN : 0;
1096
1097 /*
1098 * The system_wide flag causes a selected event to be opened
1099 * always without a pid. Consequently it will never get a
1100 * POLLHUP, but it is used for tracking in combination with
1101 * other events, so it should not need to be polled anyway.
1102 * Therefore don't add it for polling.
1103 */
1104 if (!evsel->system_wide &&
1105 __perf_evlist__add_pollfd(evlist, fd, &maps[idx], revent) < 0) {
1106 perf_mmap__put(&maps[idx]);
1107 return -1;
1108 }
1109
1110 if (evsel->attr.read_format & PERF_FORMAT_ID) {
1111 if (perf_evlist__id_add_fd(evlist, evsel, cpu, thread,
1112 fd) < 0)
1113 return -1;
1114 perf_evlist__set_sid_idx(evlist, evsel, idx, cpu,
1115 thread);
1116 }
1117 }
1118
1119 return 0;
1120 }
1121
1122 static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist,
1123 struct mmap_params *mp)
1124 {
1125 int cpu, thread;
1126 int nr_cpus = cpu_map__nr(evlist->cpus);
1127 int nr_threads = thread_map__nr(evlist->threads);
1128
1129 pr_debug2("perf event ring buffer mmapped per cpu\n");
1130 for (cpu = 0; cpu < nr_cpus; cpu++) {
1131 int output = -1;
1132 int output_backward = -1;
1133
1134 auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, cpu,
1135 true);
1136
1137 for (thread = 0; thread < nr_threads; thread++) {
1138 if (perf_evlist__mmap_per_evsel(evlist, cpu, mp, cpu,
1139 thread, &output, &output_backward))
1140 goto out_unmap;
1141 }
1142 }
1143
1144 return 0;
1145
1146 out_unmap:
1147 perf_evlist__munmap_nofree(evlist);
1148 return -1;
1149 }
1150
1151 static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist,
1152 struct mmap_params *mp)
1153 {
1154 int thread;
1155 int nr_threads = thread_map__nr(evlist->threads);
1156
1157 pr_debug2("perf event ring buffer mmapped per thread\n");
1158 for (thread = 0; thread < nr_threads; thread++) {
1159 int output = -1;
1160 int output_backward = -1;
1161
1162 auxtrace_mmap_params__set_idx(&mp->auxtrace_mp, evlist, thread,
1163 false);
1164
1165 if (perf_evlist__mmap_per_evsel(evlist, thread, mp, 0, thread,
1166 &output, &output_backward))
1167 goto out_unmap;
1168 }
1169
1170 return 0;
1171
1172 out_unmap:
1173 perf_evlist__munmap_nofree(evlist);
1174 return -1;
1175 }
1176
1177 unsigned long perf_event_mlock_kb_in_pages(void)
1178 {
1179 unsigned long pages;
1180 int max;
1181
1182 if (sysctl__read_int("kernel/perf_event_mlock_kb", &max) < 0) {
1183 /*
1184 * Pick a once upon a time good value, i.e. things look
1185 * strange since we can't read a sysctl value, but lets not
1186 * die yet...
1187 */
1188 max = 512;
1189 } else {
1190 max -= (page_size / 1024);
1191 }
1192
1193 pages = (max * 1024) / page_size;
1194 if (!is_power_of_2(pages))
1195 pages = rounddown_pow_of_two(pages);
1196
1197 return pages;
1198 }
1199
1200 static size_t perf_evlist__mmap_size(unsigned long pages)
1201 {
1202 if (pages == UINT_MAX)
1203 pages = perf_event_mlock_kb_in_pages();
1204 else if (!is_power_of_2(pages))
1205 return 0;
1206
1207 return (pages + 1) * page_size;
1208 }
1209
1210 static long parse_pages_arg(const char *str, unsigned long min,
1211 unsigned long max)
1212 {
1213 unsigned long pages, val;
1214 static struct parse_tag tags[] = {
1215 { .tag = 'B', .mult = 1 },
1216 { .tag = 'K', .mult = 1 << 10 },
1217 { .tag = 'M', .mult = 1 << 20 },
1218 { .tag = 'G', .mult = 1 << 30 },
1219 { .tag = 0 },
1220 };
1221
1222 if (str == NULL)
1223 return -EINVAL;
1224
1225 val = parse_tag_value(str, tags);
1226 if (val != (unsigned long) -1) {
1227 /* we got file size value */
1228 pages = PERF_ALIGN(val, page_size) / page_size;
1229 } else {
1230 /* we got pages count value */
1231 char *eptr;
1232 pages = strtoul(str, &eptr, 10);
1233 if (*eptr != '\0')
1234 return -EINVAL;
1235 }
1236
1237 if (pages == 0 && min == 0) {
1238 /* leave number of pages at 0 */
1239 } else if (!is_power_of_2(pages)) {
1240 /* round pages up to next power of 2 */
1241 pages = roundup_pow_of_two(pages);
1242 if (!pages)
1243 return -EINVAL;
1244 pr_info("rounding mmap pages size to %lu bytes (%lu pages)\n",
1245 pages * page_size, pages);
1246 }
1247
1248 if (pages > max)
1249 return -EINVAL;
1250
1251 return pages;
1252 }
1253
1254 int __perf_evlist__parse_mmap_pages(unsigned int *mmap_pages, const char *str)
1255 {
1256 unsigned long max = UINT_MAX;
1257 long pages;
1258
1259 if (max > SIZE_MAX / page_size)
1260 max = SIZE_MAX / page_size;
1261
1262 pages = parse_pages_arg(str, 1, max);
1263 if (pages < 0) {
1264 pr_err("Invalid argument for --mmap_pages/-m\n");
1265 return -1;
1266 }
1267
1268 *mmap_pages = pages;
1269 return 0;
1270 }
1271
1272 int perf_evlist__parse_mmap_pages(const struct option *opt, const char *str,
1273 int unset __maybe_unused)
1274 {
1275 return __perf_evlist__parse_mmap_pages(opt->value, str);
1276 }
1277
1278 /**
1279 * perf_evlist__mmap_ex - Create mmaps to receive events.
1280 * @evlist: list of events
1281 * @pages: map length in pages
1282 * @overwrite: overwrite older events?
1283 * @auxtrace_pages - auxtrace map length in pages
1284 * @auxtrace_overwrite - overwrite older auxtrace data?
1285 *
1286 * If @overwrite is %false the user needs to signal event consumption using
1287 * perf_mmap__write_tail(). Using perf_evlist__mmap_read() does this
1288 * automatically.
1289 *
1290 * Similarly, if @auxtrace_overwrite is %false the user needs to signal data
1291 * consumption using auxtrace_mmap__write_tail().
1292 *
1293 * Return: %0 on success, negative error code otherwise.
1294 */
1295 int perf_evlist__mmap_ex(struct perf_evlist *evlist, unsigned int pages,
1296 bool overwrite, unsigned int auxtrace_pages,
1297 bool auxtrace_overwrite)
1298 {
1299 struct perf_evsel *evsel;
1300 const struct cpu_map *cpus = evlist->cpus;
1301 const struct thread_map *threads = evlist->threads;
1302 struct mmap_params mp = {
1303 .prot = PROT_READ | (overwrite ? 0 : PROT_WRITE),
1304 };
1305
1306 if (!evlist->mmap)
1307 evlist->mmap = perf_evlist__alloc_mmap(evlist);
1308 if (!evlist->mmap)
1309 return -ENOMEM;
1310
1311 if (evlist->pollfd.entries == NULL && perf_evlist__alloc_pollfd(evlist) < 0)
1312 return -ENOMEM;
1313
1314 evlist->overwrite = overwrite;
1315 evlist->mmap_len = perf_evlist__mmap_size(pages);
1316 pr_debug("mmap size %zuB\n", evlist->mmap_len);
1317 mp.mask = evlist->mmap_len - page_size - 1;
1318
1319 auxtrace_mmap_params__init(&mp.auxtrace_mp, evlist->mmap_len,
1320 auxtrace_pages, auxtrace_overwrite);
1321
1322 evlist__for_each_entry(evlist, evsel) {
1323 if ((evsel->attr.read_format & PERF_FORMAT_ID) &&
1324 evsel->sample_id == NULL &&
1325 perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0)
1326 return -ENOMEM;
1327 }
1328
1329 if (cpu_map__empty(cpus))
1330 return perf_evlist__mmap_per_thread(evlist, &mp);
1331
1332 return perf_evlist__mmap_per_cpu(evlist, &mp);
1333 }
1334
1335 int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages,
1336 bool overwrite)
1337 {
1338 return perf_evlist__mmap_ex(evlist, pages, overwrite, 0, false);
1339 }
1340
1341 int perf_evlist__create_maps(struct perf_evlist *evlist, struct target *target)
1342 {
1343 struct cpu_map *cpus;
1344 struct thread_map *threads;
1345
1346 threads = thread_map__new_str(target->pid, target->tid, target->uid);
1347
1348 if (!threads)
1349 return -1;
1350
1351 if (target__uses_dummy_map(target))
1352 cpus = cpu_map__dummy_new();
1353 else
1354 cpus = cpu_map__new(target->cpu_list);
1355
1356 if (!cpus)
1357 goto out_delete_threads;
1358
1359 evlist->has_user_cpus = !!target->cpu_list;
1360
1361 perf_evlist__set_maps(evlist, cpus, threads);
1362
1363 return 0;
1364
1365 out_delete_threads:
1366 thread_map__put(threads);
1367 return -1;
1368 }
1369
1370 void perf_evlist__set_maps(struct perf_evlist *evlist, struct cpu_map *cpus,
1371 struct thread_map *threads)
1372 {
1373 /*
1374 * Allow for the possibility that one or another of the maps isn't being
1375 * changed i.e. don't put it. Note we are assuming the maps that are
1376 * being applied are brand new and evlist is taking ownership of the
1377 * original reference count of 1. If that is not the case it is up to
1378 * the caller to increase the reference count.
1379 */
1380 if (cpus != evlist->cpus) {
1381 cpu_map__put(evlist->cpus);
1382 evlist->cpus = cpu_map__get(cpus);
1383 }
1384
1385 if (threads != evlist->threads) {
1386 thread_map__put(evlist->threads);
1387 evlist->threads = thread_map__get(threads);
1388 }
1389
1390 perf_evlist__propagate_maps(evlist);
1391 }
1392
1393 void __perf_evlist__set_sample_bit(struct perf_evlist *evlist,
1394 enum perf_event_sample_format bit)
1395 {
1396 struct perf_evsel *evsel;
1397
1398 evlist__for_each_entry(evlist, evsel)
1399 __perf_evsel__set_sample_bit(evsel, bit);
1400 }
1401
1402 void __perf_evlist__reset_sample_bit(struct perf_evlist *evlist,
1403 enum perf_event_sample_format bit)
1404 {
1405 struct perf_evsel *evsel;
1406
1407 evlist__for_each_entry(evlist, evsel)
1408 __perf_evsel__reset_sample_bit(evsel, bit);
1409 }
1410
1411 int perf_evlist__apply_filters(struct perf_evlist *evlist, struct perf_evsel **err_evsel)
1412 {
1413 struct perf_evsel *evsel;
1414 int err = 0;
1415 const int ncpus = cpu_map__nr(evlist->cpus),
1416 nthreads = thread_map__nr(evlist->threads);
1417
1418 evlist__for_each_entry(evlist, evsel) {
1419 if (evsel->filter == NULL)
1420 continue;
1421
1422 /*
1423 * filters only work for tracepoint event, which doesn't have cpu limit.
1424 * So evlist and evsel should always be same.
1425 */
1426 err = perf_evsel__apply_filter(evsel, ncpus, nthreads, evsel->filter);
1427 if (err) {
1428 *err_evsel = evsel;
1429 break;
1430 }
1431 }
1432
1433 return err;
1434 }
1435
1436 int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter)
1437 {
1438 struct perf_evsel *evsel;
1439 int err = 0;
1440
1441 evlist__for_each_entry(evlist, evsel) {
1442 if (evsel->attr.type != PERF_TYPE_TRACEPOINT)
1443 continue;
1444
1445 err = perf_evsel__set_filter(evsel, filter);
1446 if (err)
1447 break;
1448 }
1449
1450 return err;
1451 }
1452
1453 int perf_evlist__set_filter_pids(struct perf_evlist *evlist, size_t npids, pid_t *pids)
1454 {
1455 char *filter;
1456 int ret = -1;
1457 size_t i;
1458
1459 for (i = 0; i < npids; ++i) {
1460 if (i == 0) {
1461 if (asprintf(&filter, "common_pid != %d", pids[i]) < 0)
1462 return -1;
1463 } else {
1464 char *tmp;
1465
1466 if (asprintf(&tmp, "%s && common_pid != %d", filter, pids[i]) < 0)
1467 goto out_free;
1468
1469 free(filter);
1470 filter = tmp;
1471 }
1472 }
1473
1474 ret = perf_evlist__set_filter(evlist, filter);
1475 out_free:
1476 free(filter);
1477 return ret;
1478 }
1479
1480 int perf_evlist__set_filter_pid(struct perf_evlist *evlist, pid_t pid)
1481 {
1482 return perf_evlist__set_filter_pids(evlist, 1, &pid);
1483 }
1484
1485 bool perf_evlist__valid_sample_type(struct perf_evlist *evlist)
1486 {
1487 struct perf_evsel *pos;
1488
1489 if (evlist->nr_entries == 1)
1490 return true;
1491
1492 if (evlist->id_pos < 0 || evlist->is_pos < 0)
1493 return false;
1494
1495 evlist__for_each_entry(evlist, pos) {
1496 if (pos->id_pos != evlist->id_pos ||
1497 pos->is_pos != evlist->is_pos)
1498 return false;
1499 }
1500
1501 return true;
1502 }
1503
1504 u64 __perf_evlist__combined_sample_type(struct perf_evlist *evlist)
1505 {
1506 struct perf_evsel *evsel;
1507
1508 if (evlist->combined_sample_type)
1509 return evlist->combined_sample_type;
1510
1511 evlist__for_each_entry(evlist, evsel)
1512 evlist->combined_sample_type |= evsel->attr.sample_type;
1513
1514 return evlist->combined_sample_type;
1515 }
1516
1517 u64 perf_evlist__combined_sample_type(struct perf_evlist *evlist)
1518 {
1519 evlist->combined_sample_type = 0;
1520 return __perf_evlist__combined_sample_type(evlist);
1521 }
1522
1523 u64 perf_evlist__combined_branch_type(struct perf_evlist *evlist)
1524 {
1525 struct perf_evsel *evsel;
1526 u64 branch_type = 0;
1527
1528 evlist__for_each_entry(evlist, evsel)
1529 branch_type |= evsel->attr.branch_sample_type;
1530 return branch_type;
1531 }
1532
1533 bool perf_evlist__valid_read_format(struct perf_evlist *evlist)
1534 {
1535 struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
1536 u64 read_format = first->attr.read_format;
1537 u64 sample_type = first->attr.sample_type;
1538
1539 evlist__for_each_entry(evlist, pos) {
1540 if (read_format != pos->attr.read_format)
1541 return false;
1542 }
1543
1544 /* PERF_SAMPLE_READ imples PERF_FORMAT_ID. */
1545 if ((sample_type & PERF_SAMPLE_READ) &&
1546 !(read_format & PERF_FORMAT_ID)) {
1547 return false;
1548 }
1549
1550 return true;
1551 }
1552
1553 u64 perf_evlist__read_format(struct perf_evlist *evlist)
1554 {
1555 struct perf_evsel *first = perf_evlist__first(evlist);
1556 return first->attr.read_format;
1557 }
1558
1559 u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist)
1560 {
1561 struct perf_evsel *first = perf_evlist__first(evlist);
1562 struct perf_sample *data;
1563 u64 sample_type;
1564 u16 size = 0;
1565
1566 if (!first->attr.sample_id_all)
1567 goto out;
1568
1569 sample_type = first->attr.sample_type;
1570
1571 if (sample_type & PERF_SAMPLE_TID)
1572 size += sizeof(data->tid) * 2;
1573
1574 if (sample_type & PERF_SAMPLE_TIME)
1575 size += sizeof(data->time);
1576
1577 if (sample_type & PERF_SAMPLE_ID)
1578 size += sizeof(data->id);
1579
1580 if (sample_type & PERF_SAMPLE_STREAM_ID)
1581 size += sizeof(data->stream_id);
1582
1583 if (sample_type & PERF_SAMPLE_CPU)
1584 size += sizeof(data->cpu) * 2;
1585
1586 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1587 size += sizeof(data->id);
1588 out:
1589 return size;
1590 }
1591
1592 bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist)
1593 {
1594 struct perf_evsel *first = perf_evlist__first(evlist), *pos = first;
1595
1596 evlist__for_each_entry_continue(evlist, pos) {
1597 if (first->attr.sample_id_all != pos->attr.sample_id_all)
1598 return false;
1599 }
1600
1601 return true;
1602 }
1603
1604 bool perf_evlist__sample_id_all(struct perf_evlist *evlist)
1605 {
1606 struct perf_evsel *first = perf_evlist__first(evlist);
1607 return first->attr.sample_id_all;
1608 }
1609
1610 void perf_evlist__set_selected(struct perf_evlist *evlist,
1611 struct perf_evsel *evsel)
1612 {
1613 evlist->selected = evsel;
1614 }
1615
1616 void perf_evlist__close(struct perf_evlist *evlist)
1617 {
1618 struct perf_evsel *evsel;
1619 int ncpus = cpu_map__nr(evlist->cpus);
1620 int nthreads = thread_map__nr(evlist->threads);
1621 int n;
1622
1623 evlist__for_each_entry_reverse(evlist, evsel) {
1624 n = evsel->cpus ? evsel->cpus->nr : ncpus;
1625 perf_evsel__close(evsel, n, nthreads);
1626 }
1627 }
1628
1629 static int perf_evlist__create_syswide_maps(struct perf_evlist *evlist)
1630 {
1631 struct cpu_map *cpus;
1632 struct thread_map *threads;
1633 int err = -ENOMEM;
1634
1635 /*
1636 * Try reading /sys/devices/system/cpu/online to get
1637 * an all cpus map.
1638 *
1639 * FIXME: -ENOMEM is the best we can do here, the cpu_map
1640 * code needs an overhaul to properly forward the
1641 * error, and we may not want to do that fallback to a
1642 * default cpu identity map :-\
1643 */
1644 cpus = cpu_map__new(NULL);
1645 if (!cpus)
1646 goto out;
1647
1648 threads = thread_map__new_dummy();
1649 if (!threads)
1650 goto out_put;
1651
1652 perf_evlist__set_maps(evlist, cpus, threads);
1653 out:
1654 return err;
1655 out_put:
1656 cpu_map__put(cpus);
1657 goto out;
1658 }
1659
1660 int perf_evlist__open(struct perf_evlist *evlist)
1661 {
1662 struct perf_evsel *evsel;
1663 int err;
1664
1665 /*
1666 * Default: one fd per CPU, all threads, aka systemwide
1667 * as sys_perf_event_open(cpu = -1, thread = -1) is EINVAL
1668 */
1669 if (evlist->threads == NULL && evlist->cpus == NULL) {
1670 err = perf_evlist__create_syswide_maps(evlist);
1671 if (err < 0)
1672 goto out_err;
1673 }
1674
1675 perf_evlist__update_id_pos(evlist);
1676
1677 evlist__for_each_entry(evlist, evsel) {
1678 err = perf_evsel__open(evsel, evsel->cpus, evsel->threads);
1679 if (err < 0)
1680 goto out_err;
1681 }
1682
1683 return 0;
1684 out_err:
1685 perf_evlist__close(evlist);
1686 errno = -err;
1687 return err;
1688 }
1689
1690 int perf_evlist__prepare_workload(struct perf_evlist *evlist, struct target *target,
1691 const char *argv[], bool pipe_output,
1692 void (*exec_error)(int signo, siginfo_t *info, void *ucontext))
1693 {
1694 int child_ready_pipe[2], go_pipe[2];
1695 char bf;
1696
1697 if (pipe(child_ready_pipe) < 0) {
1698 perror("failed to create 'ready' pipe");
1699 return -1;
1700 }
1701
1702 if (pipe(go_pipe) < 0) {
1703 perror("failed to create 'go' pipe");
1704 goto out_close_ready_pipe;
1705 }
1706
1707 evlist->workload.pid = fork();
1708 if (evlist->workload.pid < 0) {
1709 perror("failed to fork");
1710 goto out_close_pipes;
1711 }
1712
1713 if (!evlist->workload.pid) {
1714 int ret;
1715
1716 if (pipe_output)
1717 dup2(2, 1);
1718
1719 signal(SIGTERM, SIG_DFL);
1720
1721 close(child_ready_pipe[0]);
1722 close(go_pipe[1]);
1723 fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC);
1724
1725 /*
1726 * Tell the parent we're ready to go
1727 */
1728 close(child_ready_pipe[1]);
1729
1730 /*
1731 * Wait until the parent tells us to go.
1732 */
1733 ret = read(go_pipe[0], &bf, 1);
1734 /*
1735 * The parent will ask for the execvp() to be performed by
1736 * writing exactly one byte, in workload.cork_fd, usually via
1737 * perf_evlist__start_workload().
1738 *
1739 * For cancelling the workload without actually running it,
1740 * the parent will just close workload.cork_fd, without writing
1741 * anything, i.e. read will return zero and we just exit()
1742 * here.
1743 */
1744 if (ret != 1) {
1745 if (ret == -1)
1746 perror("unable to read pipe");
1747 exit(ret);
1748 }
1749
1750 execvp(argv[0], (char **)argv);
1751
1752 if (exec_error) {
1753 union sigval val;
1754
1755 val.sival_int = errno;
1756 if (sigqueue(getppid(), SIGUSR1, val))
1757 perror(argv[0]);
1758 } else
1759 perror(argv[0]);
1760 exit(-1);
1761 }
1762
1763 if (exec_error) {
1764 struct sigaction act = {
1765 .sa_flags = SA_SIGINFO,
1766 .sa_sigaction = exec_error,
1767 };
1768 sigaction(SIGUSR1, &act, NULL);
1769 }
1770
1771 if (target__none(target)) {
1772 if (evlist->threads == NULL) {
1773 fprintf(stderr, "FATAL: evlist->threads need to be set at this point (%s:%d).\n",
1774 __func__, __LINE__);
1775 goto out_close_pipes;
1776 }
1777 thread_map__set_pid(evlist->threads, 0, evlist->workload.pid);
1778 }
1779
1780 close(child_ready_pipe[1]);
1781 close(go_pipe[0]);
1782 /*
1783 * wait for child to settle
1784 */
1785 if (read(child_ready_pipe[0], &bf, 1) == -1) {
1786 perror("unable to read pipe");
1787 goto out_close_pipes;
1788 }
1789
1790 fcntl(go_pipe[1], F_SETFD, FD_CLOEXEC);
1791 evlist->workload.cork_fd = go_pipe[1];
1792 close(child_ready_pipe[0]);
1793 return 0;
1794
1795 out_close_pipes:
1796 close(go_pipe[0]);
1797 close(go_pipe[1]);
1798 out_close_ready_pipe:
1799 close(child_ready_pipe[0]);
1800 close(child_ready_pipe[1]);
1801 return -1;
1802 }
1803
1804 int perf_evlist__start_workload(struct perf_evlist *evlist)
1805 {
1806 if (evlist->workload.cork_fd > 0) {
1807 char bf = 0;
1808 int ret;
1809 /*
1810 * Remove the cork, let it rip!
1811 */
1812 ret = write(evlist->workload.cork_fd, &bf, 1);
1813 if (ret < 0)
1814 perror("enable to write to pipe");
1815
1816 close(evlist->workload.cork_fd);
1817 return ret;
1818 }
1819
1820 return 0;
1821 }
1822
1823 int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event,
1824 struct perf_sample *sample)
1825 {
1826 struct perf_evsel *evsel = perf_evlist__event2evsel(evlist, event);
1827
1828 if (!evsel)
1829 return -EFAULT;
1830 return perf_evsel__parse_sample(evsel, event, sample);
1831 }
1832
1833 size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp)
1834 {
1835 struct perf_evsel *evsel;
1836 size_t printed = 0;
1837
1838 evlist__for_each_entry(evlist, evsel) {
1839 printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "",
1840 perf_evsel__name(evsel));
1841 }
1842
1843 return printed + fprintf(fp, "\n");
1844 }
1845
1846 int perf_evlist__strerror_open(struct perf_evlist *evlist,
1847 int err, char *buf, size_t size)
1848 {
1849 int printed, value;
1850 char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
1851
1852 switch (err) {
1853 case EACCES:
1854 case EPERM:
1855 printed = scnprintf(buf, size,
1856 "Error:\t%s.\n"
1857 "Hint:\tCheck /proc/sys/kernel/perf_event_paranoid setting.", emsg);
1858
1859 value = perf_event_paranoid();
1860
1861 printed += scnprintf(buf + printed, size - printed, "\nHint:\t");
1862
1863 if (value >= 2) {
1864 printed += scnprintf(buf + printed, size - printed,
1865 "For your workloads it needs to be <= 1\nHint:\t");
1866 }
1867 printed += scnprintf(buf + printed, size - printed,
1868 "For system wide tracing it needs to be set to -1.\n");
1869
1870 printed += scnprintf(buf + printed, size - printed,
1871 "Hint:\tTry: 'sudo sh -c \"echo -1 > /proc/sys/kernel/perf_event_paranoid\"'\n"
1872 "Hint:\tThe current value is %d.", value);
1873 break;
1874 case EINVAL: {
1875 struct perf_evsel *first = perf_evlist__first(evlist);
1876 int max_freq;
1877
1878 if (sysctl__read_int("kernel/perf_event_max_sample_rate", &max_freq) < 0)
1879 goto out_default;
1880
1881 if (first->attr.sample_freq < (u64)max_freq)
1882 goto out_default;
1883
1884 printed = scnprintf(buf, size,
1885 "Error:\t%s.\n"
1886 "Hint:\tCheck /proc/sys/kernel/perf_event_max_sample_rate.\n"
1887 "Hint:\tThe current value is %d and %" PRIu64 " is being requested.",
1888 emsg, max_freq, first->attr.sample_freq);
1889 break;
1890 }
1891 default:
1892 out_default:
1893 scnprintf(buf, size, "%s", emsg);
1894 break;
1895 }
1896
1897 return 0;
1898 }
1899
1900 int perf_evlist__strerror_mmap(struct perf_evlist *evlist, int err, char *buf, size_t size)
1901 {
1902 char sbuf[STRERR_BUFSIZE], *emsg = str_error_r(err, sbuf, sizeof(sbuf));
1903 int pages_attempted = evlist->mmap_len / 1024, pages_max_per_user, printed = 0;
1904
1905 switch (err) {
1906 case EPERM:
1907 sysctl__read_int("kernel/perf_event_mlock_kb", &pages_max_per_user);
1908 printed += scnprintf(buf + printed, size - printed,
1909 "Error:\t%s.\n"
1910 "Hint:\tCheck /proc/sys/kernel/perf_event_mlock_kb (%d kB) setting.\n"
1911 "Hint:\tTried using %zd kB.\n",
1912 emsg, pages_max_per_user, pages_attempted);
1913
1914 if (pages_attempted >= pages_max_per_user) {
1915 printed += scnprintf(buf + printed, size - printed,
1916 "Hint:\tTry 'sudo sh -c \"echo %d > /proc/sys/kernel/perf_event_mlock_kb\"', or\n",
1917 pages_max_per_user + pages_attempted);
1918 }
1919
1920 printed += scnprintf(buf + printed, size - printed,
1921 "Hint:\tTry using a smaller -m/--mmap-pages value.");
1922 break;
1923 default:
1924 scnprintf(buf, size, "%s", emsg);
1925 break;
1926 }
1927
1928 return 0;
1929 }
1930
1931 void perf_evlist__to_front(struct perf_evlist *evlist,
1932 struct perf_evsel *move_evsel)
1933 {
1934 struct perf_evsel *evsel, *n;
1935 LIST_HEAD(move);
1936
1937 if (move_evsel == perf_evlist__first(evlist))
1938 return;
1939
1940 evlist__for_each_entry_safe(evlist, n, evsel) {
1941 if (evsel->leader == move_evsel->leader)
1942 list_move_tail(&evsel->node, &move);
1943 }
1944
1945 list_splice(&move, &evlist->entries);
1946 }
1947
1948 void perf_evlist__set_tracking_event(struct perf_evlist *evlist,
1949 struct perf_evsel *tracking_evsel)
1950 {
1951 struct perf_evsel *evsel;
1952
1953 if (tracking_evsel->tracking)
1954 return;
1955
1956 evlist__for_each_entry(evlist, evsel) {
1957 if (evsel != tracking_evsel)
1958 evsel->tracking = false;
1959 }
1960
1961 tracking_evsel->tracking = true;
1962 }
1963
1964 struct perf_evsel *
1965 perf_evlist__find_evsel_by_str(struct perf_evlist *evlist,
1966 const char *str)
1967 {
1968 struct perf_evsel *evsel;
1969
1970 evlist__for_each_entry(evlist, evsel) {
1971 if (!evsel->name)
1972 continue;
1973 if (strcmp(str, evsel->name) == 0)
1974 return evsel;
1975 }
1976
1977 return NULL;
1978 }
1979
1980 void perf_evlist__toggle_bkw_mmap(struct perf_evlist *evlist,
1981 enum bkw_mmap_state state)
1982 {
1983 enum bkw_mmap_state old_state = evlist->bkw_mmap_state;
1984 enum action {
1985 NONE,
1986 PAUSE,
1987 RESUME,
1988 } action = NONE;
1989
1990 if (!evlist->backward_mmap)
1991 return;
1992
1993 switch (old_state) {
1994 case BKW_MMAP_NOTREADY: {
1995 if (state != BKW_MMAP_RUNNING)
1996 goto state_err;;
1997 break;
1998 }
1999 case BKW_MMAP_RUNNING: {
2000 if (state != BKW_MMAP_DATA_PENDING)
2001 goto state_err;
2002 action = PAUSE;
2003 break;
2004 }
2005 case BKW_MMAP_DATA_PENDING: {
2006 if (state != BKW_MMAP_EMPTY)
2007 goto state_err;
2008 break;
2009 }
2010 case BKW_MMAP_EMPTY: {
2011 if (state != BKW_MMAP_RUNNING)
2012 goto state_err;
2013 action = RESUME;
2014 break;
2015 }
2016 default:
2017 WARN_ONCE(1, "Shouldn't get there\n");
2018 }
2019
2020 evlist->bkw_mmap_state = state;
2021
2022 switch (action) {
2023 case PAUSE:
2024 perf_evlist__pause(evlist);
2025 break;
2026 case RESUME:
2027 perf_evlist__resume(evlist);
2028 break;
2029 case NONE:
2030 default:
2031 break;
2032 }
2033
2034 state_err:
2035 return;
2036 }