]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - tools/perf/util/evsel.c
Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[mirror_ubuntu-artful-kernel.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31
32 static struct {
33 bool sample_id_all;
34 bool exclude_guest;
35 bool mmap2;
36 bool cloexec;
37 bool clockid;
38 bool clockid_wrong;
39 bool lbr_flags;
40 } perf_missing_features;
41
42 static clockid_t clockid;
43
44 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
45 {
46 return 0;
47 }
48
49 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
50 {
51 }
52
53 static struct {
54 size_t size;
55 int (*init)(struct perf_evsel *evsel);
56 void (*fini)(struct perf_evsel *evsel);
57 } perf_evsel__object = {
58 .size = sizeof(struct perf_evsel),
59 .init = perf_evsel__no_extra_init,
60 .fini = perf_evsel__no_extra_fini,
61 };
62
63 int perf_evsel__object_config(size_t object_size,
64 int (*init)(struct perf_evsel *evsel),
65 void (*fini)(struct perf_evsel *evsel))
66 {
67
68 if (object_size == 0)
69 goto set_methods;
70
71 if (perf_evsel__object.size > object_size)
72 return -EINVAL;
73
74 perf_evsel__object.size = object_size;
75
76 set_methods:
77 if (init != NULL)
78 perf_evsel__object.init = init;
79
80 if (fini != NULL)
81 perf_evsel__object.fini = fini;
82
83 return 0;
84 }
85
86 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
87
88 int __perf_evsel__sample_size(u64 sample_type)
89 {
90 u64 mask = sample_type & PERF_SAMPLE_MASK;
91 int size = 0;
92 int i;
93
94 for (i = 0; i < 64; i++) {
95 if (mask & (1ULL << i))
96 size++;
97 }
98
99 size *= sizeof(u64);
100
101 return size;
102 }
103
104 /**
105 * __perf_evsel__calc_id_pos - calculate id_pos.
106 * @sample_type: sample type
107 *
108 * This function returns the position of the event id (PERF_SAMPLE_ID or
109 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
110 * sample_event.
111 */
112 static int __perf_evsel__calc_id_pos(u64 sample_type)
113 {
114 int idx = 0;
115
116 if (sample_type & PERF_SAMPLE_IDENTIFIER)
117 return 0;
118
119 if (!(sample_type & PERF_SAMPLE_ID))
120 return -1;
121
122 if (sample_type & PERF_SAMPLE_IP)
123 idx += 1;
124
125 if (sample_type & PERF_SAMPLE_TID)
126 idx += 1;
127
128 if (sample_type & PERF_SAMPLE_TIME)
129 idx += 1;
130
131 if (sample_type & PERF_SAMPLE_ADDR)
132 idx += 1;
133
134 return idx;
135 }
136
137 /**
138 * __perf_evsel__calc_is_pos - calculate is_pos.
139 * @sample_type: sample type
140 *
141 * This function returns the position (counting backwards) of the event id
142 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
143 * sample_id_all is used there is an id sample appended to non-sample events.
144 */
145 static int __perf_evsel__calc_is_pos(u64 sample_type)
146 {
147 int idx = 1;
148
149 if (sample_type & PERF_SAMPLE_IDENTIFIER)
150 return 1;
151
152 if (!(sample_type & PERF_SAMPLE_ID))
153 return -1;
154
155 if (sample_type & PERF_SAMPLE_CPU)
156 idx += 1;
157
158 if (sample_type & PERF_SAMPLE_STREAM_ID)
159 idx += 1;
160
161 return idx;
162 }
163
164 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
165 {
166 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
167 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
168 }
169
170 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
171 enum perf_event_sample_format bit)
172 {
173 if (!(evsel->attr.sample_type & bit)) {
174 evsel->attr.sample_type |= bit;
175 evsel->sample_size += sizeof(u64);
176 perf_evsel__calc_id_pos(evsel);
177 }
178 }
179
180 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
181 enum perf_event_sample_format bit)
182 {
183 if (evsel->attr.sample_type & bit) {
184 evsel->attr.sample_type &= ~bit;
185 evsel->sample_size -= sizeof(u64);
186 perf_evsel__calc_id_pos(evsel);
187 }
188 }
189
190 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
191 bool can_sample_identifier)
192 {
193 if (can_sample_identifier) {
194 perf_evsel__reset_sample_bit(evsel, ID);
195 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
196 } else {
197 perf_evsel__set_sample_bit(evsel, ID);
198 }
199 evsel->attr.read_format |= PERF_FORMAT_ID;
200 }
201
202 void perf_evsel__init(struct perf_evsel *evsel,
203 struct perf_event_attr *attr, int idx)
204 {
205 evsel->idx = idx;
206 evsel->tracking = !idx;
207 evsel->attr = *attr;
208 evsel->leader = evsel;
209 evsel->unit = "";
210 evsel->scale = 1.0;
211 evsel->evlist = NULL;
212 evsel->bpf_fd = -1;
213 INIT_LIST_HEAD(&evsel->node);
214 INIT_LIST_HEAD(&evsel->config_terms);
215 perf_evsel__object.init(evsel);
216 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
217 perf_evsel__calc_id_pos(evsel);
218 evsel->cmdline_group_boundary = false;
219 }
220
221 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
222 {
223 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
224
225 if (evsel != NULL)
226 perf_evsel__init(evsel, attr, idx);
227
228 if (perf_evsel__is_bpf_output(evsel)) {
229 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
230 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
231 evsel->attr.sample_period = 1;
232 }
233
234 return evsel;
235 }
236
237 /*
238 * Returns pointer with encoded error via <linux/err.h> interface.
239 */
240 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
241 {
242 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
243 int err = -ENOMEM;
244
245 if (evsel == NULL) {
246 goto out_err;
247 } else {
248 struct perf_event_attr attr = {
249 .type = PERF_TYPE_TRACEPOINT,
250 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
251 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
252 };
253
254 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
255 goto out_free;
256
257 evsel->tp_format = trace_event__tp_format(sys, name);
258 if (IS_ERR(evsel->tp_format)) {
259 err = PTR_ERR(evsel->tp_format);
260 goto out_free;
261 }
262
263 event_attr_init(&attr);
264 attr.config = evsel->tp_format->id;
265 attr.sample_period = 1;
266 perf_evsel__init(evsel, &attr, idx);
267 }
268
269 return evsel;
270
271 out_free:
272 zfree(&evsel->name);
273 free(evsel);
274 out_err:
275 return ERR_PTR(err);
276 }
277
278 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
279 "cycles",
280 "instructions",
281 "cache-references",
282 "cache-misses",
283 "branches",
284 "branch-misses",
285 "bus-cycles",
286 "stalled-cycles-frontend",
287 "stalled-cycles-backend",
288 "ref-cycles",
289 };
290
291 static const char *__perf_evsel__hw_name(u64 config)
292 {
293 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
294 return perf_evsel__hw_names[config];
295
296 return "unknown-hardware";
297 }
298
299 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
300 {
301 int colon = 0, r = 0;
302 struct perf_event_attr *attr = &evsel->attr;
303 bool exclude_guest_default = false;
304
305 #define MOD_PRINT(context, mod) do { \
306 if (!attr->exclude_##context) { \
307 if (!colon) colon = ++r; \
308 r += scnprintf(bf + r, size - r, "%c", mod); \
309 } } while(0)
310
311 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
312 MOD_PRINT(kernel, 'k');
313 MOD_PRINT(user, 'u');
314 MOD_PRINT(hv, 'h');
315 exclude_guest_default = true;
316 }
317
318 if (attr->precise_ip) {
319 if (!colon)
320 colon = ++r;
321 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
322 exclude_guest_default = true;
323 }
324
325 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
326 MOD_PRINT(host, 'H');
327 MOD_PRINT(guest, 'G');
328 }
329 #undef MOD_PRINT
330 if (colon)
331 bf[colon - 1] = ':';
332 return r;
333 }
334
335 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
336 {
337 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
338 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
339 }
340
341 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
342 "cpu-clock",
343 "task-clock",
344 "page-faults",
345 "context-switches",
346 "cpu-migrations",
347 "minor-faults",
348 "major-faults",
349 "alignment-faults",
350 "emulation-faults",
351 "dummy",
352 };
353
354 static const char *__perf_evsel__sw_name(u64 config)
355 {
356 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
357 return perf_evsel__sw_names[config];
358 return "unknown-software";
359 }
360
361 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
362 {
363 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
364 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
365 }
366
367 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
368 {
369 int r;
370
371 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
372
373 if (type & HW_BREAKPOINT_R)
374 r += scnprintf(bf + r, size - r, "r");
375
376 if (type & HW_BREAKPOINT_W)
377 r += scnprintf(bf + r, size - r, "w");
378
379 if (type & HW_BREAKPOINT_X)
380 r += scnprintf(bf + r, size - r, "x");
381
382 return r;
383 }
384
385 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
386 {
387 struct perf_event_attr *attr = &evsel->attr;
388 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
389 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
390 }
391
392 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
393 [PERF_EVSEL__MAX_ALIASES] = {
394 { "L1-dcache", "l1-d", "l1d", "L1-data", },
395 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
396 { "LLC", "L2", },
397 { "dTLB", "d-tlb", "Data-TLB", },
398 { "iTLB", "i-tlb", "Instruction-TLB", },
399 { "branch", "branches", "bpu", "btb", "bpc", },
400 { "node", },
401 };
402
403 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
404 [PERF_EVSEL__MAX_ALIASES] = {
405 { "load", "loads", "read", },
406 { "store", "stores", "write", },
407 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
408 };
409
410 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
411 [PERF_EVSEL__MAX_ALIASES] = {
412 { "refs", "Reference", "ops", "access", },
413 { "misses", "miss", },
414 };
415
416 #define C(x) PERF_COUNT_HW_CACHE_##x
417 #define CACHE_READ (1 << C(OP_READ))
418 #define CACHE_WRITE (1 << C(OP_WRITE))
419 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
420 #define COP(x) (1 << x)
421
422 /*
423 * cache operartion stat
424 * L1I : Read and prefetch only
425 * ITLB and BPU : Read-only
426 */
427 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
428 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
429 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
430 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
431 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
432 [C(ITLB)] = (CACHE_READ),
433 [C(BPU)] = (CACHE_READ),
434 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
435 };
436
437 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
438 {
439 if (perf_evsel__hw_cache_stat[type] & COP(op))
440 return true; /* valid */
441 else
442 return false; /* invalid */
443 }
444
445 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
446 char *bf, size_t size)
447 {
448 if (result) {
449 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
450 perf_evsel__hw_cache_op[op][0],
451 perf_evsel__hw_cache_result[result][0]);
452 }
453
454 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
455 perf_evsel__hw_cache_op[op][1]);
456 }
457
458 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
459 {
460 u8 op, result, type = (config >> 0) & 0xff;
461 const char *err = "unknown-ext-hardware-cache-type";
462
463 if (type > PERF_COUNT_HW_CACHE_MAX)
464 goto out_err;
465
466 op = (config >> 8) & 0xff;
467 err = "unknown-ext-hardware-cache-op";
468 if (op > PERF_COUNT_HW_CACHE_OP_MAX)
469 goto out_err;
470
471 result = (config >> 16) & 0xff;
472 err = "unknown-ext-hardware-cache-result";
473 if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
474 goto out_err;
475
476 err = "invalid-cache";
477 if (!perf_evsel__is_cache_op_valid(type, op))
478 goto out_err;
479
480 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
481 out_err:
482 return scnprintf(bf, size, "%s", err);
483 }
484
485 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
486 {
487 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
488 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
489 }
490
491 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
492 {
493 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
494 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
495 }
496
497 const char *perf_evsel__name(struct perf_evsel *evsel)
498 {
499 char bf[128];
500
501 if (evsel->name)
502 return evsel->name;
503
504 switch (evsel->attr.type) {
505 case PERF_TYPE_RAW:
506 perf_evsel__raw_name(evsel, bf, sizeof(bf));
507 break;
508
509 case PERF_TYPE_HARDWARE:
510 perf_evsel__hw_name(evsel, bf, sizeof(bf));
511 break;
512
513 case PERF_TYPE_HW_CACHE:
514 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
515 break;
516
517 case PERF_TYPE_SOFTWARE:
518 perf_evsel__sw_name(evsel, bf, sizeof(bf));
519 break;
520
521 case PERF_TYPE_TRACEPOINT:
522 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
523 break;
524
525 case PERF_TYPE_BREAKPOINT:
526 perf_evsel__bp_name(evsel, bf, sizeof(bf));
527 break;
528
529 default:
530 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
531 evsel->attr.type);
532 break;
533 }
534
535 evsel->name = strdup(bf);
536
537 return evsel->name ?: "unknown";
538 }
539
540 const char *perf_evsel__group_name(struct perf_evsel *evsel)
541 {
542 return evsel->group_name ?: "anon group";
543 }
544
545 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
546 {
547 int ret;
548 struct perf_evsel *pos;
549 const char *group_name = perf_evsel__group_name(evsel);
550
551 ret = scnprintf(buf, size, "%s", group_name);
552
553 ret += scnprintf(buf + ret, size - ret, " { %s",
554 perf_evsel__name(evsel));
555
556 for_each_group_member(pos, evsel)
557 ret += scnprintf(buf + ret, size - ret, ", %s",
558 perf_evsel__name(pos));
559
560 ret += scnprintf(buf + ret, size - ret, " }");
561
562 return ret;
563 }
564
565 void perf_evsel__config_callchain(struct perf_evsel *evsel,
566 struct record_opts *opts,
567 struct callchain_param *param)
568 {
569 bool function = perf_evsel__is_function_event(evsel);
570 struct perf_event_attr *attr = &evsel->attr;
571
572 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
573
574 if (param->record_mode == CALLCHAIN_LBR) {
575 if (!opts->branch_stack) {
576 if (attr->exclude_user) {
577 pr_warning("LBR callstack option is only available "
578 "to get user callchain information. "
579 "Falling back to framepointers.\n");
580 } else {
581 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
582 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
583 PERF_SAMPLE_BRANCH_CALL_STACK |
584 PERF_SAMPLE_BRANCH_NO_CYCLES |
585 PERF_SAMPLE_BRANCH_NO_FLAGS;
586 }
587 } else
588 pr_warning("Cannot use LBR callstack with branch stack. "
589 "Falling back to framepointers.\n");
590 }
591
592 if (param->record_mode == CALLCHAIN_DWARF) {
593 if (!function) {
594 perf_evsel__set_sample_bit(evsel, REGS_USER);
595 perf_evsel__set_sample_bit(evsel, STACK_USER);
596 attr->sample_regs_user = PERF_REGS_MASK;
597 attr->sample_stack_user = param->dump_size;
598 attr->exclude_callchain_user = 1;
599 } else {
600 pr_info("Cannot use DWARF unwind for function trace event,"
601 " falling back to framepointers.\n");
602 }
603 }
604
605 if (function) {
606 pr_info("Disabling user space callchains for function trace event.\n");
607 attr->exclude_callchain_user = 1;
608 }
609 }
610
611 static void
612 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
613 struct callchain_param *param)
614 {
615 struct perf_event_attr *attr = &evsel->attr;
616
617 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
618 if (param->record_mode == CALLCHAIN_LBR) {
619 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
620 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
621 PERF_SAMPLE_BRANCH_CALL_STACK);
622 }
623 if (param->record_mode == CALLCHAIN_DWARF) {
624 perf_evsel__reset_sample_bit(evsel, REGS_USER);
625 perf_evsel__reset_sample_bit(evsel, STACK_USER);
626 }
627 }
628
629 static void apply_config_terms(struct perf_evsel *evsel,
630 struct record_opts *opts)
631 {
632 struct perf_evsel_config_term *term;
633 struct list_head *config_terms = &evsel->config_terms;
634 struct perf_event_attr *attr = &evsel->attr;
635 struct callchain_param param;
636 u32 dump_size = 0;
637 char *callgraph_buf = NULL;
638
639 /* callgraph default */
640 param.record_mode = callchain_param.record_mode;
641
642 list_for_each_entry(term, config_terms, list) {
643 switch (term->type) {
644 case PERF_EVSEL__CONFIG_TERM_PERIOD:
645 attr->sample_period = term->val.period;
646 attr->freq = 0;
647 break;
648 case PERF_EVSEL__CONFIG_TERM_FREQ:
649 attr->sample_freq = term->val.freq;
650 attr->freq = 1;
651 break;
652 case PERF_EVSEL__CONFIG_TERM_TIME:
653 if (term->val.time)
654 perf_evsel__set_sample_bit(evsel, TIME);
655 else
656 perf_evsel__reset_sample_bit(evsel, TIME);
657 break;
658 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
659 callgraph_buf = term->val.callgraph;
660 break;
661 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
662 dump_size = term->val.stack_user;
663 break;
664 case PERF_EVSEL__CONFIG_TERM_INHERIT:
665 /*
666 * attr->inherit should has already been set by
667 * perf_evsel__config. If user explicitly set
668 * inherit using config terms, override global
669 * opt->no_inherit setting.
670 */
671 attr->inherit = term->val.inherit ? 1 : 0;
672 break;
673 default:
674 break;
675 }
676 }
677
678 /* User explicitly set per-event callgraph, clear the old setting and reset. */
679 if ((callgraph_buf != NULL) || (dump_size > 0)) {
680
681 /* parse callgraph parameters */
682 if (callgraph_buf != NULL) {
683 if (!strcmp(callgraph_buf, "no")) {
684 param.enabled = false;
685 param.record_mode = CALLCHAIN_NONE;
686 } else {
687 param.enabled = true;
688 if (parse_callchain_record(callgraph_buf, &param)) {
689 pr_err("per-event callgraph setting for %s failed. "
690 "Apply callgraph global setting for it\n",
691 evsel->name);
692 return;
693 }
694 }
695 }
696 if (dump_size > 0) {
697 dump_size = round_up(dump_size, sizeof(u64));
698 param.dump_size = dump_size;
699 }
700
701 /* If global callgraph set, clear it */
702 if (callchain_param.enabled)
703 perf_evsel__reset_callgraph(evsel, &callchain_param);
704
705 /* set perf-event callgraph */
706 if (param.enabled)
707 perf_evsel__config_callchain(evsel, opts, &param);
708 }
709 }
710
711 /*
712 * The enable_on_exec/disabled value strategy:
713 *
714 * 1) For any type of traced program:
715 * - all independent events and group leaders are disabled
716 * - all group members are enabled
717 *
718 * Group members are ruled by group leaders. They need to
719 * be enabled, because the group scheduling relies on that.
720 *
721 * 2) For traced programs executed by perf:
722 * - all independent events and group leaders have
723 * enable_on_exec set
724 * - we don't specifically enable or disable any event during
725 * the record command
726 *
727 * Independent events and group leaders are initially disabled
728 * and get enabled by exec. Group members are ruled by group
729 * leaders as stated in 1).
730 *
731 * 3) For traced programs attached by perf (pid/tid):
732 * - we specifically enable or disable all events during
733 * the record command
734 *
735 * When attaching events to already running traced we
736 * enable/disable events specifically, as there's no
737 * initial traced exec call.
738 */
739 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
740 struct callchain_param *callchain)
741 {
742 struct perf_evsel *leader = evsel->leader;
743 struct perf_event_attr *attr = &evsel->attr;
744 int track = evsel->tracking;
745 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
746
747 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
748 attr->inherit = !opts->no_inherit;
749
750 perf_evsel__set_sample_bit(evsel, IP);
751 perf_evsel__set_sample_bit(evsel, TID);
752
753 if (evsel->sample_read) {
754 perf_evsel__set_sample_bit(evsel, READ);
755
756 /*
757 * We need ID even in case of single event, because
758 * PERF_SAMPLE_READ process ID specific data.
759 */
760 perf_evsel__set_sample_id(evsel, false);
761
762 /*
763 * Apply group format only if we belong to group
764 * with more than one members.
765 */
766 if (leader->nr_members > 1) {
767 attr->read_format |= PERF_FORMAT_GROUP;
768 attr->inherit = 0;
769 }
770 }
771
772 /*
773 * We default some events to have a default interval. But keep
774 * it a weak assumption overridable by the user.
775 */
776 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
777 opts->user_interval != ULLONG_MAX)) {
778 if (opts->freq) {
779 perf_evsel__set_sample_bit(evsel, PERIOD);
780 attr->freq = 1;
781 attr->sample_freq = opts->freq;
782 } else {
783 attr->sample_period = opts->default_interval;
784 }
785 }
786
787 /*
788 * Disable sampling for all group members other
789 * than leader in case leader 'leads' the sampling.
790 */
791 if ((leader != evsel) && leader->sample_read) {
792 attr->sample_freq = 0;
793 attr->sample_period = 0;
794 }
795
796 if (opts->no_samples)
797 attr->sample_freq = 0;
798
799 if (opts->inherit_stat)
800 attr->inherit_stat = 1;
801
802 if (opts->sample_address) {
803 perf_evsel__set_sample_bit(evsel, ADDR);
804 attr->mmap_data = track;
805 }
806
807 /*
808 * We don't allow user space callchains for function trace
809 * event, due to issues with page faults while tracing page
810 * fault handler and its overall trickiness nature.
811 */
812 if (perf_evsel__is_function_event(evsel))
813 evsel->attr.exclude_callchain_user = 1;
814
815 if (callchain && callchain->enabled && !evsel->no_aux_samples)
816 perf_evsel__config_callchain(evsel, opts, callchain);
817
818 if (opts->sample_intr_regs) {
819 attr->sample_regs_intr = opts->sample_intr_regs;
820 perf_evsel__set_sample_bit(evsel, REGS_INTR);
821 }
822
823 if (target__has_cpu(&opts->target))
824 perf_evsel__set_sample_bit(evsel, CPU);
825
826 if (opts->period)
827 perf_evsel__set_sample_bit(evsel, PERIOD);
828
829 /*
830 * When the user explicitely disabled time don't force it here.
831 */
832 if (opts->sample_time &&
833 (!perf_missing_features.sample_id_all &&
834 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
835 opts->sample_time_set)))
836 perf_evsel__set_sample_bit(evsel, TIME);
837
838 if (opts->raw_samples && !evsel->no_aux_samples) {
839 perf_evsel__set_sample_bit(evsel, TIME);
840 perf_evsel__set_sample_bit(evsel, RAW);
841 perf_evsel__set_sample_bit(evsel, CPU);
842 }
843
844 if (opts->sample_address)
845 perf_evsel__set_sample_bit(evsel, DATA_SRC);
846
847 if (opts->no_buffering) {
848 attr->watermark = 0;
849 attr->wakeup_events = 1;
850 }
851 if (opts->branch_stack && !evsel->no_aux_samples) {
852 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
853 attr->branch_sample_type = opts->branch_stack;
854 }
855
856 if (opts->sample_weight)
857 perf_evsel__set_sample_bit(evsel, WEIGHT);
858
859 attr->task = track;
860 attr->mmap = track;
861 attr->mmap2 = track && !perf_missing_features.mmap2;
862 attr->comm = track;
863
864 if (opts->record_switch_events)
865 attr->context_switch = track;
866
867 if (opts->sample_transaction)
868 perf_evsel__set_sample_bit(evsel, TRANSACTION);
869
870 if (opts->running_time) {
871 evsel->attr.read_format |=
872 PERF_FORMAT_TOTAL_TIME_ENABLED |
873 PERF_FORMAT_TOTAL_TIME_RUNNING;
874 }
875
876 /*
877 * XXX see the function comment above
878 *
879 * Disabling only independent events or group leaders,
880 * keeping group members enabled.
881 */
882 if (perf_evsel__is_group_leader(evsel))
883 attr->disabled = 1;
884
885 /*
886 * Setting enable_on_exec for independent events and
887 * group leaders for traced executed by perf.
888 */
889 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
890 !opts->initial_delay)
891 attr->enable_on_exec = 1;
892
893 if (evsel->immediate) {
894 attr->disabled = 0;
895 attr->enable_on_exec = 0;
896 }
897
898 clockid = opts->clockid;
899 if (opts->use_clockid) {
900 attr->use_clockid = 1;
901 attr->clockid = opts->clockid;
902 }
903
904 if (evsel->precise_max)
905 perf_event_attr__set_max_precise_ip(attr);
906
907 if (opts->all_user) {
908 attr->exclude_kernel = 1;
909 attr->exclude_user = 0;
910 }
911
912 if (opts->all_kernel) {
913 attr->exclude_kernel = 0;
914 attr->exclude_user = 1;
915 }
916
917 /*
918 * Apply event specific term settings,
919 * it overloads any global configuration.
920 */
921 apply_config_terms(evsel, opts);
922 }
923
924 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
925 {
926 int cpu, thread;
927
928 if (evsel->system_wide)
929 nthreads = 1;
930
931 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
932
933 if (evsel->fd) {
934 for (cpu = 0; cpu < ncpus; cpu++) {
935 for (thread = 0; thread < nthreads; thread++) {
936 FD(evsel, cpu, thread) = -1;
937 }
938 }
939 }
940
941 return evsel->fd != NULL ? 0 : -ENOMEM;
942 }
943
944 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
945 int ioc, void *arg)
946 {
947 int cpu, thread;
948
949 if (evsel->system_wide)
950 nthreads = 1;
951
952 for (cpu = 0; cpu < ncpus; cpu++) {
953 for (thread = 0; thread < nthreads; thread++) {
954 int fd = FD(evsel, cpu, thread),
955 err = ioctl(fd, ioc, arg);
956
957 if (err)
958 return err;
959 }
960 }
961
962 return 0;
963 }
964
965 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
966 const char *filter)
967 {
968 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
969 PERF_EVENT_IOC_SET_FILTER,
970 (void *)filter);
971 }
972
973 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
974 {
975 char *new_filter = strdup(filter);
976
977 if (new_filter != NULL) {
978 free(evsel->filter);
979 evsel->filter = new_filter;
980 return 0;
981 }
982
983 return -1;
984 }
985
986 int perf_evsel__append_filter(struct perf_evsel *evsel,
987 const char *op, const char *filter)
988 {
989 char *new_filter;
990
991 if (evsel->filter == NULL)
992 return perf_evsel__set_filter(evsel, filter);
993
994 if (asprintf(&new_filter,"(%s) %s (%s)", evsel->filter, op, filter) > 0) {
995 free(evsel->filter);
996 evsel->filter = new_filter;
997 return 0;
998 }
999
1000 return -1;
1001 }
1002
1003 int perf_evsel__enable(struct perf_evsel *evsel)
1004 {
1005 int nthreads = thread_map__nr(evsel->threads);
1006 int ncpus = cpu_map__nr(evsel->cpus);
1007
1008 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1009 PERF_EVENT_IOC_ENABLE,
1010 0);
1011 }
1012
1013 int perf_evsel__disable(struct perf_evsel *evsel)
1014 {
1015 int nthreads = thread_map__nr(evsel->threads);
1016 int ncpus = cpu_map__nr(evsel->cpus);
1017
1018 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1019 PERF_EVENT_IOC_DISABLE,
1020 0);
1021 }
1022
1023 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1024 {
1025 if (ncpus == 0 || nthreads == 0)
1026 return 0;
1027
1028 if (evsel->system_wide)
1029 nthreads = 1;
1030
1031 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1032 if (evsel->sample_id == NULL)
1033 return -ENOMEM;
1034
1035 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1036 if (evsel->id == NULL) {
1037 xyarray__delete(evsel->sample_id);
1038 evsel->sample_id = NULL;
1039 return -ENOMEM;
1040 }
1041
1042 return 0;
1043 }
1044
1045 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1046 {
1047 xyarray__delete(evsel->fd);
1048 evsel->fd = NULL;
1049 }
1050
1051 static void perf_evsel__free_id(struct perf_evsel *evsel)
1052 {
1053 xyarray__delete(evsel->sample_id);
1054 evsel->sample_id = NULL;
1055 zfree(&evsel->id);
1056 }
1057
1058 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1059 {
1060 struct perf_evsel_config_term *term, *h;
1061
1062 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1063 list_del(&term->list);
1064 free(term);
1065 }
1066 }
1067
1068 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1069 {
1070 int cpu, thread;
1071
1072 if (evsel->system_wide)
1073 nthreads = 1;
1074
1075 for (cpu = 0; cpu < ncpus; cpu++)
1076 for (thread = 0; thread < nthreads; ++thread) {
1077 close(FD(evsel, cpu, thread));
1078 FD(evsel, cpu, thread) = -1;
1079 }
1080 }
1081
1082 void perf_evsel__exit(struct perf_evsel *evsel)
1083 {
1084 assert(list_empty(&evsel->node));
1085 assert(evsel->evlist == NULL);
1086 perf_evsel__free_fd(evsel);
1087 perf_evsel__free_id(evsel);
1088 perf_evsel__free_config_terms(evsel);
1089 close_cgroup(evsel->cgrp);
1090 cpu_map__put(evsel->cpus);
1091 cpu_map__put(evsel->own_cpus);
1092 thread_map__put(evsel->threads);
1093 zfree(&evsel->group_name);
1094 zfree(&evsel->name);
1095 perf_evsel__object.fini(evsel);
1096 }
1097
1098 void perf_evsel__delete(struct perf_evsel *evsel)
1099 {
1100 perf_evsel__exit(evsel);
1101 free(evsel);
1102 }
1103
1104 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1105 struct perf_counts_values *count)
1106 {
1107 struct perf_counts_values tmp;
1108
1109 if (!evsel->prev_raw_counts)
1110 return;
1111
1112 if (cpu == -1) {
1113 tmp = evsel->prev_raw_counts->aggr;
1114 evsel->prev_raw_counts->aggr = *count;
1115 } else {
1116 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1117 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1118 }
1119
1120 count->val = count->val - tmp.val;
1121 count->ena = count->ena - tmp.ena;
1122 count->run = count->run - tmp.run;
1123 }
1124
1125 void perf_counts_values__scale(struct perf_counts_values *count,
1126 bool scale, s8 *pscaled)
1127 {
1128 s8 scaled = 0;
1129
1130 if (scale) {
1131 if (count->run == 0) {
1132 scaled = -1;
1133 count->val = 0;
1134 } else if (count->run < count->ena) {
1135 scaled = 1;
1136 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1137 }
1138 } else
1139 count->ena = count->run = 0;
1140
1141 if (pscaled)
1142 *pscaled = scaled;
1143 }
1144
1145 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1146 struct perf_counts_values *count)
1147 {
1148 memset(count, 0, sizeof(*count));
1149
1150 if (FD(evsel, cpu, thread) < 0)
1151 return -EINVAL;
1152
1153 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1154 return -errno;
1155
1156 return 0;
1157 }
1158
1159 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1160 int cpu, int thread, bool scale)
1161 {
1162 struct perf_counts_values count;
1163 size_t nv = scale ? 3 : 1;
1164
1165 if (FD(evsel, cpu, thread) < 0)
1166 return -EINVAL;
1167
1168 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1169 return -ENOMEM;
1170
1171 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1172 return -errno;
1173
1174 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1175 perf_counts_values__scale(&count, scale, NULL);
1176 *perf_counts(evsel->counts, cpu, thread) = count;
1177 return 0;
1178 }
1179
1180 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1181 {
1182 struct perf_evsel *leader = evsel->leader;
1183 int fd;
1184
1185 if (perf_evsel__is_group_leader(evsel))
1186 return -1;
1187
1188 /*
1189 * Leader must be already processed/open,
1190 * if not it's a bug.
1191 */
1192 BUG_ON(!leader->fd);
1193
1194 fd = FD(leader, cpu, thread);
1195 BUG_ON(fd == -1);
1196
1197 return fd;
1198 }
1199
1200 struct bit_names {
1201 int bit;
1202 const char *name;
1203 };
1204
1205 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1206 {
1207 bool first_bit = true;
1208 int i = 0;
1209
1210 do {
1211 if (value & bits[i].bit) {
1212 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1213 first_bit = false;
1214 }
1215 } while (bits[++i].name != NULL);
1216 }
1217
1218 static void __p_sample_type(char *buf, size_t size, u64 value)
1219 {
1220 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1221 struct bit_names bits[] = {
1222 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1223 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1224 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1225 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1226 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1227 bit_name(WEIGHT),
1228 { .name = NULL, }
1229 };
1230 #undef bit_name
1231 __p_bits(buf, size, value, bits);
1232 }
1233
1234 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1235 {
1236 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1237 struct bit_names bits[] = {
1238 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1239 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1240 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1241 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1242 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1243 { .name = NULL, }
1244 };
1245 #undef bit_name
1246 __p_bits(buf, size, value, bits);
1247 }
1248
1249 static void __p_read_format(char *buf, size_t size, u64 value)
1250 {
1251 #define bit_name(n) { PERF_FORMAT_##n, #n }
1252 struct bit_names bits[] = {
1253 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1254 bit_name(ID), bit_name(GROUP),
1255 { .name = NULL, }
1256 };
1257 #undef bit_name
1258 __p_bits(buf, size, value, bits);
1259 }
1260
1261 #define BUF_SIZE 1024
1262
1263 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1264 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1265 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1266 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1267 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1268 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1269
1270 #define PRINT_ATTRn(_n, _f, _p) \
1271 do { \
1272 if (attr->_f) { \
1273 _p(attr->_f); \
1274 ret += attr__fprintf(fp, _n, buf, priv);\
1275 } \
1276 } while (0)
1277
1278 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1279
1280 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1281 attr__fprintf_f attr__fprintf, void *priv)
1282 {
1283 char buf[BUF_SIZE];
1284 int ret = 0;
1285
1286 PRINT_ATTRf(type, p_unsigned);
1287 PRINT_ATTRf(size, p_unsigned);
1288 PRINT_ATTRf(config, p_hex);
1289 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1290 PRINT_ATTRf(sample_type, p_sample_type);
1291 PRINT_ATTRf(read_format, p_read_format);
1292
1293 PRINT_ATTRf(disabled, p_unsigned);
1294 PRINT_ATTRf(inherit, p_unsigned);
1295 PRINT_ATTRf(pinned, p_unsigned);
1296 PRINT_ATTRf(exclusive, p_unsigned);
1297 PRINT_ATTRf(exclude_user, p_unsigned);
1298 PRINT_ATTRf(exclude_kernel, p_unsigned);
1299 PRINT_ATTRf(exclude_hv, p_unsigned);
1300 PRINT_ATTRf(exclude_idle, p_unsigned);
1301 PRINT_ATTRf(mmap, p_unsigned);
1302 PRINT_ATTRf(comm, p_unsigned);
1303 PRINT_ATTRf(freq, p_unsigned);
1304 PRINT_ATTRf(inherit_stat, p_unsigned);
1305 PRINT_ATTRf(enable_on_exec, p_unsigned);
1306 PRINT_ATTRf(task, p_unsigned);
1307 PRINT_ATTRf(watermark, p_unsigned);
1308 PRINT_ATTRf(precise_ip, p_unsigned);
1309 PRINT_ATTRf(mmap_data, p_unsigned);
1310 PRINT_ATTRf(sample_id_all, p_unsigned);
1311 PRINT_ATTRf(exclude_host, p_unsigned);
1312 PRINT_ATTRf(exclude_guest, p_unsigned);
1313 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1314 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1315 PRINT_ATTRf(mmap2, p_unsigned);
1316 PRINT_ATTRf(comm_exec, p_unsigned);
1317 PRINT_ATTRf(use_clockid, p_unsigned);
1318 PRINT_ATTRf(context_switch, p_unsigned);
1319 PRINT_ATTRf(write_backward, p_unsigned);
1320
1321 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1322 PRINT_ATTRf(bp_type, p_unsigned);
1323 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1324 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1325 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1326 PRINT_ATTRf(sample_regs_user, p_hex);
1327 PRINT_ATTRf(sample_stack_user, p_unsigned);
1328 PRINT_ATTRf(clockid, p_signed);
1329 PRINT_ATTRf(sample_regs_intr, p_hex);
1330 PRINT_ATTRf(aux_watermark, p_unsigned);
1331
1332 return ret;
1333 }
1334
1335 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1336 void *priv __attribute__((unused)))
1337 {
1338 return fprintf(fp, " %-32s %s\n", name, val);
1339 }
1340
1341 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1342 struct thread_map *threads)
1343 {
1344 int cpu, thread, nthreads;
1345 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1346 int pid = -1, err;
1347 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1348
1349 if (evsel->system_wide)
1350 nthreads = 1;
1351 else
1352 nthreads = threads->nr;
1353
1354 if (evsel->fd == NULL &&
1355 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1356 return -ENOMEM;
1357
1358 if (evsel->cgrp) {
1359 flags |= PERF_FLAG_PID_CGROUP;
1360 pid = evsel->cgrp->fd;
1361 }
1362
1363 fallback_missing_features:
1364 if (perf_missing_features.clockid_wrong)
1365 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1366 if (perf_missing_features.clockid) {
1367 evsel->attr.use_clockid = 0;
1368 evsel->attr.clockid = 0;
1369 }
1370 if (perf_missing_features.cloexec)
1371 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1372 if (perf_missing_features.mmap2)
1373 evsel->attr.mmap2 = 0;
1374 if (perf_missing_features.exclude_guest)
1375 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1376 if (perf_missing_features.lbr_flags)
1377 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1378 PERF_SAMPLE_BRANCH_NO_CYCLES);
1379 retry_sample_id:
1380 if (perf_missing_features.sample_id_all)
1381 evsel->attr.sample_id_all = 0;
1382
1383 if (verbose >= 2) {
1384 fprintf(stderr, "%.60s\n", graph_dotted_line);
1385 fprintf(stderr, "perf_event_attr:\n");
1386 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1387 fprintf(stderr, "%.60s\n", graph_dotted_line);
1388 }
1389
1390 for (cpu = 0; cpu < cpus->nr; cpu++) {
1391
1392 for (thread = 0; thread < nthreads; thread++) {
1393 int group_fd;
1394
1395 if (!evsel->cgrp && !evsel->system_wide)
1396 pid = thread_map__pid(threads, thread);
1397
1398 group_fd = get_group_fd(evsel, cpu, thread);
1399 retry_open:
1400 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n",
1401 pid, cpus->map[cpu], group_fd, flags);
1402
1403 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1404 pid,
1405 cpus->map[cpu],
1406 group_fd, flags);
1407 if (FD(evsel, cpu, thread) < 0) {
1408 err = -errno;
1409 pr_debug2("sys_perf_event_open failed, error %d\n",
1410 err);
1411 goto try_fallback;
1412 }
1413
1414 if (evsel->bpf_fd >= 0) {
1415 int evt_fd = FD(evsel, cpu, thread);
1416 int bpf_fd = evsel->bpf_fd;
1417
1418 err = ioctl(evt_fd,
1419 PERF_EVENT_IOC_SET_BPF,
1420 bpf_fd);
1421 if (err && errno != EEXIST) {
1422 pr_err("failed to attach bpf fd %d: %s\n",
1423 bpf_fd, strerror(errno));
1424 err = -EINVAL;
1425 goto out_close;
1426 }
1427 }
1428
1429 set_rlimit = NO_CHANGE;
1430
1431 /*
1432 * If we succeeded but had to kill clockid, fail and
1433 * have perf_evsel__open_strerror() print us a nice
1434 * error.
1435 */
1436 if (perf_missing_features.clockid ||
1437 perf_missing_features.clockid_wrong) {
1438 err = -EINVAL;
1439 goto out_close;
1440 }
1441 }
1442 }
1443
1444 return 0;
1445
1446 try_fallback:
1447 /*
1448 * perf stat needs between 5 and 22 fds per CPU. When we run out
1449 * of them try to increase the limits.
1450 */
1451 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1452 struct rlimit l;
1453 int old_errno = errno;
1454
1455 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1456 if (set_rlimit == NO_CHANGE)
1457 l.rlim_cur = l.rlim_max;
1458 else {
1459 l.rlim_cur = l.rlim_max + 1000;
1460 l.rlim_max = l.rlim_cur;
1461 }
1462 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1463 set_rlimit++;
1464 errno = old_errno;
1465 goto retry_open;
1466 }
1467 }
1468 errno = old_errno;
1469 }
1470
1471 if (err != -EINVAL || cpu > 0 || thread > 0)
1472 goto out_close;
1473
1474 /*
1475 * Must probe features in the order they were added to the
1476 * perf_event_attr interface.
1477 */
1478 if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1479 perf_missing_features.clockid_wrong = true;
1480 goto fallback_missing_features;
1481 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1482 perf_missing_features.clockid = true;
1483 goto fallback_missing_features;
1484 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1485 perf_missing_features.cloexec = true;
1486 goto fallback_missing_features;
1487 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1488 perf_missing_features.mmap2 = true;
1489 goto fallback_missing_features;
1490 } else if (!perf_missing_features.exclude_guest &&
1491 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1492 perf_missing_features.exclude_guest = true;
1493 goto fallback_missing_features;
1494 } else if (!perf_missing_features.sample_id_all) {
1495 perf_missing_features.sample_id_all = true;
1496 goto retry_sample_id;
1497 } else if (!perf_missing_features.lbr_flags &&
1498 (evsel->attr.branch_sample_type &
1499 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1500 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1501 perf_missing_features.lbr_flags = true;
1502 goto fallback_missing_features;
1503 }
1504
1505 out_close:
1506 do {
1507 while (--thread >= 0) {
1508 close(FD(evsel, cpu, thread));
1509 FD(evsel, cpu, thread) = -1;
1510 }
1511 thread = nthreads;
1512 } while (--cpu >= 0);
1513 return err;
1514 }
1515
1516 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1517 {
1518 if (evsel->fd == NULL)
1519 return;
1520
1521 perf_evsel__close_fd(evsel, ncpus, nthreads);
1522 perf_evsel__free_fd(evsel);
1523 }
1524
1525 static struct {
1526 struct cpu_map map;
1527 int cpus[1];
1528 } empty_cpu_map = {
1529 .map.nr = 1,
1530 .cpus = { -1, },
1531 };
1532
1533 static struct {
1534 struct thread_map map;
1535 int threads[1];
1536 } empty_thread_map = {
1537 .map.nr = 1,
1538 .threads = { -1, },
1539 };
1540
1541 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1542 struct thread_map *threads)
1543 {
1544 if (cpus == NULL) {
1545 /* Work around old compiler warnings about strict aliasing */
1546 cpus = &empty_cpu_map.map;
1547 }
1548
1549 if (threads == NULL)
1550 threads = &empty_thread_map.map;
1551
1552 return __perf_evsel__open(evsel, cpus, threads);
1553 }
1554
1555 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1556 struct cpu_map *cpus)
1557 {
1558 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1559 }
1560
1561 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1562 struct thread_map *threads)
1563 {
1564 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1565 }
1566
1567 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1568 const union perf_event *event,
1569 struct perf_sample *sample)
1570 {
1571 u64 type = evsel->attr.sample_type;
1572 const u64 *array = event->sample.array;
1573 bool swapped = evsel->needs_swap;
1574 union u64_swap u;
1575
1576 array += ((event->header.size -
1577 sizeof(event->header)) / sizeof(u64)) - 1;
1578
1579 if (type & PERF_SAMPLE_IDENTIFIER) {
1580 sample->id = *array;
1581 array--;
1582 }
1583
1584 if (type & PERF_SAMPLE_CPU) {
1585 u.val64 = *array;
1586 if (swapped) {
1587 /* undo swap of u64, then swap on individual u32s */
1588 u.val64 = bswap_64(u.val64);
1589 u.val32[0] = bswap_32(u.val32[0]);
1590 }
1591
1592 sample->cpu = u.val32[0];
1593 array--;
1594 }
1595
1596 if (type & PERF_SAMPLE_STREAM_ID) {
1597 sample->stream_id = *array;
1598 array--;
1599 }
1600
1601 if (type & PERF_SAMPLE_ID) {
1602 sample->id = *array;
1603 array--;
1604 }
1605
1606 if (type & PERF_SAMPLE_TIME) {
1607 sample->time = *array;
1608 array--;
1609 }
1610
1611 if (type & PERF_SAMPLE_TID) {
1612 u.val64 = *array;
1613 if (swapped) {
1614 /* undo swap of u64, then swap on individual u32s */
1615 u.val64 = bswap_64(u.val64);
1616 u.val32[0] = bswap_32(u.val32[0]);
1617 u.val32[1] = bswap_32(u.val32[1]);
1618 }
1619
1620 sample->pid = u.val32[0];
1621 sample->tid = u.val32[1];
1622 array--;
1623 }
1624
1625 return 0;
1626 }
1627
1628 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1629 u64 size)
1630 {
1631 return size > max_size || offset + size > endp;
1632 }
1633
1634 #define OVERFLOW_CHECK(offset, size, max_size) \
1635 do { \
1636 if (overflow(endp, (max_size), (offset), (size))) \
1637 return -EFAULT; \
1638 } while (0)
1639
1640 #define OVERFLOW_CHECK_u64(offset) \
1641 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1642
1643 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1644 struct perf_sample *data)
1645 {
1646 u64 type = evsel->attr.sample_type;
1647 bool swapped = evsel->needs_swap;
1648 const u64 *array;
1649 u16 max_size = event->header.size;
1650 const void *endp = (void *)event + max_size;
1651 u64 sz;
1652
1653 /*
1654 * used for cross-endian analysis. See git commit 65014ab3
1655 * for why this goofiness is needed.
1656 */
1657 union u64_swap u;
1658
1659 memset(data, 0, sizeof(*data));
1660 data->cpu = data->pid = data->tid = -1;
1661 data->stream_id = data->id = data->time = -1ULL;
1662 data->period = evsel->attr.sample_period;
1663 data->weight = 0;
1664 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1665
1666 if (event->header.type != PERF_RECORD_SAMPLE) {
1667 if (!evsel->attr.sample_id_all)
1668 return 0;
1669 return perf_evsel__parse_id_sample(evsel, event, data);
1670 }
1671
1672 array = event->sample.array;
1673
1674 /*
1675 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1676 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1677 * check the format does not go past the end of the event.
1678 */
1679 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1680 return -EFAULT;
1681
1682 data->id = -1ULL;
1683 if (type & PERF_SAMPLE_IDENTIFIER) {
1684 data->id = *array;
1685 array++;
1686 }
1687
1688 if (type & PERF_SAMPLE_IP) {
1689 data->ip = *array;
1690 array++;
1691 }
1692
1693 if (type & PERF_SAMPLE_TID) {
1694 u.val64 = *array;
1695 if (swapped) {
1696 /* undo swap of u64, then swap on individual u32s */
1697 u.val64 = bswap_64(u.val64);
1698 u.val32[0] = bswap_32(u.val32[0]);
1699 u.val32[1] = bswap_32(u.val32[1]);
1700 }
1701
1702 data->pid = u.val32[0];
1703 data->tid = u.val32[1];
1704 array++;
1705 }
1706
1707 if (type & PERF_SAMPLE_TIME) {
1708 data->time = *array;
1709 array++;
1710 }
1711
1712 data->addr = 0;
1713 if (type & PERF_SAMPLE_ADDR) {
1714 data->addr = *array;
1715 array++;
1716 }
1717
1718 if (type & PERF_SAMPLE_ID) {
1719 data->id = *array;
1720 array++;
1721 }
1722
1723 if (type & PERF_SAMPLE_STREAM_ID) {
1724 data->stream_id = *array;
1725 array++;
1726 }
1727
1728 if (type & PERF_SAMPLE_CPU) {
1729
1730 u.val64 = *array;
1731 if (swapped) {
1732 /* undo swap of u64, then swap on individual u32s */
1733 u.val64 = bswap_64(u.val64);
1734 u.val32[0] = bswap_32(u.val32[0]);
1735 }
1736
1737 data->cpu = u.val32[0];
1738 array++;
1739 }
1740
1741 if (type & PERF_SAMPLE_PERIOD) {
1742 data->period = *array;
1743 array++;
1744 }
1745
1746 if (type & PERF_SAMPLE_READ) {
1747 u64 read_format = evsel->attr.read_format;
1748
1749 OVERFLOW_CHECK_u64(array);
1750 if (read_format & PERF_FORMAT_GROUP)
1751 data->read.group.nr = *array;
1752 else
1753 data->read.one.value = *array;
1754
1755 array++;
1756
1757 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1758 OVERFLOW_CHECK_u64(array);
1759 data->read.time_enabled = *array;
1760 array++;
1761 }
1762
1763 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1764 OVERFLOW_CHECK_u64(array);
1765 data->read.time_running = *array;
1766 array++;
1767 }
1768
1769 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1770 if (read_format & PERF_FORMAT_GROUP) {
1771 const u64 max_group_nr = UINT64_MAX /
1772 sizeof(struct sample_read_value);
1773
1774 if (data->read.group.nr > max_group_nr)
1775 return -EFAULT;
1776 sz = data->read.group.nr *
1777 sizeof(struct sample_read_value);
1778 OVERFLOW_CHECK(array, sz, max_size);
1779 data->read.group.values =
1780 (struct sample_read_value *)array;
1781 array = (void *)array + sz;
1782 } else {
1783 OVERFLOW_CHECK_u64(array);
1784 data->read.one.id = *array;
1785 array++;
1786 }
1787 }
1788
1789 if (type & PERF_SAMPLE_CALLCHAIN) {
1790 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1791
1792 OVERFLOW_CHECK_u64(array);
1793 data->callchain = (struct ip_callchain *)array++;
1794 if (data->callchain->nr > max_callchain_nr)
1795 return -EFAULT;
1796 sz = data->callchain->nr * sizeof(u64);
1797 OVERFLOW_CHECK(array, sz, max_size);
1798 array = (void *)array + sz;
1799 }
1800
1801 if (type & PERF_SAMPLE_RAW) {
1802 OVERFLOW_CHECK_u64(array);
1803 u.val64 = *array;
1804 if (WARN_ONCE(swapped,
1805 "Endianness of raw data not corrected!\n")) {
1806 /* undo swap of u64, then swap on individual u32s */
1807 u.val64 = bswap_64(u.val64);
1808 u.val32[0] = bswap_32(u.val32[0]);
1809 u.val32[1] = bswap_32(u.val32[1]);
1810 }
1811 data->raw_size = u.val32[0];
1812 array = (void *)array + sizeof(u32);
1813
1814 OVERFLOW_CHECK(array, data->raw_size, max_size);
1815 data->raw_data = (void *)array;
1816 array = (void *)array + data->raw_size;
1817 }
1818
1819 if (type & PERF_SAMPLE_BRANCH_STACK) {
1820 const u64 max_branch_nr = UINT64_MAX /
1821 sizeof(struct branch_entry);
1822
1823 OVERFLOW_CHECK_u64(array);
1824 data->branch_stack = (struct branch_stack *)array++;
1825
1826 if (data->branch_stack->nr > max_branch_nr)
1827 return -EFAULT;
1828 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1829 OVERFLOW_CHECK(array, sz, max_size);
1830 array = (void *)array + sz;
1831 }
1832
1833 if (type & PERF_SAMPLE_REGS_USER) {
1834 OVERFLOW_CHECK_u64(array);
1835 data->user_regs.abi = *array;
1836 array++;
1837
1838 if (data->user_regs.abi) {
1839 u64 mask = evsel->attr.sample_regs_user;
1840
1841 sz = hweight_long(mask) * sizeof(u64);
1842 OVERFLOW_CHECK(array, sz, max_size);
1843 data->user_regs.mask = mask;
1844 data->user_regs.regs = (u64 *)array;
1845 array = (void *)array + sz;
1846 }
1847 }
1848
1849 if (type & PERF_SAMPLE_STACK_USER) {
1850 OVERFLOW_CHECK_u64(array);
1851 sz = *array++;
1852
1853 data->user_stack.offset = ((char *)(array - 1)
1854 - (char *) event);
1855
1856 if (!sz) {
1857 data->user_stack.size = 0;
1858 } else {
1859 OVERFLOW_CHECK(array, sz, max_size);
1860 data->user_stack.data = (char *)array;
1861 array = (void *)array + sz;
1862 OVERFLOW_CHECK_u64(array);
1863 data->user_stack.size = *array++;
1864 if (WARN_ONCE(data->user_stack.size > sz,
1865 "user stack dump failure\n"))
1866 return -EFAULT;
1867 }
1868 }
1869
1870 data->weight = 0;
1871 if (type & PERF_SAMPLE_WEIGHT) {
1872 OVERFLOW_CHECK_u64(array);
1873 data->weight = *array;
1874 array++;
1875 }
1876
1877 data->data_src = PERF_MEM_DATA_SRC_NONE;
1878 if (type & PERF_SAMPLE_DATA_SRC) {
1879 OVERFLOW_CHECK_u64(array);
1880 data->data_src = *array;
1881 array++;
1882 }
1883
1884 data->transaction = 0;
1885 if (type & PERF_SAMPLE_TRANSACTION) {
1886 OVERFLOW_CHECK_u64(array);
1887 data->transaction = *array;
1888 array++;
1889 }
1890
1891 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1892 if (type & PERF_SAMPLE_REGS_INTR) {
1893 OVERFLOW_CHECK_u64(array);
1894 data->intr_regs.abi = *array;
1895 array++;
1896
1897 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1898 u64 mask = evsel->attr.sample_regs_intr;
1899
1900 sz = hweight_long(mask) * sizeof(u64);
1901 OVERFLOW_CHECK(array, sz, max_size);
1902 data->intr_regs.mask = mask;
1903 data->intr_regs.regs = (u64 *)array;
1904 array = (void *)array + sz;
1905 }
1906 }
1907
1908 return 0;
1909 }
1910
1911 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1912 u64 read_format)
1913 {
1914 size_t sz, result = sizeof(struct sample_event);
1915
1916 if (type & PERF_SAMPLE_IDENTIFIER)
1917 result += sizeof(u64);
1918
1919 if (type & PERF_SAMPLE_IP)
1920 result += sizeof(u64);
1921
1922 if (type & PERF_SAMPLE_TID)
1923 result += sizeof(u64);
1924
1925 if (type & PERF_SAMPLE_TIME)
1926 result += sizeof(u64);
1927
1928 if (type & PERF_SAMPLE_ADDR)
1929 result += sizeof(u64);
1930
1931 if (type & PERF_SAMPLE_ID)
1932 result += sizeof(u64);
1933
1934 if (type & PERF_SAMPLE_STREAM_ID)
1935 result += sizeof(u64);
1936
1937 if (type & PERF_SAMPLE_CPU)
1938 result += sizeof(u64);
1939
1940 if (type & PERF_SAMPLE_PERIOD)
1941 result += sizeof(u64);
1942
1943 if (type & PERF_SAMPLE_READ) {
1944 result += sizeof(u64);
1945 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1946 result += sizeof(u64);
1947 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1948 result += sizeof(u64);
1949 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1950 if (read_format & PERF_FORMAT_GROUP) {
1951 sz = sample->read.group.nr *
1952 sizeof(struct sample_read_value);
1953 result += sz;
1954 } else {
1955 result += sizeof(u64);
1956 }
1957 }
1958
1959 if (type & PERF_SAMPLE_CALLCHAIN) {
1960 sz = (sample->callchain->nr + 1) * sizeof(u64);
1961 result += sz;
1962 }
1963
1964 if (type & PERF_SAMPLE_RAW) {
1965 result += sizeof(u32);
1966 result += sample->raw_size;
1967 }
1968
1969 if (type & PERF_SAMPLE_BRANCH_STACK) {
1970 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1971 sz += sizeof(u64);
1972 result += sz;
1973 }
1974
1975 if (type & PERF_SAMPLE_REGS_USER) {
1976 if (sample->user_regs.abi) {
1977 result += sizeof(u64);
1978 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1979 result += sz;
1980 } else {
1981 result += sizeof(u64);
1982 }
1983 }
1984
1985 if (type & PERF_SAMPLE_STACK_USER) {
1986 sz = sample->user_stack.size;
1987 result += sizeof(u64);
1988 if (sz) {
1989 result += sz;
1990 result += sizeof(u64);
1991 }
1992 }
1993
1994 if (type & PERF_SAMPLE_WEIGHT)
1995 result += sizeof(u64);
1996
1997 if (type & PERF_SAMPLE_DATA_SRC)
1998 result += sizeof(u64);
1999
2000 if (type & PERF_SAMPLE_TRANSACTION)
2001 result += sizeof(u64);
2002
2003 if (type & PERF_SAMPLE_REGS_INTR) {
2004 if (sample->intr_regs.abi) {
2005 result += sizeof(u64);
2006 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2007 result += sz;
2008 } else {
2009 result += sizeof(u64);
2010 }
2011 }
2012
2013 return result;
2014 }
2015
2016 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2017 u64 read_format,
2018 const struct perf_sample *sample,
2019 bool swapped)
2020 {
2021 u64 *array;
2022 size_t sz;
2023 /*
2024 * used for cross-endian analysis. See git commit 65014ab3
2025 * for why this goofiness is needed.
2026 */
2027 union u64_swap u;
2028
2029 array = event->sample.array;
2030
2031 if (type & PERF_SAMPLE_IDENTIFIER) {
2032 *array = sample->id;
2033 array++;
2034 }
2035
2036 if (type & PERF_SAMPLE_IP) {
2037 *array = sample->ip;
2038 array++;
2039 }
2040
2041 if (type & PERF_SAMPLE_TID) {
2042 u.val32[0] = sample->pid;
2043 u.val32[1] = sample->tid;
2044 if (swapped) {
2045 /*
2046 * Inverse of what is done in perf_evsel__parse_sample
2047 */
2048 u.val32[0] = bswap_32(u.val32[0]);
2049 u.val32[1] = bswap_32(u.val32[1]);
2050 u.val64 = bswap_64(u.val64);
2051 }
2052
2053 *array = u.val64;
2054 array++;
2055 }
2056
2057 if (type & PERF_SAMPLE_TIME) {
2058 *array = sample->time;
2059 array++;
2060 }
2061
2062 if (type & PERF_SAMPLE_ADDR) {
2063 *array = sample->addr;
2064 array++;
2065 }
2066
2067 if (type & PERF_SAMPLE_ID) {
2068 *array = sample->id;
2069 array++;
2070 }
2071
2072 if (type & PERF_SAMPLE_STREAM_ID) {
2073 *array = sample->stream_id;
2074 array++;
2075 }
2076
2077 if (type & PERF_SAMPLE_CPU) {
2078 u.val32[0] = sample->cpu;
2079 if (swapped) {
2080 /*
2081 * Inverse of what is done in perf_evsel__parse_sample
2082 */
2083 u.val32[0] = bswap_32(u.val32[0]);
2084 u.val64 = bswap_64(u.val64);
2085 }
2086 *array = u.val64;
2087 array++;
2088 }
2089
2090 if (type & PERF_SAMPLE_PERIOD) {
2091 *array = sample->period;
2092 array++;
2093 }
2094
2095 if (type & PERF_SAMPLE_READ) {
2096 if (read_format & PERF_FORMAT_GROUP)
2097 *array = sample->read.group.nr;
2098 else
2099 *array = sample->read.one.value;
2100 array++;
2101
2102 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2103 *array = sample->read.time_enabled;
2104 array++;
2105 }
2106
2107 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2108 *array = sample->read.time_running;
2109 array++;
2110 }
2111
2112 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2113 if (read_format & PERF_FORMAT_GROUP) {
2114 sz = sample->read.group.nr *
2115 sizeof(struct sample_read_value);
2116 memcpy(array, sample->read.group.values, sz);
2117 array = (void *)array + sz;
2118 } else {
2119 *array = sample->read.one.id;
2120 array++;
2121 }
2122 }
2123
2124 if (type & PERF_SAMPLE_CALLCHAIN) {
2125 sz = (sample->callchain->nr + 1) * sizeof(u64);
2126 memcpy(array, sample->callchain, sz);
2127 array = (void *)array + sz;
2128 }
2129
2130 if (type & PERF_SAMPLE_RAW) {
2131 u.val32[0] = sample->raw_size;
2132 if (WARN_ONCE(swapped,
2133 "Endianness of raw data not corrected!\n")) {
2134 /*
2135 * Inverse of what is done in perf_evsel__parse_sample
2136 */
2137 u.val32[0] = bswap_32(u.val32[0]);
2138 u.val32[1] = bswap_32(u.val32[1]);
2139 u.val64 = bswap_64(u.val64);
2140 }
2141 *array = u.val64;
2142 array = (void *)array + sizeof(u32);
2143
2144 memcpy(array, sample->raw_data, sample->raw_size);
2145 array = (void *)array + sample->raw_size;
2146 }
2147
2148 if (type & PERF_SAMPLE_BRANCH_STACK) {
2149 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2150 sz += sizeof(u64);
2151 memcpy(array, sample->branch_stack, sz);
2152 array = (void *)array + sz;
2153 }
2154
2155 if (type & PERF_SAMPLE_REGS_USER) {
2156 if (sample->user_regs.abi) {
2157 *array++ = sample->user_regs.abi;
2158 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2159 memcpy(array, sample->user_regs.regs, sz);
2160 array = (void *)array + sz;
2161 } else {
2162 *array++ = 0;
2163 }
2164 }
2165
2166 if (type & PERF_SAMPLE_STACK_USER) {
2167 sz = sample->user_stack.size;
2168 *array++ = sz;
2169 if (sz) {
2170 memcpy(array, sample->user_stack.data, sz);
2171 array = (void *)array + sz;
2172 *array++ = sz;
2173 }
2174 }
2175
2176 if (type & PERF_SAMPLE_WEIGHT) {
2177 *array = sample->weight;
2178 array++;
2179 }
2180
2181 if (type & PERF_SAMPLE_DATA_SRC) {
2182 *array = sample->data_src;
2183 array++;
2184 }
2185
2186 if (type & PERF_SAMPLE_TRANSACTION) {
2187 *array = sample->transaction;
2188 array++;
2189 }
2190
2191 if (type & PERF_SAMPLE_REGS_INTR) {
2192 if (sample->intr_regs.abi) {
2193 *array++ = sample->intr_regs.abi;
2194 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2195 memcpy(array, sample->intr_regs.regs, sz);
2196 array = (void *)array + sz;
2197 } else {
2198 *array++ = 0;
2199 }
2200 }
2201
2202 return 0;
2203 }
2204
2205 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2206 {
2207 return pevent_find_field(evsel->tp_format, name);
2208 }
2209
2210 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2211 const char *name)
2212 {
2213 struct format_field *field = perf_evsel__field(evsel, name);
2214 int offset;
2215
2216 if (!field)
2217 return NULL;
2218
2219 offset = field->offset;
2220
2221 if (field->flags & FIELD_IS_DYNAMIC) {
2222 offset = *(int *)(sample->raw_data + field->offset);
2223 offset &= 0xffff;
2224 }
2225
2226 return sample->raw_data + offset;
2227 }
2228
2229 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2230 const char *name)
2231 {
2232 struct format_field *field = perf_evsel__field(evsel, name);
2233 void *ptr;
2234 u64 value;
2235
2236 if (!field)
2237 return 0;
2238
2239 ptr = sample->raw_data + field->offset;
2240
2241 switch (field->size) {
2242 case 1:
2243 return *(u8 *)ptr;
2244 case 2:
2245 value = *(u16 *)ptr;
2246 break;
2247 case 4:
2248 value = *(u32 *)ptr;
2249 break;
2250 case 8:
2251 memcpy(&value, ptr, sizeof(u64));
2252 break;
2253 default:
2254 return 0;
2255 }
2256
2257 if (!evsel->needs_swap)
2258 return value;
2259
2260 switch (field->size) {
2261 case 2:
2262 return bswap_16(value);
2263 case 4:
2264 return bswap_32(value);
2265 case 8:
2266 return bswap_64(value);
2267 default:
2268 return 0;
2269 }
2270
2271 return 0;
2272 }
2273
2274 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2275 char *msg, size_t msgsize)
2276 {
2277 int paranoid;
2278
2279 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2280 evsel->attr.type == PERF_TYPE_HARDWARE &&
2281 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2282 /*
2283 * If it's cycles then fall back to hrtimer based
2284 * cpu-clock-tick sw counter, which is always available even if
2285 * no PMU support.
2286 *
2287 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2288 * b0a873e).
2289 */
2290 scnprintf(msg, msgsize, "%s",
2291 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2292
2293 evsel->attr.type = PERF_TYPE_SOFTWARE;
2294 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2295
2296 zfree(&evsel->name);
2297 return true;
2298 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2299 (paranoid = perf_event_paranoid()) > 1) {
2300 const char *name = perf_evsel__name(evsel);
2301 char *new_name;
2302
2303 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2304 return false;
2305
2306 if (evsel->name)
2307 free(evsel->name);
2308 evsel->name = new_name;
2309 scnprintf(msg, msgsize,
2310 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2311 evsel->attr.exclude_kernel = 1;
2312
2313 return true;
2314 }
2315
2316 return false;
2317 }
2318
2319 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2320 int err, char *msg, size_t size)
2321 {
2322 char sbuf[STRERR_BUFSIZE];
2323
2324 switch (err) {
2325 case EPERM:
2326 case EACCES:
2327 return scnprintf(msg, size,
2328 "You may not have permission to collect %sstats.\n\n"
2329 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2330 "which controls use of the performance events system by\n"
2331 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2332 "The current value is %d:\n\n"
2333 " -1: Allow use of (almost) all events by all users\n"
2334 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2335 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2336 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2337 target->system_wide ? "system-wide " : "",
2338 perf_event_paranoid());
2339 case ENOENT:
2340 return scnprintf(msg, size, "The %s event is not supported.",
2341 perf_evsel__name(evsel));
2342 case EMFILE:
2343 return scnprintf(msg, size, "%s",
2344 "Too many events are opened.\n"
2345 "Probably the maximum number of open file descriptors has been reached.\n"
2346 "Hint: Try again after reducing the number of events.\n"
2347 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2348 case ENOMEM:
2349 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2350 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2351 return scnprintf(msg, size,
2352 "Not enough memory to setup event with callchain.\n"
2353 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2354 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2355 break;
2356 case ENODEV:
2357 if (target->cpu_list)
2358 return scnprintf(msg, size, "%s",
2359 "No such device - did you specify an out-of-range profile CPU?");
2360 break;
2361 case EOPNOTSUPP:
2362 if (evsel->attr.precise_ip)
2363 return scnprintf(msg, size, "%s",
2364 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2365 #if defined(__i386__) || defined(__x86_64__)
2366 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2367 return scnprintf(msg, size, "%s",
2368 "No hardware sampling interrupt available.\n"
2369 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2370 #endif
2371 break;
2372 case EBUSY:
2373 if (find_process("oprofiled"))
2374 return scnprintf(msg, size,
2375 "The PMU counters are busy/taken by another profiler.\n"
2376 "We found oprofile daemon running, please stop it and try again.");
2377 break;
2378 case EINVAL:
2379 if (perf_missing_features.clockid)
2380 return scnprintf(msg, size, "clockid feature not supported.");
2381 if (perf_missing_features.clockid_wrong)
2382 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2383 break;
2384 default:
2385 break;
2386 }
2387
2388 return scnprintf(msg, size,
2389 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2390 "/bin/dmesg may provide additional information.\n"
2391 "No CONFIG_PERF_EVENTS=y kernel support configured?",
2392 err, strerror_r(err, sbuf, sizeof(sbuf)),
2393 perf_evsel__name(evsel));
2394 }