]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - tools/perf/util/evsel.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / tools / perf / util / evsel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4 *
5 * Parts came from builtin-{top,stat,record}.c, see those files for further
6 * copyright notes.
7 */
8
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <sys/ioctl.h>
21 #include <sys/resource.h>
22 #include <sys/types.h>
23 #include <dirent.h>
24 #include "asm/bug.h"
25 #include "callchain.h"
26 #include "cgroup.h"
27 #include "event.h"
28 #include "evsel.h"
29 #include "evlist.h"
30 #include "util.h"
31 #include "cpumap.h"
32 #include "thread_map.h"
33 #include "target.h"
34 #include "perf_regs.h"
35 #include "debug.h"
36 #include "trace-event.h"
37 #include "stat.h"
38 #include "memswap.h"
39 #include "util/parse-branch-options.h"
40
41 #include "sane_ctype.h"
42
43 struct perf_missing_features perf_missing_features;
44
45 static clockid_t clockid;
46
47 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
48 {
49 return 0;
50 }
51
52 void __weak test_attr__ready(void) { }
53
54 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
55 {
56 }
57
58 static struct {
59 size_t size;
60 int (*init)(struct perf_evsel *evsel);
61 void (*fini)(struct perf_evsel *evsel);
62 } perf_evsel__object = {
63 .size = sizeof(struct perf_evsel),
64 .init = perf_evsel__no_extra_init,
65 .fini = perf_evsel__no_extra_fini,
66 };
67
68 int perf_evsel__object_config(size_t object_size,
69 int (*init)(struct perf_evsel *evsel),
70 void (*fini)(struct perf_evsel *evsel))
71 {
72
73 if (object_size == 0)
74 goto set_methods;
75
76 if (perf_evsel__object.size > object_size)
77 return -EINVAL;
78
79 perf_evsel__object.size = object_size;
80
81 set_methods:
82 if (init != NULL)
83 perf_evsel__object.init = init;
84
85 if (fini != NULL)
86 perf_evsel__object.fini = fini;
87
88 return 0;
89 }
90
91 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
92
93 int __perf_evsel__sample_size(u64 sample_type)
94 {
95 u64 mask = sample_type & PERF_SAMPLE_MASK;
96 int size = 0;
97 int i;
98
99 for (i = 0; i < 64; i++) {
100 if (mask & (1ULL << i))
101 size++;
102 }
103
104 size *= sizeof(u64);
105
106 return size;
107 }
108
109 /**
110 * __perf_evsel__calc_id_pos - calculate id_pos.
111 * @sample_type: sample type
112 *
113 * This function returns the position of the event id (PERF_SAMPLE_ID or
114 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
115 * sample_event.
116 */
117 static int __perf_evsel__calc_id_pos(u64 sample_type)
118 {
119 int idx = 0;
120
121 if (sample_type & PERF_SAMPLE_IDENTIFIER)
122 return 0;
123
124 if (!(sample_type & PERF_SAMPLE_ID))
125 return -1;
126
127 if (sample_type & PERF_SAMPLE_IP)
128 idx += 1;
129
130 if (sample_type & PERF_SAMPLE_TID)
131 idx += 1;
132
133 if (sample_type & PERF_SAMPLE_TIME)
134 idx += 1;
135
136 if (sample_type & PERF_SAMPLE_ADDR)
137 idx += 1;
138
139 return idx;
140 }
141
142 /**
143 * __perf_evsel__calc_is_pos - calculate is_pos.
144 * @sample_type: sample type
145 *
146 * This function returns the position (counting backwards) of the event id
147 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
148 * sample_id_all is used there is an id sample appended to non-sample events.
149 */
150 static int __perf_evsel__calc_is_pos(u64 sample_type)
151 {
152 int idx = 1;
153
154 if (sample_type & PERF_SAMPLE_IDENTIFIER)
155 return 1;
156
157 if (!(sample_type & PERF_SAMPLE_ID))
158 return -1;
159
160 if (sample_type & PERF_SAMPLE_CPU)
161 idx += 1;
162
163 if (sample_type & PERF_SAMPLE_STREAM_ID)
164 idx += 1;
165
166 return idx;
167 }
168
169 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
170 {
171 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
172 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
173 }
174
175 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
176 enum perf_event_sample_format bit)
177 {
178 if (!(evsel->attr.sample_type & bit)) {
179 evsel->attr.sample_type |= bit;
180 evsel->sample_size += sizeof(u64);
181 perf_evsel__calc_id_pos(evsel);
182 }
183 }
184
185 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
186 enum perf_event_sample_format bit)
187 {
188 if (evsel->attr.sample_type & bit) {
189 evsel->attr.sample_type &= ~bit;
190 evsel->sample_size -= sizeof(u64);
191 perf_evsel__calc_id_pos(evsel);
192 }
193 }
194
195 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
196 bool can_sample_identifier)
197 {
198 if (can_sample_identifier) {
199 perf_evsel__reset_sample_bit(evsel, ID);
200 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
201 } else {
202 perf_evsel__set_sample_bit(evsel, ID);
203 }
204 evsel->attr.read_format |= PERF_FORMAT_ID;
205 }
206
207 /**
208 * perf_evsel__is_function_event - Return whether given evsel is a function
209 * trace event
210 *
211 * @evsel - evsel selector to be tested
212 *
213 * Return %true if event is function trace event
214 */
215 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
216 {
217 #define FUNCTION_EVENT "ftrace:function"
218
219 return evsel->name &&
220 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
221
222 #undef FUNCTION_EVENT
223 }
224
225 void perf_evsel__init(struct perf_evsel *evsel,
226 struct perf_event_attr *attr, int idx)
227 {
228 evsel->idx = idx;
229 evsel->tracking = !idx;
230 evsel->attr = *attr;
231 evsel->leader = evsel;
232 evsel->unit = "";
233 evsel->scale = 1.0;
234 evsel->max_events = ULONG_MAX;
235 evsel->evlist = NULL;
236 evsel->bpf_fd = -1;
237 INIT_LIST_HEAD(&evsel->node);
238 INIT_LIST_HEAD(&evsel->config_terms);
239 perf_evsel__object.init(evsel);
240 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
241 perf_evsel__calc_id_pos(evsel);
242 evsel->cmdline_group_boundary = false;
243 evsel->metric_expr = NULL;
244 evsel->metric_name = NULL;
245 evsel->metric_events = NULL;
246 evsel->collect_stat = false;
247 evsel->pmu_name = NULL;
248 }
249
250 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
251 {
252 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
253
254 if (!evsel)
255 return NULL;
256 perf_evsel__init(evsel, attr, idx);
257
258 if (perf_evsel__is_bpf_output(evsel)) {
259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261 evsel->attr.sample_period = 1;
262 }
263
264 if (perf_evsel__is_clock(evsel)) {
265 /*
266 * The evsel->unit points to static alias->unit
267 * so it's ok to use static string in here.
268 */
269 static const char *unit = "msec";
270
271 evsel->unit = unit;
272 evsel->scale = 1e-6;
273 }
274
275 return evsel;
276 }
277
278 static bool perf_event_can_profile_kernel(void)
279 {
280 return geteuid() == 0 || perf_event_paranoid() == -1;
281 }
282
283 struct perf_evsel *perf_evsel__new_cycles(bool precise)
284 {
285 struct perf_event_attr attr = {
286 .type = PERF_TYPE_HARDWARE,
287 .config = PERF_COUNT_HW_CPU_CYCLES,
288 .exclude_kernel = !perf_event_can_profile_kernel(),
289 };
290 struct perf_evsel *evsel;
291
292 event_attr_init(&attr);
293
294 if (!precise)
295 goto new_event;
296
297 /*
298 * Now let the usual logic to set up the perf_event_attr defaults
299 * to kick in when we return and before perf_evsel__open() is called.
300 */
301 new_event:
302 evsel = perf_evsel__new(&attr);
303 if (evsel == NULL)
304 goto out;
305
306 evsel->precise_max = true;
307
308 /* use asprintf() because free(evsel) assumes name is allocated */
309 if (asprintf(&evsel->name, "cycles%s%s%.*s",
310 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
311 attr.exclude_kernel ? "u" : "",
312 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
313 goto error_free;
314 out:
315 return evsel;
316 error_free:
317 perf_evsel__delete(evsel);
318 evsel = NULL;
319 goto out;
320 }
321
322 /*
323 * Returns pointer with encoded error via <linux/err.h> interface.
324 */
325 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
326 {
327 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
328 int err = -ENOMEM;
329
330 if (evsel == NULL) {
331 goto out_err;
332 } else {
333 struct perf_event_attr attr = {
334 .type = PERF_TYPE_TRACEPOINT,
335 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
336 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
337 };
338
339 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
340 goto out_free;
341
342 evsel->tp_format = trace_event__tp_format(sys, name);
343 if (IS_ERR(evsel->tp_format)) {
344 err = PTR_ERR(evsel->tp_format);
345 goto out_free;
346 }
347
348 event_attr_init(&attr);
349 attr.config = evsel->tp_format->id;
350 attr.sample_period = 1;
351 perf_evsel__init(evsel, &attr, idx);
352 }
353
354 return evsel;
355
356 out_free:
357 zfree(&evsel->name);
358 free(evsel);
359 out_err:
360 return ERR_PTR(err);
361 }
362
363 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
364 "cycles",
365 "instructions",
366 "cache-references",
367 "cache-misses",
368 "branches",
369 "branch-misses",
370 "bus-cycles",
371 "stalled-cycles-frontend",
372 "stalled-cycles-backend",
373 "ref-cycles",
374 };
375
376 static const char *__perf_evsel__hw_name(u64 config)
377 {
378 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
379 return perf_evsel__hw_names[config];
380
381 return "unknown-hardware";
382 }
383
384 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
385 {
386 int colon = 0, r = 0;
387 struct perf_event_attr *attr = &evsel->attr;
388 bool exclude_guest_default = false;
389
390 #define MOD_PRINT(context, mod) do { \
391 if (!attr->exclude_##context) { \
392 if (!colon) colon = ++r; \
393 r += scnprintf(bf + r, size - r, "%c", mod); \
394 } } while(0)
395
396 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
397 MOD_PRINT(kernel, 'k');
398 MOD_PRINT(user, 'u');
399 MOD_PRINT(hv, 'h');
400 exclude_guest_default = true;
401 }
402
403 if (attr->precise_ip) {
404 if (!colon)
405 colon = ++r;
406 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
407 exclude_guest_default = true;
408 }
409
410 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
411 MOD_PRINT(host, 'H');
412 MOD_PRINT(guest, 'G');
413 }
414 #undef MOD_PRINT
415 if (colon)
416 bf[colon - 1] = ':';
417 return r;
418 }
419
420 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
421 {
422 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
423 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
424 }
425
426 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
427 "cpu-clock",
428 "task-clock",
429 "page-faults",
430 "context-switches",
431 "cpu-migrations",
432 "minor-faults",
433 "major-faults",
434 "alignment-faults",
435 "emulation-faults",
436 "dummy",
437 };
438
439 static const char *__perf_evsel__sw_name(u64 config)
440 {
441 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
442 return perf_evsel__sw_names[config];
443 return "unknown-software";
444 }
445
446 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
447 {
448 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
449 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
450 }
451
452 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
453 {
454 int r;
455
456 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
457
458 if (type & HW_BREAKPOINT_R)
459 r += scnprintf(bf + r, size - r, "r");
460
461 if (type & HW_BREAKPOINT_W)
462 r += scnprintf(bf + r, size - r, "w");
463
464 if (type & HW_BREAKPOINT_X)
465 r += scnprintf(bf + r, size - r, "x");
466
467 return r;
468 }
469
470 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
471 {
472 struct perf_event_attr *attr = &evsel->attr;
473 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
474 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
475 }
476
477 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
478 [PERF_EVSEL__MAX_ALIASES] = {
479 { "L1-dcache", "l1-d", "l1d", "L1-data", },
480 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
481 { "LLC", "L2", },
482 { "dTLB", "d-tlb", "Data-TLB", },
483 { "iTLB", "i-tlb", "Instruction-TLB", },
484 { "branch", "branches", "bpu", "btb", "bpc", },
485 { "node", },
486 };
487
488 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
489 [PERF_EVSEL__MAX_ALIASES] = {
490 { "load", "loads", "read", },
491 { "store", "stores", "write", },
492 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
493 };
494
495 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
496 [PERF_EVSEL__MAX_ALIASES] = {
497 { "refs", "Reference", "ops", "access", },
498 { "misses", "miss", },
499 };
500
501 #define C(x) PERF_COUNT_HW_CACHE_##x
502 #define CACHE_READ (1 << C(OP_READ))
503 #define CACHE_WRITE (1 << C(OP_WRITE))
504 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
505 #define COP(x) (1 << x)
506
507 /*
508 * cache operartion stat
509 * L1I : Read and prefetch only
510 * ITLB and BPU : Read-only
511 */
512 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
513 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
514 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
515 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
516 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
517 [C(ITLB)] = (CACHE_READ),
518 [C(BPU)] = (CACHE_READ),
519 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520 };
521
522 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
523 {
524 if (perf_evsel__hw_cache_stat[type] & COP(op))
525 return true; /* valid */
526 else
527 return false; /* invalid */
528 }
529
530 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
531 char *bf, size_t size)
532 {
533 if (result) {
534 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
535 perf_evsel__hw_cache_op[op][0],
536 perf_evsel__hw_cache_result[result][0]);
537 }
538
539 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
540 perf_evsel__hw_cache_op[op][1]);
541 }
542
543 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
544 {
545 u8 op, result, type = (config >> 0) & 0xff;
546 const char *err = "unknown-ext-hardware-cache-type";
547
548 if (type >= PERF_COUNT_HW_CACHE_MAX)
549 goto out_err;
550
551 op = (config >> 8) & 0xff;
552 err = "unknown-ext-hardware-cache-op";
553 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
554 goto out_err;
555
556 result = (config >> 16) & 0xff;
557 err = "unknown-ext-hardware-cache-result";
558 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
559 goto out_err;
560
561 err = "invalid-cache";
562 if (!perf_evsel__is_cache_op_valid(type, op))
563 goto out_err;
564
565 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
566 out_err:
567 return scnprintf(bf, size, "%s", err);
568 }
569
570 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
571 {
572 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
573 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
574 }
575
576 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
577 {
578 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
579 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
580 }
581
582 static int perf_evsel__tool_name(char *bf, size_t size)
583 {
584 int ret = scnprintf(bf, size, "duration_time");
585 return ret;
586 }
587
588 const char *perf_evsel__name(struct perf_evsel *evsel)
589 {
590 char bf[128];
591
592 if (evsel->name)
593 return evsel->name;
594
595 switch (evsel->attr.type) {
596 case PERF_TYPE_RAW:
597 perf_evsel__raw_name(evsel, bf, sizeof(bf));
598 break;
599
600 case PERF_TYPE_HARDWARE:
601 perf_evsel__hw_name(evsel, bf, sizeof(bf));
602 break;
603
604 case PERF_TYPE_HW_CACHE:
605 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
606 break;
607
608 case PERF_TYPE_SOFTWARE:
609 if (evsel->tool_event)
610 perf_evsel__tool_name(bf, sizeof(bf));
611 else
612 perf_evsel__sw_name(evsel, bf, sizeof(bf));
613 break;
614
615 case PERF_TYPE_TRACEPOINT:
616 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
617 break;
618
619 case PERF_TYPE_BREAKPOINT:
620 perf_evsel__bp_name(evsel, bf, sizeof(bf));
621 break;
622
623 default:
624 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
625 evsel->attr.type);
626 break;
627 }
628
629 evsel->name = strdup(bf);
630
631 return evsel->name ?: "unknown";
632 }
633
634 const char *perf_evsel__group_name(struct perf_evsel *evsel)
635 {
636 return evsel->group_name ?: "anon group";
637 }
638
639 /*
640 * Returns the group details for the specified leader,
641 * with following rules.
642 *
643 * For record -e '{cycles,instructions}'
644 * 'anon group { cycles:u, instructions:u }'
645 *
646 * For record -e 'cycles,instructions' and report --group
647 * 'cycles:u, instructions:u'
648 */
649 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
650 {
651 int ret = 0;
652 struct perf_evsel *pos;
653 const char *group_name = perf_evsel__group_name(evsel);
654
655 if (!evsel->forced_leader)
656 ret = scnprintf(buf, size, "%s { ", group_name);
657
658 ret += scnprintf(buf + ret, size - ret, "%s",
659 perf_evsel__name(evsel));
660
661 for_each_group_member(pos, evsel)
662 ret += scnprintf(buf + ret, size - ret, ", %s",
663 perf_evsel__name(pos));
664
665 if (!evsel->forced_leader)
666 ret += scnprintf(buf + ret, size - ret, " }");
667
668 return ret;
669 }
670
671 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
672 struct record_opts *opts,
673 struct callchain_param *param)
674 {
675 bool function = perf_evsel__is_function_event(evsel);
676 struct perf_event_attr *attr = &evsel->attr;
677
678 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
679
680 attr->sample_max_stack = param->max_stack;
681
682 if (param->record_mode == CALLCHAIN_LBR) {
683 if (!opts->branch_stack) {
684 if (attr->exclude_user) {
685 pr_warning("LBR callstack option is only available "
686 "to get user callchain information. "
687 "Falling back to framepointers.\n");
688 } else {
689 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
690 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
691 PERF_SAMPLE_BRANCH_CALL_STACK |
692 PERF_SAMPLE_BRANCH_NO_CYCLES |
693 PERF_SAMPLE_BRANCH_NO_FLAGS;
694 }
695 } else
696 pr_warning("Cannot use LBR callstack with branch stack. "
697 "Falling back to framepointers.\n");
698 }
699
700 if (param->record_mode == CALLCHAIN_DWARF) {
701 if (!function) {
702 perf_evsel__set_sample_bit(evsel, REGS_USER);
703 perf_evsel__set_sample_bit(evsel, STACK_USER);
704 attr->sample_regs_user |= PERF_REGS_MASK;
705 attr->sample_stack_user = param->dump_size;
706 attr->exclude_callchain_user = 1;
707 } else {
708 pr_info("Cannot use DWARF unwind for function trace event,"
709 " falling back to framepointers.\n");
710 }
711 }
712
713 if (function) {
714 pr_info("Disabling user space callchains for function trace event.\n");
715 attr->exclude_callchain_user = 1;
716 }
717 }
718
719 void perf_evsel__config_callchain(struct perf_evsel *evsel,
720 struct record_opts *opts,
721 struct callchain_param *param)
722 {
723 if (param->enabled)
724 return __perf_evsel__config_callchain(evsel, opts, param);
725 }
726
727 static void
728 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
729 struct callchain_param *param)
730 {
731 struct perf_event_attr *attr = &evsel->attr;
732
733 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
734 if (param->record_mode == CALLCHAIN_LBR) {
735 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
736 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
737 PERF_SAMPLE_BRANCH_CALL_STACK);
738 }
739 if (param->record_mode == CALLCHAIN_DWARF) {
740 perf_evsel__reset_sample_bit(evsel, REGS_USER);
741 perf_evsel__reset_sample_bit(evsel, STACK_USER);
742 }
743 }
744
745 static void apply_config_terms(struct perf_evsel *evsel,
746 struct record_opts *opts, bool track)
747 {
748 struct perf_evsel_config_term *term;
749 struct list_head *config_terms = &evsel->config_terms;
750 struct perf_event_attr *attr = &evsel->attr;
751 /* callgraph default */
752 struct callchain_param param = {
753 .record_mode = callchain_param.record_mode,
754 };
755 u32 dump_size = 0;
756 int max_stack = 0;
757 const char *callgraph_buf = NULL;
758
759 list_for_each_entry(term, config_terms, list) {
760 switch (term->type) {
761 case PERF_EVSEL__CONFIG_TERM_PERIOD:
762 if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
763 attr->sample_period = term->val.period;
764 attr->freq = 0;
765 perf_evsel__reset_sample_bit(evsel, PERIOD);
766 }
767 break;
768 case PERF_EVSEL__CONFIG_TERM_FREQ:
769 if (!(term->weak && opts->user_freq != UINT_MAX)) {
770 attr->sample_freq = term->val.freq;
771 attr->freq = 1;
772 perf_evsel__set_sample_bit(evsel, PERIOD);
773 }
774 break;
775 case PERF_EVSEL__CONFIG_TERM_TIME:
776 if (term->val.time)
777 perf_evsel__set_sample_bit(evsel, TIME);
778 else
779 perf_evsel__reset_sample_bit(evsel, TIME);
780 break;
781 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
782 callgraph_buf = term->val.callgraph;
783 break;
784 case PERF_EVSEL__CONFIG_TERM_BRANCH:
785 if (term->val.branch && strcmp(term->val.branch, "no")) {
786 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
787 parse_branch_str(term->val.branch,
788 &attr->branch_sample_type);
789 } else
790 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
791 break;
792 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
793 dump_size = term->val.stack_user;
794 break;
795 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
796 max_stack = term->val.max_stack;
797 break;
798 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
799 evsel->max_events = term->val.max_events;
800 break;
801 case PERF_EVSEL__CONFIG_TERM_INHERIT:
802 /*
803 * attr->inherit should has already been set by
804 * perf_evsel__config. If user explicitly set
805 * inherit using config terms, override global
806 * opt->no_inherit setting.
807 */
808 attr->inherit = term->val.inherit ? 1 : 0;
809 break;
810 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
811 attr->write_backward = term->val.overwrite ? 1 : 0;
812 break;
813 case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
814 break;
815 case PERF_EVSEL__CONFIG_TERM_PERCORE:
816 break;
817 default:
818 break;
819 }
820 }
821
822 /* User explicitly set per-event callgraph, clear the old setting and reset. */
823 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
824 bool sample_address = false;
825
826 if (max_stack) {
827 param.max_stack = max_stack;
828 if (callgraph_buf == NULL)
829 callgraph_buf = "fp";
830 }
831
832 /* parse callgraph parameters */
833 if (callgraph_buf != NULL) {
834 if (!strcmp(callgraph_buf, "no")) {
835 param.enabled = false;
836 param.record_mode = CALLCHAIN_NONE;
837 } else {
838 param.enabled = true;
839 if (parse_callchain_record(callgraph_buf, &param)) {
840 pr_err("per-event callgraph setting for %s failed. "
841 "Apply callgraph global setting for it\n",
842 evsel->name);
843 return;
844 }
845 if (param.record_mode == CALLCHAIN_DWARF)
846 sample_address = true;
847 }
848 }
849 if (dump_size > 0) {
850 dump_size = round_up(dump_size, sizeof(u64));
851 param.dump_size = dump_size;
852 }
853
854 /* If global callgraph set, clear it */
855 if (callchain_param.enabled)
856 perf_evsel__reset_callgraph(evsel, &callchain_param);
857
858 /* set perf-event callgraph */
859 if (param.enabled) {
860 if (sample_address) {
861 perf_evsel__set_sample_bit(evsel, ADDR);
862 perf_evsel__set_sample_bit(evsel, DATA_SRC);
863 evsel->attr.mmap_data = track;
864 }
865 perf_evsel__config_callchain(evsel, opts, &param);
866 }
867 }
868 }
869
870 static bool is_dummy_event(struct perf_evsel *evsel)
871 {
872 return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
873 (evsel->attr.config == PERF_COUNT_SW_DUMMY);
874 }
875
876 /*
877 * The enable_on_exec/disabled value strategy:
878 *
879 * 1) For any type of traced program:
880 * - all independent events and group leaders are disabled
881 * - all group members are enabled
882 *
883 * Group members are ruled by group leaders. They need to
884 * be enabled, because the group scheduling relies on that.
885 *
886 * 2) For traced programs executed by perf:
887 * - all independent events and group leaders have
888 * enable_on_exec set
889 * - we don't specifically enable or disable any event during
890 * the record command
891 *
892 * Independent events and group leaders are initially disabled
893 * and get enabled by exec. Group members are ruled by group
894 * leaders as stated in 1).
895 *
896 * 3) For traced programs attached by perf (pid/tid):
897 * - we specifically enable or disable all events during
898 * the record command
899 *
900 * When attaching events to already running traced we
901 * enable/disable events specifically, as there's no
902 * initial traced exec call.
903 */
904 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
905 struct callchain_param *callchain)
906 {
907 struct perf_evsel *leader = evsel->leader;
908 struct perf_event_attr *attr = &evsel->attr;
909 int track = evsel->tracking;
910 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
911
912 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
913 attr->inherit = !opts->no_inherit;
914 attr->write_backward = opts->overwrite ? 1 : 0;
915
916 perf_evsel__set_sample_bit(evsel, IP);
917 perf_evsel__set_sample_bit(evsel, TID);
918
919 if (evsel->sample_read) {
920 perf_evsel__set_sample_bit(evsel, READ);
921
922 /*
923 * We need ID even in case of single event, because
924 * PERF_SAMPLE_READ process ID specific data.
925 */
926 perf_evsel__set_sample_id(evsel, false);
927
928 /*
929 * Apply group format only if we belong to group
930 * with more than one members.
931 */
932 if (leader->nr_members > 1) {
933 attr->read_format |= PERF_FORMAT_GROUP;
934 attr->inherit = 0;
935 }
936 }
937
938 /*
939 * We default some events to have a default interval. But keep
940 * it a weak assumption overridable by the user.
941 */
942 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
943 opts->user_interval != ULLONG_MAX)) {
944 if (opts->freq) {
945 perf_evsel__set_sample_bit(evsel, PERIOD);
946 attr->freq = 1;
947 attr->sample_freq = opts->freq;
948 } else {
949 attr->sample_period = opts->default_interval;
950 }
951 }
952
953 /*
954 * Disable sampling for all group members other
955 * than leader in case leader 'leads' the sampling.
956 */
957 if ((leader != evsel) && leader->sample_read) {
958 attr->freq = 0;
959 attr->sample_freq = 0;
960 attr->sample_period = 0;
961 attr->write_backward = 0;
962
963 /*
964 * We don't get sample for slave events, we make them
965 * when delivering group leader sample. Set the slave
966 * event to follow the master sample_type to ease up
967 * report.
968 */
969 attr->sample_type = leader->attr.sample_type;
970 }
971
972 if (opts->no_samples)
973 attr->sample_freq = 0;
974
975 if (opts->inherit_stat) {
976 evsel->attr.read_format |=
977 PERF_FORMAT_TOTAL_TIME_ENABLED |
978 PERF_FORMAT_TOTAL_TIME_RUNNING |
979 PERF_FORMAT_ID;
980 attr->inherit_stat = 1;
981 }
982
983 if (opts->sample_address) {
984 perf_evsel__set_sample_bit(evsel, ADDR);
985 attr->mmap_data = track;
986 }
987
988 /*
989 * We don't allow user space callchains for function trace
990 * event, due to issues with page faults while tracing page
991 * fault handler and its overall trickiness nature.
992 */
993 if (perf_evsel__is_function_event(evsel))
994 evsel->attr.exclude_callchain_user = 1;
995
996 if (callchain && callchain->enabled && !evsel->no_aux_samples)
997 perf_evsel__config_callchain(evsel, opts, callchain);
998
999 if (opts->sample_intr_regs) {
1000 attr->sample_regs_intr = opts->sample_intr_regs;
1001 perf_evsel__set_sample_bit(evsel, REGS_INTR);
1002 }
1003
1004 if (opts->sample_user_regs) {
1005 attr->sample_regs_user |= opts->sample_user_regs;
1006 perf_evsel__set_sample_bit(evsel, REGS_USER);
1007 }
1008
1009 if (target__has_cpu(&opts->target) || opts->sample_cpu)
1010 perf_evsel__set_sample_bit(evsel, CPU);
1011
1012 /*
1013 * When the user explicitly disabled time don't force it here.
1014 */
1015 if (opts->sample_time &&
1016 (!perf_missing_features.sample_id_all &&
1017 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1018 opts->sample_time_set)))
1019 perf_evsel__set_sample_bit(evsel, TIME);
1020
1021 if (opts->raw_samples && !evsel->no_aux_samples) {
1022 perf_evsel__set_sample_bit(evsel, TIME);
1023 perf_evsel__set_sample_bit(evsel, RAW);
1024 perf_evsel__set_sample_bit(evsel, CPU);
1025 }
1026
1027 if (opts->sample_address)
1028 perf_evsel__set_sample_bit(evsel, DATA_SRC);
1029
1030 if (opts->sample_phys_addr)
1031 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1032
1033 if (opts->no_buffering) {
1034 attr->watermark = 0;
1035 attr->wakeup_events = 1;
1036 }
1037 if (opts->branch_stack && !evsel->no_aux_samples) {
1038 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1039 attr->branch_sample_type = opts->branch_stack;
1040 }
1041
1042 if (opts->sample_weight)
1043 perf_evsel__set_sample_bit(evsel, WEIGHT);
1044
1045 attr->task = track;
1046 attr->mmap = track;
1047 attr->mmap2 = track && !perf_missing_features.mmap2;
1048 attr->comm = track;
1049 attr->ksymbol = track && !perf_missing_features.ksymbol;
1050 attr->bpf_event = track && !opts->no_bpf_event &&
1051 !perf_missing_features.bpf_event;
1052
1053 if (opts->record_namespaces)
1054 attr->namespaces = track;
1055
1056 if (opts->record_switch_events)
1057 attr->context_switch = track;
1058
1059 if (opts->sample_transaction)
1060 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1061
1062 if (opts->running_time) {
1063 evsel->attr.read_format |=
1064 PERF_FORMAT_TOTAL_TIME_ENABLED |
1065 PERF_FORMAT_TOTAL_TIME_RUNNING;
1066 }
1067
1068 /*
1069 * XXX see the function comment above
1070 *
1071 * Disabling only independent events or group leaders,
1072 * keeping group members enabled.
1073 */
1074 if (perf_evsel__is_group_leader(evsel))
1075 attr->disabled = 1;
1076
1077 /*
1078 * Setting enable_on_exec for independent events and
1079 * group leaders for traced executed by perf.
1080 */
1081 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1082 !opts->initial_delay)
1083 attr->enable_on_exec = 1;
1084
1085 if (evsel->immediate) {
1086 attr->disabled = 0;
1087 attr->enable_on_exec = 0;
1088 }
1089
1090 clockid = opts->clockid;
1091 if (opts->use_clockid) {
1092 attr->use_clockid = 1;
1093 attr->clockid = opts->clockid;
1094 }
1095
1096 if (evsel->precise_max)
1097 attr->precise_ip = 3;
1098
1099 if (opts->all_user) {
1100 attr->exclude_kernel = 1;
1101 attr->exclude_user = 0;
1102 }
1103
1104 if (opts->all_kernel) {
1105 attr->exclude_kernel = 0;
1106 attr->exclude_user = 1;
1107 }
1108
1109 if (evsel->own_cpus || evsel->unit)
1110 evsel->attr.read_format |= PERF_FORMAT_ID;
1111
1112 /*
1113 * Apply event specific term settings,
1114 * it overloads any global configuration.
1115 */
1116 apply_config_terms(evsel, opts, track);
1117
1118 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1119
1120 /* The --period option takes the precedence. */
1121 if (opts->period_set) {
1122 if (opts->period)
1123 perf_evsel__set_sample_bit(evsel, PERIOD);
1124 else
1125 perf_evsel__reset_sample_bit(evsel, PERIOD);
1126 }
1127
1128 /*
1129 * For initial_delay, a dummy event is added implicitly.
1130 * The software event will trigger -EOPNOTSUPP error out,
1131 * if BRANCH_STACK bit is set.
1132 */
1133 if (opts->initial_delay && is_dummy_event(evsel))
1134 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1135 }
1136
1137 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1138 {
1139 if (evsel->system_wide)
1140 nthreads = 1;
1141
1142 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1143
1144 if (evsel->fd) {
1145 int cpu, thread;
1146 for (cpu = 0; cpu < ncpus; cpu++) {
1147 for (thread = 0; thread < nthreads; thread++) {
1148 FD(evsel, cpu, thread) = -1;
1149 }
1150 }
1151 }
1152
1153 return evsel->fd != NULL ? 0 : -ENOMEM;
1154 }
1155
1156 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1157 int ioc, void *arg)
1158 {
1159 int cpu, thread;
1160
1161 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1162 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1163 int fd = FD(evsel, cpu, thread),
1164 err = ioctl(fd, ioc, arg);
1165
1166 if (err)
1167 return err;
1168 }
1169 }
1170
1171 return 0;
1172 }
1173
1174 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1175 {
1176 return perf_evsel__run_ioctl(evsel,
1177 PERF_EVENT_IOC_SET_FILTER,
1178 (void *)filter);
1179 }
1180
1181 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1182 {
1183 char *new_filter = strdup(filter);
1184
1185 if (new_filter != NULL) {
1186 free(evsel->filter);
1187 evsel->filter = new_filter;
1188 return 0;
1189 }
1190
1191 return -1;
1192 }
1193
1194 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1195 const char *fmt, const char *filter)
1196 {
1197 char *new_filter;
1198
1199 if (evsel->filter == NULL)
1200 return perf_evsel__set_filter(evsel, filter);
1201
1202 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1203 free(evsel->filter);
1204 evsel->filter = new_filter;
1205 return 0;
1206 }
1207
1208 return -1;
1209 }
1210
1211 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1212 {
1213 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1214 }
1215
1216 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1217 {
1218 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1219 }
1220
1221 int perf_evsel__enable(struct perf_evsel *evsel)
1222 {
1223 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1224
1225 if (!err)
1226 evsel->disabled = false;
1227
1228 return err;
1229 }
1230
1231 int perf_evsel__disable(struct perf_evsel *evsel)
1232 {
1233 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1234 /*
1235 * We mark it disabled here so that tools that disable a event can
1236 * ignore events after they disable it. I.e. the ring buffer may have
1237 * already a few more events queued up before the kernel got the stop
1238 * request.
1239 */
1240 if (!err)
1241 evsel->disabled = true;
1242
1243 return err;
1244 }
1245
1246 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1247 {
1248 if (ncpus == 0 || nthreads == 0)
1249 return 0;
1250
1251 if (evsel->system_wide)
1252 nthreads = 1;
1253
1254 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1255 if (evsel->sample_id == NULL)
1256 return -ENOMEM;
1257
1258 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1259 if (evsel->id == NULL) {
1260 xyarray__delete(evsel->sample_id);
1261 evsel->sample_id = NULL;
1262 return -ENOMEM;
1263 }
1264
1265 return 0;
1266 }
1267
1268 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1269 {
1270 xyarray__delete(evsel->fd);
1271 evsel->fd = NULL;
1272 }
1273
1274 static void perf_evsel__free_id(struct perf_evsel *evsel)
1275 {
1276 xyarray__delete(evsel->sample_id);
1277 evsel->sample_id = NULL;
1278 zfree(&evsel->id);
1279 }
1280
1281 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1282 {
1283 struct perf_evsel_config_term *term, *h;
1284
1285 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1286 list_del(&term->list);
1287 free(term);
1288 }
1289 }
1290
1291 void perf_evsel__close_fd(struct perf_evsel *evsel)
1292 {
1293 int cpu, thread;
1294
1295 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1296 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1297 close(FD(evsel, cpu, thread));
1298 FD(evsel, cpu, thread) = -1;
1299 }
1300 }
1301
1302 void perf_evsel__exit(struct perf_evsel *evsel)
1303 {
1304 assert(list_empty(&evsel->node));
1305 assert(evsel->evlist == NULL);
1306 perf_evsel__free_counts(evsel);
1307 perf_evsel__free_fd(evsel);
1308 perf_evsel__free_id(evsel);
1309 perf_evsel__free_config_terms(evsel);
1310 cgroup__put(evsel->cgrp);
1311 cpu_map__put(evsel->cpus);
1312 cpu_map__put(evsel->own_cpus);
1313 thread_map__put(evsel->threads);
1314 zfree(&evsel->group_name);
1315 zfree(&evsel->name);
1316 perf_evsel__object.fini(evsel);
1317 }
1318
1319 void perf_evsel__delete(struct perf_evsel *evsel)
1320 {
1321 perf_evsel__exit(evsel);
1322 free(evsel);
1323 }
1324
1325 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1326 struct perf_counts_values *count)
1327 {
1328 struct perf_counts_values tmp;
1329
1330 if (!evsel->prev_raw_counts)
1331 return;
1332
1333 if (cpu == -1) {
1334 tmp = evsel->prev_raw_counts->aggr;
1335 evsel->prev_raw_counts->aggr = *count;
1336 } else {
1337 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1338 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1339 }
1340
1341 count->val = count->val - tmp.val;
1342 count->ena = count->ena - tmp.ena;
1343 count->run = count->run - tmp.run;
1344 }
1345
1346 void perf_counts_values__scale(struct perf_counts_values *count,
1347 bool scale, s8 *pscaled)
1348 {
1349 s8 scaled = 0;
1350
1351 if (scale) {
1352 if (count->run == 0) {
1353 scaled = -1;
1354 count->val = 0;
1355 } else if (count->run < count->ena) {
1356 scaled = 1;
1357 count->val = (u64)((double) count->val * count->ena / count->run);
1358 }
1359 }
1360
1361 if (pscaled)
1362 *pscaled = scaled;
1363 }
1364
1365 static int perf_evsel__read_size(struct perf_evsel *evsel)
1366 {
1367 u64 read_format = evsel->attr.read_format;
1368 int entry = sizeof(u64); /* value */
1369 int size = 0;
1370 int nr = 1;
1371
1372 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1373 size += sizeof(u64);
1374
1375 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1376 size += sizeof(u64);
1377
1378 if (read_format & PERF_FORMAT_ID)
1379 entry += sizeof(u64);
1380
1381 if (read_format & PERF_FORMAT_GROUP) {
1382 nr = evsel->nr_members;
1383 size += sizeof(u64);
1384 }
1385
1386 size += entry * nr;
1387 return size;
1388 }
1389
1390 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1391 struct perf_counts_values *count)
1392 {
1393 size_t size = perf_evsel__read_size(evsel);
1394
1395 memset(count, 0, sizeof(*count));
1396
1397 if (FD(evsel, cpu, thread) < 0)
1398 return -EINVAL;
1399
1400 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1401 return -errno;
1402
1403 return 0;
1404 }
1405
1406 static int
1407 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1408 {
1409 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1410
1411 return perf_evsel__read(evsel, cpu, thread, count);
1412 }
1413
1414 static void
1415 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1416 u64 val, u64 ena, u64 run)
1417 {
1418 struct perf_counts_values *count;
1419
1420 count = perf_counts(counter->counts, cpu, thread);
1421
1422 count->val = val;
1423 count->ena = ena;
1424 count->run = run;
1425 count->loaded = true;
1426 }
1427
1428 static int
1429 perf_evsel__process_group_data(struct perf_evsel *leader,
1430 int cpu, int thread, u64 *data)
1431 {
1432 u64 read_format = leader->attr.read_format;
1433 struct sample_read_value *v;
1434 u64 nr, ena = 0, run = 0, i;
1435
1436 nr = *data++;
1437
1438 if (nr != (u64) leader->nr_members)
1439 return -EINVAL;
1440
1441 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1442 ena = *data++;
1443
1444 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1445 run = *data++;
1446
1447 v = (struct sample_read_value *) data;
1448
1449 perf_evsel__set_count(leader, cpu, thread,
1450 v[0].value, ena, run);
1451
1452 for (i = 1; i < nr; i++) {
1453 struct perf_evsel *counter;
1454
1455 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1456 if (!counter)
1457 return -EINVAL;
1458
1459 perf_evsel__set_count(counter, cpu, thread,
1460 v[i].value, ena, run);
1461 }
1462
1463 return 0;
1464 }
1465
1466 static int
1467 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1468 {
1469 struct perf_stat_evsel *ps = leader->stats;
1470 u64 read_format = leader->attr.read_format;
1471 int size = perf_evsel__read_size(leader);
1472 u64 *data = ps->group_data;
1473
1474 if (!(read_format & PERF_FORMAT_ID))
1475 return -EINVAL;
1476
1477 if (!perf_evsel__is_group_leader(leader))
1478 return -EINVAL;
1479
1480 if (!data) {
1481 data = zalloc(size);
1482 if (!data)
1483 return -ENOMEM;
1484
1485 ps->group_data = data;
1486 }
1487
1488 if (FD(leader, cpu, thread) < 0)
1489 return -EINVAL;
1490
1491 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1492 return -errno;
1493
1494 return perf_evsel__process_group_data(leader, cpu, thread, data);
1495 }
1496
1497 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1498 {
1499 u64 read_format = evsel->attr.read_format;
1500
1501 if (read_format & PERF_FORMAT_GROUP)
1502 return perf_evsel__read_group(evsel, cpu, thread);
1503 else
1504 return perf_evsel__read_one(evsel, cpu, thread);
1505 }
1506
1507 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1508 int cpu, int thread, bool scale)
1509 {
1510 struct perf_counts_values count;
1511 size_t nv = scale ? 3 : 1;
1512
1513 if (FD(evsel, cpu, thread) < 0)
1514 return -EINVAL;
1515
1516 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1517 return -ENOMEM;
1518
1519 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1520 return -errno;
1521
1522 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1523 perf_counts_values__scale(&count, scale, NULL);
1524 *perf_counts(evsel->counts, cpu, thread) = count;
1525 return 0;
1526 }
1527
1528 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1529 {
1530 struct perf_evsel *leader = evsel->leader;
1531 int fd;
1532
1533 if (perf_evsel__is_group_leader(evsel))
1534 return -1;
1535
1536 /*
1537 * Leader must be already processed/open,
1538 * if not it's a bug.
1539 */
1540 BUG_ON(!leader->fd);
1541
1542 fd = FD(leader, cpu, thread);
1543 BUG_ON(fd == -1);
1544
1545 return fd;
1546 }
1547
1548 struct bit_names {
1549 int bit;
1550 const char *name;
1551 };
1552
1553 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1554 {
1555 bool first_bit = true;
1556 int i = 0;
1557
1558 do {
1559 if (value & bits[i].bit) {
1560 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1561 first_bit = false;
1562 }
1563 } while (bits[++i].name != NULL);
1564 }
1565
1566 static void __p_sample_type(char *buf, size_t size, u64 value)
1567 {
1568 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1569 struct bit_names bits[] = {
1570 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1571 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1572 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1573 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1574 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1575 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1576 { .name = NULL, }
1577 };
1578 #undef bit_name
1579 __p_bits(buf, size, value, bits);
1580 }
1581
1582 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1583 {
1584 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1585 struct bit_names bits[] = {
1586 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1587 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1588 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1589 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1590 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1591 { .name = NULL, }
1592 };
1593 #undef bit_name
1594 __p_bits(buf, size, value, bits);
1595 }
1596
1597 static void __p_read_format(char *buf, size_t size, u64 value)
1598 {
1599 #define bit_name(n) { PERF_FORMAT_##n, #n }
1600 struct bit_names bits[] = {
1601 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1602 bit_name(ID), bit_name(GROUP),
1603 { .name = NULL, }
1604 };
1605 #undef bit_name
1606 __p_bits(buf, size, value, bits);
1607 }
1608
1609 #define BUF_SIZE 1024
1610
1611 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1612 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1613 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1614 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1615 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1616 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1617
1618 #define PRINT_ATTRn(_n, _f, _p) \
1619 do { \
1620 if (attr->_f) { \
1621 _p(attr->_f); \
1622 ret += attr__fprintf(fp, _n, buf, priv);\
1623 } \
1624 } while (0)
1625
1626 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1627
1628 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1629 attr__fprintf_f attr__fprintf, void *priv)
1630 {
1631 char buf[BUF_SIZE];
1632 int ret = 0;
1633
1634 PRINT_ATTRf(type, p_unsigned);
1635 PRINT_ATTRf(size, p_unsigned);
1636 PRINT_ATTRf(config, p_hex);
1637 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1638 PRINT_ATTRf(sample_type, p_sample_type);
1639 PRINT_ATTRf(read_format, p_read_format);
1640
1641 PRINT_ATTRf(disabled, p_unsigned);
1642 PRINT_ATTRf(inherit, p_unsigned);
1643 PRINT_ATTRf(pinned, p_unsigned);
1644 PRINT_ATTRf(exclusive, p_unsigned);
1645 PRINT_ATTRf(exclude_user, p_unsigned);
1646 PRINT_ATTRf(exclude_kernel, p_unsigned);
1647 PRINT_ATTRf(exclude_hv, p_unsigned);
1648 PRINT_ATTRf(exclude_idle, p_unsigned);
1649 PRINT_ATTRf(mmap, p_unsigned);
1650 PRINT_ATTRf(comm, p_unsigned);
1651 PRINT_ATTRf(freq, p_unsigned);
1652 PRINT_ATTRf(inherit_stat, p_unsigned);
1653 PRINT_ATTRf(enable_on_exec, p_unsigned);
1654 PRINT_ATTRf(task, p_unsigned);
1655 PRINT_ATTRf(watermark, p_unsigned);
1656 PRINT_ATTRf(precise_ip, p_unsigned);
1657 PRINT_ATTRf(mmap_data, p_unsigned);
1658 PRINT_ATTRf(sample_id_all, p_unsigned);
1659 PRINT_ATTRf(exclude_host, p_unsigned);
1660 PRINT_ATTRf(exclude_guest, p_unsigned);
1661 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1662 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1663 PRINT_ATTRf(mmap2, p_unsigned);
1664 PRINT_ATTRf(comm_exec, p_unsigned);
1665 PRINT_ATTRf(use_clockid, p_unsigned);
1666 PRINT_ATTRf(context_switch, p_unsigned);
1667 PRINT_ATTRf(write_backward, p_unsigned);
1668 PRINT_ATTRf(namespaces, p_unsigned);
1669 PRINT_ATTRf(ksymbol, p_unsigned);
1670 PRINT_ATTRf(bpf_event, p_unsigned);
1671
1672 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1673 PRINT_ATTRf(bp_type, p_unsigned);
1674 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1675 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1676 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1677 PRINT_ATTRf(sample_regs_user, p_hex);
1678 PRINT_ATTRf(sample_stack_user, p_unsigned);
1679 PRINT_ATTRf(clockid, p_signed);
1680 PRINT_ATTRf(sample_regs_intr, p_hex);
1681 PRINT_ATTRf(aux_watermark, p_unsigned);
1682 PRINT_ATTRf(sample_max_stack, p_unsigned);
1683
1684 return ret;
1685 }
1686
1687 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1688 void *priv __maybe_unused)
1689 {
1690 return fprintf(fp, " %-32s %s\n", name, val);
1691 }
1692
1693 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1694 int nr_cpus, int nr_threads,
1695 int thread_idx)
1696 {
1697 for (int cpu = 0; cpu < nr_cpus; cpu++)
1698 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1699 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1700 }
1701
1702 static int update_fds(struct perf_evsel *evsel,
1703 int nr_cpus, int cpu_idx,
1704 int nr_threads, int thread_idx)
1705 {
1706 struct perf_evsel *pos;
1707
1708 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1709 return -EINVAL;
1710
1711 evlist__for_each_entry(evsel->evlist, pos) {
1712 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1713
1714 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1715
1716 /*
1717 * Since fds for next evsel has not been created,
1718 * there is no need to iterate whole event list.
1719 */
1720 if (pos == evsel)
1721 break;
1722 }
1723 return 0;
1724 }
1725
1726 static bool ignore_missing_thread(struct perf_evsel *evsel,
1727 int nr_cpus, int cpu,
1728 struct thread_map *threads,
1729 int thread, int err)
1730 {
1731 pid_t ignore_pid = thread_map__pid(threads, thread);
1732
1733 if (!evsel->ignore_missing_thread)
1734 return false;
1735
1736 /* The system wide setup does not work with threads. */
1737 if (evsel->system_wide)
1738 return false;
1739
1740 /* The -ESRCH is perf event syscall errno for pid's not found. */
1741 if (err != -ESRCH)
1742 return false;
1743
1744 /* If there's only one thread, let it fail. */
1745 if (threads->nr == 1)
1746 return false;
1747
1748 /*
1749 * We should remove fd for missing_thread first
1750 * because thread_map__remove() will decrease threads->nr.
1751 */
1752 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1753 return false;
1754
1755 if (thread_map__remove(threads, thread))
1756 return false;
1757
1758 pr_warning("WARNING: Ignored open failure for pid %d\n",
1759 ignore_pid);
1760 return true;
1761 }
1762
1763 static void display_attr(struct perf_event_attr *attr)
1764 {
1765 if (verbose >= 2) {
1766 fprintf(stderr, "%.60s\n", graph_dotted_line);
1767 fprintf(stderr, "perf_event_attr:\n");
1768 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1769 fprintf(stderr, "%.60s\n", graph_dotted_line);
1770 }
1771 }
1772
1773 static int perf_event_open(struct perf_evsel *evsel,
1774 pid_t pid, int cpu, int group_fd,
1775 unsigned long flags)
1776 {
1777 int precise_ip = evsel->attr.precise_ip;
1778 int fd;
1779
1780 while (1) {
1781 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1782 pid, cpu, group_fd, flags);
1783
1784 fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags);
1785 if (fd >= 0)
1786 break;
1787
1788 /*
1789 * Do quick precise_ip fallback if:
1790 * - there is precise_ip set in perf_event_attr
1791 * - maximum precise is requested
1792 * - sys_perf_event_open failed with ENOTSUP error,
1793 * which is associated with wrong precise_ip
1794 */
1795 if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP))
1796 break;
1797
1798 /*
1799 * We tried all the precise_ip values, and it's
1800 * still failing, so leave it to standard fallback.
1801 */
1802 if (!evsel->attr.precise_ip) {
1803 evsel->attr.precise_ip = precise_ip;
1804 break;
1805 }
1806
1807 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1808 evsel->attr.precise_ip--;
1809 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip);
1810 display_attr(&evsel->attr);
1811 }
1812
1813 return fd;
1814 }
1815
1816 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1817 struct thread_map *threads)
1818 {
1819 int cpu, thread, nthreads;
1820 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1821 int pid = -1, err;
1822 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1823
1824 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1825 return -EINVAL;
1826
1827 if (cpus == NULL) {
1828 static struct cpu_map *empty_cpu_map;
1829
1830 if (empty_cpu_map == NULL) {
1831 empty_cpu_map = cpu_map__dummy_new();
1832 if (empty_cpu_map == NULL)
1833 return -ENOMEM;
1834 }
1835
1836 cpus = empty_cpu_map;
1837 }
1838
1839 if (threads == NULL) {
1840 static struct thread_map *empty_thread_map;
1841
1842 if (empty_thread_map == NULL) {
1843 empty_thread_map = thread_map__new_by_tid(-1);
1844 if (empty_thread_map == NULL)
1845 return -ENOMEM;
1846 }
1847
1848 threads = empty_thread_map;
1849 }
1850
1851 if (evsel->system_wide)
1852 nthreads = 1;
1853 else
1854 nthreads = threads->nr;
1855
1856 if (evsel->fd == NULL &&
1857 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1858 return -ENOMEM;
1859
1860 if (evsel->cgrp) {
1861 flags |= PERF_FLAG_PID_CGROUP;
1862 pid = evsel->cgrp->fd;
1863 }
1864
1865 fallback_missing_features:
1866 if (perf_missing_features.clockid_wrong)
1867 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1868 if (perf_missing_features.clockid) {
1869 evsel->attr.use_clockid = 0;
1870 evsel->attr.clockid = 0;
1871 }
1872 if (perf_missing_features.cloexec)
1873 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1874 if (perf_missing_features.mmap2)
1875 evsel->attr.mmap2 = 0;
1876 if (perf_missing_features.exclude_guest)
1877 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1878 if (perf_missing_features.lbr_flags)
1879 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1880 PERF_SAMPLE_BRANCH_NO_CYCLES);
1881 if (perf_missing_features.group_read && evsel->attr.inherit)
1882 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1883 if (perf_missing_features.ksymbol)
1884 evsel->attr.ksymbol = 0;
1885 if (perf_missing_features.bpf_event)
1886 evsel->attr.bpf_event = 0;
1887 retry_sample_id:
1888 if (perf_missing_features.sample_id_all)
1889 evsel->attr.sample_id_all = 0;
1890
1891 display_attr(&evsel->attr);
1892
1893 for (cpu = 0; cpu < cpus->nr; cpu++) {
1894
1895 for (thread = 0; thread < nthreads; thread++) {
1896 int fd, group_fd;
1897
1898 if (!evsel->cgrp && !evsel->system_wide)
1899 pid = thread_map__pid(threads, thread);
1900
1901 group_fd = get_group_fd(evsel, cpu, thread);
1902 retry_open:
1903 test_attr__ready();
1904
1905 fd = perf_event_open(evsel, pid, cpus->map[cpu],
1906 group_fd, flags);
1907
1908 FD(evsel, cpu, thread) = fd;
1909
1910 if (fd < 0) {
1911 err = -errno;
1912
1913 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1914 /*
1915 * We just removed 1 thread, so take a step
1916 * back on thread index and lower the upper
1917 * nthreads limit.
1918 */
1919 nthreads--;
1920 thread--;
1921
1922 /* ... and pretend like nothing have happened. */
1923 err = 0;
1924 continue;
1925 }
1926
1927 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1928 err);
1929 goto try_fallback;
1930 }
1931
1932 pr_debug2(" = %d\n", fd);
1933
1934 if (evsel->bpf_fd >= 0) {
1935 int evt_fd = fd;
1936 int bpf_fd = evsel->bpf_fd;
1937
1938 err = ioctl(evt_fd,
1939 PERF_EVENT_IOC_SET_BPF,
1940 bpf_fd);
1941 if (err && errno != EEXIST) {
1942 pr_err("failed to attach bpf fd %d: %s\n",
1943 bpf_fd, strerror(errno));
1944 err = -EINVAL;
1945 goto out_close;
1946 }
1947 }
1948
1949 set_rlimit = NO_CHANGE;
1950
1951 /*
1952 * If we succeeded but had to kill clockid, fail and
1953 * have perf_evsel__open_strerror() print us a nice
1954 * error.
1955 */
1956 if (perf_missing_features.clockid ||
1957 perf_missing_features.clockid_wrong) {
1958 err = -EINVAL;
1959 goto out_close;
1960 }
1961 }
1962 }
1963
1964 return 0;
1965
1966 try_fallback:
1967 /*
1968 * perf stat needs between 5 and 22 fds per CPU. When we run out
1969 * of them try to increase the limits.
1970 */
1971 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1972 struct rlimit l;
1973 int old_errno = errno;
1974
1975 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1976 if (set_rlimit == NO_CHANGE)
1977 l.rlim_cur = l.rlim_max;
1978 else {
1979 l.rlim_cur = l.rlim_max + 1000;
1980 l.rlim_max = l.rlim_cur;
1981 }
1982 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1983 set_rlimit++;
1984 errno = old_errno;
1985 goto retry_open;
1986 }
1987 }
1988 errno = old_errno;
1989 }
1990
1991 if (err != -EINVAL || cpu > 0 || thread > 0)
1992 goto out_close;
1993
1994 /*
1995 * Must probe features in the order they were added to the
1996 * perf_event_attr interface.
1997 */
1998 if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
1999 perf_missing_features.bpf_event = true;
2000 pr_debug2("switching off bpf_event\n");
2001 goto fallback_missing_features;
2002 } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
2003 perf_missing_features.ksymbol = true;
2004 pr_debug2("switching off ksymbol\n");
2005 goto fallback_missing_features;
2006 } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
2007 perf_missing_features.write_backward = true;
2008 pr_debug2("switching off write_backward\n");
2009 goto out_close;
2010 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
2011 perf_missing_features.clockid_wrong = true;
2012 pr_debug2("switching off clockid\n");
2013 goto fallback_missing_features;
2014 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
2015 perf_missing_features.clockid = true;
2016 pr_debug2("switching off use_clockid\n");
2017 goto fallback_missing_features;
2018 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
2019 perf_missing_features.cloexec = true;
2020 pr_debug2("switching off cloexec flag\n");
2021 goto fallback_missing_features;
2022 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
2023 perf_missing_features.mmap2 = true;
2024 pr_debug2("switching off mmap2\n");
2025 goto fallback_missing_features;
2026 } else if (!perf_missing_features.exclude_guest &&
2027 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
2028 perf_missing_features.exclude_guest = true;
2029 pr_debug2("switching off exclude_guest, exclude_host\n");
2030 goto fallback_missing_features;
2031 } else if (!perf_missing_features.sample_id_all) {
2032 perf_missing_features.sample_id_all = true;
2033 pr_debug2("switching off sample_id_all\n");
2034 goto retry_sample_id;
2035 } else if (!perf_missing_features.lbr_flags &&
2036 (evsel->attr.branch_sample_type &
2037 (PERF_SAMPLE_BRANCH_NO_CYCLES |
2038 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
2039 perf_missing_features.lbr_flags = true;
2040 pr_debug2("switching off branch sample type no (cycles/flags)\n");
2041 goto fallback_missing_features;
2042 } else if (!perf_missing_features.group_read &&
2043 evsel->attr.inherit &&
2044 (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
2045 perf_evsel__is_group_leader(evsel)) {
2046 perf_missing_features.group_read = true;
2047 pr_debug2("switching off group read\n");
2048 goto fallback_missing_features;
2049 }
2050 out_close:
2051 if (err)
2052 threads->err_thread = thread;
2053
2054 do {
2055 while (--thread >= 0) {
2056 close(FD(evsel, cpu, thread));
2057 FD(evsel, cpu, thread) = -1;
2058 }
2059 thread = nthreads;
2060 } while (--cpu >= 0);
2061 return err;
2062 }
2063
2064 void perf_evsel__close(struct perf_evsel *evsel)
2065 {
2066 if (evsel->fd == NULL)
2067 return;
2068
2069 perf_evsel__close_fd(evsel);
2070 perf_evsel__free_fd(evsel);
2071 }
2072
2073 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
2074 struct cpu_map *cpus)
2075 {
2076 return perf_evsel__open(evsel, cpus, NULL);
2077 }
2078
2079 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2080 struct thread_map *threads)
2081 {
2082 return perf_evsel__open(evsel, NULL, threads);
2083 }
2084
2085 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2086 const union perf_event *event,
2087 struct perf_sample *sample)
2088 {
2089 u64 type = evsel->attr.sample_type;
2090 const u64 *array = event->sample.array;
2091 bool swapped = evsel->needs_swap;
2092 union u64_swap u;
2093
2094 array += ((event->header.size -
2095 sizeof(event->header)) / sizeof(u64)) - 1;
2096
2097 if (type & PERF_SAMPLE_IDENTIFIER) {
2098 sample->id = *array;
2099 array--;
2100 }
2101
2102 if (type & PERF_SAMPLE_CPU) {
2103 u.val64 = *array;
2104 if (swapped) {
2105 /* undo swap of u64, then swap on individual u32s */
2106 u.val64 = bswap_64(u.val64);
2107 u.val32[0] = bswap_32(u.val32[0]);
2108 }
2109
2110 sample->cpu = u.val32[0];
2111 array--;
2112 }
2113
2114 if (type & PERF_SAMPLE_STREAM_ID) {
2115 sample->stream_id = *array;
2116 array--;
2117 }
2118
2119 if (type & PERF_SAMPLE_ID) {
2120 sample->id = *array;
2121 array--;
2122 }
2123
2124 if (type & PERF_SAMPLE_TIME) {
2125 sample->time = *array;
2126 array--;
2127 }
2128
2129 if (type & PERF_SAMPLE_TID) {
2130 u.val64 = *array;
2131 if (swapped) {
2132 /* undo swap of u64, then swap on individual u32s */
2133 u.val64 = bswap_64(u.val64);
2134 u.val32[0] = bswap_32(u.val32[0]);
2135 u.val32[1] = bswap_32(u.val32[1]);
2136 }
2137
2138 sample->pid = u.val32[0];
2139 sample->tid = u.val32[1];
2140 array--;
2141 }
2142
2143 return 0;
2144 }
2145
2146 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2147 u64 size)
2148 {
2149 return size > max_size || offset + size > endp;
2150 }
2151
2152 #define OVERFLOW_CHECK(offset, size, max_size) \
2153 do { \
2154 if (overflow(endp, (max_size), (offset), (size))) \
2155 return -EFAULT; \
2156 } while (0)
2157
2158 #define OVERFLOW_CHECK_u64(offset) \
2159 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2160
2161 static int
2162 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2163 {
2164 /*
2165 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2166 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2167 * check the format does not go past the end of the event.
2168 */
2169 if (sample_size + sizeof(event->header) > event->header.size)
2170 return -EFAULT;
2171
2172 return 0;
2173 }
2174
2175 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2176 struct perf_sample *data)
2177 {
2178 u64 type = evsel->attr.sample_type;
2179 bool swapped = evsel->needs_swap;
2180 const u64 *array;
2181 u16 max_size = event->header.size;
2182 const void *endp = (void *)event + max_size;
2183 u64 sz;
2184
2185 /*
2186 * used for cross-endian analysis. See git commit 65014ab3
2187 * for why this goofiness is needed.
2188 */
2189 union u64_swap u;
2190
2191 memset(data, 0, sizeof(*data));
2192 data->cpu = data->pid = data->tid = -1;
2193 data->stream_id = data->id = data->time = -1ULL;
2194 data->period = evsel->attr.sample_period;
2195 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2196 data->misc = event->header.misc;
2197 data->id = -1ULL;
2198 data->data_src = PERF_MEM_DATA_SRC_NONE;
2199
2200 if (event->header.type != PERF_RECORD_SAMPLE) {
2201 if (!evsel->attr.sample_id_all)
2202 return 0;
2203 return perf_evsel__parse_id_sample(evsel, event, data);
2204 }
2205
2206 array = event->sample.array;
2207
2208 if (perf_event__check_size(event, evsel->sample_size))
2209 return -EFAULT;
2210
2211 if (type & PERF_SAMPLE_IDENTIFIER) {
2212 data->id = *array;
2213 array++;
2214 }
2215
2216 if (type & PERF_SAMPLE_IP) {
2217 data->ip = *array;
2218 array++;
2219 }
2220
2221 if (type & PERF_SAMPLE_TID) {
2222 u.val64 = *array;
2223 if (swapped) {
2224 /* undo swap of u64, then swap on individual u32s */
2225 u.val64 = bswap_64(u.val64);
2226 u.val32[0] = bswap_32(u.val32[0]);
2227 u.val32[1] = bswap_32(u.val32[1]);
2228 }
2229
2230 data->pid = u.val32[0];
2231 data->tid = u.val32[1];
2232 array++;
2233 }
2234
2235 if (type & PERF_SAMPLE_TIME) {
2236 data->time = *array;
2237 array++;
2238 }
2239
2240 if (type & PERF_SAMPLE_ADDR) {
2241 data->addr = *array;
2242 array++;
2243 }
2244
2245 if (type & PERF_SAMPLE_ID) {
2246 data->id = *array;
2247 array++;
2248 }
2249
2250 if (type & PERF_SAMPLE_STREAM_ID) {
2251 data->stream_id = *array;
2252 array++;
2253 }
2254
2255 if (type & PERF_SAMPLE_CPU) {
2256
2257 u.val64 = *array;
2258 if (swapped) {
2259 /* undo swap of u64, then swap on individual u32s */
2260 u.val64 = bswap_64(u.val64);
2261 u.val32[0] = bswap_32(u.val32[0]);
2262 }
2263
2264 data->cpu = u.val32[0];
2265 array++;
2266 }
2267
2268 if (type & PERF_SAMPLE_PERIOD) {
2269 data->period = *array;
2270 array++;
2271 }
2272
2273 if (type & PERF_SAMPLE_READ) {
2274 u64 read_format = evsel->attr.read_format;
2275
2276 OVERFLOW_CHECK_u64(array);
2277 if (read_format & PERF_FORMAT_GROUP)
2278 data->read.group.nr = *array;
2279 else
2280 data->read.one.value = *array;
2281
2282 array++;
2283
2284 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2285 OVERFLOW_CHECK_u64(array);
2286 data->read.time_enabled = *array;
2287 array++;
2288 }
2289
2290 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2291 OVERFLOW_CHECK_u64(array);
2292 data->read.time_running = *array;
2293 array++;
2294 }
2295
2296 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2297 if (read_format & PERF_FORMAT_GROUP) {
2298 const u64 max_group_nr = UINT64_MAX /
2299 sizeof(struct sample_read_value);
2300
2301 if (data->read.group.nr > max_group_nr)
2302 return -EFAULT;
2303 sz = data->read.group.nr *
2304 sizeof(struct sample_read_value);
2305 OVERFLOW_CHECK(array, sz, max_size);
2306 data->read.group.values =
2307 (struct sample_read_value *)array;
2308 array = (void *)array + sz;
2309 } else {
2310 OVERFLOW_CHECK_u64(array);
2311 data->read.one.id = *array;
2312 array++;
2313 }
2314 }
2315
2316 if (evsel__has_callchain(evsel)) {
2317 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2318
2319 OVERFLOW_CHECK_u64(array);
2320 data->callchain = (struct ip_callchain *)array++;
2321 if (data->callchain->nr > max_callchain_nr)
2322 return -EFAULT;
2323 sz = data->callchain->nr * sizeof(u64);
2324 OVERFLOW_CHECK(array, sz, max_size);
2325 array = (void *)array + sz;
2326 }
2327
2328 if (type & PERF_SAMPLE_RAW) {
2329 OVERFLOW_CHECK_u64(array);
2330 u.val64 = *array;
2331
2332 /*
2333 * Undo swap of u64, then swap on individual u32s,
2334 * get the size of the raw area and undo all of the
2335 * swap. The pevent interface handles endianity by
2336 * itself.
2337 */
2338 if (swapped) {
2339 u.val64 = bswap_64(u.val64);
2340 u.val32[0] = bswap_32(u.val32[0]);
2341 u.val32[1] = bswap_32(u.val32[1]);
2342 }
2343 data->raw_size = u.val32[0];
2344
2345 /*
2346 * The raw data is aligned on 64bits including the
2347 * u32 size, so it's safe to use mem_bswap_64.
2348 */
2349 if (swapped)
2350 mem_bswap_64((void *) array, data->raw_size);
2351
2352 array = (void *)array + sizeof(u32);
2353
2354 OVERFLOW_CHECK(array, data->raw_size, max_size);
2355 data->raw_data = (void *)array;
2356 array = (void *)array + data->raw_size;
2357 }
2358
2359 if (type & PERF_SAMPLE_BRANCH_STACK) {
2360 const u64 max_branch_nr = UINT64_MAX /
2361 sizeof(struct branch_entry);
2362
2363 OVERFLOW_CHECK_u64(array);
2364 data->branch_stack = (struct branch_stack *)array++;
2365
2366 if (data->branch_stack->nr > max_branch_nr)
2367 return -EFAULT;
2368 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2369 OVERFLOW_CHECK(array, sz, max_size);
2370 array = (void *)array + sz;
2371 }
2372
2373 if (type & PERF_SAMPLE_REGS_USER) {
2374 OVERFLOW_CHECK_u64(array);
2375 data->user_regs.abi = *array;
2376 array++;
2377
2378 if (data->user_regs.abi) {
2379 u64 mask = evsel->attr.sample_regs_user;
2380
2381 sz = hweight64(mask) * sizeof(u64);
2382 OVERFLOW_CHECK(array, sz, max_size);
2383 data->user_regs.mask = mask;
2384 data->user_regs.regs = (u64 *)array;
2385 array = (void *)array + sz;
2386 }
2387 }
2388
2389 if (type & PERF_SAMPLE_STACK_USER) {
2390 OVERFLOW_CHECK_u64(array);
2391 sz = *array++;
2392
2393 data->user_stack.offset = ((char *)(array - 1)
2394 - (char *) event);
2395
2396 if (!sz) {
2397 data->user_stack.size = 0;
2398 } else {
2399 OVERFLOW_CHECK(array, sz, max_size);
2400 data->user_stack.data = (char *)array;
2401 array = (void *)array + sz;
2402 OVERFLOW_CHECK_u64(array);
2403 data->user_stack.size = *array++;
2404 if (WARN_ONCE(data->user_stack.size > sz,
2405 "user stack dump failure\n"))
2406 return -EFAULT;
2407 }
2408 }
2409
2410 if (type & PERF_SAMPLE_WEIGHT) {
2411 OVERFLOW_CHECK_u64(array);
2412 data->weight = *array;
2413 array++;
2414 }
2415
2416 if (type & PERF_SAMPLE_DATA_SRC) {
2417 OVERFLOW_CHECK_u64(array);
2418 data->data_src = *array;
2419 array++;
2420 }
2421
2422 if (type & PERF_SAMPLE_TRANSACTION) {
2423 OVERFLOW_CHECK_u64(array);
2424 data->transaction = *array;
2425 array++;
2426 }
2427
2428 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2429 if (type & PERF_SAMPLE_REGS_INTR) {
2430 OVERFLOW_CHECK_u64(array);
2431 data->intr_regs.abi = *array;
2432 array++;
2433
2434 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2435 u64 mask = evsel->attr.sample_regs_intr;
2436
2437 sz = hweight64(mask) * sizeof(u64);
2438 OVERFLOW_CHECK(array, sz, max_size);
2439 data->intr_regs.mask = mask;
2440 data->intr_regs.regs = (u64 *)array;
2441 array = (void *)array + sz;
2442 }
2443 }
2444
2445 data->phys_addr = 0;
2446 if (type & PERF_SAMPLE_PHYS_ADDR) {
2447 data->phys_addr = *array;
2448 array++;
2449 }
2450
2451 return 0;
2452 }
2453
2454 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2455 union perf_event *event,
2456 u64 *timestamp)
2457 {
2458 u64 type = evsel->attr.sample_type;
2459 const u64 *array;
2460
2461 if (!(type & PERF_SAMPLE_TIME))
2462 return -1;
2463
2464 if (event->header.type != PERF_RECORD_SAMPLE) {
2465 struct perf_sample data = {
2466 .time = -1ULL,
2467 };
2468
2469 if (!evsel->attr.sample_id_all)
2470 return -1;
2471 if (perf_evsel__parse_id_sample(evsel, event, &data))
2472 return -1;
2473
2474 *timestamp = data.time;
2475 return 0;
2476 }
2477
2478 array = event->sample.array;
2479
2480 if (perf_event__check_size(event, evsel->sample_size))
2481 return -EFAULT;
2482
2483 if (type & PERF_SAMPLE_IDENTIFIER)
2484 array++;
2485
2486 if (type & PERF_SAMPLE_IP)
2487 array++;
2488
2489 if (type & PERF_SAMPLE_TID)
2490 array++;
2491
2492 if (type & PERF_SAMPLE_TIME)
2493 *timestamp = *array;
2494
2495 return 0;
2496 }
2497
2498 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2499 u64 read_format)
2500 {
2501 size_t sz, result = sizeof(struct sample_event);
2502
2503 if (type & PERF_SAMPLE_IDENTIFIER)
2504 result += sizeof(u64);
2505
2506 if (type & PERF_SAMPLE_IP)
2507 result += sizeof(u64);
2508
2509 if (type & PERF_SAMPLE_TID)
2510 result += sizeof(u64);
2511
2512 if (type & PERF_SAMPLE_TIME)
2513 result += sizeof(u64);
2514
2515 if (type & PERF_SAMPLE_ADDR)
2516 result += sizeof(u64);
2517
2518 if (type & PERF_SAMPLE_ID)
2519 result += sizeof(u64);
2520
2521 if (type & PERF_SAMPLE_STREAM_ID)
2522 result += sizeof(u64);
2523
2524 if (type & PERF_SAMPLE_CPU)
2525 result += sizeof(u64);
2526
2527 if (type & PERF_SAMPLE_PERIOD)
2528 result += sizeof(u64);
2529
2530 if (type & PERF_SAMPLE_READ) {
2531 result += sizeof(u64);
2532 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2533 result += sizeof(u64);
2534 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2535 result += sizeof(u64);
2536 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2537 if (read_format & PERF_FORMAT_GROUP) {
2538 sz = sample->read.group.nr *
2539 sizeof(struct sample_read_value);
2540 result += sz;
2541 } else {
2542 result += sizeof(u64);
2543 }
2544 }
2545
2546 if (type & PERF_SAMPLE_CALLCHAIN) {
2547 sz = (sample->callchain->nr + 1) * sizeof(u64);
2548 result += sz;
2549 }
2550
2551 if (type & PERF_SAMPLE_RAW) {
2552 result += sizeof(u32);
2553 result += sample->raw_size;
2554 }
2555
2556 if (type & PERF_SAMPLE_BRANCH_STACK) {
2557 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2558 sz += sizeof(u64);
2559 result += sz;
2560 }
2561
2562 if (type & PERF_SAMPLE_REGS_USER) {
2563 if (sample->user_regs.abi) {
2564 result += sizeof(u64);
2565 sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2566 result += sz;
2567 } else {
2568 result += sizeof(u64);
2569 }
2570 }
2571
2572 if (type & PERF_SAMPLE_STACK_USER) {
2573 sz = sample->user_stack.size;
2574 result += sizeof(u64);
2575 if (sz) {
2576 result += sz;
2577 result += sizeof(u64);
2578 }
2579 }
2580
2581 if (type & PERF_SAMPLE_WEIGHT)
2582 result += sizeof(u64);
2583
2584 if (type & PERF_SAMPLE_DATA_SRC)
2585 result += sizeof(u64);
2586
2587 if (type & PERF_SAMPLE_TRANSACTION)
2588 result += sizeof(u64);
2589
2590 if (type & PERF_SAMPLE_REGS_INTR) {
2591 if (sample->intr_regs.abi) {
2592 result += sizeof(u64);
2593 sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2594 result += sz;
2595 } else {
2596 result += sizeof(u64);
2597 }
2598 }
2599
2600 if (type & PERF_SAMPLE_PHYS_ADDR)
2601 result += sizeof(u64);
2602
2603 return result;
2604 }
2605
2606 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2607 u64 read_format,
2608 const struct perf_sample *sample)
2609 {
2610 u64 *array;
2611 size_t sz;
2612 /*
2613 * used for cross-endian analysis. See git commit 65014ab3
2614 * for why this goofiness is needed.
2615 */
2616 union u64_swap u;
2617
2618 array = event->sample.array;
2619
2620 if (type & PERF_SAMPLE_IDENTIFIER) {
2621 *array = sample->id;
2622 array++;
2623 }
2624
2625 if (type & PERF_SAMPLE_IP) {
2626 *array = sample->ip;
2627 array++;
2628 }
2629
2630 if (type & PERF_SAMPLE_TID) {
2631 u.val32[0] = sample->pid;
2632 u.val32[1] = sample->tid;
2633 *array = u.val64;
2634 array++;
2635 }
2636
2637 if (type & PERF_SAMPLE_TIME) {
2638 *array = sample->time;
2639 array++;
2640 }
2641
2642 if (type & PERF_SAMPLE_ADDR) {
2643 *array = sample->addr;
2644 array++;
2645 }
2646
2647 if (type & PERF_SAMPLE_ID) {
2648 *array = sample->id;
2649 array++;
2650 }
2651
2652 if (type & PERF_SAMPLE_STREAM_ID) {
2653 *array = sample->stream_id;
2654 array++;
2655 }
2656
2657 if (type & PERF_SAMPLE_CPU) {
2658 u.val32[0] = sample->cpu;
2659 u.val32[1] = 0;
2660 *array = u.val64;
2661 array++;
2662 }
2663
2664 if (type & PERF_SAMPLE_PERIOD) {
2665 *array = sample->period;
2666 array++;
2667 }
2668
2669 if (type & PERF_SAMPLE_READ) {
2670 if (read_format & PERF_FORMAT_GROUP)
2671 *array = sample->read.group.nr;
2672 else
2673 *array = sample->read.one.value;
2674 array++;
2675
2676 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2677 *array = sample->read.time_enabled;
2678 array++;
2679 }
2680
2681 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2682 *array = sample->read.time_running;
2683 array++;
2684 }
2685
2686 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2687 if (read_format & PERF_FORMAT_GROUP) {
2688 sz = sample->read.group.nr *
2689 sizeof(struct sample_read_value);
2690 memcpy(array, sample->read.group.values, sz);
2691 array = (void *)array + sz;
2692 } else {
2693 *array = sample->read.one.id;
2694 array++;
2695 }
2696 }
2697
2698 if (type & PERF_SAMPLE_CALLCHAIN) {
2699 sz = (sample->callchain->nr + 1) * sizeof(u64);
2700 memcpy(array, sample->callchain, sz);
2701 array = (void *)array + sz;
2702 }
2703
2704 if (type & PERF_SAMPLE_RAW) {
2705 u.val32[0] = sample->raw_size;
2706 *array = u.val64;
2707 array = (void *)array + sizeof(u32);
2708
2709 memcpy(array, sample->raw_data, sample->raw_size);
2710 array = (void *)array + sample->raw_size;
2711 }
2712
2713 if (type & PERF_SAMPLE_BRANCH_STACK) {
2714 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2715 sz += sizeof(u64);
2716 memcpy(array, sample->branch_stack, sz);
2717 array = (void *)array + sz;
2718 }
2719
2720 if (type & PERF_SAMPLE_REGS_USER) {
2721 if (sample->user_regs.abi) {
2722 *array++ = sample->user_regs.abi;
2723 sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2724 memcpy(array, sample->user_regs.regs, sz);
2725 array = (void *)array + sz;
2726 } else {
2727 *array++ = 0;
2728 }
2729 }
2730
2731 if (type & PERF_SAMPLE_STACK_USER) {
2732 sz = sample->user_stack.size;
2733 *array++ = sz;
2734 if (sz) {
2735 memcpy(array, sample->user_stack.data, sz);
2736 array = (void *)array + sz;
2737 *array++ = sz;
2738 }
2739 }
2740
2741 if (type & PERF_SAMPLE_WEIGHT) {
2742 *array = sample->weight;
2743 array++;
2744 }
2745
2746 if (type & PERF_SAMPLE_DATA_SRC) {
2747 *array = sample->data_src;
2748 array++;
2749 }
2750
2751 if (type & PERF_SAMPLE_TRANSACTION) {
2752 *array = sample->transaction;
2753 array++;
2754 }
2755
2756 if (type & PERF_SAMPLE_REGS_INTR) {
2757 if (sample->intr_regs.abi) {
2758 *array++ = sample->intr_regs.abi;
2759 sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2760 memcpy(array, sample->intr_regs.regs, sz);
2761 array = (void *)array + sz;
2762 } else {
2763 *array++ = 0;
2764 }
2765 }
2766
2767 if (type & PERF_SAMPLE_PHYS_ADDR) {
2768 *array = sample->phys_addr;
2769 array++;
2770 }
2771
2772 return 0;
2773 }
2774
2775 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2776 {
2777 return tep_find_field(evsel->tp_format, name);
2778 }
2779
2780 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2781 const char *name)
2782 {
2783 struct tep_format_field *field = perf_evsel__field(evsel, name);
2784 int offset;
2785
2786 if (!field)
2787 return NULL;
2788
2789 offset = field->offset;
2790
2791 if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2792 offset = *(int *)(sample->raw_data + field->offset);
2793 offset &= 0xffff;
2794 }
2795
2796 return sample->raw_data + offset;
2797 }
2798
2799 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2800 bool needs_swap)
2801 {
2802 u64 value;
2803 void *ptr = sample->raw_data + field->offset;
2804
2805 switch (field->size) {
2806 case 1:
2807 return *(u8 *)ptr;
2808 case 2:
2809 value = *(u16 *)ptr;
2810 break;
2811 case 4:
2812 value = *(u32 *)ptr;
2813 break;
2814 case 8:
2815 memcpy(&value, ptr, sizeof(u64));
2816 break;
2817 default:
2818 return 0;
2819 }
2820
2821 if (!needs_swap)
2822 return value;
2823
2824 switch (field->size) {
2825 case 2:
2826 return bswap_16(value);
2827 case 4:
2828 return bswap_32(value);
2829 case 8:
2830 return bswap_64(value);
2831 default:
2832 return 0;
2833 }
2834
2835 return 0;
2836 }
2837
2838 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2839 const char *name)
2840 {
2841 struct tep_format_field *field = perf_evsel__field(evsel, name);
2842
2843 if (!field)
2844 return 0;
2845
2846 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2847 }
2848
2849 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2850 char *msg, size_t msgsize)
2851 {
2852 int paranoid;
2853
2854 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2855 evsel->attr.type == PERF_TYPE_HARDWARE &&
2856 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2857 /*
2858 * If it's cycles then fall back to hrtimer based
2859 * cpu-clock-tick sw counter, which is always available even if
2860 * no PMU support.
2861 *
2862 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2863 * b0a873e).
2864 */
2865 scnprintf(msg, msgsize, "%s",
2866 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2867
2868 evsel->attr.type = PERF_TYPE_SOFTWARE;
2869 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2870
2871 zfree(&evsel->name);
2872 return true;
2873 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2874 (paranoid = perf_event_paranoid()) > 1) {
2875 const char *name = perf_evsel__name(evsel);
2876 char *new_name;
2877 const char *sep = ":";
2878
2879 /* Is there already the separator in the name. */
2880 if (strchr(name, '/') ||
2881 strchr(name, ':'))
2882 sep = "";
2883
2884 if (asprintf(&new_name, "%s%su", name, sep) < 0)
2885 return false;
2886
2887 if (evsel->name)
2888 free(evsel->name);
2889 evsel->name = new_name;
2890 scnprintf(msg, msgsize,
2891 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2892 evsel->attr.exclude_kernel = 1;
2893
2894 return true;
2895 }
2896
2897 return false;
2898 }
2899
2900 static bool find_process(const char *name)
2901 {
2902 size_t len = strlen(name);
2903 DIR *dir;
2904 struct dirent *d;
2905 int ret = -1;
2906
2907 dir = opendir(procfs__mountpoint());
2908 if (!dir)
2909 return false;
2910
2911 /* Walk through the directory. */
2912 while (ret && (d = readdir(dir)) != NULL) {
2913 char path[PATH_MAX];
2914 char *data;
2915 size_t size;
2916
2917 if ((d->d_type != DT_DIR) ||
2918 !strcmp(".", d->d_name) ||
2919 !strcmp("..", d->d_name))
2920 continue;
2921
2922 scnprintf(path, sizeof(path), "%s/%s/comm",
2923 procfs__mountpoint(), d->d_name);
2924
2925 if (filename__read_str(path, &data, &size))
2926 continue;
2927
2928 ret = strncmp(name, data, len);
2929 free(data);
2930 }
2931
2932 closedir(dir);
2933 return ret ? false : true;
2934 }
2935
2936 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2937 int err, char *msg, size_t size)
2938 {
2939 char sbuf[STRERR_BUFSIZE];
2940 int printed = 0;
2941
2942 switch (err) {
2943 case EPERM:
2944 case EACCES:
2945 if (err == EPERM)
2946 printed = scnprintf(msg, size,
2947 "No permission to enable %s event.\n\n",
2948 perf_evsel__name(evsel));
2949
2950 return scnprintf(msg + printed, size - printed,
2951 "You may not have permission to collect %sstats.\n\n"
2952 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2953 "which controls use of the performance events system by\n"
2954 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2955 "The current value is %d:\n\n"
2956 " -1: Allow use of (almost) all events by all users\n"
2957 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2958 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2959 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2960 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2961 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2962 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2963 " kernel.perf_event_paranoid = -1\n" ,
2964 target->system_wide ? "system-wide " : "",
2965 perf_event_paranoid());
2966 case ENOENT:
2967 return scnprintf(msg, size, "The %s event is not supported.",
2968 perf_evsel__name(evsel));
2969 case EMFILE:
2970 return scnprintf(msg, size, "%s",
2971 "Too many events are opened.\n"
2972 "Probably the maximum number of open file descriptors has been reached.\n"
2973 "Hint: Try again after reducing the number of events.\n"
2974 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2975 case ENOMEM:
2976 if (evsel__has_callchain(evsel) &&
2977 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2978 return scnprintf(msg, size,
2979 "Not enough memory to setup event with callchain.\n"
2980 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2981 "Hint: Current value: %d", sysctl__max_stack());
2982 break;
2983 case ENODEV:
2984 if (target->cpu_list)
2985 return scnprintf(msg, size, "%s",
2986 "No such device - did you specify an out-of-range profile CPU?");
2987 break;
2988 case EOPNOTSUPP:
2989 if (evsel->attr.sample_period != 0)
2990 return scnprintf(msg, size,
2991 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2992 perf_evsel__name(evsel));
2993 if (evsel->attr.precise_ip)
2994 return scnprintf(msg, size, "%s",
2995 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2996 #if defined(__i386__) || defined(__x86_64__)
2997 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2998 return scnprintf(msg, size, "%s",
2999 "No hardware sampling interrupt available.\n");
3000 #endif
3001 break;
3002 case EBUSY:
3003 if (find_process("oprofiled"))
3004 return scnprintf(msg, size,
3005 "The PMU counters are busy/taken by another profiler.\n"
3006 "We found oprofile daemon running, please stop it and try again.");
3007 break;
3008 case EINVAL:
3009 if (evsel->attr.write_backward && perf_missing_features.write_backward)
3010 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
3011 if (perf_missing_features.clockid)
3012 return scnprintf(msg, size, "clockid feature not supported.");
3013 if (perf_missing_features.clockid_wrong)
3014 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
3015 break;
3016 default:
3017 break;
3018 }
3019
3020 return scnprintf(msg, size,
3021 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
3022 "/bin/dmesg | grep -i perf may provide additional information.\n",
3023 err, str_error_r(err, sbuf, sizeof(sbuf)),
3024 perf_evsel__name(evsel));
3025 }
3026
3027 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
3028 {
3029 if (evsel && evsel->evlist)
3030 return evsel->evlist->env;
3031 return NULL;
3032 }
3033
3034 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3035 {
3036 int cpu, thread;
3037
3038 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
3039 for (thread = 0; thread < xyarray__max_y(evsel->fd);
3040 thread++) {
3041 int fd = FD(evsel, cpu, thread);
3042
3043 if (perf_evlist__id_add_fd(evlist, evsel,
3044 cpu, thread, fd) < 0)
3045 return -1;
3046 }
3047 }
3048
3049 return 0;
3050 }
3051
3052 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3053 {
3054 struct cpu_map *cpus = evsel->cpus;
3055 struct thread_map *threads = evsel->threads;
3056
3057 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
3058 return -ENOMEM;
3059
3060 return store_evsel_ids(evsel, evlist);
3061 }