]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - tools/perf/util/evsel.c
perf tools: Merge all perf_event_attr print functions
[mirror_ubuntu-jammy-kernel.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "callchain.h"
19 #include "cgroup.h"
20 #include "evsel.h"
21 #include "evlist.h"
22 #include "util.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25 #include "target.h"
26 #include "perf_regs.h"
27 #include "debug.h"
28 #include "trace-event.h"
29
30 static struct {
31 bool sample_id_all;
32 bool exclude_guest;
33 bool mmap2;
34 bool cloexec;
35 bool clockid;
36 bool clockid_wrong;
37 } perf_missing_features;
38
39 static clockid_t clockid;
40
41 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
42 {
43 return 0;
44 }
45
46 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
47 {
48 }
49
50 static struct {
51 size_t size;
52 int (*init)(struct perf_evsel *evsel);
53 void (*fini)(struct perf_evsel *evsel);
54 } perf_evsel__object = {
55 .size = sizeof(struct perf_evsel),
56 .init = perf_evsel__no_extra_init,
57 .fini = perf_evsel__no_extra_fini,
58 };
59
60 int perf_evsel__object_config(size_t object_size,
61 int (*init)(struct perf_evsel *evsel),
62 void (*fini)(struct perf_evsel *evsel))
63 {
64
65 if (object_size == 0)
66 goto set_methods;
67
68 if (perf_evsel__object.size > object_size)
69 return -EINVAL;
70
71 perf_evsel__object.size = object_size;
72
73 set_methods:
74 if (init != NULL)
75 perf_evsel__object.init = init;
76
77 if (fini != NULL)
78 perf_evsel__object.fini = fini;
79
80 return 0;
81 }
82
83 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
84
85 int __perf_evsel__sample_size(u64 sample_type)
86 {
87 u64 mask = sample_type & PERF_SAMPLE_MASK;
88 int size = 0;
89 int i;
90
91 for (i = 0; i < 64; i++) {
92 if (mask & (1ULL << i))
93 size++;
94 }
95
96 size *= sizeof(u64);
97
98 return size;
99 }
100
101 /**
102 * __perf_evsel__calc_id_pos - calculate id_pos.
103 * @sample_type: sample type
104 *
105 * This function returns the position of the event id (PERF_SAMPLE_ID or
106 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
107 * sample_event.
108 */
109 static int __perf_evsel__calc_id_pos(u64 sample_type)
110 {
111 int idx = 0;
112
113 if (sample_type & PERF_SAMPLE_IDENTIFIER)
114 return 0;
115
116 if (!(sample_type & PERF_SAMPLE_ID))
117 return -1;
118
119 if (sample_type & PERF_SAMPLE_IP)
120 idx += 1;
121
122 if (sample_type & PERF_SAMPLE_TID)
123 idx += 1;
124
125 if (sample_type & PERF_SAMPLE_TIME)
126 idx += 1;
127
128 if (sample_type & PERF_SAMPLE_ADDR)
129 idx += 1;
130
131 return idx;
132 }
133
134 /**
135 * __perf_evsel__calc_is_pos - calculate is_pos.
136 * @sample_type: sample type
137 *
138 * This function returns the position (counting backwards) of the event id
139 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
140 * sample_id_all is used there is an id sample appended to non-sample events.
141 */
142 static int __perf_evsel__calc_is_pos(u64 sample_type)
143 {
144 int idx = 1;
145
146 if (sample_type & PERF_SAMPLE_IDENTIFIER)
147 return 1;
148
149 if (!(sample_type & PERF_SAMPLE_ID))
150 return -1;
151
152 if (sample_type & PERF_SAMPLE_CPU)
153 idx += 1;
154
155 if (sample_type & PERF_SAMPLE_STREAM_ID)
156 idx += 1;
157
158 return idx;
159 }
160
161 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
162 {
163 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
164 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
165 }
166
167 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
168 enum perf_event_sample_format bit)
169 {
170 if (!(evsel->attr.sample_type & bit)) {
171 evsel->attr.sample_type |= bit;
172 evsel->sample_size += sizeof(u64);
173 perf_evsel__calc_id_pos(evsel);
174 }
175 }
176
177 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
178 enum perf_event_sample_format bit)
179 {
180 if (evsel->attr.sample_type & bit) {
181 evsel->attr.sample_type &= ~bit;
182 evsel->sample_size -= sizeof(u64);
183 perf_evsel__calc_id_pos(evsel);
184 }
185 }
186
187 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
188 bool can_sample_identifier)
189 {
190 if (can_sample_identifier) {
191 perf_evsel__reset_sample_bit(evsel, ID);
192 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
193 } else {
194 perf_evsel__set_sample_bit(evsel, ID);
195 }
196 evsel->attr.read_format |= PERF_FORMAT_ID;
197 }
198
199 void perf_evsel__init(struct perf_evsel *evsel,
200 struct perf_event_attr *attr, int idx)
201 {
202 evsel->idx = idx;
203 evsel->tracking = !idx;
204 evsel->attr = *attr;
205 evsel->leader = evsel;
206 evsel->unit = "";
207 evsel->scale = 1.0;
208 INIT_LIST_HEAD(&evsel->node);
209 perf_evsel__object.init(evsel);
210 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
211 perf_evsel__calc_id_pos(evsel);
212 }
213
214 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
215 {
216 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
217
218 if (evsel != NULL)
219 perf_evsel__init(evsel, attr, idx);
220
221 return evsel;
222 }
223
224 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
225 {
226 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
227
228 if (evsel != NULL) {
229 struct perf_event_attr attr = {
230 .type = PERF_TYPE_TRACEPOINT,
231 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
232 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
233 };
234
235 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
236 goto out_free;
237
238 evsel->tp_format = trace_event__tp_format(sys, name);
239 if (evsel->tp_format == NULL)
240 goto out_free;
241
242 event_attr_init(&attr);
243 attr.config = evsel->tp_format->id;
244 attr.sample_period = 1;
245 perf_evsel__init(evsel, &attr, idx);
246 }
247
248 return evsel;
249
250 out_free:
251 zfree(&evsel->name);
252 free(evsel);
253 return NULL;
254 }
255
256 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
257 "cycles",
258 "instructions",
259 "cache-references",
260 "cache-misses",
261 "branches",
262 "branch-misses",
263 "bus-cycles",
264 "stalled-cycles-frontend",
265 "stalled-cycles-backend",
266 "ref-cycles",
267 };
268
269 static const char *__perf_evsel__hw_name(u64 config)
270 {
271 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
272 return perf_evsel__hw_names[config];
273
274 return "unknown-hardware";
275 }
276
277 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
278 {
279 int colon = 0, r = 0;
280 struct perf_event_attr *attr = &evsel->attr;
281 bool exclude_guest_default = false;
282
283 #define MOD_PRINT(context, mod) do { \
284 if (!attr->exclude_##context) { \
285 if (!colon) colon = ++r; \
286 r += scnprintf(bf + r, size - r, "%c", mod); \
287 } } while(0)
288
289 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
290 MOD_PRINT(kernel, 'k');
291 MOD_PRINT(user, 'u');
292 MOD_PRINT(hv, 'h');
293 exclude_guest_default = true;
294 }
295
296 if (attr->precise_ip) {
297 if (!colon)
298 colon = ++r;
299 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
300 exclude_guest_default = true;
301 }
302
303 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
304 MOD_PRINT(host, 'H');
305 MOD_PRINT(guest, 'G');
306 }
307 #undef MOD_PRINT
308 if (colon)
309 bf[colon - 1] = ':';
310 return r;
311 }
312
313 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
314 {
315 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
316 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
317 }
318
319 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
320 "cpu-clock",
321 "task-clock",
322 "page-faults",
323 "context-switches",
324 "cpu-migrations",
325 "minor-faults",
326 "major-faults",
327 "alignment-faults",
328 "emulation-faults",
329 "dummy",
330 };
331
332 static const char *__perf_evsel__sw_name(u64 config)
333 {
334 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
335 return perf_evsel__sw_names[config];
336 return "unknown-software";
337 }
338
339 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
340 {
341 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
342 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
343 }
344
345 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
346 {
347 int r;
348
349 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
350
351 if (type & HW_BREAKPOINT_R)
352 r += scnprintf(bf + r, size - r, "r");
353
354 if (type & HW_BREAKPOINT_W)
355 r += scnprintf(bf + r, size - r, "w");
356
357 if (type & HW_BREAKPOINT_X)
358 r += scnprintf(bf + r, size - r, "x");
359
360 return r;
361 }
362
363 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
364 {
365 struct perf_event_attr *attr = &evsel->attr;
366 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
367 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
368 }
369
370 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
371 [PERF_EVSEL__MAX_ALIASES] = {
372 { "L1-dcache", "l1-d", "l1d", "L1-data", },
373 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
374 { "LLC", "L2", },
375 { "dTLB", "d-tlb", "Data-TLB", },
376 { "iTLB", "i-tlb", "Instruction-TLB", },
377 { "branch", "branches", "bpu", "btb", "bpc", },
378 { "node", },
379 };
380
381 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
382 [PERF_EVSEL__MAX_ALIASES] = {
383 { "load", "loads", "read", },
384 { "store", "stores", "write", },
385 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
386 };
387
388 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
389 [PERF_EVSEL__MAX_ALIASES] = {
390 { "refs", "Reference", "ops", "access", },
391 { "misses", "miss", },
392 };
393
394 #define C(x) PERF_COUNT_HW_CACHE_##x
395 #define CACHE_READ (1 << C(OP_READ))
396 #define CACHE_WRITE (1 << C(OP_WRITE))
397 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
398 #define COP(x) (1 << x)
399
400 /*
401 * cache operartion stat
402 * L1I : Read and prefetch only
403 * ITLB and BPU : Read-only
404 */
405 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
406 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
407 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
408 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
409 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
410 [C(ITLB)] = (CACHE_READ),
411 [C(BPU)] = (CACHE_READ),
412 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
413 };
414
415 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
416 {
417 if (perf_evsel__hw_cache_stat[type] & COP(op))
418 return true; /* valid */
419 else
420 return false; /* invalid */
421 }
422
423 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
424 char *bf, size_t size)
425 {
426 if (result) {
427 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
428 perf_evsel__hw_cache_op[op][0],
429 perf_evsel__hw_cache_result[result][0]);
430 }
431
432 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
433 perf_evsel__hw_cache_op[op][1]);
434 }
435
436 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
437 {
438 u8 op, result, type = (config >> 0) & 0xff;
439 const char *err = "unknown-ext-hardware-cache-type";
440
441 if (type > PERF_COUNT_HW_CACHE_MAX)
442 goto out_err;
443
444 op = (config >> 8) & 0xff;
445 err = "unknown-ext-hardware-cache-op";
446 if (op > PERF_COUNT_HW_CACHE_OP_MAX)
447 goto out_err;
448
449 result = (config >> 16) & 0xff;
450 err = "unknown-ext-hardware-cache-result";
451 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
452 goto out_err;
453
454 err = "invalid-cache";
455 if (!perf_evsel__is_cache_op_valid(type, op))
456 goto out_err;
457
458 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
459 out_err:
460 return scnprintf(bf, size, "%s", err);
461 }
462
463 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
464 {
465 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
466 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
467 }
468
469 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
470 {
471 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
472 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
473 }
474
475 const char *perf_evsel__name(struct perf_evsel *evsel)
476 {
477 char bf[128];
478
479 if (evsel->name)
480 return evsel->name;
481
482 switch (evsel->attr.type) {
483 case PERF_TYPE_RAW:
484 perf_evsel__raw_name(evsel, bf, sizeof(bf));
485 break;
486
487 case PERF_TYPE_HARDWARE:
488 perf_evsel__hw_name(evsel, bf, sizeof(bf));
489 break;
490
491 case PERF_TYPE_HW_CACHE:
492 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
493 break;
494
495 case PERF_TYPE_SOFTWARE:
496 perf_evsel__sw_name(evsel, bf, sizeof(bf));
497 break;
498
499 case PERF_TYPE_TRACEPOINT:
500 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
501 break;
502
503 case PERF_TYPE_BREAKPOINT:
504 perf_evsel__bp_name(evsel, bf, sizeof(bf));
505 break;
506
507 default:
508 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
509 evsel->attr.type);
510 break;
511 }
512
513 evsel->name = strdup(bf);
514
515 return evsel->name ?: "unknown";
516 }
517
518 const char *perf_evsel__group_name(struct perf_evsel *evsel)
519 {
520 return evsel->group_name ?: "anon group";
521 }
522
523 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
524 {
525 int ret;
526 struct perf_evsel *pos;
527 const char *group_name = perf_evsel__group_name(evsel);
528
529 ret = scnprintf(buf, size, "%s", group_name);
530
531 ret += scnprintf(buf + ret, size - ret, " { %s",
532 perf_evsel__name(evsel));
533
534 for_each_group_member(pos, evsel)
535 ret += scnprintf(buf + ret, size - ret, ", %s",
536 perf_evsel__name(pos));
537
538 ret += scnprintf(buf + ret, size - ret, " }");
539
540 return ret;
541 }
542
543 static void
544 perf_evsel__config_callgraph(struct perf_evsel *evsel,
545 struct record_opts *opts)
546 {
547 bool function = perf_evsel__is_function_event(evsel);
548 struct perf_event_attr *attr = &evsel->attr;
549
550 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
551
552 if (callchain_param.record_mode == CALLCHAIN_LBR) {
553 if (!opts->branch_stack) {
554 if (attr->exclude_user) {
555 pr_warning("LBR callstack option is only available "
556 "to get user callchain information. "
557 "Falling back to framepointers.\n");
558 } else {
559 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
560 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
561 PERF_SAMPLE_BRANCH_CALL_STACK;
562 }
563 } else
564 pr_warning("Cannot use LBR callstack with branch stack. "
565 "Falling back to framepointers.\n");
566 }
567
568 if (callchain_param.record_mode == CALLCHAIN_DWARF) {
569 if (!function) {
570 perf_evsel__set_sample_bit(evsel, REGS_USER);
571 perf_evsel__set_sample_bit(evsel, STACK_USER);
572 attr->sample_regs_user = PERF_REGS_MASK;
573 attr->sample_stack_user = callchain_param.dump_size;
574 attr->exclude_callchain_user = 1;
575 } else {
576 pr_info("Cannot use DWARF unwind for function trace event,"
577 " falling back to framepointers.\n");
578 }
579 }
580
581 if (function) {
582 pr_info("Disabling user space callchains for function trace event.\n");
583 attr->exclude_callchain_user = 1;
584 }
585 }
586
587 /*
588 * The enable_on_exec/disabled value strategy:
589 *
590 * 1) For any type of traced program:
591 * - all independent events and group leaders are disabled
592 * - all group members are enabled
593 *
594 * Group members are ruled by group leaders. They need to
595 * be enabled, because the group scheduling relies on that.
596 *
597 * 2) For traced programs executed by perf:
598 * - all independent events and group leaders have
599 * enable_on_exec set
600 * - we don't specifically enable or disable any event during
601 * the record command
602 *
603 * Independent events and group leaders are initially disabled
604 * and get enabled by exec. Group members are ruled by group
605 * leaders as stated in 1).
606 *
607 * 3) For traced programs attached by perf (pid/tid):
608 * - we specifically enable or disable all events during
609 * the record command
610 *
611 * When attaching events to already running traced we
612 * enable/disable events specifically, as there's no
613 * initial traced exec call.
614 */
615 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
616 {
617 struct perf_evsel *leader = evsel->leader;
618 struct perf_event_attr *attr = &evsel->attr;
619 int track = evsel->tracking;
620 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
621
622 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
623 attr->inherit = !opts->no_inherit;
624
625 perf_evsel__set_sample_bit(evsel, IP);
626 perf_evsel__set_sample_bit(evsel, TID);
627
628 if (evsel->sample_read) {
629 perf_evsel__set_sample_bit(evsel, READ);
630
631 /*
632 * We need ID even in case of single event, because
633 * PERF_SAMPLE_READ process ID specific data.
634 */
635 perf_evsel__set_sample_id(evsel, false);
636
637 /*
638 * Apply group format only if we belong to group
639 * with more than one members.
640 */
641 if (leader->nr_members > 1) {
642 attr->read_format |= PERF_FORMAT_GROUP;
643 attr->inherit = 0;
644 }
645 }
646
647 /*
648 * We default some events to have a default interval. But keep
649 * it a weak assumption overridable by the user.
650 */
651 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
652 opts->user_interval != ULLONG_MAX)) {
653 if (opts->freq) {
654 perf_evsel__set_sample_bit(evsel, PERIOD);
655 attr->freq = 1;
656 attr->sample_freq = opts->freq;
657 } else {
658 attr->sample_period = opts->default_interval;
659 }
660 }
661
662 /*
663 * Disable sampling for all group members other
664 * than leader in case leader 'leads' the sampling.
665 */
666 if ((leader != evsel) && leader->sample_read) {
667 attr->sample_freq = 0;
668 attr->sample_period = 0;
669 }
670
671 if (opts->no_samples)
672 attr->sample_freq = 0;
673
674 if (opts->inherit_stat)
675 attr->inherit_stat = 1;
676
677 if (opts->sample_address) {
678 perf_evsel__set_sample_bit(evsel, ADDR);
679 attr->mmap_data = track;
680 }
681
682 /*
683 * We don't allow user space callchains for function trace
684 * event, due to issues with page faults while tracing page
685 * fault handler and its overall trickiness nature.
686 */
687 if (perf_evsel__is_function_event(evsel))
688 evsel->attr.exclude_callchain_user = 1;
689
690 if (callchain_param.enabled && !evsel->no_aux_samples)
691 perf_evsel__config_callgraph(evsel, opts);
692
693 if (opts->sample_intr_regs) {
694 attr->sample_regs_intr = PERF_REGS_MASK;
695 perf_evsel__set_sample_bit(evsel, REGS_INTR);
696 }
697
698 if (target__has_cpu(&opts->target))
699 perf_evsel__set_sample_bit(evsel, CPU);
700
701 if (opts->period)
702 perf_evsel__set_sample_bit(evsel, PERIOD);
703
704 /*
705 * When the user explicitely disabled time don't force it here.
706 */
707 if (opts->sample_time &&
708 (!perf_missing_features.sample_id_all &&
709 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
710 perf_evsel__set_sample_bit(evsel, TIME);
711
712 if (opts->raw_samples && !evsel->no_aux_samples) {
713 perf_evsel__set_sample_bit(evsel, TIME);
714 perf_evsel__set_sample_bit(evsel, RAW);
715 perf_evsel__set_sample_bit(evsel, CPU);
716 }
717
718 if (opts->sample_address)
719 perf_evsel__set_sample_bit(evsel, DATA_SRC);
720
721 if (opts->no_buffering) {
722 attr->watermark = 0;
723 attr->wakeup_events = 1;
724 }
725 if (opts->branch_stack && !evsel->no_aux_samples) {
726 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
727 attr->branch_sample_type = opts->branch_stack;
728 }
729
730 if (opts->sample_weight)
731 perf_evsel__set_sample_bit(evsel, WEIGHT);
732
733 attr->task = track;
734 attr->mmap = track;
735 attr->mmap2 = track && !perf_missing_features.mmap2;
736 attr->comm = track;
737
738 if (opts->sample_transaction)
739 perf_evsel__set_sample_bit(evsel, TRANSACTION);
740
741 if (opts->running_time) {
742 evsel->attr.read_format |=
743 PERF_FORMAT_TOTAL_TIME_ENABLED |
744 PERF_FORMAT_TOTAL_TIME_RUNNING;
745 }
746
747 /*
748 * XXX see the function comment above
749 *
750 * Disabling only independent events or group leaders,
751 * keeping group members enabled.
752 */
753 if (perf_evsel__is_group_leader(evsel))
754 attr->disabled = 1;
755
756 /*
757 * Setting enable_on_exec for independent events and
758 * group leaders for traced executed by perf.
759 */
760 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
761 !opts->initial_delay)
762 attr->enable_on_exec = 1;
763
764 if (evsel->immediate) {
765 attr->disabled = 0;
766 attr->enable_on_exec = 0;
767 }
768
769 clockid = opts->clockid;
770 if (opts->use_clockid) {
771 attr->use_clockid = 1;
772 attr->clockid = opts->clockid;
773 }
774 }
775
776 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
777 {
778 int cpu, thread;
779
780 if (evsel->system_wide)
781 nthreads = 1;
782
783 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
784
785 if (evsel->fd) {
786 for (cpu = 0; cpu < ncpus; cpu++) {
787 for (thread = 0; thread < nthreads; thread++) {
788 FD(evsel, cpu, thread) = -1;
789 }
790 }
791 }
792
793 return evsel->fd != NULL ? 0 : -ENOMEM;
794 }
795
796 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
797 int ioc, void *arg)
798 {
799 int cpu, thread;
800
801 if (evsel->system_wide)
802 nthreads = 1;
803
804 for (cpu = 0; cpu < ncpus; cpu++) {
805 for (thread = 0; thread < nthreads; thread++) {
806 int fd = FD(evsel, cpu, thread),
807 err = ioctl(fd, ioc, arg);
808
809 if (err)
810 return err;
811 }
812 }
813
814 return 0;
815 }
816
817 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
818 const char *filter)
819 {
820 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
821 PERF_EVENT_IOC_SET_FILTER,
822 (void *)filter);
823 }
824
825 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
826 {
827 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
828 PERF_EVENT_IOC_ENABLE,
829 0);
830 }
831
832 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
833 {
834 if (ncpus == 0 || nthreads == 0)
835 return 0;
836
837 if (evsel->system_wide)
838 nthreads = 1;
839
840 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
841 if (evsel->sample_id == NULL)
842 return -ENOMEM;
843
844 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
845 if (evsel->id == NULL) {
846 xyarray__delete(evsel->sample_id);
847 evsel->sample_id = NULL;
848 return -ENOMEM;
849 }
850
851 return 0;
852 }
853
854 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
855 {
856 memset(evsel->counts, 0, (sizeof(*evsel->counts) +
857 (ncpus * sizeof(struct perf_counts_values))));
858 }
859
860 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
861 {
862 evsel->counts = zalloc((sizeof(*evsel->counts) +
863 (ncpus * sizeof(struct perf_counts_values))));
864 return evsel->counts != NULL ? 0 : -ENOMEM;
865 }
866
867 static void perf_evsel__free_fd(struct perf_evsel *evsel)
868 {
869 xyarray__delete(evsel->fd);
870 evsel->fd = NULL;
871 }
872
873 static void perf_evsel__free_id(struct perf_evsel *evsel)
874 {
875 xyarray__delete(evsel->sample_id);
876 evsel->sample_id = NULL;
877 zfree(&evsel->id);
878 }
879
880 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
881 {
882 int cpu, thread;
883
884 if (evsel->system_wide)
885 nthreads = 1;
886
887 for (cpu = 0; cpu < ncpus; cpu++)
888 for (thread = 0; thread < nthreads; ++thread) {
889 close(FD(evsel, cpu, thread));
890 FD(evsel, cpu, thread) = -1;
891 }
892 }
893
894 void perf_evsel__free_counts(struct perf_evsel *evsel)
895 {
896 zfree(&evsel->counts);
897 }
898
899 void perf_evsel__exit(struct perf_evsel *evsel)
900 {
901 assert(list_empty(&evsel->node));
902 perf_evsel__free_fd(evsel);
903 perf_evsel__free_id(evsel);
904 close_cgroup(evsel->cgrp);
905 zfree(&evsel->group_name);
906 zfree(&evsel->name);
907 perf_evsel__object.fini(evsel);
908 }
909
910 void perf_evsel__delete(struct perf_evsel *evsel)
911 {
912 perf_evsel__exit(evsel);
913 free(evsel);
914 }
915
916 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu,
917 struct perf_counts_values *count)
918 {
919 struct perf_counts_values tmp;
920
921 if (!evsel->prev_raw_counts)
922 return;
923
924 if (cpu == -1) {
925 tmp = evsel->prev_raw_counts->aggr;
926 evsel->prev_raw_counts->aggr = *count;
927 } else {
928 tmp = evsel->prev_raw_counts->cpu[cpu];
929 evsel->prev_raw_counts->cpu[cpu] = *count;
930 }
931
932 count->val = count->val - tmp.val;
933 count->ena = count->ena - tmp.ena;
934 count->run = count->run - tmp.run;
935 }
936
937 void perf_counts_values__scale(struct perf_counts_values *count,
938 bool scale, s8 *pscaled)
939 {
940 s8 scaled = 0;
941
942 if (scale) {
943 if (count->run == 0) {
944 scaled = -1;
945 count->val = 0;
946 } else if (count->run < count->ena) {
947 scaled = 1;
948 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
949 }
950 } else
951 count->ena = count->run = 0;
952
953 if (pscaled)
954 *pscaled = scaled;
955 }
956
957 int perf_evsel__read_cb(struct perf_evsel *evsel, int cpu, int thread,
958 perf_evsel__read_cb_t cb)
959 {
960 struct perf_counts_values count;
961
962 memset(&count, 0, sizeof(count));
963
964 if (FD(evsel, cpu, thread) < 0)
965 return -EINVAL;
966
967 if (readn(FD(evsel, cpu, thread), &count, sizeof(count)) < 0)
968 return -errno;
969
970 return cb(evsel, cpu, thread, &count);
971 }
972
973 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
974 int cpu, int thread, bool scale)
975 {
976 struct perf_counts_values count;
977 size_t nv = scale ? 3 : 1;
978
979 if (FD(evsel, cpu, thread) < 0)
980 return -EINVAL;
981
982 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
983 return -ENOMEM;
984
985 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
986 return -errno;
987
988 perf_evsel__compute_deltas(evsel, cpu, &count);
989 perf_counts_values__scale(&count, scale, NULL);
990 evsel->counts->cpu[cpu] = count;
991 return 0;
992 }
993
994 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
995 {
996 struct perf_evsel *leader = evsel->leader;
997 int fd;
998
999 if (perf_evsel__is_group_leader(evsel))
1000 return -1;
1001
1002 /*
1003 * Leader must be already processed/open,
1004 * if not it's a bug.
1005 */
1006 BUG_ON(!leader->fd);
1007
1008 fd = FD(leader, cpu, thread);
1009 BUG_ON(fd == -1);
1010
1011 return fd;
1012 }
1013
1014 struct bit_names {
1015 int bit;
1016 const char *name;
1017 };
1018
1019 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1020 {
1021 bool first_bit = true;
1022 int i = 0;
1023
1024 do {
1025 if (value & bits[i].bit) {
1026 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1027 first_bit = false;
1028 }
1029 } while (bits[++i].name != NULL);
1030 }
1031
1032 static void __p_sample_type(char *buf, size_t size, u64 value)
1033 {
1034 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1035 struct bit_names bits[] = {
1036 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1037 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1038 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1039 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1040 bit_name(IDENTIFIER), bit_name(REGS_INTR),
1041 { .name = NULL, }
1042 };
1043 #undef bit_name
1044 __p_bits(buf, size, value, bits);
1045 }
1046
1047 static void __p_read_format(char *buf, size_t size, u64 value)
1048 {
1049 #define bit_name(n) { PERF_FORMAT_##n, #n }
1050 struct bit_names bits[] = {
1051 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1052 bit_name(ID), bit_name(GROUP),
1053 { .name = NULL, }
1054 };
1055 #undef bit_name
1056 __p_bits(buf, size, value, bits);
1057 }
1058
1059 #define BUF_SIZE 1024
1060
1061 #define p_hex(val) snprintf(buf, BUF_SIZE, "%"PRIx64, (uint64_t)(val))
1062 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1063 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1064 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1065 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1066
1067 #define PRINT_ATTRn(_n, _f, _p) \
1068 do { \
1069 if (attr->_f) { \
1070 _p(attr->_f); \
1071 ret += attr__fprintf(fp, _n, buf, priv);\
1072 } \
1073 } while (0)
1074
1075 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1076
1077 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1078 attr__fprintf_f attr__fprintf, void *priv)
1079 {
1080 char buf[BUF_SIZE];
1081 int ret = 0;
1082
1083 PRINT_ATTRf(type, p_unsigned);
1084 PRINT_ATTRf(size, p_unsigned);
1085 PRINT_ATTRf(config, p_hex);
1086 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1087 PRINT_ATTRf(sample_type, p_sample_type);
1088 PRINT_ATTRf(read_format, p_read_format);
1089
1090 PRINT_ATTRf(disabled, p_unsigned);
1091 PRINT_ATTRf(inherit, p_unsigned);
1092 PRINT_ATTRf(pinned, p_unsigned);
1093 PRINT_ATTRf(exclusive, p_unsigned);
1094 PRINT_ATTRf(exclude_user, p_unsigned);
1095 PRINT_ATTRf(exclude_kernel, p_unsigned);
1096 PRINT_ATTRf(exclude_hv, p_unsigned);
1097 PRINT_ATTRf(exclude_idle, p_unsigned);
1098 PRINT_ATTRf(mmap, p_unsigned);
1099 PRINT_ATTRf(comm, p_unsigned);
1100 PRINT_ATTRf(freq, p_unsigned);
1101 PRINT_ATTRf(inherit_stat, p_unsigned);
1102 PRINT_ATTRf(enable_on_exec, p_unsigned);
1103 PRINT_ATTRf(task, p_unsigned);
1104 PRINT_ATTRf(watermark, p_unsigned);
1105 PRINT_ATTRf(precise_ip, p_unsigned);
1106 PRINT_ATTRf(mmap_data, p_unsigned);
1107 PRINT_ATTRf(sample_id_all, p_unsigned);
1108 PRINT_ATTRf(exclude_host, p_unsigned);
1109 PRINT_ATTRf(exclude_guest, p_unsigned);
1110 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1111 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1112 PRINT_ATTRf(mmap2, p_unsigned);
1113 PRINT_ATTRf(comm_exec, p_unsigned);
1114 PRINT_ATTRf(use_clockid, p_unsigned);
1115
1116 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1117 PRINT_ATTRf(bp_type, p_unsigned);
1118 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1119 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1120 PRINT_ATTRf(sample_regs_user, p_hex);
1121 PRINT_ATTRf(sample_stack_user, p_unsigned);
1122 PRINT_ATTRf(clockid, p_signed);
1123 PRINT_ATTRf(sample_regs_intr, p_hex);
1124
1125 return ret;
1126 }
1127
1128 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1129 void *priv __attribute__((unused)))
1130 {
1131 return fprintf(fp, " %-32s %s\n", name, val);
1132 }
1133
1134 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1135 struct thread_map *threads)
1136 {
1137 int cpu, thread, nthreads;
1138 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1139 int pid = -1, err;
1140 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1141
1142 if (evsel->system_wide)
1143 nthreads = 1;
1144 else
1145 nthreads = threads->nr;
1146
1147 if (evsel->fd == NULL &&
1148 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1149 return -ENOMEM;
1150
1151 if (evsel->cgrp) {
1152 flags |= PERF_FLAG_PID_CGROUP;
1153 pid = evsel->cgrp->fd;
1154 }
1155
1156 fallback_missing_features:
1157 if (perf_missing_features.clockid_wrong)
1158 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1159 if (perf_missing_features.clockid) {
1160 evsel->attr.use_clockid = 0;
1161 evsel->attr.clockid = 0;
1162 }
1163 if (perf_missing_features.cloexec)
1164 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1165 if (perf_missing_features.mmap2)
1166 evsel->attr.mmap2 = 0;
1167 if (perf_missing_features.exclude_guest)
1168 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1169 retry_sample_id:
1170 if (perf_missing_features.sample_id_all)
1171 evsel->attr.sample_id_all = 0;
1172
1173 if (verbose >= 2) {
1174 fprintf(stderr, "%.60s\n", graph_dotted_line);
1175 fprintf(stderr, "perf_event_attr:\n");
1176 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1177 fprintf(stderr, "%.60s\n", graph_dotted_line);
1178 }
1179
1180 for (cpu = 0; cpu < cpus->nr; cpu++) {
1181
1182 for (thread = 0; thread < nthreads; thread++) {
1183 int group_fd;
1184
1185 if (!evsel->cgrp && !evsel->system_wide)
1186 pid = threads->map[thread];
1187
1188 group_fd = get_group_fd(evsel, cpu, thread);
1189 retry_open:
1190 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n",
1191 pid, cpus->map[cpu], group_fd, flags);
1192
1193 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1194 pid,
1195 cpus->map[cpu],
1196 group_fd, flags);
1197 if (FD(evsel, cpu, thread) < 0) {
1198 err = -errno;
1199 pr_debug2("sys_perf_event_open failed, error %d\n",
1200 err);
1201 goto try_fallback;
1202 }
1203 set_rlimit = NO_CHANGE;
1204
1205 /*
1206 * If we succeeded but had to kill clockid, fail and
1207 * have perf_evsel__open_strerror() print us a nice
1208 * error.
1209 */
1210 if (perf_missing_features.clockid ||
1211 perf_missing_features.clockid_wrong) {
1212 err = -EINVAL;
1213 goto out_close;
1214 }
1215 }
1216 }
1217
1218 return 0;
1219
1220 try_fallback:
1221 /*
1222 * perf stat needs between 5 and 22 fds per CPU. When we run out
1223 * of them try to increase the limits.
1224 */
1225 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1226 struct rlimit l;
1227 int old_errno = errno;
1228
1229 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1230 if (set_rlimit == NO_CHANGE)
1231 l.rlim_cur = l.rlim_max;
1232 else {
1233 l.rlim_cur = l.rlim_max + 1000;
1234 l.rlim_max = l.rlim_cur;
1235 }
1236 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1237 set_rlimit++;
1238 errno = old_errno;
1239 goto retry_open;
1240 }
1241 }
1242 errno = old_errno;
1243 }
1244
1245 if (err != -EINVAL || cpu > 0 || thread > 0)
1246 goto out_close;
1247
1248 /*
1249 * Must probe features in the order they were added to the
1250 * perf_event_attr interface.
1251 */
1252 if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1253 perf_missing_features.clockid_wrong = true;
1254 goto fallback_missing_features;
1255 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1256 perf_missing_features.clockid = true;
1257 goto fallback_missing_features;
1258 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1259 perf_missing_features.cloexec = true;
1260 goto fallback_missing_features;
1261 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1262 perf_missing_features.mmap2 = true;
1263 goto fallback_missing_features;
1264 } else if (!perf_missing_features.exclude_guest &&
1265 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1266 perf_missing_features.exclude_guest = true;
1267 goto fallback_missing_features;
1268 } else if (!perf_missing_features.sample_id_all) {
1269 perf_missing_features.sample_id_all = true;
1270 goto retry_sample_id;
1271 }
1272
1273 out_close:
1274 do {
1275 while (--thread >= 0) {
1276 close(FD(evsel, cpu, thread));
1277 FD(evsel, cpu, thread) = -1;
1278 }
1279 thread = nthreads;
1280 } while (--cpu >= 0);
1281 return err;
1282 }
1283
1284 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1285 {
1286 if (evsel->fd == NULL)
1287 return;
1288
1289 perf_evsel__close_fd(evsel, ncpus, nthreads);
1290 perf_evsel__free_fd(evsel);
1291 }
1292
1293 static struct {
1294 struct cpu_map map;
1295 int cpus[1];
1296 } empty_cpu_map = {
1297 .map.nr = 1,
1298 .cpus = { -1, },
1299 };
1300
1301 static struct {
1302 struct thread_map map;
1303 int threads[1];
1304 } empty_thread_map = {
1305 .map.nr = 1,
1306 .threads = { -1, },
1307 };
1308
1309 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1310 struct thread_map *threads)
1311 {
1312 if (cpus == NULL) {
1313 /* Work around old compiler warnings about strict aliasing */
1314 cpus = &empty_cpu_map.map;
1315 }
1316
1317 if (threads == NULL)
1318 threads = &empty_thread_map.map;
1319
1320 return __perf_evsel__open(evsel, cpus, threads);
1321 }
1322
1323 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1324 struct cpu_map *cpus)
1325 {
1326 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1327 }
1328
1329 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1330 struct thread_map *threads)
1331 {
1332 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1333 }
1334
1335 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1336 const union perf_event *event,
1337 struct perf_sample *sample)
1338 {
1339 u64 type = evsel->attr.sample_type;
1340 const u64 *array = event->sample.array;
1341 bool swapped = evsel->needs_swap;
1342 union u64_swap u;
1343
1344 array += ((event->header.size -
1345 sizeof(event->header)) / sizeof(u64)) - 1;
1346
1347 if (type & PERF_SAMPLE_IDENTIFIER) {
1348 sample->id = *array;
1349 array--;
1350 }
1351
1352 if (type & PERF_SAMPLE_CPU) {
1353 u.val64 = *array;
1354 if (swapped) {
1355 /* undo swap of u64, then swap on individual u32s */
1356 u.val64 = bswap_64(u.val64);
1357 u.val32[0] = bswap_32(u.val32[0]);
1358 }
1359
1360 sample->cpu = u.val32[0];
1361 array--;
1362 }
1363
1364 if (type & PERF_SAMPLE_STREAM_ID) {
1365 sample->stream_id = *array;
1366 array--;
1367 }
1368
1369 if (type & PERF_SAMPLE_ID) {
1370 sample->id = *array;
1371 array--;
1372 }
1373
1374 if (type & PERF_SAMPLE_TIME) {
1375 sample->time = *array;
1376 array--;
1377 }
1378
1379 if (type & PERF_SAMPLE_TID) {
1380 u.val64 = *array;
1381 if (swapped) {
1382 /* undo swap of u64, then swap on individual u32s */
1383 u.val64 = bswap_64(u.val64);
1384 u.val32[0] = bswap_32(u.val32[0]);
1385 u.val32[1] = bswap_32(u.val32[1]);
1386 }
1387
1388 sample->pid = u.val32[0];
1389 sample->tid = u.val32[1];
1390 array--;
1391 }
1392
1393 return 0;
1394 }
1395
1396 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1397 u64 size)
1398 {
1399 return size > max_size || offset + size > endp;
1400 }
1401
1402 #define OVERFLOW_CHECK(offset, size, max_size) \
1403 do { \
1404 if (overflow(endp, (max_size), (offset), (size))) \
1405 return -EFAULT; \
1406 } while (0)
1407
1408 #define OVERFLOW_CHECK_u64(offset) \
1409 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1410
1411 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1412 struct perf_sample *data)
1413 {
1414 u64 type = evsel->attr.sample_type;
1415 bool swapped = evsel->needs_swap;
1416 const u64 *array;
1417 u16 max_size = event->header.size;
1418 const void *endp = (void *)event + max_size;
1419 u64 sz;
1420
1421 /*
1422 * used for cross-endian analysis. See git commit 65014ab3
1423 * for why this goofiness is needed.
1424 */
1425 union u64_swap u;
1426
1427 memset(data, 0, sizeof(*data));
1428 data->cpu = data->pid = data->tid = -1;
1429 data->stream_id = data->id = data->time = -1ULL;
1430 data->period = evsel->attr.sample_period;
1431 data->weight = 0;
1432
1433 if (event->header.type != PERF_RECORD_SAMPLE) {
1434 if (!evsel->attr.sample_id_all)
1435 return 0;
1436 return perf_evsel__parse_id_sample(evsel, event, data);
1437 }
1438
1439 array = event->sample.array;
1440
1441 /*
1442 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1443 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1444 * check the format does not go past the end of the event.
1445 */
1446 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1447 return -EFAULT;
1448
1449 data->id = -1ULL;
1450 if (type & PERF_SAMPLE_IDENTIFIER) {
1451 data->id = *array;
1452 array++;
1453 }
1454
1455 if (type & PERF_SAMPLE_IP) {
1456 data->ip = *array;
1457 array++;
1458 }
1459
1460 if (type & PERF_SAMPLE_TID) {
1461 u.val64 = *array;
1462 if (swapped) {
1463 /* undo swap of u64, then swap on individual u32s */
1464 u.val64 = bswap_64(u.val64);
1465 u.val32[0] = bswap_32(u.val32[0]);
1466 u.val32[1] = bswap_32(u.val32[1]);
1467 }
1468
1469 data->pid = u.val32[0];
1470 data->tid = u.val32[1];
1471 array++;
1472 }
1473
1474 if (type & PERF_SAMPLE_TIME) {
1475 data->time = *array;
1476 array++;
1477 }
1478
1479 data->addr = 0;
1480 if (type & PERF_SAMPLE_ADDR) {
1481 data->addr = *array;
1482 array++;
1483 }
1484
1485 if (type & PERF_SAMPLE_ID) {
1486 data->id = *array;
1487 array++;
1488 }
1489
1490 if (type & PERF_SAMPLE_STREAM_ID) {
1491 data->stream_id = *array;
1492 array++;
1493 }
1494
1495 if (type & PERF_SAMPLE_CPU) {
1496
1497 u.val64 = *array;
1498 if (swapped) {
1499 /* undo swap of u64, then swap on individual u32s */
1500 u.val64 = bswap_64(u.val64);
1501 u.val32[0] = bswap_32(u.val32[0]);
1502 }
1503
1504 data->cpu = u.val32[0];
1505 array++;
1506 }
1507
1508 if (type & PERF_SAMPLE_PERIOD) {
1509 data->period = *array;
1510 array++;
1511 }
1512
1513 if (type & PERF_SAMPLE_READ) {
1514 u64 read_format = evsel->attr.read_format;
1515
1516 OVERFLOW_CHECK_u64(array);
1517 if (read_format & PERF_FORMAT_GROUP)
1518 data->read.group.nr = *array;
1519 else
1520 data->read.one.value = *array;
1521
1522 array++;
1523
1524 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1525 OVERFLOW_CHECK_u64(array);
1526 data->read.time_enabled = *array;
1527 array++;
1528 }
1529
1530 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1531 OVERFLOW_CHECK_u64(array);
1532 data->read.time_running = *array;
1533 array++;
1534 }
1535
1536 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1537 if (read_format & PERF_FORMAT_GROUP) {
1538 const u64 max_group_nr = UINT64_MAX /
1539 sizeof(struct sample_read_value);
1540
1541 if (data->read.group.nr > max_group_nr)
1542 return -EFAULT;
1543 sz = data->read.group.nr *
1544 sizeof(struct sample_read_value);
1545 OVERFLOW_CHECK(array, sz, max_size);
1546 data->read.group.values =
1547 (struct sample_read_value *)array;
1548 array = (void *)array + sz;
1549 } else {
1550 OVERFLOW_CHECK_u64(array);
1551 data->read.one.id = *array;
1552 array++;
1553 }
1554 }
1555
1556 if (type & PERF_SAMPLE_CALLCHAIN) {
1557 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1558
1559 OVERFLOW_CHECK_u64(array);
1560 data->callchain = (struct ip_callchain *)array++;
1561 if (data->callchain->nr > max_callchain_nr)
1562 return -EFAULT;
1563 sz = data->callchain->nr * sizeof(u64);
1564 OVERFLOW_CHECK(array, sz, max_size);
1565 array = (void *)array + sz;
1566 }
1567
1568 if (type & PERF_SAMPLE_RAW) {
1569 OVERFLOW_CHECK_u64(array);
1570 u.val64 = *array;
1571 if (WARN_ONCE(swapped,
1572 "Endianness of raw data not corrected!\n")) {
1573 /* undo swap of u64, then swap on individual u32s */
1574 u.val64 = bswap_64(u.val64);
1575 u.val32[0] = bswap_32(u.val32[0]);
1576 u.val32[1] = bswap_32(u.val32[1]);
1577 }
1578 data->raw_size = u.val32[0];
1579 array = (void *)array + sizeof(u32);
1580
1581 OVERFLOW_CHECK(array, data->raw_size, max_size);
1582 data->raw_data = (void *)array;
1583 array = (void *)array + data->raw_size;
1584 }
1585
1586 if (type & PERF_SAMPLE_BRANCH_STACK) {
1587 const u64 max_branch_nr = UINT64_MAX /
1588 sizeof(struct branch_entry);
1589
1590 OVERFLOW_CHECK_u64(array);
1591 data->branch_stack = (struct branch_stack *)array++;
1592
1593 if (data->branch_stack->nr > max_branch_nr)
1594 return -EFAULT;
1595 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1596 OVERFLOW_CHECK(array, sz, max_size);
1597 array = (void *)array + sz;
1598 }
1599
1600 if (type & PERF_SAMPLE_REGS_USER) {
1601 OVERFLOW_CHECK_u64(array);
1602 data->user_regs.abi = *array;
1603 array++;
1604
1605 if (data->user_regs.abi) {
1606 u64 mask = evsel->attr.sample_regs_user;
1607
1608 sz = hweight_long(mask) * sizeof(u64);
1609 OVERFLOW_CHECK(array, sz, max_size);
1610 data->user_regs.mask = mask;
1611 data->user_regs.regs = (u64 *)array;
1612 array = (void *)array + sz;
1613 }
1614 }
1615
1616 if (type & PERF_SAMPLE_STACK_USER) {
1617 OVERFLOW_CHECK_u64(array);
1618 sz = *array++;
1619
1620 data->user_stack.offset = ((char *)(array - 1)
1621 - (char *) event);
1622
1623 if (!sz) {
1624 data->user_stack.size = 0;
1625 } else {
1626 OVERFLOW_CHECK(array, sz, max_size);
1627 data->user_stack.data = (char *)array;
1628 array = (void *)array + sz;
1629 OVERFLOW_CHECK_u64(array);
1630 data->user_stack.size = *array++;
1631 if (WARN_ONCE(data->user_stack.size > sz,
1632 "user stack dump failure\n"))
1633 return -EFAULT;
1634 }
1635 }
1636
1637 data->weight = 0;
1638 if (type & PERF_SAMPLE_WEIGHT) {
1639 OVERFLOW_CHECK_u64(array);
1640 data->weight = *array;
1641 array++;
1642 }
1643
1644 data->data_src = PERF_MEM_DATA_SRC_NONE;
1645 if (type & PERF_SAMPLE_DATA_SRC) {
1646 OVERFLOW_CHECK_u64(array);
1647 data->data_src = *array;
1648 array++;
1649 }
1650
1651 data->transaction = 0;
1652 if (type & PERF_SAMPLE_TRANSACTION) {
1653 OVERFLOW_CHECK_u64(array);
1654 data->transaction = *array;
1655 array++;
1656 }
1657
1658 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1659 if (type & PERF_SAMPLE_REGS_INTR) {
1660 OVERFLOW_CHECK_u64(array);
1661 data->intr_regs.abi = *array;
1662 array++;
1663
1664 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1665 u64 mask = evsel->attr.sample_regs_intr;
1666
1667 sz = hweight_long(mask) * sizeof(u64);
1668 OVERFLOW_CHECK(array, sz, max_size);
1669 data->intr_regs.mask = mask;
1670 data->intr_regs.regs = (u64 *)array;
1671 array = (void *)array + sz;
1672 }
1673 }
1674
1675 return 0;
1676 }
1677
1678 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1679 u64 read_format)
1680 {
1681 size_t sz, result = sizeof(struct sample_event);
1682
1683 if (type & PERF_SAMPLE_IDENTIFIER)
1684 result += sizeof(u64);
1685
1686 if (type & PERF_SAMPLE_IP)
1687 result += sizeof(u64);
1688
1689 if (type & PERF_SAMPLE_TID)
1690 result += sizeof(u64);
1691
1692 if (type & PERF_SAMPLE_TIME)
1693 result += sizeof(u64);
1694
1695 if (type & PERF_SAMPLE_ADDR)
1696 result += sizeof(u64);
1697
1698 if (type & PERF_SAMPLE_ID)
1699 result += sizeof(u64);
1700
1701 if (type & PERF_SAMPLE_STREAM_ID)
1702 result += sizeof(u64);
1703
1704 if (type & PERF_SAMPLE_CPU)
1705 result += sizeof(u64);
1706
1707 if (type & PERF_SAMPLE_PERIOD)
1708 result += sizeof(u64);
1709
1710 if (type & PERF_SAMPLE_READ) {
1711 result += sizeof(u64);
1712 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1713 result += sizeof(u64);
1714 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1715 result += sizeof(u64);
1716 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1717 if (read_format & PERF_FORMAT_GROUP) {
1718 sz = sample->read.group.nr *
1719 sizeof(struct sample_read_value);
1720 result += sz;
1721 } else {
1722 result += sizeof(u64);
1723 }
1724 }
1725
1726 if (type & PERF_SAMPLE_CALLCHAIN) {
1727 sz = (sample->callchain->nr + 1) * sizeof(u64);
1728 result += sz;
1729 }
1730
1731 if (type & PERF_SAMPLE_RAW) {
1732 result += sizeof(u32);
1733 result += sample->raw_size;
1734 }
1735
1736 if (type & PERF_SAMPLE_BRANCH_STACK) {
1737 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1738 sz += sizeof(u64);
1739 result += sz;
1740 }
1741
1742 if (type & PERF_SAMPLE_REGS_USER) {
1743 if (sample->user_regs.abi) {
1744 result += sizeof(u64);
1745 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1746 result += sz;
1747 } else {
1748 result += sizeof(u64);
1749 }
1750 }
1751
1752 if (type & PERF_SAMPLE_STACK_USER) {
1753 sz = sample->user_stack.size;
1754 result += sizeof(u64);
1755 if (sz) {
1756 result += sz;
1757 result += sizeof(u64);
1758 }
1759 }
1760
1761 if (type & PERF_SAMPLE_WEIGHT)
1762 result += sizeof(u64);
1763
1764 if (type & PERF_SAMPLE_DATA_SRC)
1765 result += sizeof(u64);
1766
1767 if (type & PERF_SAMPLE_TRANSACTION)
1768 result += sizeof(u64);
1769
1770 if (type & PERF_SAMPLE_REGS_INTR) {
1771 if (sample->intr_regs.abi) {
1772 result += sizeof(u64);
1773 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1774 result += sz;
1775 } else {
1776 result += sizeof(u64);
1777 }
1778 }
1779
1780 return result;
1781 }
1782
1783 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1784 u64 read_format,
1785 const struct perf_sample *sample,
1786 bool swapped)
1787 {
1788 u64 *array;
1789 size_t sz;
1790 /*
1791 * used for cross-endian analysis. See git commit 65014ab3
1792 * for why this goofiness is needed.
1793 */
1794 union u64_swap u;
1795
1796 array = event->sample.array;
1797
1798 if (type & PERF_SAMPLE_IDENTIFIER) {
1799 *array = sample->id;
1800 array++;
1801 }
1802
1803 if (type & PERF_SAMPLE_IP) {
1804 *array = sample->ip;
1805 array++;
1806 }
1807
1808 if (type & PERF_SAMPLE_TID) {
1809 u.val32[0] = sample->pid;
1810 u.val32[1] = sample->tid;
1811 if (swapped) {
1812 /*
1813 * Inverse of what is done in perf_evsel__parse_sample
1814 */
1815 u.val32[0] = bswap_32(u.val32[0]);
1816 u.val32[1] = bswap_32(u.val32[1]);
1817 u.val64 = bswap_64(u.val64);
1818 }
1819
1820 *array = u.val64;
1821 array++;
1822 }
1823
1824 if (type & PERF_SAMPLE_TIME) {
1825 *array = sample->time;
1826 array++;
1827 }
1828
1829 if (type & PERF_SAMPLE_ADDR) {
1830 *array = sample->addr;
1831 array++;
1832 }
1833
1834 if (type & PERF_SAMPLE_ID) {
1835 *array = sample->id;
1836 array++;
1837 }
1838
1839 if (type & PERF_SAMPLE_STREAM_ID) {
1840 *array = sample->stream_id;
1841 array++;
1842 }
1843
1844 if (type & PERF_SAMPLE_CPU) {
1845 u.val32[0] = sample->cpu;
1846 if (swapped) {
1847 /*
1848 * Inverse of what is done in perf_evsel__parse_sample
1849 */
1850 u.val32[0] = bswap_32(u.val32[0]);
1851 u.val64 = bswap_64(u.val64);
1852 }
1853 *array = u.val64;
1854 array++;
1855 }
1856
1857 if (type & PERF_SAMPLE_PERIOD) {
1858 *array = sample->period;
1859 array++;
1860 }
1861
1862 if (type & PERF_SAMPLE_READ) {
1863 if (read_format & PERF_FORMAT_GROUP)
1864 *array = sample->read.group.nr;
1865 else
1866 *array = sample->read.one.value;
1867 array++;
1868
1869 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1870 *array = sample->read.time_enabled;
1871 array++;
1872 }
1873
1874 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1875 *array = sample->read.time_running;
1876 array++;
1877 }
1878
1879 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1880 if (read_format & PERF_FORMAT_GROUP) {
1881 sz = sample->read.group.nr *
1882 sizeof(struct sample_read_value);
1883 memcpy(array, sample->read.group.values, sz);
1884 array = (void *)array + sz;
1885 } else {
1886 *array = sample->read.one.id;
1887 array++;
1888 }
1889 }
1890
1891 if (type & PERF_SAMPLE_CALLCHAIN) {
1892 sz = (sample->callchain->nr + 1) * sizeof(u64);
1893 memcpy(array, sample->callchain, sz);
1894 array = (void *)array + sz;
1895 }
1896
1897 if (type & PERF_SAMPLE_RAW) {
1898 u.val32[0] = sample->raw_size;
1899 if (WARN_ONCE(swapped,
1900 "Endianness of raw data not corrected!\n")) {
1901 /*
1902 * Inverse of what is done in perf_evsel__parse_sample
1903 */
1904 u.val32[0] = bswap_32(u.val32[0]);
1905 u.val32[1] = bswap_32(u.val32[1]);
1906 u.val64 = bswap_64(u.val64);
1907 }
1908 *array = u.val64;
1909 array = (void *)array + sizeof(u32);
1910
1911 memcpy(array, sample->raw_data, sample->raw_size);
1912 array = (void *)array + sample->raw_size;
1913 }
1914
1915 if (type & PERF_SAMPLE_BRANCH_STACK) {
1916 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1917 sz += sizeof(u64);
1918 memcpy(array, sample->branch_stack, sz);
1919 array = (void *)array + sz;
1920 }
1921
1922 if (type & PERF_SAMPLE_REGS_USER) {
1923 if (sample->user_regs.abi) {
1924 *array++ = sample->user_regs.abi;
1925 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1926 memcpy(array, sample->user_regs.regs, sz);
1927 array = (void *)array + sz;
1928 } else {
1929 *array++ = 0;
1930 }
1931 }
1932
1933 if (type & PERF_SAMPLE_STACK_USER) {
1934 sz = sample->user_stack.size;
1935 *array++ = sz;
1936 if (sz) {
1937 memcpy(array, sample->user_stack.data, sz);
1938 array = (void *)array + sz;
1939 *array++ = sz;
1940 }
1941 }
1942
1943 if (type & PERF_SAMPLE_WEIGHT) {
1944 *array = sample->weight;
1945 array++;
1946 }
1947
1948 if (type & PERF_SAMPLE_DATA_SRC) {
1949 *array = sample->data_src;
1950 array++;
1951 }
1952
1953 if (type & PERF_SAMPLE_TRANSACTION) {
1954 *array = sample->transaction;
1955 array++;
1956 }
1957
1958 if (type & PERF_SAMPLE_REGS_INTR) {
1959 if (sample->intr_regs.abi) {
1960 *array++ = sample->intr_regs.abi;
1961 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1962 memcpy(array, sample->intr_regs.regs, sz);
1963 array = (void *)array + sz;
1964 } else {
1965 *array++ = 0;
1966 }
1967 }
1968
1969 return 0;
1970 }
1971
1972 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1973 {
1974 return pevent_find_field(evsel->tp_format, name);
1975 }
1976
1977 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1978 const char *name)
1979 {
1980 struct format_field *field = perf_evsel__field(evsel, name);
1981 int offset;
1982
1983 if (!field)
1984 return NULL;
1985
1986 offset = field->offset;
1987
1988 if (field->flags & FIELD_IS_DYNAMIC) {
1989 offset = *(int *)(sample->raw_data + field->offset);
1990 offset &= 0xffff;
1991 }
1992
1993 return sample->raw_data + offset;
1994 }
1995
1996 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1997 const char *name)
1998 {
1999 struct format_field *field = perf_evsel__field(evsel, name);
2000 void *ptr;
2001 u64 value;
2002
2003 if (!field)
2004 return 0;
2005
2006 ptr = sample->raw_data + field->offset;
2007
2008 switch (field->size) {
2009 case 1:
2010 return *(u8 *)ptr;
2011 case 2:
2012 value = *(u16 *)ptr;
2013 break;
2014 case 4:
2015 value = *(u32 *)ptr;
2016 break;
2017 case 8:
2018 memcpy(&value, ptr, sizeof(u64));
2019 break;
2020 default:
2021 return 0;
2022 }
2023
2024 if (!evsel->needs_swap)
2025 return value;
2026
2027 switch (field->size) {
2028 case 2:
2029 return bswap_16(value);
2030 case 4:
2031 return bswap_32(value);
2032 case 8:
2033 return bswap_64(value);
2034 default:
2035 return 0;
2036 }
2037
2038 return 0;
2039 }
2040
2041 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
2042 {
2043 va_list args;
2044 int ret = 0;
2045
2046 if (!*first) {
2047 ret += fprintf(fp, ",");
2048 } else {
2049 ret += fprintf(fp, ":");
2050 *first = false;
2051 }
2052
2053 va_start(args, fmt);
2054 ret += vfprintf(fp, fmt, args);
2055 va_end(args);
2056 return ret;
2057 }
2058
2059 static int __print_attr__fprintf(FILE *fp, const char *name, const char *val, void *priv)
2060 {
2061 return comma_fprintf(fp, (bool *)priv, " %s: %s", name, val);
2062 }
2063
2064 int perf_evsel__fprintf(struct perf_evsel *evsel,
2065 struct perf_attr_details *details, FILE *fp)
2066 {
2067 bool first = true;
2068 int printed = 0;
2069
2070 if (details->event_group) {
2071 struct perf_evsel *pos;
2072
2073 if (!perf_evsel__is_group_leader(evsel))
2074 return 0;
2075
2076 if (evsel->nr_members > 1)
2077 printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2078
2079 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2080 for_each_group_member(pos, evsel)
2081 printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2082
2083 if (evsel->nr_members > 1)
2084 printed += fprintf(fp, "}");
2085 goto out;
2086 }
2087
2088 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2089
2090 if (details->verbose) {
2091 printed += perf_event_attr__fprintf(fp, &evsel->attr,
2092 __print_attr__fprintf, &first);
2093 } else if (details->freq) {
2094 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
2095 (u64)evsel->attr.sample_freq);
2096 }
2097 out:
2098 fputc('\n', fp);
2099 return ++printed;
2100 }
2101
2102 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2103 char *msg, size_t msgsize)
2104 {
2105 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2106 evsel->attr.type == PERF_TYPE_HARDWARE &&
2107 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2108 /*
2109 * If it's cycles then fall back to hrtimer based
2110 * cpu-clock-tick sw counter, which is always available even if
2111 * no PMU support.
2112 *
2113 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2114 * b0a873e).
2115 */
2116 scnprintf(msg, msgsize, "%s",
2117 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2118
2119 evsel->attr.type = PERF_TYPE_SOFTWARE;
2120 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2121
2122 zfree(&evsel->name);
2123 return true;
2124 }
2125
2126 return false;
2127 }
2128
2129 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2130 int err, char *msg, size_t size)
2131 {
2132 char sbuf[STRERR_BUFSIZE];
2133
2134 switch (err) {
2135 case EPERM:
2136 case EACCES:
2137 return scnprintf(msg, size,
2138 "You may not have permission to collect %sstats.\n"
2139 "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2140 " -1 - Not paranoid at all\n"
2141 " 0 - Disallow raw tracepoint access for unpriv\n"
2142 " 1 - Disallow cpu events for unpriv\n"
2143 " 2 - Disallow kernel profiling for unpriv",
2144 target->system_wide ? "system-wide " : "");
2145 case ENOENT:
2146 return scnprintf(msg, size, "The %s event is not supported.",
2147 perf_evsel__name(evsel));
2148 case EMFILE:
2149 return scnprintf(msg, size, "%s",
2150 "Too many events are opened.\n"
2151 "Try again after reducing the number of events.");
2152 case ENODEV:
2153 if (target->cpu_list)
2154 return scnprintf(msg, size, "%s",
2155 "No such device - did you specify an out-of-range profile CPU?\n");
2156 break;
2157 case EOPNOTSUPP:
2158 if (evsel->attr.precise_ip)
2159 return scnprintf(msg, size, "%s",
2160 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2161 #if defined(__i386__) || defined(__x86_64__)
2162 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2163 return scnprintf(msg, size, "%s",
2164 "No hardware sampling interrupt available.\n"
2165 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2166 #endif
2167 break;
2168 case EBUSY:
2169 if (find_process("oprofiled"))
2170 return scnprintf(msg, size,
2171 "The PMU counters are busy/taken by another profiler.\n"
2172 "We found oprofile daemon running, please stop it and try again.");
2173 break;
2174 case EINVAL:
2175 if (perf_missing_features.clockid)
2176 return scnprintf(msg, size, "clockid feature not supported.");
2177 if (perf_missing_features.clockid_wrong)
2178 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2179 break;
2180 default:
2181 break;
2182 }
2183
2184 return scnprintf(msg, size,
2185 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2186 "/bin/dmesg may provide additional information.\n"
2187 "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2188 err, strerror_r(err, sbuf, sizeof(sbuf)),
2189 perf_evsel__name(evsel));
2190 }