]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - tools/perf/util/evsel.c
Merge tag 'jfs-3.12' of git://github.com/kleikamp/linux-shaggy
[mirror_ubuntu-eoan-kernel.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <lk/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "util.h"
21 #include "cpumap.h"
22 #include "thread_map.h"
23 #include "target.h"
24 #include "perf_regs.h"
25 #include "debug.h"
26
27 static struct {
28 bool sample_id_all;
29 bool exclude_guest;
30 bool mmap2;
31 } perf_missing_features;
32
33 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
34
35 int __perf_evsel__sample_size(u64 sample_type)
36 {
37 u64 mask = sample_type & PERF_SAMPLE_MASK;
38 int size = 0;
39 int i;
40
41 for (i = 0; i < 64; i++) {
42 if (mask & (1ULL << i))
43 size++;
44 }
45
46 size *= sizeof(u64);
47
48 return size;
49 }
50
51 /**
52 * __perf_evsel__calc_id_pos - calculate id_pos.
53 * @sample_type: sample type
54 *
55 * This function returns the position of the event id (PERF_SAMPLE_ID or
56 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
57 * sample_event.
58 */
59 static int __perf_evsel__calc_id_pos(u64 sample_type)
60 {
61 int idx = 0;
62
63 if (sample_type & PERF_SAMPLE_IDENTIFIER)
64 return 0;
65
66 if (!(sample_type & PERF_SAMPLE_ID))
67 return -1;
68
69 if (sample_type & PERF_SAMPLE_IP)
70 idx += 1;
71
72 if (sample_type & PERF_SAMPLE_TID)
73 idx += 1;
74
75 if (sample_type & PERF_SAMPLE_TIME)
76 idx += 1;
77
78 if (sample_type & PERF_SAMPLE_ADDR)
79 idx += 1;
80
81 return idx;
82 }
83
84 /**
85 * __perf_evsel__calc_is_pos - calculate is_pos.
86 * @sample_type: sample type
87 *
88 * This function returns the position (counting backwards) of the event id
89 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
90 * sample_id_all is used there is an id sample appended to non-sample events.
91 */
92 static int __perf_evsel__calc_is_pos(u64 sample_type)
93 {
94 int idx = 1;
95
96 if (sample_type & PERF_SAMPLE_IDENTIFIER)
97 return 1;
98
99 if (!(sample_type & PERF_SAMPLE_ID))
100 return -1;
101
102 if (sample_type & PERF_SAMPLE_CPU)
103 idx += 1;
104
105 if (sample_type & PERF_SAMPLE_STREAM_ID)
106 idx += 1;
107
108 return idx;
109 }
110
111 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
112 {
113 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
114 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
115 }
116
117 void hists__init(struct hists *hists)
118 {
119 memset(hists, 0, sizeof(*hists));
120 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
121 hists->entries_in = &hists->entries_in_array[0];
122 hists->entries_collapsed = RB_ROOT;
123 hists->entries = RB_ROOT;
124 pthread_mutex_init(&hists->lock, NULL);
125 }
126
127 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
128 enum perf_event_sample_format bit)
129 {
130 if (!(evsel->attr.sample_type & bit)) {
131 evsel->attr.sample_type |= bit;
132 evsel->sample_size += sizeof(u64);
133 perf_evsel__calc_id_pos(evsel);
134 }
135 }
136
137 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
138 enum perf_event_sample_format bit)
139 {
140 if (evsel->attr.sample_type & bit) {
141 evsel->attr.sample_type &= ~bit;
142 evsel->sample_size -= sizeof(u64);
143 perf_evsel__calc_id_pos(evsel);
144 }
145 }
146
147 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
148 bool can_sample_identifier)
149 {
150 if (can_sample_identifier) {
151 perf_evsel__reset_sample_bit(evsel, ID);
152 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
153 } else {
154 perf_evsel__set_sample_bit(evsel, ID);
155 }
156 evsel->attr.read_format |= PERF_FORMAT_ID;
157 }
158
159 void perf_evsel__init(struct perf_evsel *evsel,
160 struct perf_event_attr *attr, int idx)
161 {
162 evsel->idx = idx;
163 evsel->attr = *attr;
164 evsel->leader = evsel;
165 INIT_LIST_HEAD(&evsel->node);
166 hists__init(&evsel->hists);
167 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
168 perf_evsel__calc_id_pos(evsel);
169 }
170
171 struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
172 {
173 struct perf_evsel *evsel = zalloc(sizeof(*evsel));
174
175 if (evsel != NULL)
176 perf_evsel__init(evsel, attr, idx);
177
178 return evsel;
179 }
180
181 struct event_format *event_format__new(const char *sys, const char *name)
182 {
183 int fd, n;
184 char *filename;
185 void *bf = NULL, *nbf;
186 size_t size = 0, alloc_size = 0;
187 struct event_format *format = NULL;
188
189 if (asprintf(&filename, "%s/%s/%s/format", tracing_events_path, sys, name) < 0)
190 goto out;
191
192 fd = open(filename, O_RDONLY);
193 if (fd < 0)
194 goto out_free_filename;
195
196 do {
197 if (size == alloc_size) {
198 alloc_size += BUFSIZ;
199 nbf = realloc(bf, alloc_size);
200 if (nbf == NULL)
201 goto out_free_bf;
202 bf = nbf;
203 }
204
205 n = read(fd, bf + size, alloc_size - size);
206 if (n < 0)
207 goto out_free_bf;
208 size += n;
209 } while (n > 0);
210
211 pevent_parse_format(&format, bf, size, sys);
212
213 out_free_bf:
214 free(bf);
215 close(fd);
216 out_free_filename:
217 free(filename);
218 out:
219 return format;
220 }
221
222 struct perf_evsel *perf_evsel__newtp(const char *sys, const char *name, int idx)
223 {
224 struct perf_evsel *evsel = zalloc(sizeof(*evsel));
225
226 if (evsel != NULL) {
227 struct perf_event_attr attr = {
228 .type = PERF_TYPE_TRACEPOINT,
229 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
230 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
231 };
232
233 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
234 goto out_free;
235
236 evsel->tp_format = event_format__new(sys, name);
237 if (evsel->tp_format == NULL)
238 goto out_free;
239
240 event_attr_init(&attr);
241 attr.config = evsel->tp_format->id;
242 attr.sample_period = 1;
243 perf_evsel__init(evsel, &attr, idx);
244 }
245
246 return evsel;
247
248 out_free:
249 free(evsel->name);
250 free(evsel);
251 return NULL;
252 }
253
254 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
255 "cycles",
256 "instructions",
257 "cache-references",
258 "cache-misses",
259 "branches",
260 "branch-misses",
261 "bus-cycles",
262 "stalled-cycles-frontend",
263 "stalled-cycles-backend",
264 "ref-cycles",
265 };
266
267 static const char *__perf_evsel__hw_name(u64 config)
268 {
269 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
270 return perf_evsel__hw_names[config];
271
272 return "unknown-hardware";
273 }
274
275 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
276 {
277 int colon = 0, r = 0;
278 struct perf_event_attr *attr = &evsel->attr;
279 bool exclude_guest_default = false;
280
281 #define MOD_PRINT(context, mod) do { \
282 if (!attr->exclude_##context) { \
283 if (!colon) colon = ++r; \
284 r += scnprintf(bf + r, size - r, "%c", mod); \
285 } } while(0)
286
287 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
288 MOD_PRINT(kernel, 'k');
289 MOD_PRINT(user, 'u');
290 MOD_PRINT(hv, 'h');
291 exclude_guest_default = true;
292 }
293
294 if (attr->precise_ip) {
295 if (!colon)
296 colon = ++r;
297 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
298 exclude_guest_default = true;
299 }
300
301 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
302 MOD_PRINT(host, 'H');
303 MOD_PRINT(guest, 'G');
304 }
305 #undef MOD_PRINT
306 if (colon)
307 bf[colon - 1] = ':';
308 return r;
309 }
310
311 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
312 {
313 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
314 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
315 }
316
317 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
318 "cpu-clock",
319 "task-clock",
320 "page-faults",
321 "context-switches",
322 "cpu-migrations",
323 "minor-faults",
324 "major-faults",
325 "alignment-faults",
326 "emulation-faults",
327 "dummy",
328 };
329
330 static const char *__perf_evsel__sw_name(u64 config)
331 {
332 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
333 return perf_evsel__sw_names[config];
334 return "unknown-software";
335 }
336
337 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
338 {
339 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
340 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
341 }
342
343 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
344 {
345 int r;
346
347 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
348
349 if (type & HW_BREAKPOINT_R)
350 r += scnprintf(bf + r, size - r, "r");
351
352 if (type & HW_BREAKPOINT_W)
353 r += scnprintf(bf + r, size - r, "w");
354
355 if (type & HW_BREAKPOINT_X)
356 r += scnprintf(bf + r, size - r, "x");
357
358 return r;
359 }
360
361 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
362 {
363 struct perf_event_attr *attr = &evsel->attr;
364 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
365 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
366 }
367
368 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
369 [PERF_EVSEL__MAX_ALIASES] = {
370 { "L1-dcache", "l1-d", "l1d", "L1-data", },
371 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
372 { "LLC", "L2", },
373 { "dTLB", "d-tlb", "Data-TLB", },
374 { "iTLB", "i-tlb", "Instruction-TLB", },
375 { "branch", "branches", "bpu", "btb", "bpc", },
376 { "node", },
377 };
378
379 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
380 [PERF_EVSEL__MAX_ALIASES] = {
381 { "load", "loads", "read", },
382 { "store", "stores", "write", },
383 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
384 };
385
386 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
387 [PERF_EVSEL__MAX_ALIASES] = {
388 { "refs", "Reference", "ops", "access", },
389 { "misses", "miss", },
390 };
391
392 #define C(x) PERF_COUNT_HW_CACHE_##x
393 #define CACHE_READ (1 << C(OP_READ))
394 #define CACHE_WRITE (1 << C(OP_WRITE))
395 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
396 #define COP(x) (1 << x)
397
398 /*
399 * cache operartion stat
400 * L1I : Read and prefetch only
401 * ITLB and BPU : Read-only
402 */
403 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
404 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
405 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
406 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
408 [C(ITLB)] = (CACHE_READ),
409 [C(BPU)] = (CACHE_READ),
410 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
411 };
412
413 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
414 {
415 if (perf_evsel__hw_cache_stat[type] & COP(op))
416 return true; /* valid */
417 else
418 return false; /* invalid */
419 }
420
421 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
422 char *bf, size_t size)
423 {
424 if (result) {
425 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
426 perf_evsel__hw_cache_op[op][0],
427 perf_evsel__hw_cache_result[result][0]);
428 }
429
430 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
431 perf_evsel__hw_cache_op[op][1]);
432 }
433
434 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
435 {
436 u8 op, result, type = (config >> 0) & 0xff;
437 const char *err = "unknown-ext-hardware-cache-type";
438
439 if (type > PERF_COUNT_HW_CACHE_MAX)
440 goto out_err;
441
442 op = (config >> 8) & 0xff;
443 err = "unknown-ext-hardware-cache-op";
444 if (op > PERF_COUNT_HW_CACHE_OP_MAX)
445 goto out_err;
446
447 result = (config >> 16) & 0xff;
448 err = "unknown-ext-hardware-cache-result";
449 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
450 goto out_err;
451
452 err = "invalid-cache";
453 if (!perf_evsel__is_cache_op_valid(type, op))
454 goto out_err;
455
456 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
457 out_err:
458 return scnprintf(bf, size, "%s", err);
459 }
460
461 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
462 {
463 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
464 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
465 }
466
467 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
468 {
469 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
470 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
471 }
472
473 const char *perf_evsel__name(struct perf_evsel *evsel)
474 {
475 char bf[128];
476
477 if (evsel->name)
478 return evsel->name;
479
480 switch (evsel->attr.type) {
481 case PERF_TYPE_RAW:
482 perf_evsel__raw_name(evsel, bf, sizeof(bf));
483 break;
484
485 case PERF_TYPE_HARDWARE:
486 perf_evsel__hw_name(evsel, bf, sizeof(bf));
487 break;
488
489 case PERF_TYPE_HW_CACHE:
490 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
491 break;
492
493 case PERF_TYPE_SOFTWARE:
494 perf_evsel__sw_name(evsel, bf, sizeof(bf));
495 break;
496
497 case PERF_TYPE_TRACEPOINT:
498 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
499 break;
500
501 case PERF_TYPE_BREAKPOINT:
502 perf_evsel__bp_name(evsel, bf, sizeof(bf));
503 break;
504
505 default:
506 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
507 evsel->attr.type);
508 break;
509 }
510
511 evsel->name = strdup(bf);
512
513 return evsel->name ?: "unknown";
514 }
515
516 const char *perf_evsel__group_name(struct perf_evsel *evsel)
517 {
518 return evsel->group_name ?: "anon group";
519 }
520
521 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
522 {
523 int ret;
524 struct perf_evsel *pos;
525 const char *group_name = perf_evsel__group_name(evsel);
526
527 ret = scnprintf(buf, size, "%s", group_name);
528
529 ret += scnprintf(buf + ret, size - ret, " { %s",
530 perf_evsel__name(evsel));
531
532 for_each_group_member(pos, evsel)
533 ret += scnprintf(buf + ret, size - ret, ", %s",
534 perf_evsel__name(pos));
535
536 ret += scnprintf(buf + ret, size - ret, " }");
537
538 return ret;
539 }
540
541 /*
542 * The enable_on_exec/disabled value strategy:
543 *
544 * 1) For any type of traced program:
545 * - all independent events and group leaders are disabled
546 * - all group members are enabled
547 *
548 * Group members are ruled by group leaders. They need to
549 * be enabled, because the group scheduling relies on that.
550 *
551 * 2) For traced programs executed by perf:
552 * - all independent events and group leaders have
553 * enable_on_exec set
554 * - we don't specifically enable or disable any event during
555 * the record command
556 *
557 * Independent events and group leaders are initially disabled
558 * and get enabled by exec. Group members are ruled by group
559 * leaders as stated in 1).
560 *
561 * 3) For traced programs attached by perf (pid/tid):
562 * - we specifically enable or disable all events during
563 * the record command
564 *
565 * When attaching events to already running traced we
566 * enable/disable events specifically, as there's no
567 * initial traced exec call.
568 */
569 void perf_evsel__config(struct perf_evsel *evsel,
570 struct perf_record_opts *opts)
571 {
572 struct perf_evsel *leader = evsel->leader;
573 struct perf_event_attr *attr = &evsel->attr;
574 int track = !evsel->idx; /* only the first counter needs these */
575
576 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
577 attr->inherit = !opts->no_inherit;
578
579 perf_evsel__set_sample_bit(evsel, IP);
580 perf_evsel__set_sample_bit(evsel, TID);
581
582 if (evsel->sample_read) {
583 perf_evsel__set_sample_bit(evsel, READ);
584
585 /*
586 * We need ID even in case of single event, because
587 * PERF_SAMPLE_READ process ID specific data.
588 */
589 perf_evsel__set_sample_id(evsel, false);
590
591 /*
592 * Apply group format only if we belong to group
593 * with more than one members.
594 */
595 if (leader->nr_members > 1) {
596 attr->read_format |= PERF_FORMAT_GROUP;
597 attr->inherit = 0;
598 }
599 }
600
601 /*
602 * We default some events to a 1 default interval. But keep
603 * it a weak assumption overridable by the user.
604 */
605 if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
606 opts->user_interval != ULLONG_MAX)) {
607 if (opts->freq) {
608 perf_evsel__set_sample_bit(evsel, PERIOD);
609 attr->freq = 1;
610 attr->sample_freq = opts->freq;
611 } else {
612 attr->sample_period = opts->default_interval;
613 }
614 }
615
616 /*
617 * Disable sampling for all group members other
618 * than leader in case leader 'leads' the sampling.
619 */
620 if ((leader != evsel) && leader->sample_read) {
621 attr->sample_freq = 0;
622 attr->sample_period = 0;
623 }
624
625 if (opts->no_samples)
626 attr->sample_freq = 0;
627
628 if (opts->inherit_stat)
629 attr->inherit_stat = 1;
630
631 if (opts->sample_address) {
632 perf_evsel__set_sample_bit(evsel, ADDR);
633 attr->mmap_data = track;
634 }
635
636 if (opts->call_graph) {
637 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
638
639 if (opts->call_graph == CALLCHAIN_DWARF) {
640 perf_evsel__set_sample_bit(evsel, REGS_USER);
641 perf_evsel__set_sample_bit(evsel, STACK_USER);
642 attr->sample_regs_user = PERF_REGS_MASK;
643 attr->sample_stack_user = opts->stack_dump_size;
644 attr->exclude_callchain_user = 1;
645 }
646 }
647
648 if (perf_target__has_cpu(&opts->target))
649 perf_evsel__set_sample_bit(evsel, CPU);
650
651 if (opts->period)
652 perf_evsel__set_sample_bit(evsel, PERIOD);
653
654 if (!perf_missing_features.sample_id_all &&
655 (opts->sample_time || !opts->no_inherit ||
656 perf_target__has_cpu(&opts->target)))
657 perf_evsel__set_sample_bit(evsel, TIME);
658
659 if (opts->raw_samples) {
660 perf_evsel__set_sample_bit(evsel, TIME);
661 perf_evsel__set_sample_bit(evsel, RAW);
662 perf_evsel__set_sample_bit(evsel, CPU);
663 }
664
665 if (opts->sample_address)
666 attr->sample_type |= PERF_SAMPLE_DATA_SRC;
667
668 if (opts->no_delay) {
669 attr->watermark = 0;
670 attr->wakeup_events = 1;
671 }
672 if (opts->branch_stack) {
673 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
674 attr->branch_sample_type = opts->branch_stack;
675 }
676
677 if (opts->sample_weight)
678 attr->sample_type |= PERF_SAMPLE_WEIGHT;
679
680 attr->mmap = track;
681 attr->mmap2 = track && !perf_missing_features.mmap2;
682 attr->comm = track;
683
684 /*
685 * XXX see the function comment above
686 *
687 * Disabling only independent events or group leaders,
688 * keeping group members enabled.
689 */
690 if (perf_evsel__is_group_leader(evsel))
691 attr->disabled = 1;
692
693 /*
694 * Setting enable_on_exec for independent events and
695 * group leaders for traced executed by perf.
696 */
697 if (perf_target__none(&opts->target) && perf_evsel__is_group_leader(evsel))
698 attr->enable_on_exec = 1;
699 }
700
701 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
702 {
703 int cpu, thread;
704 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
705
706 if (evsel->fd) {
707 for (cpu = 0; cpu < ncpus; cpu++) {
708 for (thread = 0; thread < nthreads; thread++) {
709 FD(evsel, cpu, thread) = -1;
710 }
711 }
712 }
713
714 return evsel->fd != NULL ? 0 : -ENOMEM;
715 }
716
717 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
718 int ioc, void *arg)
719 {
720 int cpu, thread;
721
722 for (cpu = 0; cpu < ncpus; cpu++) {
723 for (thread = 0; thread < nthreads; thread++) {
724 int fd = FD(evsel, cpu, thread),
725 err = ioctl(fd, ioc, arg);
726
727 if (err)
728 return err;
729 }
730 }
731
732 return 0;
733 }
734
735 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
736 const char *filter)
737 {
738 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
739 PERF_EVENT_IOC_SET_FILTER,
740 (void *)filter);
741 }
742
743 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
744 {
745 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
746 PERF_EVENT_IOC_ENABLE,
747 0);
748 }
749
750 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
751 {
752 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
753 if (evsel->sample_id == NULL)
754 return -ENOMEM;
755
756 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
757 if (evsel->id == NULL) {
758 xyarray__delete(evsel->sample_id);
759 evsel->sample_id = NULL;
760 return -ENOMEM;
761 }
762
763 return 0;
764 }
765
766 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
767 {
768 memset(evsel->counts, 0, (sizeof(*evsel->counts) +
769 (ncpus * sizeof(struct perf_counts_values))));
770 }
771
772 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
773 {
774 evsel->counts = zalloc((sizeof(*evsel->counts) +
775 (ncpus * sizeof(struct perf_counts_values))));
776 return evsel->counts != NULL ? 0 : -ENOMEM;
777 }
778
779 void perf_evsel__free_fd(struct perf_evsel *evsel)
780 {
781 xyarray__delete(evsel->fd);
782 evsel->fd = NULL;
783 }
784
785 void perf_evsel__free_id(struct perf_evsel *evsel)
786 {
787 xyarray__delete(evsel->sample_id);
788 evsel->sample_id = NULL;
789 free(evsel->id);
790 evsel->id = NULL;
791 }
792
793 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
794 {
795 int cpu, thread;
796
797 for (cpu = 0; cpu < ncpus; cpu++)
798 for (thread = 0; thread < nthreads; ++thread) {
799 close(FD(evsel, cpu, thread));
800 FD(evsel, cpu, thread) = -1;
801 }
802 }
803
804 void perf_evsel__free_counts(struct perf_evsel *evsel)
805 {
806 free(evsel->counts);
807 }
808
809 void perf_evsel__exit(struct perf_evsel *evsel)
810 {
811 assert(list_empty(&evsel->node));
812 perf_evsel__free_fd(evsel);
813 perf_evsel__free_id(evsel);
814 }
815
816 void perf_evsel__delete(struct perf_evsel *evsel)
817 {
818 perf_evsel__exit(evsel);
819 close_cgroup(evsel->cgrp);
820 free(evsel->group_name);
821 if (evsel->tp_format)
822 pevent_free_format(evsel->tp_format);
823 free(evsel->name);
824 free(evsel);
825 }
826
827 static inline void compute_deltas(struct perf_evsel *evsel,
828 int cpu,
829 struct perf_counts_values *count)
830 {
831 struct perf_counts_values tmp;
832
833 if (!evsel->prev_raw_counts)
834 return;
835
836 if (cpu == -1) {
837 tmp = evsel->prev_raw_counts->aggr;
838 evsel->prev_raw_counts->aggr = *count;
839 } else {
840 tmp = evsel->prev_raw_counts->cpu[cpu];
841 evsel->prev_raw_counts->cpu[cpu] = *count;
842 }
843
844 count->val = count->val - tmp.val;
845 count->ena = count->ena - tmp.ena;
846 count->run = count->run - tmp.run;
847 }
848
849 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
850 int cpu, int thread, bool scale)
851 {
852 struct perf_counts_values count;
853 size_t nv = scale ? 3 : 1;
854
855 if (FD(evsel, cpu, thread) < 0)
856 return -EINVAL;
857
858 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
859 return -ENOMEM;
860
861 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
862 return -errno;
863
864 compute_deltas(evsel, cpu, &count);
865
866 if (scale) {
867 if (count.run == 0)
868 count.val = 0;
869 else if (count.run < count.ena)
870 count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
871 } else
872 count.ena = count.run = 0;
873
874 evsel->counts->cpu[cpu] = count;
875 return 0;
876 }
877
878 int __perf_evsel__read(struct perf_evsel *evsel,
879 int ncpus, int nthreads, bool scale)
880 {
881 size_t nv = scale ? 3 : 1;
882 int cpu, thread;
883 struct perf_counts_values *aggr = &evsel->counts->aggr, count;
884
885 aggr->val = aggr->ena = aggr->run = 0;
886
887 for (cpu = 0; cpu < ncpus; cpu++) {
888 for (thread = 0; thread < nthreads; thread++) {
889 if (FD(evsel, cpu, thread) < 0)
890 continue;
891
892 if (readn(FD(evsel, cpu, thread),
893 &count, nv * sizeof(u64)) < 0)
894 return -errno;
895
896 aggr->val += count.val;
897 if (scale) {
898 aggr->ena += count.ena;
899 aggr->run += count.run;
900 }
901 }
902 }
903
904 compute_deltas(evsel, -1, aggr);
905
906 evsel->counts->scaled = 0;
907 if (scale) {
908 if (aggr->run == 0) {
909 evsel->counts->scaled = -1;
910 aggr->val = 0;
911 return 0;
912 }
913
914 if (aggr->run < aggr->ena) {
915 evsel->counts->scaled = 1;
916 aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
917 }
918 } else
919 aggr->ena = aggr->run = 0;
920
921 return 0;
922 }
923
924 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
925 {
926 struct perf_evsel *leader = evsel->leader;
927 int fd;
928
929 if (perf_evsel__is_group_leader(evsel))
930 return -1;
931
932 /*
933 * Leader must be already processed/open,
934 * if not it's a bug.
935 */
936 BUG_ON(!leader->fd);
937
938 fd = FD(leader, cpu, thread);
939 BUG_ON(fd == -1);
940
941 return fd;
942 }
943
944 #define __PRINT_ATTR(fmt, cast, field) \
945 fprintf(fp, " %-19s "fmt"\n", #field, cast attr->field)
946
947 #define PRINT_ATTR_U32(field) __PRINT_ATTR("%u" , , field)
948 #define PRINT_ATTR_X32(field) __PRINT_ATTR("%#x", , field)
949 #define PRINT_ATTR_U64(field) __PRINT_ATTR("%" PRIu64, (uint64_t), field)
950 #define PRINT_ATTR_X64(field) __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
951
952 #define PRINT_ATTR2N(name1, field1, name2, field2) \
953 fprintf(fp, " %-19s %u %-19s %u\n", \
954 name1, attr->field1, name2, attr->field2)
955
956 #define PRINT_ATTR2(field1, field2) \
957 PRINT_ATTR2N(#field1, field1, #field2, field2)
958
959 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
960 {
961 size_t ret = 0;
962
963 ret += fprintf(fp, "%.60s\n", graph_dotted_line);
964 ret += fprintf(fp, "perf_event_attr:\n");
965
966 ret += PRINT_ATTR_U32(type);
967 ret += PRINT_ATTR_U32(size);
968 ret += PRINT_ATTR_X64(config);
969 ret += PRINT_ATTR_U64(sample_period);
970 ret += PRINT_ATTR_U64(sample_freq);
971 ret += PRINT_ATTR_X64(sample_type);
972 ret += PRINT_ATTR_X64(read_format);
973
974 ret += PRINT_ATTR2(disabled, inherit);
975 ret += PRINT_ATTR2(pinned, exclusive);
976 ret += PRINT_ATTR2(exclude_user, exclude_kernel);
977 ret += PRINT_ATTR2(exclude_hv, exclude_idle);
978 ret += PRINT_ATTR2(mmap, comm);
979 ret += PRINT_ATTR2(freq, inherit_stat);
980 ret += PRINT_ATTR2(enable_on_exec, task);
981 ret += PRINT_ATTR2(watermark, precise_ip);
982 ret += PRINT_ATTR2(mmap_data, sample_id_all);
983 ret += PRINT_ATTR2(exclude_host, exclude_guest);
984 ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
985 "excl.callchain_user", exclude_callchain_user);
986
987 ret += PRINT_ATTR_U32(wakeup_events);
988 ret += PRINT_ATTR_U32(wakeup_watermark);
989 ret += PRINT_ATTR_X32(bp_type);
990 ret += PRINT_ATTR_X64(bp_addr);
991 ret += PRINT_ATTR_X64(config1);
992 ret += PRINT_ATTR_U64(bp_len);
993 ret += PRINT_ATTR_X64(config2);
994 ret += PRINT_ATTR_X64(branch_sample_type);
995 ret += PRINT_ATTR_X64(sample_regs_user);
996 ret += PRINT_ATTR_U32(sample_stack_user);
997
998 ret += fprintf(fp, "%.60s\n", graph_dotted_line);
999
1000 return ret;
1001 }
1002
1003 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1004 struct thread_map *threads)
1005 {
1006 int cpu, thread;
1007 unsigned long flags = 0;
1008 int pid = -1, err;
1009 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1010
1011 if (evsel->fd == NULL &&
1012 perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
1013 return -ENOMEM;
1014
1015 if (evsel->cgrp) {
1016 flags = PERF_FLAG_PID_CGROUP;
1017 pid = evsel->cgrp->fd;
1018 }
1019
1020 fallback_missing_features:
1021 if (perf_missing_features.mmap2)
1022 evsel->attr.mmap2 = 0;
1023 if (perf_missing_features.exclude_guest)
1024 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1025 retry_sample_id:
1026 if (perf_missing_features.sample_id_all)
1027 evsel->attr.sample_id_all = 0;
1028
1029 if (verbose >= 2)
1030 perf_event_attr__fprintf(&evsel->attr, stderr);
1031
1032 for (cpu = 0; cpu < cpus->nr; cpu++) {
1033
1034 for (thread = 0; thread < threads->nr; thread++) {
1035 int group_fd;
1036
1037 if (!evsel->cgrp)
1038 pid = threads->map[thread];
1039
1040 group_fd = get_group_fd(evsel, cpu, thread);
1041 retry_open:
1042 pr_debug2("perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n",
1043 pid, cpus->map[cpu], group_fd, flags);
1044
1045 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1046 pid,
1047 cpus->map[cpu],
1048 group_fd, flags);
1049 if (FD(evsel, cpu, thread) < 0) {
1050 err = -errno;
1051 goto try_fallback;
1052 }
1053 set_rlimit = NO_CHANGE;
1054 }
1055 }
1056
1057 return 0;
1058
1059 try_fallback:
1060 /*
1061 * perf stat needs between 5 and 22 fds per CPU. When we run out
1062 * of them try to increase the limits.
1063 */
1064 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1065 struct rlimit l;
1066 int old_errno = errno;
1067
1068 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1069 if (set_rlimit == NO_CHANGE)
1070 l.rlim_cur = l.rlim_max;
1071 else {
1072 l.rlim_cur = l.rlim_max + 1000;
1073 l.rlim_max = l.rlim_cur;
1074 }
1075 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1076 set_rlimit++;
1077 errno = old_errno;
1078 goto retry_open;
1079 }
1080 }
1081 errno = old_errno;
1082 }
1083
1084 if (err != -EINVAL || cpu > 0 || thread > 0)
1085 goto out_close;
1086
1087 if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1088 perf_missing_features.mmap2 = true;
1089 goto fallback_missing_features;
1090 } else if (!perf_missing_features.exclude_guest &&
1091 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1092 perf_missing_features.exclude_guest = true;
1093 goto fallback_missing_features;
1094 } else if (!perf_missing_features.sample_id_all) {
1095 perf_missing_features.sample_id_all = true;
1096 goto retry_sample_id;
1097 }
1098
1099 out_close:
1100 do {
1101 while (--thread >= 0) {
1102 close(FD(evsel, cpu, thread));
1103 FD(evsel, cpu, thread) = -1;
1104 }
1105 thread = threads->nr;
1106 } while (--cpu >= 0);
1107 return err;
1108 }
1109
1110 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1111 {
1112 if (evsel->fd == NULL)
1113 return;
1114
1115 perf_evsel__close_fd(evsel, ncpus, nthreads);
1116 perf_evsel__free_fd(evsel);
1117 evsel->fd = NULL;
1118 }
1119
1120 static struct {
1121 struct cpu_map map;
1122 int cpus[1];
1123 } empty_cpu_map = {
1124 .map.nr = 1,
1125 .cpus = { -1, },
1126 };
1127
1128 static struct {
1129 struct thread_map map;
1130 int threads[1];
1131 } empty_thread_map = {
1132 .map.nr = 1,
1133 .threads = { -1, },
1134 };
1135
1136 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1137 struct thread_map *threads)
1138 {
1139 if (cpus == NULL) {
1140 /* Work around old compiler warnings about strict aliasing */
1141 cpus = &empty_cpu_map.map;
1142 }
1143
1144 if (threads == NULL)
1145 threads = &empty_thread_map.map;
1146
1147 return __perf_evsel__open(evsel, cpus, threads);
1148 }
1149
1150 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1151 struct cpu_map *cpus)
1152 {
1153 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1154 }
1155
1156 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1157 struct thread_map *threads)
1158 {
1159 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1160 }
1161
1162 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1163 const union perf_event *event,
1164 struct perf_sample *sample)
1165 {
1166 u64 type = evsel->attr.sample_type;
1167 const u64 *array = event->sample.array;
1168 bool swapped = evsel->needs_swap;
1169 union u64_swap u;
1170
1171 array += ((event->header.size -
1172 sizeof(event->header)) / sizeof(u64)) - 1;
1173
1174 if (type & PERF_SAMPLE_IDENTIFIER) {
1175 sample->id = *array;
1176 array--;
1177 }
1178
1179 if (type & PERF_SAMPLE_CPU) {
1180 u.val64 = *array;
1181 if (swapped) {
1182 /* undo swap of u64, then swap on individual u32s */
1183 u.val64 = bswap_64(u.val64);
1184 u.val32[0] = bswap_32(u.val32[0]);
1185 }
1186
1187 sample->cpu = u.val32[0];
1188 array--;
1189 }
1190
1191 if (type & PERF_SAMPLE_STREAM_ID) {
1192 sample->stream_id = *array;
1193 array--;
1194 }
1195
1196 if (type & PERF_SAMPLE_ID) {
1197 sample->id = *array;
1198 array--;
1199 }
1200
1201 if (type & PERF_SAMPLE_TIME) {
1202 sample->time = *array;
1203 array--;
1204 }
1205
1206 if (type & PERF_SAMPLE_TID) {
1207 u.val64 = *array;
1208 if (swapped) {
1209 /* undo swap of u64, then swap on individual u32s */
1210 u.val64 = bswap_64(u.val64);
1211 u.val32[0] = bswap_32(u.val32[0]);
1212 u.val32[1] = bswap_32(u.val32[1]);
1213 }
1214
1215 sample->pid = u.val32[0];
1216 sample->tid = u.val32[1];
1217 }
1218
1219 return 0;
1220 }
1221
1222 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1223 u64 size)
1224 {
1225 return size > max_size || offset + size > endp;
1226 }
1227
1228 #define OVERFLOW_CHECK(offset, size, max_size) \
1229 do { \
1230 if (overflow(endp, (max_size), (offset), (size))) \
1231 return -EFAULT; \
1232 } while (0)
1233
1234 #define OVERFLOW_CHECK_u64(offset) \
1235 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1236
1237 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1238 struct perf_sample *data)
1239 {
1240 u64 type = evsel->attr.sample_type;
1241 bool swapped = evsel->needs_swap;
1242 const u64 *array;
1243 u16 max_size = event->header.size;
1244 const void *endp = (void *)event + max_size;
1245 u64 sz;
1246
1247 /*
1248 * used for cross-endian analysis. See git commit 65014ab3
1249 * for why this goofiness is needed.
1250 */
1251 union u64_swap u;
1252
1253 memset(data, 0, sizeof(*data));
1254 data->cpu = data->pid = data->tid = -1;
1255 data->stream_id = data->id = data->time = -1ULL;
1256 data->period = 1;
1257 data->weight = 0;
1258
1259 if (event->header.type != PERF_RECORD_SAMPLE) {
1260 if (!evsel->attr.sample_id_all)
1261 return 0;
1262 return perf_evsel__parse_id_sample(evsel, event, data);
1263 }
1264
1265 array = event->sample.array;
1266
1267 /*
1268 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1269 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1270 * check the format does not go past the end of the event.
1271 */
1272 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1273 return -EFAULT;
1274
1275 data->id = -1ULL;
1276 if (type & PERF_SAMPLE_IDENTIFIER) {
1277 data->id = *array;
1278 array++;
1279 }
1280
1281 if (type & PERF_SAMPLE_IP) {
1282 data->ip = *array;
1283 array++;
1284 }
1285
1286 if (type & PERF_SAMPLE_TID) {
1287 u.val64 = *array;
1288 if (swapped) {
1289 /* undo swap of u64, then swap on individual u32s */
1290 u.val64 = bswap_64(u.val64);
1291 u.val32[0] = bswap_32(u.val32[0]);
1292 u.val32[1] = bswap_32(u.val32[1]);
1293 }
1294
1295 data->pid = u.val32[0];
1296 data->tid = u.val32[1];
1297 array++;
1298 }
1299
1300 if (type & PERF_SAMPLE_TIME) {
1301 data->time = *array;
1302 array++;
1303 }
1304
1305 data->addr = 0;
1306 if (type & PERF_SAMPLE_ADDR) {
1307 data->addr = *array;
1308 array++;
1309 }
1310
1311 if (type & PERF_SAMPLE_ID) {
1312 data->id = *array;
1313 array++;
1314 }
1315
1316 if (type & PERF_SAMPLE_STREAM_ID) {
1317 data->stream_id = *array;
1318 array++;
1319 }
1320
1321 if (type & PERF_SAMPLE_CPU) {
1322
1323 u.val64 = *array;
1324 if (swapped) {
1325 /* undo swap of u64, then swap on individual u32s */
1326 u.val64 = bswap_64(u.val64);
1327 u.val32[0] = bswap_32(u.val32[0]);
1328 }
1329
1330 data->cpu = u.val32[0];
1331 array++;
1332 }
1333
1334 if (type & PERF_SAMPLE_PERIOD) {
1335 data->period = *array;
1336 array++;
1337 }
1338
1339 if (type & PERF_SAMPLE_READ) {
1340 u64 read_format = evsel->attr.read_format;
1341
1342 OVERFLOW_CHECK_u64(array);
1343 if (read_format & PERF_FORMAT_GROUP)
1344 data->read.group.nr = *array;
1345 else
1346 data->read.one.value = *array;
1347
1348 array++;
1349
1350 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1351 OVERFLOW_CHECK_u64(array);
1352 data->read.time_enabled = *array;
1353 array++;
1354 }
1355
1356 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1357 OVERFLOW_CHECK_u64(array);
1358 data->read.time_running = *array;
1359 array++;
1360 }
1361
1362 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1363 if (read_format & PERF_FORMAT_GROUP) {
1364 const u64 max_group_nr = UINT64_MAX /
1365 sizeof(struct sample_read_value);
1366
1367 if (data->read.group.nr > max_group_nr)
1368 return -EFAULT;
1369 sz = data->read.group.nr *
1370 sizeof(struct sample_read_value);
1371 OVERFLOW_CHECK(array, sz, max_size);
1372 data->read.group.values =
1373 (struct sample_read_value *)array;
1374 array = (void *)array + sz;
1375 } else {
1376 OVERFLOW_CHECK_u64(array);
1377 data->read.one.id = *array;
1378 array++;
1379 }
1380 }
1381
1382 if (type & PERF_SAMPLE_CALLCHAIN) {
1383 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1384
1385 OVERFLOW_CHECK_u64(array);
1386 data->callchain = (struct ip_callchain *)array++;
1387 if (data->callchain->nr > max_callchain_nr)
1388 return -EFAULT;
1389 sz = data->callchain->nr * sizeof(u64);
1390 OVERFLOW_CHECK(array, sz, max_size);
1391 array = (void *)array + sz;
1392 }
1393
1394 if (type & PERF_SAMPLE_RAW) {
1395 OVERFLOW_CHECK_u64(array);
1396 u.val64 = *array;
1397 if (WARN_ONCE(swapped,
1398 "Endianness of raw data not corrected!\n")) {
1399 /* undo swap of u64, then swap on individual u32s */
1400 u.val64 = bswap_64(u.val64);
1401 u.val32[0] = bswap_32(u.val32[0]);
1402 u.val32[1] = bswap_32(u.val32[1]);
1403 }
1404 data->raw_size = u.val32[0];
1405 array = (void *)array + sizeof(u32);
1406
1407 OVERFLOW_CHECK(array, data->raw_size, max_size);
1408 data->raw_data = (void *)array;
1409 array = (void *)array + data->raw_size;
1410 }
1411
1412 if (type & PERF_SAMPLE_BRANCH_STACK) {
1413 const u64 max_branch_nr = UINT64_MAX /
1414 sizeof(struct branch_entry);
1415
1416 OVERFLOW_CHECK_u64(array);
1417 data->branch_stack = (struct branch_stack *)array++;
1418
1419 if (data->branch_stack->nr > max_branch_nr)
1420 return -EFAULT;
1421 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1422 OVERFLOW_CHECK(array, sz, max_size);
1423 array = (void *)array + sz;
1424 }
1425
1426 if (type & PERF_SAMPLE_REGS_USER) {
1427 OVERFLOW_CHECK_u64(array);
1428 data->user_regs.abi = *array;
1429 array++;
1430
1431 if (data->user_regs.abi) {
1432 u64 regs_user = evsel->attr.sample_regs_user;
1433
1434 sz = hweight_long(regs_user) * sizeof(u64);
1435 OVERFLOW_CHECK(array, sz, max_size);
1436 data->user_regs.regs = (u64 *)array;
1437 array = (void *)array + sz;
1438 }
1439 }
1440
1441 if (type & PERF_SAMPLE_STACK_USER) {
1442 OVERFLOW_CHECK_u64(array);
1443 sz = *array++;
1444
1445 data->user_stack.offset = ((char *)(array - 1)
1446 - (char *) event);
1447
1448 if (!sz) {
1449 data->user_stack.size = 0;
1450 } else {
1451 OVERFLOW_CHECK(array, sz, max_size);
1452 data->user_stack.data = (char *)array;
1453 array = (void *)array + sz;
1454 OVERFLOW_CHECK_u64(array);
1455 data->user_stack.size = *array++;
1456 }
1457 }
1458
1459 data->weight = 0;
1460 if (type & PERF_SAMPLE_WEIGHT) {
1461 OVERFLOW_CHECK_u64(array);
1462 data->weight = *array;
1463 array++;
1464 }
1465
1466 data->data_src = PERF_MEM_DATA_SRC_NONE;
1467 if (type & PERF_SAMPLE_DATA_SRC) {
1468 OVERFLOW_CHECK_u64(array);
1469 data->data_src = *array;
1470 array++;
1471 }
1472
1473 return 0;
1474 }
1475
1476 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1477 u64 sample_regs_user, u64 read_format)
1478 {
1479 size_t sz, result = sizeof(struct sample_event);
1480
1481 if (type & PERF_SAMPLE_IDENTIFIER)
1482 result += sizeof(u64);
1483
1484 if (type & PERF_SAMPLE_IP)
1485 result += sizeof(u64);
1486
1487 if (type & PERF_SAMPLE_TID)
1488 result += sizeof(u64);
1489
1490 if (type & PERF_SAMPLE_TIME)
1491 result += sizeof(u64);
1492
1493 if (type & PERF_SAMPLE_ADDR)
1494 result += sizeof(u64);
1495
1496 if (type & PERF_SAMPLE_ID)
1497 result += sizeof(u64);
1498
1499 if (type & PERF_SAMPLE_STREAM_ID)
1500 result += sizeof(u64);
1501
1502 if (type & PERF_SAMPLE_CPU)
1503 result += sizeof(u64);
1504
1505 if (type & PERF_SAMPLE_PERIOD)
1506 result += sizeof(u64);
1507
1508 if (type & PERF_SAMPLE_READ) {
1509 result += sizeof(u64);
1510 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1511 result += sizeof(u64);
1512 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1513 result += sizeof(u64);
1514 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1515 if (read_format & PERF_FORMAT_GROUP) {
1516 sz = sample->read.group.nr *
1517 sizeof(struct sample_read_value);
1518 result += sz;
1519 } else {
1520 result += sizeof(u64);
1521 }
1522 }
1523
1524 if (type & PERF_SAMPLE_CALLCHAIN) {
1525 sz = (sample->callchain->nr + 1) * sizeof(u64);
1526 result += sz;
1527 }
1528
1529 if (type & PERF_SAMPLE_RAW) {
1530 result += sizeof(u32);
1531 result += sample->raw_size;
1532 }
1533
1534 if (type & PERF_SAMPLE_BRANCH_STACK) {
1535 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1536 sz += sizeof(u64);
1537 result += sz;
1538 }
1539
1540 if (type & PERF_SAMPLE_REGS_USER) {
1541 if (sample->user_regs.abi) {
1542 result += sizeof(u64);
1543 sz = hweight_long(sample_regs_user) * sizeof(u64);
1544 result += sz;
1545 } else {
1546 result += sizeof(u64);
1547 }
1548 }
1549
1550 if (type & PERF_SAMPLE_STACK_USER) {
1551 sz = sample->user_stack.size;
1552 result += sizeof(u64);
1553 if (sz) {
1554 result += sz;
1555 result += sizeof(u64);
1556 }
1557 }
1558
1559 if (type & PERF_SAMPLE_WEIGHT)
1560 result += sizeof(u64);
1561
1562 if (type & PERF_SAMPLE_DATA_SRC)
1563 result += sizeof(u64);
1564
1565 return result;
1566 }
1567
1568 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1569 u64 sample_regs_user, u64 read_format,
1570 const struct perf_sample *sample,
1571 bool swapped)
1572 {
1573 u64 *array;
1574 size_t sz;
1575 /*
1576 * used for cross-endian analysis. See git commit 65014ab3
1577 * for why this goofiness is needed.
1578 */
1579 union u64_swap u;
1580
1581 array = event->sample.array;
1582
1583 if (type & PERF_SAMPLE_IDENTIFIER) {
1584 *array = sample->id;
1585 array++;
1586 }
1587
1588 if (type & PERF_SAMPLE_IP) {
1589 *array = sample->ip;
1590 array++;
1591 }
1592
1593 if (type & PERF_SAMPLE_TID) {
1594 u.val32[0] = sample->pid;
1595 u.val32[1] = sample->tid;
1596 if (swapped) {
1597 /*
1598 * Inverse of what is done in perf_evsel__parse_sample
1599 */
1600 u.val32[0] = bswap_32(u.val32[0]);
1601 u.val32[1] = bswap_32(u.val32[1]);
1602 u.val64 = bswap_64(u.val64);
1603 }
1604
1605 *array = u.val64;
1606 array++;
1607 }
1608
1609 if (type & PERF_SAMPLE_TIME) {
1610 *array = sample->time;
1611 array++;
1612 }
1613
1614 if (type & PERF_SAMPLE_ADDR) {
1615 *array = sample->addr;
1616 array++;
1617 }
1618
1619 if (type & PERF_SAMPLE_ID) {
1620 *array = sample->id;
1621 array++;
1622 }
1623
1624 if (type & PERF_SAMPLE_STREAM_ID) {
1625 *array = sample->stream_id;
1626 array++;
1627 }
1628
1629 if (type & PERF_SAMPLE_CPU) {
1630 u.val32[0] = sample->cpu;
1631 if (swapped) {
1632 /*
1633 * Inverse of what is done in perf_evsel__parse_sample
1634 */
1635 u.val32[0] = bswap_32(u.val32[0]);
1636 u.val64 = bswap_64(u.val64);
1637 }
1638 *array = u.val64;
1639 array++;
1640 }
1641
1642 if (type & PERF_SAMPLE_PERIOD) {
1643 *array = sample->period;
1644 array++;
1645 }
1646
1647 if (type & PERF_SAMPLE_READ) {
1648 if (read_format & PERF_FORMAT_GROUP)
1649 *array = sample->read.group.nr;
1650 else
1651 *array = sample->read.one.value;
1652 array++;
1653
1654 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1655 *array = sample->read.time_enabled;
1656 array++;
1657 }
1658
1659 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1660 *array = sample->read.time_running;
1661 array++;
1662 }
1663
1664 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1665 if (read_format & PERF_FORMAT_GROUP) {
1666 sz = sample->read.group.nr *
1667 sizeof(struct sample_read_value);
1668 memcpy(array, sample->read.group.values, sz);
1669 array = (void *)array + sz;
1670 } else {
1671 *array = sample->read.one.id;
1672 array++;
1673 }
1674 }
1675
1676 if (type & PERF_SAMPLE_CALLCHAIN) {
1677 sz = (sample->callchain->nr + 1) * sizeof(u64);
1678 memcpy(array, sample->callchain, sz);
1679 array = (void *)array + sz;
1680 }
1681
1682 if (type & PERF_SAMPLE_RAW) {
1683 u.val32[0] = sample->raw_size;
1684 if (WARN_ONCE(swapped,
1685 "Endianness of raw data not corrected!\n")) {
1686 /*
1687 * Inverse of what is done in perf_evsel__parse_sample
1688 */
1689 u.val32[0] = bswap_32(u.val32[0]);
1690 u.val32[1] = bswap_32(u.val32[1]);
1691 u.val64 = bswap_64(u.val64);
1692 }
1693 *array = u.val64;
1694 array = (void *)array + sizeof(u32);
1695
1696 memcpy(array, sample->raw_data, sample->raw_size);
1697 array = (void *)array + sample->raw_size;
1698 }
1699
1700 if (type & PERF_SAMPLE_BRANCH_STACK) {
1701 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1702 sz += sizeof(u64);
1703 memcpy(array, sample->branch_stack, sz);
1704 array = (void *)array + sz;
1705 }
1706
1707 if (type & PERF_SAMPLE_REGS_USER) {
1708 if (sample->user_regs.abi) {
1709 *array++ = sample->user_regs.abi;
1710 sz = hweight_long(sample_regs_user) * sizeof(u64);
1711 memcpy(array, sample->user_regs.regs, sz);
1712 array = (void *)array + sz;
1713 } else {
1714 *array++ = 0;
1715 }
1716 }
1717
1718 if (type & PERF_SAMPLE_STACK_USER) {
1719 sz = sample->user_stack.size;
1720 *array++ = sz;
1721 if (sz) {
1722 memcpy(array, sample->user_stack.data, sz);
1723 array = (void *)array + sz;
1724 *array++ = sz;
1725 }
1726 }
1727
1728 if (type & PERF_SAMPLE_WEIGHT) {
1729 *array = sample->weight;
1730 array++;
1731 }
1732
1733 if (type & PERF_SAMPLE_DATA_SRC) {
1734 *array = sample->data_src;
1735 array++;
1736 }
1737
1738 return 0;
1739 }
1740
1741 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1742 {
1743 return pevent_find_field(evsel->tp_format, name);
1744 }
1745
1746 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1747 const char *name)
1748 {
1749 struct format_field *field = perf_evsel__field(evsel, name);
1750 int offset;
1751
1752 if (!field)
1753 return NULL;
1754
1755 offset = field->offset;
1756
1757 if (field->flags & FIELD_IS_DYNAMIC) {
1758 offset = *(int *)(sample->raw_data + field->offset);
1759 offset &= 0xffff;
1760 }
1761
1762 return sample->raw_data + offset;
1763 }
1764
1765 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1766 const char *name)
1767 {
1768 struct format_field *field = perf_evsel__field(evsel, name);
1769 void *ptr;
1770 u64 value;
1771
1772 if (!field)
1773 return 0;
1774
1775 ptr = sample->raw_data + field->offset;
1776
1777 switch (field->size) {
1778 case 1:
1779 return *(u8 *)ptr;
1780 case 2:
1781 value = *(u16 *)ptr;
1782 break;
1783 case 4:
1784 value = *(u32 *)ptr;
1785 break;
1786 case 8:
1787 value = *(u64 *)ptr;
1788 break;
1789 default:
1790 return 0;
1791 }
1792
1793 if (!evsel->needs_swap)
1794 return value;
1795
1796 switch (field->size) {
1797 case 2:
1798 return bswap_16(value);
1799 case 4:
1800 return bswap_32(value);
1801 case 8:
1802 return bswap_64(value);
1803 default:
1804 return 0;
1805 }
1806
1807 return 0;
1808 }
1809
1810 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1811 {
1812 va_list args;
1813 int ret = 0;
1814
1815 if (!*first) {
1816 ret += fprintf(fp, ",");
1817 } else {
1818 ret += fprintf(fp, ":");
1819 *first = false;
1820 }
1821
1822 va_start(args, fmt);
1823 ret += vfprintf(fp, fmt, args);
1824 va_end(args);
1825 return ret;
1826 }
1827
1828 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1829 {
1830 if (value == 0)
1831 return 0;
1832
1833 return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1834 }
1835
1836 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1837
1838 struct bit_names {
1839 int bit;
1840 const char *name;
1841 };
1842
1843 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1844 struct bit_names *bits, bool *first)
1845 {
1846 int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1847 bool first_bit = true;
1848
1849 do {
1850 if (value & bits[i].bit) {
1851 printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1852 first_bit = false;
1853 }
1854 } while (bits[++i].name != NULL);
1855
1856 return printed;
1857 }
1858
1859 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1860 {
1861 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1862 struct bit_names bits[] = {
1863 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1864 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1865 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1866 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1867 bit_name(IDENTIFIER),
1868 { .name = NULL, }
1869 };
1870 #undef bit_name
1871 return bits__fprintf(fp, "sample_type", value, bits, first);
1872 }
1873
1874 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1875 {
1876 #define bit_name(n) { PERF_FORMAT_##n, #n }
1877 struct bit_names bits[] = {
1878 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1879 bit_name(ID), bit_name(GROUP),
1880 { .name = NULL, }
1881 };
1882 #undef bit_name
1883 return bits__fprintf(fp, "read_format", value, bits, first);
1884 }
1885
1886 int perf_evsel__fprintf(struct perf_evsel *evsel,
1887 struct perf_attr_details *details, FILE *fp)
1888 {
1889 bool first = true;
1890 int printed = 0;
1891
1892 if (details->event_group) {
1893 struct perf_evsel *pos;
1894
1895 if (!perf_evsel__is_group_leader(evsel))
1896 return 0;
1897
1898 if (evsel->nr_members > 1)
1899 printed += fprintf(fp, "%s{", evsel->group_name ?: "");
1900
1901 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1902 for_each_group_member(pos, evsel)
1903 printed += fprintf(fp, ",%s", perf_evsel__name(pos));
1904
1905 if (evsel->nr_members > 1)
1906 printed += fprintf(fp, "}");
1907 goto out;
1908 }
1909
1910 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
1911
1912 if (details->verbose || details->freq) {
1913 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
1914 (u64)evsel->attr.sample_freq);
1915 }
1916
1917 if (details->verbose) {
1918 if_print(type);
1919 if_print(config);
1920 if_print(config1);
1921 if_print(config2);
1922 if_print(size);
1923 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
1924 if (evsel->attr.read_format)
1925 printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
1926 if_print(disabled);
1927 if_print(inherit);
1928 if_print(pinned);
1929 if_print(exclusive);
1930 if_print(exclude_user);
1931 if_print(exclude_kernel);
1932 if_print(exclude_hv);
1933 if_print(exclude_idle);
1934 if_print(mmap);
1935 if_print(mmap2);
1936 if_print(comm);
1937 if_print(freq);
1938 if_print(inherit_stat);
1939 if_print(enable_on_exec);
1940 if_print(task);
1941 if_print(watermark);
1942 if_print(precise_ip);
1943 if_print(mmap_data);
1944 if_print(sample_id_all);
1945 if_print(exclude_host);
1946 if_print(exclude_guest);
1947 if_print(__reserved_1);
1948 if_print(wakeup_events);
1949 if_print(bp_type);
1950 if_print(branch_sample_type);
1951 }
1952 out:
1953 fputc('\n', fp);
1954 return ++printed;
1955 }
1956
1957 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
1958 char *msg, size_t msgsize)
1959 {
1960 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
1961 evsel->attr.type == PERF_TYPE_HARDWARE &&
1962 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
1963 /*
1964 * If it's cycles then fall back to hrtimer based
1965 * cpu-clock-tick sw counter, which is always available even if
1966 * no PMU support.
1967 *
1968 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
1969 * b0a873e).
1970 */
1971 scnprintf(msg, msgsize, "%s",
1972 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
1973
1974 evsel->attr.type = PERF_TYPE_SOFTWARE;
1975 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
1976
1977 free(evsel->name);
1978 evsel->name = NULL;
1979 return true;
1980 }
1981
1982 return false;
1983 }
1984
1985 int perf_evsel__open_strerror(struct perf_evsel *evsel,
1986 struct perf_target *target,
1987 int err, char *msg, size_t size)
1988 {
1989 switch (err) {
1990 case EPERM:
1991 case EACCES:
1992 return scnprintf(msg, size,
1993 "You may not have permission to collect %sstats.\n"
1994 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
1995 " -1 - Not paranoid at all\n"
1996 " 0 - Disallow raw tracepoint access for unpriv\n"
1997 " 1 - Disallow cpu events for unpriv\n"
1998 " 2 - Disallow kernel profiling for unpriv",
1999 target->system_wide ? "system-wide " : "");
2000 case ENOENT:
2001 return scnprintf(msg, size, "The %s event is not supported.",
2002 perf_evsel__name(evsel));
2003 case EMFILE:
2004 return scnprintf(msg, size, "%s",
2005 "Too many events are opened.\n"
2006 "Try again after reducing the number of events.");
2007 case ENODEV:
2008 if (target->cpu_list)
2009 return scnprintf(msg, size, "%s",
2010 "No such device - did you specify an out-of-range profile CPU?\n");
2011 break;
2012 case EOPNOTSUPP:
2013 if (evsel->attr.precise_ip)
2014 return scnprintf(msg, size, "%s",
2015 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2016 #if defined(__i386__) || defined(__x86_64__)
2017 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2018 return scnprintf(msg, size, "%s",
2019 "No hardware sampling interrupt available.\n"
2020 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2021 #endif
2022 break;
2023 default:
2024 break;
2025 }
2026
2027 return scnprintf(msg, size,
2028 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s). \n"
2029 "/bin/dmesg may provide additional information.\n"
2030 "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2031 err, strerror(err), perf_evsel__name(evsel));
2032 }