]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - tools/perf/util/evsel.c
Merge branches 'acpi-fan', 'acpi-video' and 'acpi-ec'
[mirror_ubuntu-focal-kernel.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "callchain.h"
19 #include "cgroup.h"
20 #include "evsel.h"
21 #include "evlist.h"
22 #include "util.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25 #include "target.h"
26 #include "perf_regs.h"
27 #include "debug.h"
28 #include "trace-event.h"
29
30 static struct {
31 bool sample_id_all;
32 bool exclude_guest;
33 bool mmap2;
34 bool cloexec;
35 } perf_missing_features;
36
37 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
38 {
39 return 0;
40 }
41
42 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
43 {
44 }
45
46 static struct {
47 size_t size;
48 int (*init)(struct perf_evsel *evsel);
49 void (*fini)(struct perf_evsel *evsel);
50 } perf_evsel__object = {
51 .size = sizeof(struct perf_evsel),
52 .init = perf_evsel__no_extra_init,
53 .fini = perf_evsel__no_extra_fini,
54 };
55
56 int perf_evsel__object_config(size_t object_size,
57 int (*init)(struct perf_evsel *evsel),
58 void (*fini)(struct perf_evsel *evsel))
59 {
60
61 if (object_size == 0)
62 goto set_methods;
63
64 if (perf_evsel__object.size > object_size)
65 return -EINVAL;
66
67 perf_evsel__object.size = object_size;
68
69 set_methods:
70 if (init != NULL)
71 perf_evsel__object.init = init;
72
73 if (fini != NULL)
74 perf_evsel__object.fini = fini;
75
76 return 0;
77 }
78
79 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
80
81 int __perf_evsel__sample_size(u64 sample_type)
82 {
83 u64 mask = sample_type & PERF_SAMPLE_MASK;
84 int size = 0;
85 int i;
86
87 for (i = 0; i < 64; i++) {
88 if (mask & (1ULL << i))
89 size++;
90 }
91
92 size *= sizeof(u64);
93
94 return size;
95 }
96
97 /**
98 * __perf_evsel__calc_id_pos - calculate id_pos.
99 * @sample_type: sample type
100 *
101 * This function returns the position of the event id (PERF_SAMPLE_ID or
102 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
103 * sample_event.
104 */
105 static int __perf_evsel__calc_id_pos(u64 sample_type)
106 {
107 int idx = 0;
108
109 if (sample_type & PERF_SAMPLE_IDENTIFIER)
110 return 0;
111
112 if (!(sample_type & PERF_SAMPLE_ID))
113 return -1;
114
115 if (sample_type & PERF_SAMPLE_IP)
116 idx += 1;
117
118 if (sample_type & PERF_SAMPLE_TID)
119 idx += 1;
120
121 if (sample_type & PERF_SAMPLE_TIME)
122 idx += 1;
123
124 if (sample_type & PERF_SAMPLE_ADDR)
125 idx += 1;
126
127 return idx;
128 }
129
130 /**
131 * __perf_evsel__calc_is_pos - calculate is_pos.
132 * @sample_type: sample type
133 *
134 * This function returns the position (counting backwards) of the event id
135 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
136 * sample_id_all is used there is an id sample appended to non-sample events.
137 */
138 static int __perf_evsel__calc_is_pos(u64 sample_type)
139 {
140 int idx = 1;
141
142 if (sample_type & PERF_SAMPLE_IDENTIFIER)
143 return 1;
144
145 if (!(sample_type & PERF_SAMPLE_ID))
146 return -1;
147
148 if (sample_type & PERF_SAMPLE_CPU)
149 idx += 1;
150
151 if (sample_type & PERF_SAMPLE_STREAM_ID)
152 idx += 1;
153
154 return idx;
155 }
156
157 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
158 {
159 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
160 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
161 }
162
163 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
164 enum perf_event_sample_format bit)
165 {
166 if (!(evsel->attr.sample_type & bit)) {
167 evsel->attr.sample_type |= bit;
168 evsel->sample_size += sizeof(u64);
169 perf_evsel__calc_id_pos(evsel);
170 }
171 }
172
173 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
174 enum perf_event_sample_format bit)
175 {
176 if (evsel->attr.sample_type & bit) {
177 evsel->attr.sample_type &= ~bit;
178 evsel->sample_size -= sizeof(u64);
179 perf_evsel__calc_id_pos(evsel);
180 }
181 }
182
183 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
184 bool can_sample_identifier)
185 {
186 if (can_sample_identifier) {
187 perf_evsel__reset_sample_bit(evsel, ID);
188 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
189 } else {
190 perf_evsel__set_sample_bit(evsel, ID);
191 }
192 evsel->attr.read_format |= PERF_FORMAT_ID;
193 }
194
195 void perf_evsel__init(struct perf_evsel *evsel,
196 struct perf_event_attr *attr, int idx)
197 {
198 evsel->idx = idx;
199 evsel->tracking = !idx;
200 evsel->attr = *attr;
201 evsel->leader = evsel;
202 evsel->unit = "";
203 evsel->scale = 1.0;
204 INIT_LIST_HEAD(&evsel->node);
205 perf_evsel__object.init(evsel);
206 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
207 perf_evsel__calc_id_pos(evsel);
208 }
209
210 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
211 {
212 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
213
214 if (evsel != NULL)
215 perf_evsel__init(evsel, attr, idx);
216
217 return evsel;
218 }
219
220 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
221 {
222 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
223
224 if (evsel != NULL) {
225 struct perf_event_attr attr = {
226 .type = PERF_TYPE_TRACEPOINT,
227 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
228 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
229 };
230
231 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
232 goto out_free;
233
234 evsel->tp_format = trace_event__tp_format(sys, name);
235 if (evsel->tp_format == NULL)
236 goto out_free;
237
238 event_attr_init(&attr);
239 attr.config = evsel->tp_format->id;
240 attr.sample_period = 1;
241 perf_evsel__init(evsel, &attr, idx);
242 }
243
244 return evsel;
245
246 out_free:
247 zfree(&evsel->name);
248 free(evsel);
249 return NULL;
250 }
251
252 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
253 "cycles",
254 "instructions",
255 "cache-references",
256 "cache-misses",
257 "branches",
258 "branch-misses",
259 "bus-cycles",
260 "stalled-cycles-frontend",
261 "stalled-cycles-backend",
262 "ref-cycles",
263 };
264
265 static const char *__perf_evsel__hw_name(u64 config)
266 {
267 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
268 return perf_evsel__hw_names[config];
269
270 return "unknown-hardware";
271 }
272
273 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
274 {
275 int colon = 0, r = 0;
276 struct perf_event_attr *attr = &evsel->attr;
277 bool exclude_guest_default = false;
278
279 #define MOD_PRINT(context, mod) do { \
280 if (!attr->exclude_##context) { \
281 if (!colon) colon = ++r; \
282 r += scnprintf(bf + r, size - r, "%c", mod); \
283 } } while(0)
284
285 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
286 MOD_PRINT(kernel, 'k');
287 MOD_PRINT(user, 'u');
288 MOD_PRINT(hv, 'h');
289 exclude_guest_default = true;
290 }
291
292 if (attr->precise_ip) {
293 if (!colon)
294 colon = ++r;
295 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
296 exclude_guest_default = true;
297 }
298
299 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
300 MOD_PRINT(host, 'H');
301 MOD_PRINT(guest, 'G');
302 }
303 #undef MOD_PRINT
304 if (colon)
305 bf[colon - 1] = ':';
306 return r;
307 }
308
309 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
310 {
311 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
312 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
313 }
314
315 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
316 "cpu-clock",
317 "task-clock",
318 "page-faults",
319 "context-switches",
320 "cpu-migrations",
321 "minor-faults",
322 "major-faults",
323 "alignment-faults",
324 "emulation-faults",
325 "dummy",
326 };
327
328 static const char *__perf_evsel__sw_name(u64 config)
329 {
330 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
331 return perf_evsel__sw_names[config];
332 return "unknown-software";
333 }
334
335 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
336 {
337 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
338 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
339 }
340
341 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
342 {
343 int r;
344
345 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
346
347 if (type & HW_BREAKPOINT_R)
348 r += scnprintf(bf + r, size - r, "r");
349
350 if (type & HW_BREAKPOINT_W)
351 r += scnprintf(bf + r, size - r, "w");
352
353 if (type & HW_BREAKPOINT_X)
354 r += scnprintf(bf + r, size - r, "x");
355
356 return r;
357 }
358
359 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
360 {
361 struct perf_event_attr *attr = &evsel->attr;
362 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
363 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
364 }
365
366 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
367 [PERF_EVSEL__MAX_ALIASES] = {
368 { "L1-dcache", "l1-d", "l1d", "L1-data", },
369 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
370 { "LLC", "L2", },
371 { "dTLB", "d-tlb", "Data-TLB", },
372 { "iTLB", "i-tlb", "Instruction-TLB", },
373 { "branch", "branches", "bpu", "btb", "bpc", },
374 { "node", },
375 };
376
377 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
378 [PERF_EVSEL__MAX_ALIASES] = {
379 { "load", "loads", "read", },
380 { "store", "stores", "write", },
381 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
382 };
383
384 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
385 [PERF_EVSEL__MAX_ALIASES] = {
386 { "refs", "Reference", "ops", "access", },
387 { "misses", "miss", },
388 };
389
390 #define C(x) PERF_COUNT_HW_CACHE_##x
391 #define CACHE_READ (1 << C(OP_READ))
392 #define CACHE_WRITE (1 << C(OP_WRITE))
393 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
394 #define COP(x) (1 << x)
395
396 /*
397 * cache operartion stat
398 * L1I : Read and prefetch only
399 * ITLB and BPU : Read-only
400 */
401 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
402 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
403 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
404 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
405 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
406 [C(ITLB)] = (CACHE_READ),
407 [C(BPU)] = (CACHE_READ),
408 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
409 };
410
411 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
412 {
413 if (perf_evsel__hw_cache_stat[type] & COP(op))
414 return true; /* valid */
415 else
416 return false; /* invalid */
417 }
418
419 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
420 char *bf, size_t size)
421 {
422 if (result) {
423 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
424 perf_evsel__hw_cache_op[op][0],
425 perf_evsel__hw_cache_result[result][0]);
426 }
427
428 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
429 perf_evsel__hw_cache_op[op][1]);
430 }
431
432 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
433 {
434 u8 op, result, type = (config >> 0) & 0xff;
435 const char *err = "unknown-ext-hardware-cache-type";
436
437 if (type > PERF_COUNT_HW_CACHE_MAX)
438 goto out_err;
439
440 op = (config >> 8) & 0xff;
441 err = "unknown-ext-hardware-cache-op";
442 if (op > PERF_COUNT_HW_CACHE_OP_MAX)
443 goto out_err;
444
445 result = (config >> 16) & 0xff;
446 err = "unknown-ext-hardware-cache-result";
447 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
448 goto out_err;
449
450 err = "invalid-cache";
451 if (!perf_evsel__is_cache_op_valid(type, op))
452 goto out_err;
453
454 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
455 out_err:
456 return scnprintf(bf, size, "%s", err);
457 }
458
459 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
460 {
461 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
462 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
463 }
464
465 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
466 {
467 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
468 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
469 }
470
471 const char *perf_evsel__name(struct perf_evsel *evsel)
472 {
473 char bf[128];
474
475 if (evsel->name)
476 return evsel->name;
477
478 switch (evsel->attr.type) {
479 case PERF_TYPE_RAW:
480 perf_evsel__raw_name(evsel, bf, sizeof(bf));
481 break;
482
483 case PERF_TYPE_HARDWARE:
484 perf_evsel__hw_name(evsel, bf, sizeof(bf));
485 break;
486
487 case PERF_TYPE_HW_CACHE:
488 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
489 break;
490
491 case PERF_TYPE_SOFTWARE:
492 perf_evsel__sw_name(evsel, bf, sizeof(bf));
493 break;
494
495 case PERF_TYPE_TRACEPOINT:
496 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
497 break;
498
499 case PERF_TYPE_BREAKPOINT:
500 perf_evsel__bp_name(evsel, bf, sizeof(bf));
501 break;
502
503 default:
504 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
505 evsel->attr.type);
506 break;
507 }
508
509 evsel->name = strdup(bf);
510
511 return evsel->name ?: "unknown";
512 }
513
514 const char *perf_evsel__group_name(struct perf_evsel *evsel)
515 {
516 return evsel->group_name ?: "anon group";
517 }
518
519 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
520 {
521 int ret;
522 struct perf_evsel *pos;
523 const char *group_name = perf_evsel__group_name(evsel);
524
525 ret = scnprintf(buf, size, "%s", group_name);
526
527 ret += scnprintf(buf + ret, size - ret, " { %s",
528 perf_evsel__name(evsel));
529
530 for_each_group_member(pos, evsel)
531 ret += scnprintf(buf + ret, size - ret, ", %s",
532 perf_evsel__name(pos));
533
534 ret += scnprintf(buf + ret, size - ret, " }");
535
536 return ret;
537 }
538
539 static void
540 perf_evsel__config_callgraph(struct perf_evsel *evsel)
541 {
542 bool function = perf_evsel__is_function_event(evsel);
543 struct perf_event_attr *attr = &evsel->attr;
544
545 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
546
547 if (callchain_param.record_mode == CALLCHAIN_DWARF) {
548 if (!function) {
549 perf_evsel__set_sample_bit(evsel, REGS_USER);
550 perf_evsel__set_sample_bit(evsel, STACK_USER);
551 attr->sample_regs_user = PERF_REGS_MASK;
552 attr->sample_stack_user = callchain_param.dump_size;
553 attr->exclude_callchain_user = 1;
554 } else {
555 pr_info("Cannot use DWARF unwind for function trace event,"
556 " falling back to framepointers.\n");
557 }
558 }
559
560 if (function) {
561 pr_info("Disabling user space callchains for function trace event.\n");
562 attr->exclude_callchain_user = 1;
563 }
564 }
565
566 /*
567 * The enable_on_exec/disabled value strategy:
568 *
569 * 1) For any type of traced program:
570 * - all independent events and group leaders are disabled
571 * - all group members are enabled
572 *
573 * Group members are ruled by group leaders. They need to
574 * be enabled, because the group scheduling relies on that.
575 *
576 * 2) For traced programs executed by perf:
577 * - all independent events and group leaders have
578 * enable_on_exec set
579 * - we don't specifically enable or disable any event during
580 * the record command
581 *
582 * Independent events and group leaders are initially disabled
583 * and get enabled by exec. Group members are ruled by group
584 * leaders as stated in 1).
585 *
586 * 3) For traced programs attached by perf (pid/tid):
587 * - we specifically enable or disable all events during
588 * the record command
589 *
590 * When attaching events to already running traced we
591 * enable/disable events specifically, as there's no
592 * initial traced exec call.
593 */
594 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
595 {
596 struct perf_evsel *leader = evsel->leader;
597 struct perf_event_attr *attr = &evsel->attr;
598 int track = evsel->tracking;
599 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
600
601 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
602 attr->inherit = !opts->no_inherit;
603
604 perf_evsel__set_sample_bit(evsel, IP);
605 perf_evsel__set_sample_bit(evsel, TID);
606
607 if (evsel->sample_read) {
608 perf_evsel__set_sample_bit(evsel, READ);
609
610 /*
611 * We need ID even in case of single event, because
612 * PERF_SAMPLE_READ process ID specific data.
613 */
614 perf_evsel__set_sample_id(evsel, false);
615
616 /*
617 * Apply group format only if we belong to group
618 * with more than one members.
619 */
620 if (leader->nr_members > 1) {
621 attr->read_format |= PERF_FORMAT_GROUP;
622 attr->inherit = 0;
623 }
624 }
625
626 /*
627 * We default some events to have a default interval. But keep
628 * it a weak assumption overridable by the user.
629 */
630 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
631 opts->user_interval != ULLONG_MAX)) {
632 if (opts->freq) {
633 perf_evsel__set_sample_bit(evsel, PERIOD);
634 attr->freq = 1;
635 attr->sample_freq = opts->freq;
636 } else {
637 attr->sample_period = opts->default_interval;
638 }
639 }
640
641 /*
642 * Disable sampling for all group members other
643 * than leader in case leader 'leads' the sampling.
644 */
645 if ((leader != evsel) && leader->sample_read) {
646 attr->sample_freq = 0;
647 attr->sample_period = 0;
648 }
649
650 if (opts->no_samples)
651 attr->sample_freq = 0;
652
653 if (opts->inherit_stat)
654 attr->inherit_stat = 1;
655
656 if (opts->sample_address) {
657 perf_evsel__set_sample_bit(evsel, ADDR);
658 attr->mmap_data = track;
659 }
660
661 /*
662 * We don't allow user space callchains for function trace
663 * event, due to issues with page faults while tracing page
664 * fault handler and its overall trickiness nature.
665 */
666 if (perf_evsel__is_function_event(evsel))
667 evsel->attr.exclude_callchain_user = 1;
668
669 if (callchain_param.enabled && !evsel->no_aux_samples)
670 perf_evsel__config_callgraph(evsel);
671
672 if (opts->sample_intr_regs) {
673 attr->sample_regs_intr = PERF_REGS_MASK;
674 perf_evsel__set_sample_bit(evsel, REGS_INTR);
675 }
676
677 if (target__has_cpu(&opts->target))
678 perf_evsel__set_sample_bit(evsel, CPU);
679
680 if (opts->period)
681 perf_evsel__set_sample_bit(evsel, PERIOD);
682
683 /*
684 * When the user explicitely disabled time don't force it here.
685 */
686 if (opts->sample_time &&
687 (!perf_missing_features.sample_id_all &&
688 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
689 perf_evsel__set_sample_bit(evsel, TIME);
690
691 if (opts->raw_samples && !evsel->no_aux_samples) {
692 perf_evsel__set_sample_bit(evsel, TIME);
693 perf_evsel__set_sample_bit(evsel, RAW);
694 perf_evsel__set_sample_bit(evsel, CPU);
695 }
696
697 if (opts->sample_address)
698 perf_evsel__set_sample_bit(evsel, DATA_SRC);
699
700 if (opts->no_buffering) {
701 attr->watermark = 0;
702 attr->wakeup_events = 1;
703 }
704 if (opts->branch_stack && !evsel->no_aux_samples) {
705 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
706 attr->branch_sample_type = opts->branch_stack;
707 }
708
709 if (opts->sample_weight)
710 perf_evsel__set_sample_bit(evsel, WEIGHT);
711
712 attr->mmap = track;
713 attr->mmap2 = track && !perf_missing_features.mmap2;
714 attr->comm = track;
715
716 if (opts->sample_transaction)
717 perf_evsel__set_sample_bit(evsel, TRANSACTION);
718
719 /*
720 * XXX see the function comment above
721 *
722 * Disabling only independent events or group leaders,
723 * keeping group members enabled.
724 */
725 if (perf_evsel__is_group_leader(evsel))
726 attr->disabled = 1;
727
728 /*
729 * Setting enable_on_exec for independent events and
730 * group leaders for traced executed by perf.
731 */
732 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
733 !opts->initial_delay)
734 attr->enable_on_exec = 1;
735
736 if (evsel->immediate) {
737 attr->disabled = 0;
738 attr->enable_on_exec = 0;
739 }
740 }
741
742 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
743 {
744 int cpu, thread;
745
746 if (evsel->system_wide)
747 nthreads = 1;
748
749 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
750
751 if (evsel->fd) {
752 for (cpu = 0; cpu < ncpus; cpu++) {
753 for (thread = 0; thread < nthreads; thread++) {
754 FD(evsel, cpu, thread) = -1;
755 }
756 }
757 }
758
759 return evsel->fd != NULL ? 0 : -ENOMEM;
760 }
761
762 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
763 int ioc, void *arg)
764 {
765 int cpu, thread;
766
767 if (evsel->system_wide)
768 nthreads = 1;
769
770 for (cpu = 0; cpu < ncpus; cpu++) {
771 for (thread = 0; thread < nthreads; thread++) {
772 int fd = FD(evsel, cpu, thread),
773 err = ioctl(fd, ioc, arg);
774
775 if (err)
776 return err;
777 }
778 }
779
780 return 0;
781 }
782
783 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
784 const char *filter)
785 {
786 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
787 PERF_EVENT_IOC_SET_FILTER,
788 (void *)filter);
789 }
790
791 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
792 {
793 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
794 PERF_EVENT_IOC_ENABLE,
795 0);
796 }
797
798 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
799 {
800 if (evsel->system_wide)
801 nthreads = 1;
802
803 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
804 if (evsel->sample_id == NULL)
805 return -ENOMEM;
806
807 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
808 if (evsel->id == NULL) {
809 xyarray__delete(evsel->sample_id);
810 evsel->sample_id = NULL;
811 return -ENOMEM;
812 }
813
814 return 0;
815 }
816
817 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
818 {
819 memset(evsel->counts, 0, (sizeof(*evsel->counts) +
820 (ncpus * sizeof(struct perf_counts_values))));
821 }
822
823 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
824 {
825 evsel->counts = zalloc((sizeof(*evsel->counts) +
826 (ncpus * sizeof(struct perf_counts_values))));
827 return evsel->counts != NULL ? 0 : -ENOMEM;
828 }
829
830 static void perf_evsel__free_fd(struct perf_evsel *evsel)
831 {
832 xyarray__delete(evsel->fd);
833 evsel->fd = NULL;
834 }
835
836 static void perf_evsel__free_id(struct perf_evsel *evsel)
837 {
838 xyarray__delete(evsel->sample_id);
839 evsel->sample_id = NULL;
840 zfree(&evsel->id);
841 }
842
843 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
844 {
845 int cpu, thread;
846
847 if (evsel->system_wide)
848 nthreads = 1;
849
850 for (cpu = 0; cpu < ncpus; cpu++)
851 for (thread = 0; thread < nthreads; ++thread) {
852 close(FD(evsel, cpu, thread));
853 FD(evsel, cpu, thread) = -1;
854 }
855 }
856
857 void perf_evsel__free_counts(struct perf_evsel *evsel)
858 {
859 zfree(&evsel->counts);
860 }
861
862 void perf_evsel__exit(struct perf_evsel *evsel)
863 {
864 assert(list_empty(&evsel->node));
865 perf_evsel__free_fd(evsel);
866 perf_evsel__free_id(evsel);
867 close_cgroup(evsel->cgrp);
868 zfree(&evsel->group_name);
869 zfree(&evsel->name);
870 perf_evsel__object.fini(evsel);
871 }
872
873 void perf_evsel__delete(struct perf_evsel *evsel)
874 {
875 perf_evsel__exit(evsel);
876 free(evsel);
877 }
878
879 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu,
880 struct perf_counts_values *count)
881 {
882 struct perf_counts_values tmp;
883
884 if (!evsel->prev_raw_counts)
885 return;
886
887 if (cpu == -1) {
888 tmp = evsel->prev_raw_counts->aggr;
889 evsel->prev_raw_counts->aggr = *count;
890 } else {
891 tmp = evsel->prev_raw_counts->cpu[cpu];
892 evsel->prev_raw_counts->cpu[cpu] = *count;
893 }
894
895 count->val = count->val - tmp.val;
896 count->ena = count->ena - tmp.ena;
897 count->run = count->run - tmp.run;
898 }
899
900 void perf_counts_values__scale(struct perf_counts_values *count,
901 bool scale, s8 *pscaled)
902 {
903 s8 scaled = 0;
904
905 if (scale) {
906 if (count->run == 0) {
907 scaled = -1;
908 count->val = 0;
909 } else if (count->run < count->ena) {
910 scaled = 1;
911 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
912 }
913 } else
914 count->ena = count->run = 0;
915
916 if (pscaled)
917 *pscaled = scaled;
918 }
919
920 int perf_evsel__read_cb(struct perf_evsel *evsel, int cpu, int thread,
921 perf_evsel__read_cb_t cb)
922 {
923 struct perf_counts_values count;
924
925 memset(&count, 0, sizeof(count));
926
927 if (FD(evsel, cpu, thread) < 0)
928 return -EINVAL;
929
930 if (readn(FD(evsel, cpu, thread), &count, sizeof(count)) < 0)
931 return -errno;
932
933 return cb(evsel, cpu, thread, &count);
934 }
935
936 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
937 int cpu, int thread, bool scale)
938 {
939 struct perf_counts_values count;
940 size_t nv = scale ? 3 : 1;
941
942 if (FD(evsel, cpu, thread) < 0)
943 return -EINVAL;
944
945 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
946 return -ENOMEM;
947
948 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
949 return -errno;
950
951 perf_evsel__compute_deltas(evsel, cpu, &count);
952 perf_counts_values__scale(&count, scale, NULL);
953 evsel->counts->cpu[cpu] = count;
954 return 0;
955 }
956
957 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
958 {
959 struct perf_evsel *leader = evsel->leader;
960 int fd;
961
962 if (perf_evsel__is_group_leader(evsel))
963 return -1;
964
965 /*
966 * Leader must be already processed/open,
967 * if not it's a bug.
968 */
969 BUG_ON(!leader->fd);
970
971 fd = FD(leader, cpu, thread);
972 BUG_ON(fd == -1);
973
974 return fd;
975 }
976
977 #define __PRINT_ATTR(fmt, cast, field) \
978 fprintf(fp, " %-19s "fmt"\n", #field, cast attr->field)
979
980 #define PRINT_ATTR_U32(field) __PRINT_ATTR("%u" , , field)
981 #define PRINT_ATTR_X32(field) __PRINT_ATTR("%#x", , field)
982 #define PRINT_ATTR_U64(field) __PRINT_ATTR("%" PRIu64, (uint64_t), field)
983 #define PRINT_ATTR_X64(field) __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
984
985 #define PRINT_ATTR2N(name1, field1, name2, field2) \
986 fprintf(fp, " %-19s %u %-19s %u\n", \
987 name1, attr->field1, name2, attr->field2)
988
989 #define PRINT_ATTR2(field1, field2) \
990 PRINT_ATTR2N(#field1, field1, #field2, field2)
991
992 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
993 {
994 size_t ret = 0;
995
996 ret += fprintf(fp, "%.60s\n", graph_dotted_line);
997 ret += fprintf(fp, "perf_event_attr:\n");
998
999 ret += PRINT_ATTR_U32(type);
1000 ret += PRINT_ATTR_U32(size);
1001 ret += PRINT_ATTR_X64(config);
1002 ret += PRINT_ATTR_U64(sample_period);
1003 ret += PRINT_ATTR_U64(sample_freq);
1004 ret += PRINT_ATTR_X64(sample_type);
1005 ret += PRINT_ATTR_X64(read_format);
1006
1007 ret += PRINT_ATTR2(disabled, inherit);
1008 ret += PRINT_ATTR2(pinned, exclusive);
1009 ret += PRINT_ATTR2(exclude_user, exclude_kernel);
1010 ret += PRINT_ATTR2(exclude_hv, exclude_idle);
1011 ret += PRINT_ATTR2(mmap, comm);
1012 ret += PRINT_ATTR2(mmap2, comm_exec);
1013 ret += PRINT_ATTR2(freq, inherit_stat);
1014 ret += PRINT_ATTR2(enable_on_exec, task);
1015 ret += PRINT_ATTR2(watermark, precise_ip);
1016 ret += PRINT_ATTR2(mmap_data, sample_id_all);
1017 ret += PRINT_ATTR2(exclude_host, exclude_guest);
1018 ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
1019 "excl.callchain_user", exclude_callchain_user);
1020
1021 ret += PRINT_ATTR_U32(wakeup_events);
1022 ret += PRINT_ATTR_U32(wakeup_watermark);
1023 ret += PRINT_ATTR_X32(bp_type);
1024 ret += PRINT_ATTR_X64(bp_addr);
1025 ret += PRINT_ATTR_X64(config1);
1026 ret += PRINT_ATTR_U64(bp_len);
1027 ret += PRINT_ATTR_X64(config2);
1028 ret += PRINT_ATTR_X64(branch_sample_type);
1029 ret += PRINT_ATTR_X64(sample_regs_user);
1030 ret += PRINT_ATTR_U32(sample_stack_user);
1031 ret += PRINT_ATTR_X64(sample_regs_intr);
1032
1033 ret += fprintf(fp, "%.60s\n", graph_dotted_line);
1034
1035 return ret;
1036 }
1037
1038 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1039 struct thread_map *threads)
1040 {
1041 int cpu, thread, nthreads;
1042 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1043 int pid = -1, err;
1044 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1045
1046 if (evsel->system_wide)
1047 nthreads = 1;
1048 else
1049 nthreads = threads->nr;
1050
1051 if (evsel->fd == NULL &&
1052 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1053 return -ENOMEM;
1054
1055 if (evsel->cgrp) {
1056 flags |= PERF_FLAG_PID_CGROUP;
1057 pid = evsel->cgrp->fd;
1058 }
1059
1060 fallback_missing_features:
1061 if (perf_missing_features.cloexec)
1062 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1063 if (perf_missing_features.mmap2)
1064 evsel->attr.mmap2 = 0;
1065 if (perf_missing_features.exclude_guest)
1066 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1067 retry_sample_id:
1068 if (perf_missing_features.sample_id_all)
1069 evsel->attr.sample_id_all = 0;
1070
1071 if (verbose >= 2)
1072 perf_event_attr__fprintf(&evsel->attr, stderr);
1073
1074 for (cpu = 0; cpu < cpus->nr; cpu++) {
1075
1076 for (thread = 0; thread < nthreads; thread++) {
1077 int group_fd;
1078
1079 if (!evsel->cgrp && !evsel->system_wide)
1080 pid = threads->map[thread];
1081
1082 group_fd = get_group_fd(evsel, cpu, thread);
1083 retry_open:
1084 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n",
1085 pid, cpus->map[cpu], group_fd, flags);
1086
1087 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1088 pid,
1089 cpus->map[cpu],
1090 group_fd, flags);
1091 if (FD(evsel, cpu, thread) < 0) {
1092 err = -errno;
1093 pr_debug2("sys_perf_event_open failed, error %d\n",
1094 err);
1095 goto try_fallback;
1096 }
1097 set_rlimit = NO_CHANGE;
1098 }
1099 }
1100
1101 return 0;
1102
1103 try_fallback:
1104 /*
1105 * perf stat needs between 5 and 22 fds per CPU. When we run out
1106 * of them try to increase the limits.
1107 */
1108 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1109 struct rlimit l;
1110 int old_errno = errno;
1111
1112 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1113 if (set_rlimit == NO_CHANGE)
1114 l.rlim_cur = l.rlim_max;
1115 else {
1116 l.rlim_cur = l.rlim_max + 1000;
1117 l.rlim_max = l.rlim_cur;
1118 }
1119 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1120 set_rlimit++;
1121 errno = old_errno;
1122 goto retry_open;
1123 }
1124 }
1125 errno = old_errno;
1126 }
1127
1128 if (err != -EINVAL || cpu > 0 || thread > 0)
1129 goto out_close;
1130
1131 if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1132 perf_missing_features.cloexec = true;
1133 goto fallback_missing_features;
1134 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1135 perf_missing_features.mmap2 = true;
1136 goto fallback_missing_features;
1137 } else if (!perf_missing_features.exclude_guest &&
1138 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1139 perf_missing_features.exclude_guest = true;
1140 goto fallback_missing_features;
1141 } else if (!perf_missing_features.sample_id_all) {
1142 perf_missing_features.sample_id_all = true;
1143 goto retry_sample_id;
1144 }
1145
1146 out_close:
1147 do {
1148 while (--thread >= 0) {
1149 close(FD(evsel, cpu, thread));
1150 FD(evsel, cpu, thread) = -1;
1151 }
1152 thread = nthreads;
1153 } while (--cpu >= 0);
1154 return err;
1155 }
1156
1157 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1158 {
1159 if (evsel->fd == NULL)
1160 return;
1161
1162 perf_evsel__close_fd(evsel, ncpus, nthreads);
1163 perf_evsel__free_fd(evsel);
1164 }
1165
1166 static struct {
1167 struct cpu_map map;
1168 int cpus[1];
1169 } empty_cpu_map = {
1170 .map.nr = 1,
1171 .cpus = { -1, },
1172 };
1173
1174 static struct {
1175 struct thread_map map;
1176 int threads[1];
1177 } empty_thread_map = {
1178 .map.nr = 1,
1179 .threads = { -1, },
1180 };
1181
1182 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1183 struct thread_map *threads)
1184 {
1185 if (cpus == NULL) {
1186 /* Work around old compiler warnings about strict aliasing */
1187 cpus = &empty_cpu_map.map;
1188 }
1189
1190 if (threads == NULL)
1191 threads = &empty_thread_map.map;
1192
1193 return __perf_evsel__open(evsel, cpus, threads);
1194 }
1195
1196 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1197 struct cpu_map *cpus)
1198 {
1199 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1200 }
1201
1202 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1203 struct thread_map *threads)
1204 {
1205 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1206 }
1207
1208 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1209 const union perf_event *event,
1210 struct perf_sample *sample)
1211 {
1212 u64 type = evsel->attr.sample_type;
1213 const u64 *array = event->sample.array;
1214 bool swapped = evsel->needs_swap;
1215 union u64_swap u;
1216
1217 array += ((event->header.size -
1218 sizeof(event->header)) / sizeof(u64)) - 1;
1219
1220 if (type & PERF_SAMPLE_IDENTIFIER) {
1221 sample->id = *array;
1222 array--;
1223 }
1224
1225 if (type & PERF_SAMPLE_CPU) {
1226 u.val64 = *array;
1227 if (swapped) {
1228 /* undo swap of u64, then swap on individual u32s */
1229 u.val64 = bswap_64(u.val64);
1230 u.val32[0] = bswap_32(u.val32[0]);
1231 }
1232
1233 sample->cpu = u.val32[0];
1234 array--;
1235 }
1236
1237 if (type & PERF_SAMPLE_STREAM_ID) {
1238 sample->stream_id = *array;
1239 array--;
1240 }
1241
1242 if (type & PERF_SAMPLE_ID) {
1243 sample->id = *array;
1244 array--;
1245 }
1246
1247 if (type & PERF_SAMPLE_TIME) {
1248 sample->time = *array;
1249 array--;
1250 }
1251
1252 if (type & PERF_SAMPLE_TID) {
1253 u.val64 = *array;
1254 if (swapped) {
1255 /* undo swap of u64, then swap on individual u32s */
1256 u.val64 = bswap_64(u.val64);
1257 u.val32[0] = bswap_32(u.val32[0]);
1258 u.val32[1] = bswap_32(u.val32[1]);
1259 }
1260
1261 sample->pid = u.val32[0];
1262 sample->tid = u.val32[1];
1263 array--;
1264 }
1265
1266 return 0;
1267 }
1268
1269 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1270 u64 size)
1271 {
1272 return size > max_size || offset + size > endp;
1273 }
1274
1275 #define OVERFLOW_CHECK(offset, size, max_size) \
1276 do { \
1277 if (overflow(endp, (max_size), (offset), (size))) \
1278 return -EFAULT; \
1279 } while (0)
1280
1281 #define OVERFLOW_CHECK_u64(offset) \
1282 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1283
1284 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1285 struct perf_sample *data)
1286 {
1287 u64 type = evsel->attr.sample_type;
1288 bool swapped = evsel->needs_swap;
1289 const u64 *array;
1290 u16 max_size = event->header.size;
1291 const void *endp = (void *)event + max_size;
1292 u64 sz;
1293
1294 /*
1295 * used for cross-endian analysis. See git commit 65014ab3
1296 * for why this goofiness is needed.
1297 */
1298 union u64_swap u;
1299
1300 memset(data, 0, sizeof(*data));
1301 data->cpu = data->pid = data->tid = -1;
1302 data->stream_id = data->id = data->time = -1ULL;
1303 data->period = evsel->attr.sample_period;
1304 data->weight = 0;
1305
1306 if (event->header.type != PERF_RECORD_SAMPLE) {
1307 if (!evsel->attr.sample_id_all)
1308 return 0;
1309 return perf_evsel__parse_id_sample(evsel, event, data);
1310 }
1311
1312 array = event->sample.array;
1313
1314 /*
1315 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1316 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1317 * check the format does not go past the end of the event.
1318 */
1319 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1320 return -EFAULT;
1321
1322 data->id = -1ULL;
1323 if (type & PERF_SAMPLE_IDENTIFIER) {
1324 data->id = *array;
1325 array++;
1326 }
1327
1328 if (type & PERF_SAMPLE_IP) {
1329 data->ip = *array;
1330 array++;
1331 }
1332
1333 if (type & PERF_SAMPLE_TID) {
1334 u.val64 = *array;
1335 if (swapped) {
1336 /* undo swap of u64, then swap on individual u32s */
1337 u.val64 = bswap_64(u.val64);
1338 u.val32[0] = bswap_32(u.val32[0]);
1339 u.val32[1] = bswap_32(u.val32[1]);
1340 }
1341
1342 data->pid = u.val32[0];
1343 data->tid = u.val32[1];
1344 array++;
1345 }
1346
1347 if (type & PERF_SAMPLE_TIME) {
1348 data->time = *array;
1349 array++;
1350 }
1351
1352 data->addr = 0;
1353 if (type & PERF_SAMPLE_ADDR) {
1354 data->addr = *array;
1355 array++;
1356 }
1357
1358 if (type & PERF_SAMPLE_ID) {
1359 data->id = *array;
1360 array++;
1361 }
1362
1363 if (type & PERF_SAMPLE_STREAM_ID) {
1364 data->stream_id = *array;
1365 array++;
1366 }
1367
1368 if (type & PERF_SAMPLE_CPU) {
1369
1370 u.val64 = *array;
1371 if (swapped) {
1372 /* undo swap of u64, then swap on individual u32s */
1373 u.val64 = bswap_64(u.val64);
1374 u.val32[0] = bswap_32(u.val32[0]);
1375 }
1376
1377 data->cpu = u.val32[0];
1378 array++;
1379 }
1380
1381 if (type & PERF_SAMPLE_PERIOD) {
1382 data->period = *array;
1383 array++;
1384 }
1385
1386 if (type & PERF_SAMPLE_READ) {
1387 u64 read_format = evsel->attr.read_format;
1388
1389 OVERFLOW_CHECK_u64(array);
1390 if (read_format & PERF_FORMAT_GROUP)
1391 data->read.group.nr = *array;
1392 else
1393 data->read.one.value = *array;
1394
1395 array++;
1396
1397 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1398 OVERFLOW_CHECK_u64(array);
1399 data->read.time_enabled = *array;
1400 array++;
1401 }
1402
1403 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1404 OVERFLOW_CHECK_u64(array);
1405 data->read.time_running = *array;
1406 array++;
1407 }
1408
1409 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1410 if (read_format & PERF_FORMAT_GROUP) {
1411 const u64 max_group_nr = UINT64_MAX /
1412 sizeof(struct sample_read_value);
1413
1414 if (data->read.group.nr > max_group_nr)
1415 return -EFAULT;
1416 sz = data->read.group.nr *
1417 sizeof(struct sample_read_value);
1418 OVERFLOW_CHECK(array, sz, max_size);
1419 data->read.group.values =
1420 (struct sample_read_value *)array;
1421 array = (void *)array + sz;
1422 } else {
1423 OVERFLOW_CHECK_u64(array);
1424 data->read.one.id = *array;
1425 array++;
1426 }
1427 }
1428
1429 if (type & PERF_SAMPLE_CALLCHAIN) {
1430 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1431
1432 OVERFLOW_CHECK_u64(array);
1433 data->callchain = (struct ip_callchain *)array++;
1434 if (data->callchain->nr > max_callchain_nr)
1435 return -EFAULT;
1436 sz = data->callchain->nr * sizeof(u64);
1437 OVERFLOW_CHECK(array, sz, max_size);
1438 array = (void *)array + sz;
1439 }
1440
1441 if (type & PERF_SAMPLE_RAW) {
1442 OVERFLOW_CHECK_u64(array);
1443 u.val64 = *array;
1444 if (WARN_ONCE(swapped,
1445 "Endianness of raw data not corrected!\n")) {
1446 /* undo swap of u64, then swap on individual u32s */
1447 u.val64 = bswap_64(u.val64);
1448 u.val32[0] = bswap_32(u.val32[0]);
1449 u.val32[1] = bswap_32(u.val32[1]);
1450 }
1451 data->raw_size = u.val32[0];
1452 array = (void *)array + sizeof(u32);
1453
1454 OVERFLOW_CHECK(array, data->raw_size, max_size);
1455 data->raw_data = (void *)array;
1456 array = (void *)array + data->raw_size;
1457 }
1458
1459 if (type & PERF_SAMPLE_BRANCH_STACK) {
1460 const u64 max_branch_nr = UINT64_MAX /
1461 sizeof(struct branch_entry);
1462
1463 OVERFLOW_CHECK_u64(array);
1464 data->branch_stack = (struct branch_stack *)array++;
1465
1466 if (data->branch_stack->nr > max_branch_nr)
1467 return -EFAULT;
1468 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1469 OVERFLOW_CHECK(array, sz, max_size);
1470 array = (void *)array + sz;
1471 }
1472
1473 if (type & PERF_SAMPLE_REGS_USER) {
1474 OVERFLOW_CHECK_u64(array);
1475 data->user_regs.abi = *array;
1476 array++;
1477
1478 if (data->user_regs.abi) {
1479 u64 mask = evsel->attr.sample_regs_user;
1480
1481 sz = hweight_long(mask) * sizeof(u64);
1482 OVERFLOW_CHECK(array, sz, max_size);
1483 data->user_regs.mask = mask;
1484 data->user_regs.regs = (u64 *)array;
1485 array = (void *)array + sz;
1486 }
1487 }
1488
1489 if (type & PERF_SAMPLE_STACK_USER) {
1490 OVERFLOW_CHECK_u64(array);
1491 sz = *array++;
1492
1493 data->user_stack.offset = ((char *)(array - 1)
1494 - (char *) event);
1495
1496 if (!sz) {
1497 data->user_stack.size = 0;
1498 } else {
1499 OVERFLOW_CHECK(array, sz, max_size);
1500 data->user_stack.data = (char *)array;
1501 array = (void *)array + sz;
1502 OVERFLOW_CHECK_u64(array);
1503 data->user_stack.size = *array++;
1504 if (WARN_ONCE(data->user_stack.size > sz,
1505 "user stack dump failure\n"))
1506 return -EFAULT;
1507 }
1508 }
1509
1510 data->weight = 0;
1511 if (type & PERF_SAMPLE_WEIGHT) {
1512 OVERFLOW_CHECK_u64(array);
1513 data->weight = *array;
1514 array++;
1515 }
1516
1517 data->data_src = PERF_MEM_DATA_SRC_NONE;
1518 if (type & PERF_SAMPLE_DATA_SRC) {
1519 OVERFLOW_CHECK_u64(array);
1520 data->data_src = *array;
1521 array++;
1522 }
1523
1524 data->transaction = 0;
1525 if (type & PERF_SAMPLE_TRANSACTION) {
1526 OVERFLOW_CHECK_u64(array);
1527 data->transaction = *array;
1528 array++;
1529 }
1530
1531 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1532 if (type & PERF_SAMPLE_REGS_INTR) {
1533 OVERFLOW_CHECK_u64(array);
1534 data->intr_regs.abi = *array;
1535 array++;
1536
1537 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1538 u64 mask = evsel->attr.sample_regs_intr;
1539
1540 sz = hweight_long(mask) * sizeof(u64);
1541 OVERFLOW_CHECK(array, sz, max_size);
1542 data->intr_regs.mask = mask;
1543 data->intr_regs.regs = (u64 *)array;
1544 array = (void *)array + sz;
1545 }
1546 }
1547
1548 return 0;
1549 }
1550
1551 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1552 u64 read_format)
1553 {
1554 size_t sz, result = sizeof(struct sample_event);
1555
1556 if (type & PERF_SAMPLE_IDENTIFIER)
1557 result += sizeof(u64);
1558
1559 if (type & PERF_SAMPLE_IP)
1560 result += sizeof(u64);
1561
1562 if (type & PERF_SAMPLE_TID)
1563 result += sizeof(u64);
1564
1565 if (type & PERF_SAMPLE_TIME)
1566 result += sizeof(u64);
1567
1568 if (type & PERF_SAMPLE_ADDR)
1569 result += sizeof(u64);
1570
1571 if (type & PERF_SAMPLE_ID)
1572 result += sizeof(u64);
1573
1574 if (type & PERF_SAMPLE_STREAM_ID)
1575 result += sizeof(u64);
1576
1577 if (type & PERF_SAMPLE_CPU)
1578 result += sizeof(u64);
1579
1580 if (type & PERF_SAMPLE_PERIOD)
1581 result += sizeof(u64);
1582
1583 if (type & PERF_SAMPLE_READ) {
1584 result += sizeof(u64);
1585 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1586 result += sizeof(u64);
1587 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1588 result += sizeof(u64);
1589 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1590 if (read_format & PERF_FORMAT_GROUP) {
1591 sz = sample->read.group.nr *
1592 sizeof(struct sample_read_value);
1593 result += sz;
1594 } else {
1595 result += sizeof(u64);
1596 }
1597 }
1598
1599 if (type & PERF_SAMPLE_CALLCHAIN) {
1600 sz = (sample->callchain->nr + 1) * sizeof(u64);
1601 result += sz;
1602 }
1603
1604 if (type & PERF_SAMPLE_RAW) {
1605 result += sizeof(u32);
1606 result += sample->raw_size;
1607 }
1608
1609 if (type & PERF_SAMPLE_BRANCH_STACK) {
1610 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1611 sz += sizeof(u64);
1612 result += sz;
1613 }
1614
1615 if (type & PERF_SAMPLE_REGS_USER) {
1616 if (sample->user_regs.abi) {
1617 result += sizeof(u64);
1618 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1619 result += sz;
1620 } else {
1621 result += sizeof(u64);
1622 }
1623 }
1624
1625 if (type & PERF_SAMPLE_STACK_USER) {
1626 sz = sample->user_stack.size;
1627 result += sizeof(u64);
1628 if (sz) {
1629 result += sz;
1630 result += sizeof(u64);
1631 }
1632 }
1633
1634 if (type & PERF_SAMPLE_WEIGHT)
1635 result += sizeof(u64);
1636
1637 if (type & PERF_SAMPLE_DATA_SRC)
1638 result += sizeof(u64);
1639
1640 if (type & PERF_SAMPLE_TRANSACTION)
1641 result += sizeof(u64);
1642
1643 if (type & PERF_SAMPLE_REGS_INTR) {
1644 if (sample->intr_regs.abi) {
1645 result += sizeof(u64);
1646 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1647 result += sz;
1648 } else {
1649 result += sizeof(u64);
1650 }
1651 }
1652
1653 return result;
1654 }
1655
1656 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1657 u64 read_format,
1658 const struct perf_sample *sample,
1659 bool swapped)
1660 {
1661 u64 *array;
1662 size_t sz;
1663 /*
1664 * used for cross-endian analysis. See git commit 65014ab3
1665 * for why this goofiness is needed.
1666 */
1667 union u64_swap u;
1668
1669 array = event->sample.array;
1670
1671 if (type & PERF_SAMPLE_IDENTIFIER) {
1672 *array = sample->id;
1673 array++;
1674 }
1675
1676 if (type & PERF_SAMPLE_IP) {
1677 *array = sample->ip;
1678 array++;
1679 }
1680
1681 if (type & PERF_SAMPLE_TID) {
1682 u.val32[0] = sample->pid;
1683 u.val32[1] = sample->tid;
1684 if (swapped) {
1685 /*
1686 * Inverse of what is done in perf_evsel__parse_sample
1687 */
1688 u.val32[0] = bswap_32(u.val32[0]);
1689 u.val32[1] = bswap_32(u.val32[1]);
1690 u.val64 = bswap_64(u.val64);
1691 }
1692
1693 *array = u.val64;
1694 array++;
1695 }
1696
1697 if (type & PERF_SAMPLE_TIME) {
1698 *array = sample->time;
1699 array++;
1700 }
1701
1702 if (type & PERF_SAMPLE_ADDR) {
1703 *array = sample->addr;
1704 array++;
1705 }
1706
1707 if (type & PERF_SAMPLE_ID) {
1708 *array = sample->id;
1709 array++;
1710 }
1711
1712 if (type & PERF_SAMPLE_STREAM_ID) {
1713 *array = sample->stream_id;
1714 array++;
1715 }
1716
1717 if (type & PERF_SAMPLE_CPU) {
1718 u.val32[0] = sample->cpu;
1719 if (swapped) {
1720 /*
1721 * Inverse of what is done in perf_evsel__parse_sample
1722 */
1723 u.val32[0] = bswap_32(u.val32[0]);
1724 u.val64 = bswap_64(u.val64);
1725 }
1726 *array = u.val64;
1727 array++;
1728 }
1729
1730 if (type & PERF_SAMPLE_PERIOD) {
1731 *array = sample->period;
1732 array++;
1733 }
1734
1735 if (type & PERF_SAMPLE_READ) {
1736 if (read_format & PERF_FORMAT_GROUP)
1737 *array = sample->read.group.nr;
1738 else
1739 *array = sample->read.one.value;
1740 array++;
1741
1742 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1743 *array = sample->read.time_enabled;
1744 array++;
1745 }
1746
1747 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1748 *array = sample->read.time_running;
1749 array++;
1750 }
1751
1752 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1753 if (read_format & PERF_FORMAT_GROUP) {
1754 sz = sample->read.group.nr *
1755 sizeof(struct sample_read_value);
1756 memcpy(array, sample->read.group.values, sz);
1757 array = (void *)array + sz;
1758 } else {
1759 *array = sample->read.one.id;
1760 array++;
1761 }
1762 }
1763
1764 if (type & PERF_SAMPLE_CALLCHAIN) {
1765 sz = (sample->callchain->nr + 1) * sizeof(u64);
1766 memcpy(array, sample->callchain, sz);
1767 array = (void *)array + sz;
1768 }
1769
1770 if (type & PERF_SAMPLE_RAW) {
1771 u.val32[0] = sample->raw_size;
1772 if (WARN_ONCE(swapped,
1773 "Endianness of raw data not corrected!\n")) {
1774 /*
1775 * Inverse of what is done in perf_evsel__parse_sample
1776 */
1777 u.val32[0] = bswap_32(u.val32[0]);
1778 u.val32[1] = bswap_32(u.val32[1]);
1779 u.val64 = bswap_64(u.val64);
1780 }
1781 *array = u.val64;
1782 array = (void *)array + sizeof(u32);
1783
1784 memcpy(array, sample->raw_data, sample->raw_size);
1785 array = (void *)array + sample->raw_size;
1786 }
1787
1788 if (type & PERF_SAMPLE_BRANCH_STACK) {
1789 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1790 sz += sizeof(u64);
1791 memcpy(array, sample->branch_stack, sz);
1792 array = (void *)array + sz;
1793 }
1794
1795 if (type & PERF_SAMPLE_REGS_USER) {
1796 if (sample->user_regs.abi) {
1797 *array++ = sample->user_regs.abi;
1798 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1799 memcpy(array, sample->user_regs.regs, sz);
1800 array = (void *)array + sz;
1801 } else {
1802 *array++ = 0;
1803 }
1804 }
1805
1806 if (type & PERF_SAMPLE_STACK_USER) {
1807 sz = sample->user_stack.size;
1808 *array++ = sz;
1809 if (sz) {
1810 memcpy(array, sample->user_stack.data, sz);
1811 array = (void *)array + sz;
1812 *array++ = sz;
1813 }
1814 }
1815
1816 if (type & PERF_SAMPLE_WEIGHT) {
1817 *array = sample->weight;
1818 array++;
1819 }
1820
1821 if (type & PERF_SAMPLE_DATA_SRC) {
1822 *array = sample->data_src;
1823 array++;
1824 }
1825
1826 if (type & PERF_SAMPLE_TRANSACTION) {
1827 *array = sample->transaction;
1828 array++;
1829 }
1830
1831 if (type & PERF_SAMPLE_REGS_INTR) {
1832 if (sample->intr_regs.abi) {
1833 *array++ = sample->intr_regs.abi;
1834 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1835 memcpy(array, sample->intr_regs.regs, sz);
1836 array = (void *)array + sz;
1837 } else {
1838 *array++ = 0;
1839 }
1840 }
1841
1842 return 0;
1843 }
1844
1845 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1846 {
1847 return pevent_find_field(evsel->tp_format, name);
1848 }
1849
1850 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1851 const char *name)
1852 {
1853 struct format_field *field = perf_evsel__field(evsel, name);
1854 int offset;
1855
1856 if (!field)
1857 return NULL;
1858
1859 offset = field->offset;
1860
1861 if (field->flags & FIELD_IS_DYNAMIC) {
1862 offset = *(int *)(sample->raw_data + field->offset);
1863 offset &= 0xffff;
1864 }
1865
1866 return sample->raw_data + offset;
1867 }
1868
1869 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1870 const char *name)
1871 {
1872 struct format_field *field = perf_evsel__field(evsel, name);
1873 void *ptr;
1874 u64 value;
1875
1876 if (!field)
1877 return 0;
1878
1879 ptr = sample->raw_data + field->offset;
1880
1881 switch (field->size) {
1882 case 1:
1883 return *(u8 *)ptr;
1884 case 2:
1885 value = *(u16 *)ptr;
1886 break;
1887 case 4:
1888 value = *(u32 *)ptr;
1889 break;
1890 case 8:
1891 value = *(u64 *)ptr;
1892 break;
1893 default:
1894 return 0;
1895 }
1896
1897 if (!evsel->needs_swap)
1898 return value;
1899
1900 switch (field->size) {
1901 case 2:
1902 return bswap_16(value);
1903 case 4:
1904 return bswap_32(value);
1905 case 8:
1906 return bswap_64(value);
1907 default:
1908 return 0;
1909 }
1910
1911 return 0;
1912 }
1913
1914 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1915 {
1916 va_list args;
1917 int ret = 0;
1918
1919 if (!*first) {
1920 ret += fprintf(fp, ",");
1921 } else {
1922 ret += fprintf(fp, ":");
1923 *first = false;
1924 }
1925
1926 va_start(args, fmt);
1927 ret += vfprintf(fp, fmt, args);
1928 va_end(args);
1929 return ret;
1930 }
1931
1932 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1933 {
1934 if (value == 0)
1935 return 0;
1936
1937 return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1938 }
1939
1940 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1941
1942 struct bit_names {
1943 int bit;
1944 const char *name;
1945 };
1946
1947 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1948 struct bit_names *bits, bool *first)
1949 {
1950 int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1951 bool first_bit = true;
1952
1953 do {
1954 if (value & bits[i].bit) {
1955 printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1956 first_bit = false;
1957 }
1958 } while (bits[++i].name != NULL);
1959
1960 return printed;
1961 }
1962
1963 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1964 {
1965 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1966 struct bit_names bits[] = {
1967 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1968 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1969 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1970 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1971 bit_name(IDENTIFIER), bit_name(REGS_INTR),
1972 { .name = NULL, }
1973 };
1974 #undef bit_name
1975 return bits__fprintf(fp, "sample_type", value, bits, first);
1976 }
1977
1978 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1979 {
1980 #define bit_name(n) { PERF_FORMAT_##n, #n }
1981 struct bit_names bits[] = {
1982 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1983 bit_name(ID), bit_name(GROUP),
1984 { .name = NULL, }
1985 };
1986 #undef bit_name
1987 return bits__fprintf(fp, "read_format", value, bits, first);
1988 }
1989
1990 int perf_evsel__fprintf(struct perf_evsel *evsel,
1991 struct perf_attr_details *details, FILE *fp)
1992 {
1993 bool first = true;
1994 int printed = 0;
1995
1996 if (details->event_group) {
1997 struct perf_evsel *pos;
1998
1999 if (!perf_evsel__is_group_leader(evsel))
2000 return 0;
2001
2002 if (evsel->nr_members > 1)
2003 printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2004
2005 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2006 for_each_group_member(pos, evsel)
2007 printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2008
2009 if (evsel->nr_members > 1)
2010 printed += fprintf(fp, "}");
2011 goto out;
2012 }
2013
2014 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2015
2016 if (details->verbose || details->freq) {
2017 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
2018 (u64)evsel->attr.sample_freq);
2019 }
2020
2021 if (details->verbose) {
2022 if_print(type);
2023 if_print(config);
2024 if_print(config1);
2025 if_print(config2);
2026 if_print(size);
2027 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
2028 if (evsel->attr.read_format)
2029 printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
2030 if_print(disabled);
2031 if_print(inherit);
2032 if_print(pinned);
2033 if_print(exclusive);
2034 if_print(exclude_user);
2035 if_print(exclude_kernel);
2036 if_print(exclude_hv);
2037 if_print(exclude_idle);
2038 if_print(mmap);
2039 if_print(mmap2);
2040 if_print(comm);
2041 if_print(comm_exec);
2042 if_print(freq);
2043 if_print(inherit_stat);
2044 if_print(enable_on_exec);
2045 if_print(task);
2046 if_print(watermark);
2047 if_print(precise_ip);
2048 if_print(mmap_data);
2049 if_print(sample_id_all);
2050 if_print(exclude_host);
2051 if_print(exclude_guest);
2052 if_print(__reserved_1);
2053 if_print(wakeup_events);
2054 if_print(bp_type);
2055 if_print(branch_sample_type);
2056 }
2057 out:
2058 fputc('\n', fp);
2059 return ++printed;
2060 }
2061
2062 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2063 char *msg, size_t msgsize)
2064 {
2065 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2066 evsel->attr.type == PERF_TYPE_HARDWARE &&
2067 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2068 /*
2069 * If it's cycles then fall back to hrtimer based
2070 * cpu-clock-tick sw counter, which is always available even if
2071 * no PMU support.
2072 *
2073 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2074 * b0a873e).
2075 */
2076 scnprintf(msg, msgsize, "%s",
2077 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2078
2079 evsel->attr.type = PERF_TYPE_SOFTWARE;
2080 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2081
2082 zfree(&evsel->name);
2083 return true;
2084 }
2085
2086 return false;
2087 }
2088
2089 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2090 int err, char *msg, size_t size)
2091 {
2092 char sbuf[STRERR_BUFSIZE];
2093
2094 switch (err) {
2095 case EPERM:
2096 case EACCES:
2097 return scnprintf(msg, size,
2098 "You may not have permission to collect %sstats.\n"
2099 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2100 " -1 - Not paranoid at all\n"
2101 " 0 - Disallow raw tracepoint access for unpriv\n"
2102 " 1 - Disallow cpu events for unpriv\n"
2103 " 2 - Disallow kernel profiling for unpriv",
2104 target->system_wide ? "system-wide " : "");
2105 case ENOENT:
2106 return scnprintf(msg, size, "The %s event is not supported.",
2107 perf_evsel__name(evsel));
2108 case EMFILE:
2109 return scnprintf(msg, size, "%s",
2110 "Too many events are opened.\n"
2111 "Try again after reducing the number of events.");
2112 case ENODEV:
2113 if (target->cpu_list)
2114 return scnprintf(msg, size, "%s",
2115 "No such device - did you specify an out-of-range profile CPU?\n");
2116 break;
2117 case EOPNOTSUPP:
2118 if (evsel->attr.precise_ip)
2119 return scnprintf(msg, size, "%s",
2120 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2121 #if defined(__i386__) || defined(__x86_64__)
2122 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2123 return scnprintf(msg, size, "%s",
2124 "No hardware sampling interrupt available.\n"
2125 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2126 #endif
2127 break;
2128 case EBUSY:
2129 if (find_process("oprofiled"))
2130 return scnprintf(msg, size,
2131 "The PMU counters are busy/taken by another profiler.\n"
2132 "We found oprofile daemon running, please stop it and try again.");
2133 break;
2134 default:
2135 break;
2136 }
2137
2138 return scnprintf(msg, size,
2139 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2140 "/bin/dmesg may provide additional information.\n"
2141 "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2142 err, strerror_r(err, sbuf, sizeof(sbuf)),
2143 perf_evsel__name(evsel));
2144 }