]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - tools/perf/util/evsel.c
timekeeping: Repair ktime_get_coarse*() granularity
[mirror_ubuntu-jammy-kernel.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41
42 #include "sane_ctype.h"
43
44 struct perf_missing_features perf_missing_features;
45
46 static clockid_t clockid;
47
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 return 0;
51 }
52
53 void __weak test_attr__ready(void) { }
54
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58
59 static struct {
60 size_t size;
61 int (*init)(struct perf_evsel *evsel);
62 void (*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 .size = sizeof(struct perf_evsel),
65 .init = perf_evsel__no_extra_init,
66 .fini = perf_evsel__no_extra_fini,
67 };
68
69 int perf_evsel__object_config(size_t object_size,
70 int (*init)(struct perf_evsel *evsel),
71 void (*fini)(struct perf_evsel *evsel))
72 {
73
74 if (object_size == 0)
75 goto set_methods;
76
77 if (perf_evsel__object.size > object_size)
78 return -EINVAL;
79
80 perf_evsel__object.size = object_size;
81
82 set_methods:
83 if (init != NULL)
84 perf_evsel__object.init = init;
85
86 if (fini != NULL)
87 perf_evsel__object.fini = fini;
88
89 return 0;
90 }
91
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 u64 mask = sample_type & PERF_SAMPLE_MASK;
97 int size = 0;
98 int i;
99
100 for (i = 0; i < 64; i++) {
101 if (mask & (1ULL << i))
102 size++;
103 }
104
105 size *= sizeof(u64);
106
107 return size;
108 }
109
110 /**
111 * __perf_evsel__calc_id_pos - calculate id_pos.
112 * @sample_type: sample type
113 *
114 * This function returns the position of the event id (PERF_SAMPLE_ID or
115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116 * sample_event.
117 */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 int idx = 0;
121
122 if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 return 0;
124
125 if (!(sample_type & PERF_SAMPLE_ID))
126 return -1;
127
128 if (sample_type & PERF_SAMPLE_IP)
129 idx += 1;
130
131 if (sample_type & PERF_SAMPLE_TID)
132 idx += 1;
133
134 if (sample_type & PERF_SAMPLE_TIME)
135 idx += 1;
136
137 if (sample_type & PERF_SAMPLE_ADDR)
138 idx += 1;
139
140 return idx;
141 }
142
143 /**
144 * __perf_evsel__calc_is_pos - calculate is_pos.
145 * @sample_type: sample type
146 *
147 * This function returns the position (counting backwards) of the event id
148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149 * sample_id_all is used there is an id sample appended to non-sample events.
150 */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 int idx = 1;
154
155 if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 return 1;
157
158 if (!(sample_type & PERF_SAMPLE_ID))
159 return -1;
160
161 if (sample_type & PERF_SAMPLE_CPU)
162 idx += 1;
163
164 if (sample_type & PERF_SAMPLE_STREAM_ID)
165 idx += 1;
166
167 return idx;
168 }
169
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 enum perf_event_sample_format bit)
178 {
179 if (!(evsel->attr.sample_type & bit)) {
180 evsel->attr.sample_type |= bit;
181 evsel->sample_size += sizeof(u64);
182 perf_evsel__calc_id_pos(evsel);
183 }
184 }
185
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 enum perf_event_sample_format bit)
188 {
189 if (evsel->attr.sample_type & bit) {
190 evsel->attr.sample_type &= ~bit;
191 evsel->sample_size -= sizeof(u64);
192 perf_evsel__calc_id_pos(evsel);
193 }
194 }
195
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 bool can_sample_identifier)
198 {
199 if (can_sample_identifier) {
200 perf_evsel__reset_sample_bit(evsel, ID);
201 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 } else {
203 perf_evsel__set_sample_bit(evsel, ID);
204 }
205 evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207
208 /**
209 * perf_evsel__is_function_event - Return whether given evsel is a function
210 * trace event
211 *
212 * @evsel - evsel selector to be tested
213 *
214 * Return %true if event is function trace event
215 */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219
220 return evsel->name &&
221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222
223 #undef FUNCTION_EVENT
224 }
225
226 void perf_evsel__init(struct perf_evsel *evsel,
227 struct perf_event_attr *attr, int idx)
228 {
229 evsel->idx = idx;
230 evsel->tracking = !idx;
231 evsel->attr = *attr;
232 evsel->leader = evsel;
233 evsel->unit = "";
234 evsel->scale = 1.0;
235 evsel->max_events = ULONG_MAX;
236 evsel->evlist = NULL;
237 evsel->bpf_fd = -1;
238 INIT_LIST_HEAD(&evsel->node);
239 INIT_LIST_HEAD(&evsel->config_terms);
240 perf_evsel__object.init(evsel);
241 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
242 perf_evsel__calc_id_pos(evsel);
243 evsel->cmdline_group_boundary = false;
244 evsel->metric_expr = NULL;
245 evsel->metric_name = NULL;
246 evsel->metric_events = NULL;
247 evsel->collect_stat = false;
248 evsel->pmu_name = NULL;
249 }
250
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254
255 if (!evsel)
256 return NULL;
257 perf_evsel__init(evsel, attr, idx);
258
259 if (perf_evsel__is_bpf_output(evsel)) {
260 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
261 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
262 evsel->attr.sample_period = 1;
263 }
264
265 if (perf_evsel__is_clock(evsel)) {
266 /*
267 * The evsel->unit points to static alias->unit
268 * so it's ok to use static string in here.
269 */
270 static const char *unit = "msec";
271
272 evsel->unit = unit;
273 evsel->scale = 1e-6;
274 }
275
276 return evsel;
277 }
278
279 static bool perf_event_can_profile_kernel(void)
280 {
281 return geteuid() == 0 || perf_event_paranoid() == -1;
282 }
283
284 struct perf_evsel *perf_evsel__new_cycles(bool precise)
285 {
286 struct perf_event_attr attr = {
287 .type = PERF_TYPE_HARDWARE,
288 .config = PERF_COUNT_HW_CPU_CYCLES,
289 .exclude_kernel = !perf_event_can_profile_kernel(),
290 };
291 struct perf_evsel *evsel;
292
293 event_attr_init(&attr);
294
295 if (!precise)
296 goto new_event;
297
298 /*
299 * Now let the usual logic to set up the perf_event_attr defaults
300 * to kick in when we return and before perf_evsel__open() is called.
301 */
302 new_event:
303 evsel = perf_evsel__new(&attr);
304 if (evsel == NULL)
305 goto out;
306
307 evsel->precise_max = true;
308
309 /* use asprintf() because free(evsel) assumes name is allocated */
310 if (asprintf(&evsel->name, "cycles%s%s%.*s",
311 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
312 attr.exclude_kernel ? "u" : "",
313 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
314 goto error_free;
315 out:
316 return evsel;
317 error_free:
318 perf_evsel__delete(evsel);
319 evsel = NULL;
320 goto out;
321 }
322
323 /*
324 * Returns pointer with encoded error via <linux/err.h> interface.
325 */
326 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
327 {
328 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
329 int err = -ENOMEM;
330
331 if (evsel == NULL) {
332 goto out_err;
333 } else {
334 struct perf_event_attr attr = {
335 .type = PERF_TYPE_TRACEPOINT,
336 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
337 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
338 };
339
340 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
341 goto out_free;
342
343 evsel->tp_format = trace_event__tp_format(sys, name);
344 if (IS_ERR(evsel->tp_format)) {
345 err = PTR_ERR(evsel->tp_format);
346 goto out_free;
347 }
348
349 event_attr_init(&attr);
350 attr.config = evsel->tp_format->id;
351 attr.sample_period = 1;
352 perf_evsel__init(evsel, &attr, idx);
353 }
354
355 return evsel;
356
357 out_free:
358 zfree(&evsel->name);
359 free(evsel);
360 out_err:
361 return ERR_PTR(err);
362 }
363
364 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
365 "cycles",
366 "instructions",
367 "cache-references",
368 "cache-misses",
369 "branches",
370 "branch-misses",
371 "bus-cycles",
372 "stalled-cycles-frontend",
373 "stalled-cycles-backend",
374 "ref-cycles",
375 };
376
377 static const char *__perf_evsel__hw_name(u64 config)
378 {
379 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
380 return perf_evsel__hw_names[config];
381
382 return "unknown-hardware";
383 }
384
385 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
386 {
387 int colon = 0, r = 0;
388 struct perf_event_attr *attr = &evsel->attr;
389 bool exclude_guest_default = false;
390
391 #define MOD_PRINT(context, mod) do { \
392 if (!attr->exclude_##context) { \
393 if (!colon) colon = ++r; \
394 r += scnprintf(bf + r, size - r, "%c", mod); \
395 } } while(0)
396
397 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
398 MOD_PRINT(kernel, 'k');
399 MOD_PRINT(user, 'u');
400 MOD_PRINT(hv, 'h');
401 exclude_guest_default = true;
402 }
403
404 if (attr->precise_ip) {
405 if (!colon)
406 colon = ++r;
407 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
408 exclude_guest_default = true;
409 }
410
411 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
412 MOD_PRINT(host, 'H');
413 MOD_PRINT(guest, 'G');
414 }
415 #undef MOD_PRINT
416 if (colon)
417 bf[colon - 1] = ':';
418 return r;
419 }
420
421 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
422 {
423 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
424 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
425 }
426
427 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
428 "cpu-clock",
429 "task-clock",
430 "page-faults",
431 "context-switches",
432 "cpu-migrations",
433 "minor-faults",
434 "major-faults",
435 "alignment-faults",
436 "emulation-faults",
437 "dummy",
438 };
439
440 static const char *__perf_evsel__sw_name(u64 config)
441 {
442 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
443 return perf_evsel__sw_names[config];
444 return "unknown-software";
445 }
446
447 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
448 {
449 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
450 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
451 }
452
453 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
454 {
455 int r;
456
457 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
458
459 if (type & HW_BREAKPOINT_R)
460 r += scnprintf(bf + r, size - r, "r");
461
462 if (type & HW_BREAKPOINT_W)
463 r += scnprintf(bf + r, size - r, "w");
464
465 if (type & HW_BREAKPOINT_X)
466 r += scnprintf(bf + r, size - r, "x");
467
468 return r;
469 }
470
471 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
472 {
473 struct perf_event_attr *attr = &evsel->attr;
474 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
475 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
476 }
477
478 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
479 [PERF_EVSEL__MAX_ALIASES] = {
480 { "L1-dcache", "l1-d", "l1d", "L1-data", },
481 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
482 { "LLC", "L2", },
483 { "dTLB", "d-tlb", "Data-TLB", },
484 { "iTLB", "i-tlb", "Instruction-TLB", },
485 { "branch", "branches", "bpu", "btb", "bpc", },
486 { "node", },
487 };
488
489 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
490 [PERF_EVSEL__MAX_ALIASES] = {
491 { "load", "loads", "read", },
492 { "store", "stores", "write", },
493 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
494 };
495
496 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
497 [PERF_EVSEL__MAX_ALIASES] = {
498 { "refs", "Reference", "ops", "access", },
499 { "misses", "miss", },
500 };
501
502 #define C(x) PERF_COUNT_HW_CACHE_##x
503 #define CACHE_READ (1 << C(OP_READ))
504 #define CACHE_WRITE (1 << C(OP_WRITE))
505 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
506 #define COP(x) (1 << x)
507
508 /*
509 * cache operartion stat
510 * L1I : Read and prefetch only
511 * ITLB and BPU : Read-only
512 */
513 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
514 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
515 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
516 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
517 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518 [C(ITLB)] = (CACHE_READ),
519 [C(BPU)] = (CACHE_READ),
520 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521 };
522
523 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
524 {
525 if (perf_evsel__hw_cache_stat[type] & COP(op))
526 return true; /* valid */
527 else
528 return false; /* invalid */
529 }
530
531 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
532 char *bf, size_t size)
533 {
534 if (result) {
535 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
536 perf_evsel__hw_cache_op[op][0],
537 perf_evsel__hw_cache_result[result][0]);
538 }
539
540 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
541 perf_evsel__hw_cache_op[op][1]);
542 }
543
544 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
545 {
546 u8 op, result, type = (config >> 0) & 0xff;
547 const char *err = "unknown-ext-hardware-cache-type";
548
549 if (type >= PERF_COUNT_HW_CACHE_MAX)
550 goto out_err;
551
552 op = (config >> 8) & 0xff;
553 err = "unknown-ext-hardware-cache-op";
554 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
555 goto out_err;
556
557 result = (config >> 16) & 0xff;
558 err = "unknown-ext-hardware-cache-result";
559 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
560 goto out_err;
561
562 err = "invalid-cache";
563 if (!perf_evsel__is_cache_op_valid(type, op))
564 goto out_err;
565
566 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
567 out_err:
568 return scnprintf(bf, size, "%s", err);
569 }
570
571 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
572 {
573 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
574 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
575 }
576
577 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
578 {
579 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
581 }
582
583 static int perf_evsel__tool_name(char *bf, size_t size)
584 {
585 int ret = scnprintf(bf, size, "duration_time");
586 return ret;
587 }
588
589 const char *perf_evsel__name(struct perf_evsel *evsel)
590 {
591 char bf[128];
592
593 if (evsel->name)
594 return evsel->name;
595
596 switch (evsel->attr.type) {
597 case PERF_TYPE_RAW:
598 perf_evsel__raw_name(evsel, bf, sizeof(bf));
599 break;
600
601 case PERF_TYPE_HARDWARE:
602 perf_evsel__hw_name(evsel, bf, sizeof(bf));
603 break;
604
605 case PERF_TYPE_HW_CACHE:
606 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
607 break;
608
609 case PERF_TYPE_SOFTWARE:
610 if (evsel->tool_event)
611 perf_evsel__tool_name(bf, sizeof(bf));
612 else
613 perf_evsel__sw_name(evsel, bf, sizeof(bf));
614 break;
615
616 case PERF_TYPE_TRACEPOINT:
617 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
618 break;
619
620 case PERF_TYPE_BREAKPOINT:
621 perf_evsel__bp_name(evsel, bf, sizeof(bf));
622 break;
623
624 default:
625 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
626 evsel->attr.type);
627 break;
628 }
629
630 evsel->name = strdup(bf);
631
632 return evsel->name ?: "unknown";
633 }
634
635 const char *perf_evsel__group_name(struct perf_evsel *evsel)
636 {
637 return evsel->group_name ?: "anon group";
638 }
639
640 /*
641 * Returns the group details for the specified leader,
642 * with following rules.
643 *
644 * For record -e '{cycles,instructions}'
645 * 'anon group { cycles:u, instructions:u }'
646 *
647 * For record -e 'cycles,instructions' and report --group
648 * 'cycles:u, instructions:u'
649 */
650 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
651 {
652 int ret = 0;
653 struct perf_evsel *pos;
654 const char *group_name = perf_evsel__group_name(evsel);
655
656 if (!evsel->forced_leader)
657 ret = scnprintf(buf, size, "%s { ", group_name);
658
659 ret += scnprintf(buf + ret, size - ret, "%s",
660 perf_evsel__name(evsel));
661
662 for_each_group_member(pos, evsel)
663 ret += scnprintf(buf + ret, size - ret, ", %s",
664 perf_evsel__name(pos));
665
666 if (!evsel->forced_leader)
667 ret += scnprintf(buf + ret, size - ret, " }");
668
669 return ret;
670 }
671
672 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
673 struct record_opts *opts,
674 struct callchain_param *param)
675 {
676 bool function = perf_evsel__is_function_event(evsel);
677 struct perf_event_attr *attr = &evsel->attr;
678
679 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
680
681 attr->sample_max_stack = param->max_stack;
682
683 if (param->record_mode == CALLCHAIN_LBR) {
684 if (!opts->branch_stack) {
685 if (attr->exclude_user) {
686 pr_warning("LBR callstack option is only available "
687 "to get user callchain information. "
688 "Falling back to framepointers.\n");
689 } else {
690 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
691 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
692 PERF_SAMPLE_BRANCH_CALL_STACK |
693 PERF_SAMPLE_BRANCH_NO_CYCLES |
694 PERF_SAMPLE_BRANCH_NO_FLAGS;
695 }
696 } else
697 pr_warning("Cannot use LBR callstack with branch stack. "
698 "Falling back to framepointers.\n");
699 }
700
701 if (param->record_mode == CALLCHAIN_DWARF) {
702 if (!function) {
703 perf_evsel__set_sample_bit(evsel, REGS_USER);
704 perf_evsel__set_sample_bit(evsel, STACK_USER);
705 attr->sample_regs_user |= PERF_REGS_MASK;
706 attr->sample_stack_user = param->dump_size;
707 attr->exclude_callchain_user = 1;
708 } else {
709 pr_info("Cannot use DWARF unwind for function trace event,"
710 " falling back to framepointers.\n");
711 }
712 }
713
714 if (function) {
715 pr_info("Disabling user space callchains for function trace event.\n");
716 attr->exclude_callchain_user = 1;
717 }
718 }
719
720 void perf_evsel__config_callchain(struct perf_evsel *evsel,
721 struct record_opts *opts,
722 struct callchain_param *param)
723 {
724 if (param->enabled)
725 return __perf_evsel__config_callchain(evsel, opts, param);
726 }
727
728 static void
729 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
730 struct callchain_param *param)
731 {
732 struct perf_event_attr *attr = &evsel->attr;
733
734 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
735 if (param->record_mode == CALLCHAIN_LBR) {
736 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
737 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
738 PERF_SAMPLE_BRANCH_CALL_STACK);
739 }
740 if (param->record_mode == CALLCHAIN_DWARF) {
741 perf_evsel__reset_sample_bit(evsel, REGS_USER);
742 perf_evsel__reset_sample_bit(evsel, STACK_USER);
743 }
744 }
745
746 static void apply_config_terms(struct perf_evsel *evsel,
747 struct record_opts *opts, bool track)
748 {
749 struct perf_evsel_config_term *term;
750 struct list_head *config_terms = &evsel->config_terms;
751 struct perf_event_attr *attr = &evsel->attr;
752 /* callgraph default */
753 struct callchain_param param = {
754 .record_mode = callchain_param.record_mode,
755 };
756 u32 dump_size = 0;
757 int max_stack = 0;
758 const char *callgraph_buf = NULL;
759
760 list_for_each_entry(term, config_terms, list) {
761 switch (term->type) {
762 case PERF_EVSEL__CONFIG_TERM_PERIOD:
763 if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
764 attr->sample_period = term->val.period;
765 attr->freq = 0;
766 perf_evsel__reset_sample_bit(evsel, PERIOD);
767 }
768 break;
769 case PERF_EVSEL__CONFIG_TERM_FREQ:
770 if (!(term->weak && opts->user_freq != UINT_MAX)) {
771 attr->sample_freq = term->val.freq;
772 attr->freq = 1;
773 perf_evsel__set_sample_bit(evsel, PERIOD);
774 }
775 break;
776 case PERF_EVSEL__CONFIG_TERM_TIME:
777 if (term->val.time)
778 perf_evsel__set_sample_bit(evsel, TIME);
779 else
780 perf_evsel__reset_sample_bit(evsel, TIME);
781 break;
782 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
783 callgraph_buf = term->val.callgraph;
784 break;
785 case PERF_EVSEL__CONFIG_TERM_BRANCH:
786 if (term->val.branch && strcmp(term->val.branch, "no")) {
787 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
788 parse_branch_str(term->val.branch,
789 &attr->branch_sample_type);
790 } else
791 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
792 break;
793 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
794 dump_size = term->val.stack_user;
795 break;
796 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
797 max_stack = term->val.max_stack;
798 break;
799 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
800 evsel->max_events = term->val.max_events;
801 break;
802 case PERF_EVSEL__CONFIG_TERM_INHERIT:
803 /*
804 * attr->inherit should has already been set by
805 * perf_evsel__config. If user explicitly set
806 * inherit using config terms, override global
807 * opt->no_inherit setting.
808 */
809 attr->inherit = term->val.inherit ? 1 : 0;
810 break;
811 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
812 attr->write_backward = term->val.overwrite ? 1 : 0;
813 break;
814 case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
815 break;
816 case PERF_EVSEL__CONFIG_TERM_PERCORE:
817 break;
818 default:
819 break;
820 }
821 }
822
823 /* User explicitly set per-event callgraph, clear the old setting and reset. */
824 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
825 bool sample_address = false;
826
827 if (max_stack) {
828 param.max_stack = max_stack;
829 if (callgraph_buf == NULL)
830 callgraph_buf = "fp";
831 }
832
833 /* parse callgraph parameters */
834 if (callgraph_buf != NULL) {
835 if (!strcmp(callgraph_buf, "no")) {
836 param.enabled = false;
837 param.record_mode = CALLCHAIN_NONE;
838 } else {
839 param.enabled = true;
840 if (parse_callchain_record(callgraph_buf, &param)) {
841 pr_err("per-event callgraph setting for %s failed. "
842 "Apply callgraph global setting for it\n",
843 evsel->name);
844 return;
845 }
846 if (param.record_mode == CALLCHAIN_DWARF)
847 sample_address = true;
848 }
849 }
850 if (dump_size > 0) {
851 dump_size = round_up(dump_size, sizeof(u64));
852 param.dump_size = dump_size;
853 }
854
855 /* If global callgraph set, clear it */
856 if (callchain_param.enabled)
857 perf_evsel__reset_callgraph(evsel, &callchain_param);
858
859 /* set perf-event callgraph */
860 if (param.enabled) {
861 if (sample_address) {
862 perf_evsel__set_sample_bit(evsel, ADDR);
863 perf_evsel__set_sample_bit(evsel, DATA_SRC);
864 evsel->attr.mmap_data = track;
865 }
866 perf_evsel__config_callchain(evsel, opts, &param);
867 }
868 }
869 }
870
871 static bool is_dummy_event(struct perf_evsel *evsel)
872 {
873 return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
874 (evsel->attr.config == PERF_COUNT_SW_DUMMY);
875 }
876
877 /*
878 * The enable_on_exec/disabled value strategy:
879 *
880 * 1) For any type of traced program:
881 * - all independent events and group leaders are disabled
882 * - all group members are enabled
883 *
884 * Group members are ruled by group leaders. They need to
885 * be enabled, because the group scheduling relies on that.
886 *
887 * 2) For traced programs executed by perf:
888 * - all independent events and group leaders have
889 * enable_on_exec set
890 * - we don't specifically enable or disable any event during
891 * the record command
892 *
893 * Independent events and group leaders are initially disabled
894 * and get enabled by exec. Group members are ruled by group
895 * leaders as stated in 1).
896 *
897 * 3) For traced programs attached by perf (pid/tid):
898 * - we specifically enable or disable all events during
899 * the record command
900 *
901 * When attaching events to already running traced we
902 * enable/disable events specifically, as there's no
903 * initial traced exec call.
904 */
905 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
906 struct callchain_param *callchain)
907 {
908 struct perf_evsel *leader = evsel->leader;
909 struct perf_event_attr *attr = &evsel->attr;
910 int track = evsel->tracking;
911 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
912
913 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
914 attr->inherit = !opts->no_inherit;
915 attr->write_backward = opts->overwrite ? 1 : 0;
916
917 perf_evsel__set_sample_bit(evsel, IP);
918 perf_evsel__set_sample_bit(evsel, TID);
919
920 if (evsel->sample_read) {
921 perf_evsel__set_sample_bit(evsel, READ);
922
923 /*
924 * We need ID even in case of single event, because
925 * PERF_SAMPLE_READ process ID specific data.
926 */
927 perf_evsel__set_sample_id(evsel, false);
928
929 /*
930 * Apply group format only if we belong to group
931 * with more than one members.
932 */
933 if (leader->nr_members > 1) {
934 attr->read_format |= PERF_FORMAT_GROUP;
935 attr->inherit = 0;
936 }
937 }
938
939 /*
940 * We default some events to have a default interval. But keep
941 * it a weak assumption overridable by the user.
942 */
943 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
944 opts->user_interval != ULLONG_MAX)) {
945 if (opts->freq) {
946 perf_evsel__set_sample_bit(evsel, PERIOD);
947 attr->freq = 1;
948 attr->sample_freq = opts->freq;
949 } else {
950 attr->sample_period = opts->default_interval;
951 }
952 }
953
954 /*
955 * Disable sampling for all group members other
956 * than leader in case leader 'leads' the sampling.
957 */
958 if ((leader != evsel) && leader->sample_read) {
959 attr->freq = 0;
960 attr->sample_freq = 0;
961 attr->sample_period = 0;
962 attr->write_backward = 0;
963
964 /*
965 * We don't get sample for slave events, we make them
966 * when delivering group leader sample. Set the slave
967 * event to follow the master sample_type to ease up
968 * report.
969 */
970 attr->sample_type = leader->attr.sample_type;
971 }
972
973 if (opts->no_samples)
974 attr->sample_freq = 0;
975
976 if (opts->inherit_stat) {
977 evsel->attr.read_format |=
978 PERF_FORMAT_TOTAL_TIME_ENABLED |
979 PERF_FORMAT_TOTAL_TIME_RUNNING |
980 PERF_FORMAT_ID;
981 attr->inherit_stat = 1;
982 }
983
984 if (opts->sample_address) {
985 perf_evsel__set_sample_bit(evsel, ADDR);
986 attr->mmap_data = track;
987 }
988
989 /*
990 * We don't allow user space callchains for function trace
991 * event, due to issues with page faults while tracing page
992 * fault handler and its overall trickiness nature.
993 */
994 if (perf_evsel__is_function_event(evsel))
995 evsel->attr.exclude_callchain_user = 1;
996
997 if (callchain && callchain->enabled && !evsel->no_aux_samples)
998 perf_evsel__config_callchain(evsel, opts, callchain);
999
1000 if (opts->sample_intr_regs) {
1001 attr->sample_regs_intr = opts->sample_intr_regs;
1002 perf_evsel__set_sample_bit(evsel, REGS_INTR);
1003 }
1004
1005 if (opts->sample_user_regs) {
1006 attr->sample_regs_user |= opts->sample_user_regs;
1007 perf_evsel__set_sample_bit(evsel, REGS_USER);
1008 }
1009
1010 if (target__has_cpu(&opts->target) || opts->sample_cpu)
1011 perf_evsel__set_sample_bit(evsel, CPU);
1012
1013 /*
1014 * When the user explicitly disabled time don't force it here.
1015 */
1016 if (opts->sample_time &&
1017 (!perf_missing_features.sample_id_all &&
1018 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1019 opts->sample_time_set)))
1020 perf_evsel__set_sample_bit(evsel, TIME);
1021
1022 if (opts->raw_samples && !evsel->no_aux_samples) {
1023 perf_evsel__set_sample_bit(evsel, TIME);
1024 perf_evsel__set_sample_bit(evsel, RAW);
1025 perf_evsel__set_sample_bit(evsel, CPU);
1026 }
1027
1028 if (opts->sample_address)
1029 perf_evsel__set_sample_bit(evsel, DATA_SRC);
1030
1031 if (opts->sample_phys_addr)
1032 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1033
1034 if (opts->no_buffering) {
1035 attr->watermark = 0;
1036 attr->wakeup_events = 1;
1037 }
1038 if (opts->branch_stack && !evsel->no_aux_samples) {
1039 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1040 attr->branch_sample_type = opts->branch_stack;
1041 }
1042
1043 if (opts->sample_weight)
1044 perf_evsel__set_sample_bit(evsel, WEIGHT);
1045
1046 attr->task = track;
1047 attr->mmap = track;
1048 attr->mmap2 = track && !perf_missing_features.mmap2;
1049 attr->comm = track;
1050 attr->ksymbol = track && !perf_missing_features.ksymbol;
1051 attr->bpf_event = track && !opts->no_bpf_event &&
1052 !perf_missing_features.bpf_event;
1053
1054 if (opts->record_namespaces)
1055 attr->namespaces = track;
1056
1057 if (opts->record_switch_events)
1058 attr->context_switch = track;
1059
1060 if (opts->sample_transaction)
1061 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1062
1063 if (opts->running_time) {
1064 evsel->attr.read_format |=
1065 PERF_FORMAT_TOTAL_TIME_ENABLED |
1066 PERF_FORMAT_TOTAL_TIME_RUNNING;
1067 }
1068
1069 /*
1070 * XXX see the function comment above
1071 *
1072 * Disabling only independent events or group leaders,
1073 * keeping group members enabled.
1074 */
1075 if (perf_evsel__is_group_leader(evsel))
1076 attr->disabled = 1;
1077
1078 /*
1079 * Setting enable_on_exec for independent events and
1080 * group leaders for traced executed by perf.
1081 */
1082 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1083 !opts->initial_delay)
1084 attr->enable_on_exec = 1;
1085
1086 if (evsel->immediate) {
1087 attr->disabled = 0;
1088 attr->enable_on_exec = 0;
1089 }
1090
1091 clockid = opts->clockid;
1092 if (opts->use_clockid) {
1093 attr->use_clockid = 1;
1094 attr->clockid = opts->clockid;
1095 }
1096
1097 if (evsel->precise_max)
1098 attr->precise_ip = 3;
1099
1100 if (opts->all_user) {
1101 attr->exclude_kernel = 1;
1102 attr->exclude_user = 0;
1103 }
1104
1105 if (opts->all_kernel) {
1106 attr->exclude_kernel = 0;
1107 attr->exclude_user = 1;
1108 }
1109
1110 if (evsel->own_cpus || evsel->unit)
1111 evsel->attr.read_format |= PERF_FORMAT_ID;
1112
1113 /*
1114 * Apply event specific term settings,
1115 * it overloads any global configuration.
1116 */
1117 apply_config_terms(evsel, opts, track);
1118
1119 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1120
1121 /* The --period option takes the precedence. */
1122 if (opts->period_set) {
1123 if (opts->period)
1124 perf_evsel__set_sample_bit(evsel, PERIOD);
1125 else
1126 perf_evsel__reset_sample_bit(evsel, PERIOD);
1127 }
1128
1129 /*
1130 * For initial_delay, a dummy event is added implicitly.
1131 * The software event will trigger -EOPNOTSUPP error out,
1132 * if BRANCH_STACK bit is set.
1133 */
1134 if (opts->initial_delay && is_dummy_event(evsel))
1135 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1136 }
1137
1138 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1139 {
1140 if (evsel->system_wide)
1141 nthreads = 1;
1142
1143 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1144
1145 if (evsel->fd) {
1146 int cpu, thread;
1147 for (cpu = 0; cpu < ncpus; cpu++) {
1148 for (thread = 0; thread < nthreads; thread++) {
1149 FD(evsel, cpu, thread) = -1;
1150 }
1151 }
1152 }
1153
1154 return evsel->fd != NULL ? 0 : -ENOMEM;
1155 }
1156
1157 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1158 int ioc, void *arg)
1159 {
1160 int cpu, thread;
1161
1162 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1163 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1164 int fd = FD(evsel, cpu, thread),
1165 err = ioctl(fd, ioc, arg);
1166
1167 if (err)
1168 return err;
1169 }
1170 }
1171
1172 return 0;
1173 }
1174
1175 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1176 {
1177 return perf_evsel__run_ioctl(evsel,
1178 PERF_EVENT_IOC_SET_FILTER,
1179 (void *)filter);
1180 }
1181
1182 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1183 {
1184 char *new_filter = strdup(filter);
1185
1186 if (new_filter != NULL) {
1187 free(evsel->filter);
1188 evsel->filter = new_filter;
1189 return 0;
1190 }
1191
1192 return -1;
1193 }
1194
1195 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1196 const char *fmt, const char *filter)
1197 {
1198 char *new_filter;
1199
1200 if (evsel->filter == NULL)
1201 return perf_evsel__set_filter(evsel, filter);
1202
1203 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1204 free(evsel->filter);
1205 evsel->filter = new_filter;
1206 return 0;
1207 }
1208
1209 return -1;
1210 }
1211
1212 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1213 {
1214 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1215 }
1216
1217 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1218 {
1219 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1220 }
1221
1222 int perf_evsel__enable(struct perf_evsel *evsel)
1223 {
1224 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1225
1226 if (!err)
1227 evsel->disabled = false;
1228
1229 return err;
1230 }
1231
1232 int perf_evsel__disable(struct perf_evsel *evsel)
1233 {
1234 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1235 /*
1236 * We mark it disabled here so that tools that disable a event can
1237 * ignore events after they disable it. I.e. the ring buffer may have
1238 * already a few more events queued up before the kernel got the stop
1239 * request.
1240 */
1241 if (!err)
1242 evsel->disabled = true;
1243
1244 return err;
1245 }
1246
1247 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1248 {
1249 if (ncpus == 0 || nthreads == 0)
1250 return 0;
1251
1252 if (evsel->system_wide)
1253 nthreads = 1;
1254
1255 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1256 if (evsel->sample_id == NULL)
1257 return -ENOMEM;
1258
1259 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1260 if (evsel->id == NULL) {
1261 xyarray__delete(evsel->sample_id);
1262 evsel->sample_id = NULL;
1263 return -ENOMEM;
1264 }
1265
1266 return 0;
1267 }
1268
1269 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1270 {
1271 xyarray__delete(evsel->fd);
1272 evsel->fd = NULL;
1273 }
1274
1275 static void perf_evsel__free_id(struct perf_evsel *evsel)
1276 {
1277 xyarray__delete(evsel->sample_id);
1278 evsel->sample_id = NULL;
1279 zfree(&evsel->id);
1280 }
1281
1282 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1283 {
1284 struct perf_evsel_config_term *term, *h;
1285
1286 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1287 list_del(&term->list);
1288 free(term);
1289 }
1290 }
1291
1292 void perf_evsel__close_fd(struct perf_evsel *evsel)
1293 {
1294 int cpu, thread;
1295
1296 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1297 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1298 close(FD(evsel, cpu, thread));
1299 FD(evsel, cpu, thread) = -1;
1300 }
1301 }
1302
1303 void perf_evsel__exit(struct perf_evsel *evsel)
1304 {
1305 assert(list_empty(&evsel->node));
1306 assert(evsel->evlist == NULL);
1307 perf_evsel__free_counts(evsel);
1308 perf_evsel__free_fd(evsel);
1309 perf_evsel__free_id(evsel);
1310 perf_evsel__free_config_terms(evsel);
1311 cgroup__put(evsel->cgrp);
1312 cpu_map__put(evsel->cpus);
1313 cpu_map__put(evsel->own_cpus);
1314 thread_map__put(evsel->threads);
1315 zfree(&evsel->group_name);
1316 zfree(&evsel->name);
1317 perf_evsel__object.fini(evsel);
1318 }
1319
1320 void perf_evsel__delete(struct perf_evsel *evsel)
1321 {
1322 perf_evsel__exit(evsel);
1323 free(evsel);
1324 }
1325
1326 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1327 struct perf_counts_values *count)
1328 {
1329 struct perf_counts_values tmp;
1330
1331 if (!evsel->prev_raw_counts)
1332 return;
1333
1334 if (cpu == -1) {
1335 tmp = evsel->prev_raw_counts->aggr;
1336 evsel->prev_raw_counts->aggr = *count;
1337 } else {
1338 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1339 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1340 }
1341
1342 count->val = count->val - tmp.val;
1343 count->ena = count->ena - tmp.ena;
1344 count->run = count->run - tmp.run;
1345 }
1346
1347 void perf_counts_values__scale(struct perf_counts_values *count,
1348 bool scale, s8 *pscaled)
1349 {
1350 s8 scaled = 0;
1351
1352 if (scale) {
1353 if (count->run == 0) {
1354 scaled = -1;
1355 count->val = 0;
1356 } else if (count->run < count->ena) {
1357 scaled = 1;
1358 count->val = (u64)((double) count->val * count->ena / count->run);
1359 }
1360 }
1361
1362 if (pscaled)
1363 *pscaled = scaled;
1364 }
1365
1366 static int perf_evsel__read_size(struct perf_evsel *evsel)
1367 {
1368 u64 read_format = evsel->attr.read_format;
1369 int entry = sizeof(u64); /* value */
1370 int size = 0;
1371 int nr = 1;
1372
1373 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1374 size += sizeof(u64);
1375
1376 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1377 size += sizeof(u64);
1378
1379 if (read_format & PERF_FORMAT_ID)
1380 entry += sizeof(u64);
1381
1382 if (read_format & PERF_FORMAT_GROUP) {
1383 nr = evsel->nr_members;
1384 size += sizeof(u64);
1385 }
1386
1387 size += entry * nr;
1388 return size;
1389 }
1390
1391 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1392 struct perf_counts_values *count)
1393 {
1394 size_t size = perf_evsel__read_size(evsel);
1395
1396 memset(count, 0, sizeof(*count));
1397
1398 if (FD(evsel, cpu, thread) < 0)
1399 return -EINVAL;
1400
1401 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1402 return -errno;
1403
1404 return 0;
1405 }
1406
1407 static int
1408 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1409 {
1410 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1411
1412 return perf_evsel__read(evsel, cpu, thread, count);
1413 }
1414
1415 static void
1416 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1417 u64 val, u64 ena, u64 run)
1418 {
1419 struct perf_counts_values *count;
1420
1421 count = perf_counts(counter->counts, cpu, thread);
1422
1423 count->val = val;
1424 count->ena = ena;
1425 count->run = run;
1426 count->loaded = true;
1427 }
1428
1429 static int
1430 perf_evsel__process_group_data(struct perf_evsel *leader,
1431 int cpu, int thread, u64 *data)
1432 {
1433 u64 read_format = leader->attr.read_format;
1434 struct sample_read_value *v;
1435 u64 nr, ena = 0, run = 0, i;
1436
1437 nr = *data++;
1438
1439 if (nr != (u64) leader->nr_members)
1440 return -EINVAL;
1441
1442 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1443 ena = *data++;
1444
1445 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1446 run = *data++;
1447
1448 v = (struct sample_read_value *) data;
1449
1450 perf_evsel__set_count(leader, cpu, thread,
1451 v[0].value, ena, run);
1452
1453 for (i = 1; i < nr; i++) {
1454 struct perf_evsel *counter;
1455
1456 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1457 if (!counter)
1458 return -EINVAL;
1459
1460 perf_evsel__set_count(counter, cpu, thread,
1461 v[i].value, ena, run);
1462 }
1463
1464 return 0;
1465 }
1466
1467 static int
1468 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1469 {
1470 struct perf_stat_evsel *ps = leader->stats;
1471 u64 read_format = leader->attr.read_format;
1472 int size = perf_evsel__read_size(leader);
1473 u64 *data = ps->group_data;
1474
1475 if (!(read_format & PERF_FORMAT_ID))
1476 return -EINVAL;
1477
1478 if (!perf_evsel__is_group_leader(leader))
1479 return -EINVAL;
1480
1481 if (!data) {
1482 data = zalloc(size);
1483 if (!data)
1484 return -ENOMEM;
1485
1486 ps->group_data = data;
1487 }
1488
1489 if (FD(leader, cpu, thread) < 0)
1490 return -EINVAL;
1491
1492 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1493 return -errno;
1494
1495 return perf_evsel__process_group_data(leader, cpu, thread, data);
1496 }
1497
1498 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1499 {
1500 u64 read_format = evsel->attr.read_format;
1501
1502 if (read_format & PERF_FORMAT_GROUP)
1503 return perf_evsel__read_group(evsel, cpu, thread);
1504 else
1505 return perf_evsel__read_one(evsel, cpu, thread);
1506 }
1507
1508 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1509 int cpu, int thread, bool scale)
1510 {
1511 struct perf_counts_values count;
1512 size_t nv = scale ? 3 : 1;
1513
1514 if (FD(evsel, cpu, thread) < 0)
1515 return -EINVAL;
1516
1517 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1518 return -ENOMEM;
1519
1520 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1521 return -errno;
1522
1523 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1524 perf_counts_values__scale(&count, scale, NULL);
1525 *perf_counts(evsel->counts, cpu, thread) = count;
1526 return 0;
1527 }
1528
1529 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1530 {
1531 struct perf_evsel *leader = evsel->leader;
1532 int fd;
1533
1534 if (perf_evsel__is_group_leader(evsel))
1535 return -1;
1536
1537 /*
1538 * Leader must be already processed/open,
1539 * if not it's a bug.
1540 */
1541 BUG_ON(!leader->fd);
1542
1543 fd = FD(leader, cpu, thread);
1544 BUG_ON(fd == -1);
1545
1546 return fd;
1547 }
1548
1549 struct bit_names {
1550 int bit;
1551 const char *name;
1552 };
1553
1554 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1555 {
1556 bool first_bit = true;
1557 int i = 0;
1558
1559 do {
1560 if (value & bits[i].bit) {
1561 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1562 first_bit = false;
1563 }
1564 } while (bits[++i].name != NULL);
1565 }
1566
1567 static void __p_sample_type(char *buf, size_t size, u64 value)
1568 {
1569 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1570 struct bit_names bits[] = {
1571 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1572 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1573 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1574 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1575 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1576 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1577 { .name = NULL, }
1578 };
1579 #undef bit_name
1580 __p_bits(buf, size, value, bits);
1581 }
1582
1583 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1584 {
1585 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1586 struct bit_names bits[] = {
1587 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1588 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1589 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1590 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1591 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1592 { .name = NULL, }
1593 };
1594 #undef bit_name
1595 __p_bits(buf, size, value, bits);
1596 }
1597
1598 static void __p_read_format(char *buf, size_t size, u64 value)
1599 {
1600 #define bit_name(n) { PERF_FORMAT_##n, #n }
1601 struct bit_names bits[] = {
1602 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1603 bit_name(ID), bit_name(GROUP),
1604 { .name = NULL, }
1605 };
1606 #undef bit_name
1607 __p_bits(buf, size, value, bits);
1608 }
1609
1610 #define BUF_SIZE 1024
1611
1612 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1613 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1614 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1615 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1616 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1617 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1618
1619 #define PRINT_ATTRn(_n, _f, _p) \
1620 do { \
1621 if (attr->_f) { \
1622 _p(attr->_f); \
1623 ret += attr__fprintf(fp, _n, buf, priv);\
1624 } \
1625 } while (0)
1626
1627 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1628
1629 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1630 attr__fprintf_f attr__fprintf, void *priv)
1631 {
1632 char buf[BUF_SIZE];
1633 int ret = 0;
1634
1635 PRINT_ATTRf(type, p_unsigned);
1636 PRINT_ATTRf(size, p_unsigned);
1637 PRINT_ATTRf(config, p_hex);
1638 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1639 PRINT_ATTRf(sample_type, p_sample_type);
1640 PRINT_ATTRf(read_format, p_read_format);
1641
1642 PRINT_ATTRf(disabled, p_unsigned);
1643 PRINT_ATTRf(inherit, p_unsigned);
1644 PRINT_ATTRf(pinned, p_unsigned);
1645 PRINT_ATTRf(exclusive, p_unsigned);
1646 PRINT_ATTRf(exclude_user, p_unsigned);
1647 PRINT_ATTRf(exclude_kernel, p_unsigned);
1648 PRINT_ATTRf(exclude_hv, p_unsigned);
1649 PRINT_ATTRf(exclude_idle, p_unsigned);
1650 PRINT_ATTRf(mmap, p_unsigned);
1651 PRINT_ATTRf(comm, p_unsigned);
1652 PRINT_ATTRf(freq, p_unsigned);
1653 PRINT_ATTRf(inherit_stat, p_unsigned);
1654 PRINT_ATTRf(enable_on_exec, p_unsigned);
1655 PRINT_ATTRf(task, p_unsigned);
1656 PRINT_ATTRf(watermark, p_unsigned);
1657 PRINT_ATTRf(precise_ip, p_unsigned);
1658 PRINT_ATTRf(mmap_data, p_unsigned);
1659 PRINT_ATTRf(sample_id_all, p_unsigned);
1660 PRINT_ATTRf(exclude_host, p_unsigned);
1661 PRINT_ATTRf(exclude_guest, p_unsigned);
1662 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1663 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1664 PRINT_ATTRf(mmap2, p_unsigned);
1665 PRINT_ATTRf(comm_exec, p_unsigned);
1666 PRINT_ATTRf(use_clockid, p_unsigned);
1667 PRINT_ATTRf(context_switch, p_unsigned);
1668 PRINT_ATTRf(write_backward, p_unsigned);
1669 PRINT_ATTRf(namespaces, p_unsigned);
1670 PRINT_ATTRf(ksymbol, p_unsigned);
1671 PRINT_ATTRf(bpf_event, p_unsigned);
1672
1673 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1674 PRINT_ATTRf(bp_type, p_unsigned);
1675 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1676 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1677 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1678 PRINT_ATTRf(sample_regs_user, p_hex);
1679 PRINT_ATTRf(sample_stack_user, p_unsigned);
1680 PRINT_ATTRf(clockid, p_signed);
1681 PRINT_ATTRf(sample_regs_intr, p_hex);
1682 PRINT_ATTRf(aux_watermark, p_unsigned);
1683 PRINT_ATTRf(sample_max_stack, p_unsigned);
1684
1685 return ret;
1686 }
1687
1688 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1689 void *priv __maybe_unused)
1690 {
1691 return fprintf(fp, " %-32s %s\n", name, val);
1692 }
1693
1694 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1695 int nr_cpus, int nr_threads,
1696 int thread_idx)
1697 {
1698 for (int cpu = 0; cpu < nr_cpus; cpu++)
1699 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1700 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1701 }
1702
1703 static int update_fds(struct perf_evsel *evsel,
1704 int nr_cpus, int cpu_idx,
1705 int nr_threads, int thread_idx)
1706 {
1707 struct perf_evsel *pos;
1708
1709 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1710 return -EINVAL;
1711
1712 evlist__for_each_entry(evsel->evlist, pos) {
1713 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1714
1715 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1716
1717 /*
1718 * Since fds for next evsel has not been created,
1719 * there is no need to iterate whole event list.
1720 */
1721 if (pos == evsel)
1722 break;
1723 }
1724 return 0;
1725 }
1726
1727 static bool ignore_missing_thread(struct perf_evsel *evsel,
1728 int nr_cpus, int cpu,
1729 struct thread_map *threads,
1730 int thread, int err)
1731 {
1732 pid_t ignore_pid = thread_map__pid(threads, thread);
1733
1734 if (!evsel->ignore_missing_thread)
1735 return false;
1736
1737 /* The system wide setup does not work with threads. */
1738 if (evsel->system_wide)
1739 return false;
1740
1741 /* The -ESRCH is perf event syscall errno for pid's not found. */
1742 if (err != -ESRCH)
1743 return false;
1744
1745 /* If there's only one thread, let it fail. */
1746 if (threads->nr == 1)
1747 return false;
1748
1749 /*
1750 * We should remove fd for missing_thread first
1751 * because thread_map__remove() will decrease threads->nr.
1752 */
1753 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1754 return false;
1755
1756 if (thread_map__remove(threads, thread))
1757 return false;
1758
1759 pr_warning("WARNING: Ignored open failure for pid %d\n",
1760 ignore_pid);
1761 return true;
1762 }
1763
1764 static void display_attr(struct perf_event_attr *attr)
1765 {
1766 if (verbose >= 2) {
1767 fprintf(stderr, "%.60s\n", graph_dotted_line);
1768 fprintf(stderr, "perf_event_attr:\n");
1769 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1770 fprintf(stderr, "%.60s\n", graph_dotted_line);
1771 }
1772 }
1773
1774 static int perf_event_open(struct perf_evsel *evsel,
1775 pid_t pid, int cpu, int group_fd,
1776 unsigned long flags)
1777 {
1778 int precise_ip = evsel->attr.precise_ip;
1779 int fd;
1780
1781 while (1) {
1782 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1783 pid, cpu, group_fd, flags);
1784
1785 fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags);
1786 if (fd >= 0)
1787 break;
1788
1789 /*
1790 * Do quick precise_ip fallback if:
1791 * - there is precise_ip set in perf_event_attr
1792 * - maximum precise is requested
1793 * - sys_perf_event_open failed with ENOTSUP error,
1794 * which is associated with wrong precise_ip
1795 */
1796 if (!precise_ip || !evsel->precise_max || (errno != ENOTSUP))
1797 break;
1798
1799 /*
1800 * We tried all the precise_ip values, and it's
1801 * still failing, so leave it to standard fallback.
1802 */
1803 if (!evsel->attr.precise_ip) {
1804 evsel->attr.precise_ip = precise_ip;
1805 break;
1806 }
1807
1808 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1809 evsel->attr.precise_ip--;
1810 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip);
1811 display_attr(&evsel->attr);
1812 }
1813
1814 return fd;
1815 }
1816
1817 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1818 struct thread_map *threads)
1819 {
1820 int cpu, thread, nthreads;
1821 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1822 int pid = -1, err;
1823 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1824
1825 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1826 return -EINVAL;
1827
1828 if (cpus == NULL) {
1829 static struct cpu_map *empty_cpu_map;
1830
1831 if (empty_cpu_map == NULL) {
1832 empty_cpu_map = cpu_map__dummy_new();
1833 if (empty_cpu_map == NULL)
1834 return -ENOMEM;
1835 }
1836
1837 cpus = empty_cpu_map;
1838 }
1839
1840 if (threads == NULL) {
1841 static struct thread_map *empty_thread_map;
1842
1843 if (empty_thread_map == NULL) {
1844 empty_thread_map = thread_map__new_by_tid(-1);
1845 if (empty_thread_map == NULL)
1846 return -ENOMEM;
1847 }
1848
1849 threads = empty_thread_map;
1850 }
1851
1852 if (evsel->system_wide)
1853 nthreads = 1;
1854 else
1855 nthreads = threads->nr;
1856
1857 if (evsel->fd == NULL &&
1858 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1859 return -ENOMEM;
1860
1861 if (evsel->cgrp) {
1862 flags |= PERF_FLAG_PID_CGROUP;
1863 pid = evsel->cgrp->fd;
1864 }
1865
1866 fallback_missing_features:
1867 if (perf_missing_features.clockid_wrong)
1868 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1869 if (perf_missing_features.clockid) {
1870 evsel->attr.use_clockid = 0;
1871 evsel->attr.clockid = 0;
1872 }
1873 if (perf_missing_features.cloexec)
1874 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1875 if (perf_missing_features.mmap2)
1876 evsel->attr.mmap2 = 0;
1877 if (perf_missing_features.exclude_guest)
1878 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1879 if (perf_missing_features.lbr_flags)
1880 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1881 PERF_SAMPLE_BRANCH_NO_CYCLES);
1882 if (perf_missing_features.group_read && evsel->attr.inherit)
1883 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1884 if (perf_missing_features.ksymbol)
1885 evsel->attr.ksymbol = 0;
1886 if (perf_missing_features.bpf_event)
1887 evsel->attr.bpf_event = 0;
1888 retry_sample_id:
1889 if (perf_missing_features.sample_id_all)
1890 evsel->attr.sample_id_all = 0;
1891
1892 display_attr(&evsel->attr);
1893
1894 for (cpu = 0; cpu < cpus->nr; cpu++) {
1895
1896 for (thread = 0; thread < nthreads; thread++) {
1897 int fd, group_fd;
1898
1899 if (!evsel->cgrp && !evsel->system_wide)
1900 pid = thread_map__pid(threads, thread);
1901
1902 group_fd = get_group_fd(evsel, cpu, thread);
1903 retry_open:
1904 test_attr__ready();
1905
1906 fd = perf_event_open(evsel, pid, cpus->map[cpu],
1907 group_fd, flags);
1908
1909 FD(evsel, cpu, thread) = fd;
1910
1911 if (fd < 0) {
1912 err = -errno;
1913
1914 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1915 /*
1916 * We just removed 1 thread, so take a step
1917 * back on thread index and lower the upper
1918 * nthreads limit.
1919 */
1920 nthreads--;
1921 thread--;
1922
1923 /* ... and pretend like nothing have happened. */
1924 err = 0;
1925 continue;
1926 }
1927
1928 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1929 err);
1930 goto try_fallback;
1931 }
1932
1933 pr_debug2(" = %d\n", fd);
1934
1935 if (evsel->bpf_fd >= 0) {
1936 int evt_fd = fd;
1937 int bpf_fd = evsel->bpf_fd;
1938
1939 err = ioctl(evt_fd,
1940 PERF_EVENT_IOC_SET_BPF,
1941 bpf_fd);
1942 if (err && errno != EEXIST) {
1943 pr_err("failed to attach bpf fd %d: %s\n",
1944 bpf_fd, strerror(errno));
1945 err = -EINVAL;
1946 goto out_close;
1947 }
1948 }
1949
1950 set_rlimit = NO_CHANGE;
1951
1952 /*
1953 * If we succeeded but had to kill clockid, fail and
1954 * have perf_evsel__open_strerror() print us a nice
1955 * error.
1956 */
1957 if (perf_missing_features.clockid ||
1958 perf_missing_features.clockid_wrong) {
1959 err = -EINVAL;
1960 goto out_close;
1961 }
1962 }
1963 }
1964
1965 return 0;
1966
1967 try_fallback:
1968 /*
1969 * perf stat needs between 5 and 22 fds per CPU. When we run out
1970 * of them try to increase the limits.
1971 */
1972 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1973 struct rlimit l;
1974 int old_errno = errno;
1975
1976 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1977 if (set_rlimit == NO_CHANGE)
1978 l.rlim_cur = l.rlim_max;
1979 else {
1980 l.rlim_cur = l.rlim_max + 1000;
1981 l.rlim_max = l.rlim_cur;
1982 }
1983 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1984 set_rlimit++;
1985 errno = old_errno;
1986 goto retry_open;
1987 }
1988 }
1989 errno = old_errno;
1990 }
1991
1992 if (err != -EINVAL || cpu > 0 || thread > 0)
1993 goto out_close;
1994
1995 /*
1996 * Must probe features in the order they were added to the
1997 * perf_event_attr interface.
1998 */
1999 if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
2000 perf_missing_features.bpf_event = true;
2001 pr_debug2("switching off bpf_event\n");
2002 goto fallback_missing_features;
2003 } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
2004 perf_missing_features.ksymbol = true;
2005 pr_debug2("switching off ksymbol\n");
2006 goto fallback_missing_features;
2007 } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
2008 perf_missing_features.write_backward = true;
2009 pr_debug2("switching off write_backward\n");
2010 goto out_close;
2011 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
2012 perf_missing_features.clockid_wrong = true;
2013 pr_debug2("switching off clockid\n");
2014 goto fallback_missing_features;
2015 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
2016 perf_missing_features.clockid = true;
2017 pr_debug2("switching off use_clockid\n");
2018 goto fallback_missing_features;
2019 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
2020 perf_missing_features.cloexec = true;
2021 pr_debug2("switching off cloexec flag\n");
2022 goto fallback_missing_features;
2023 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
2024 perf_missing_features.mmap2 = true;
2025 pr_debug2("switching off mmap2\n");
2026 goto fallback_missing_features;
2027 } else if (!perf_missing_features.exclude_guest &&
2028 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
2029 perf_missing_features.exclude_guest = true;
2030 pr_debug2("switching off exclude_guest, exclude_host\n");
2031 goto fallback_missing_features;
2032 } else if (!perf_missing_features.sample_id_all) {
2033 perf_missing_features.sample_id_all = true;
2034 pr_debug2("switching off sample_id_all\n");
2035 goto retry_sample_id;
2036 } else if (!perf_missing_features.lbr_flags &&
2037 (evsel->attr.branch_sample_type &
2038 (PERF_SAMPLE_BRANCH_NO_CYCLES |
2039 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
2040 perf_missing_features.lbr_flags = true;
2041 pr_debug2("switching off branch sample type no (cycles/flags)\n");
2042 goto fallback_missing_features;
2043 } else if (!perf_missing_features.group_read &&
2044 evsel->attr.inherit &&
2045 (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
2046 perf_evsel__is_group_leader(evsel)) {
2047 perf_missing_features.group_read = true;
2048 pr_debug2("switching off group read\n");
2049 goto fallback_missing_features;
2050 }
2051 out_close:
2052 if (err)
2053 threads->err_thread = thread;
2054
2055 do {
2056 while (--thread >= 0) {
2057 close(FD(evsel, cpu, thread));
2058 FD(evsel, cpu, thread) = -1;
2059 }
2060 thread = nthreads;
2061 } while (--cpu >= 0);
2062 return err;
2063 }
2064
2065 void perf_evsel__close(struct perf_evsel *evsel)
2066 {
2067 if (evsel->fd == NULL)
2068 return;
2069
2070 perf_evsel__close_fd(evsel);
2071 perf_evsel__free_fd(evsel);
2072 }
2073
2074 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
2075 struct cpu_map *cpus)
2076 {
2077 return perf_evsel__open(evsel, cpus, NULL);
2078 }
2079
2080 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2081 struct thread_map *threads)
2082 {
2083 return perf_evsel__open(evsel, NULL, threads);
2084 }
2085
2086 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2087 const union perf_event *event,
2088 struct perf_sample *sample)
2089 {
2090 u64 type = evsel->attr.sample_type;
2091 const u64 *array = event->sample.array;
2092 bool swapped = evsel->needs_swap;
2093 union u64_swap u;
2094
2095 array += ((event->header.size -
2096 sizeof(event->header)) / sizeof(u64)) - 1;
2097
2098 if (type & PERF_SAMPLE_IDENTIFIER) {
2099 sample->id = *array;
2100 array--;
2101 }
2102
2103 if (type & PERF_SAMPLE_CPU) {
2104 u.val64 = *array;
2105 if (swapped) {
2106 /* undo swap of u64, then swap on individual u32s */
2107 u.val64 = bswap_64(u.val64);
2108 u.val32[0] = bswap_32(u.val32[0]);
2109 }
2110
2111 sample->cpu = u.val32[0];
2112 array--;
2113 }
2114
2115 if (type & PERF_SAMPLE_STREAM_ID) {
2116 sample->stream_id = *array;
2117 array--;
2118 }
2119
2120 if (type & PERF_SAMPLE_ID) {
2121 sample->id = *array;
2122 array--;
2123 }
2124
2125 if (type & PERF_SAMPLE_TIME) {
2126 sample->time = *array;
2127 array--;
2128 }
2129
2130 if (type & PERF_SAMPLE_TID) {
2131 u.val64 = *array;
2132 if (swapped) {
2133 /* undo swap of u64, then swap on individual u32s */
2134 u.val64 = bswap_64(u.val64);
2135 u.val32[0] = bswap_32(u.val32[0]);
2136 u.val32[1] = bswap_32(u.val32[1]);
2137 }
2138
2139 sample->pid = u.val32[0];
2140 sample->tid = u.val32[1];
2141 array--;
2142 }
2143
2144 return 0;
2145 }
2146
2147 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2148 u64 size)
2149 {
2150 return size > max_size || offset + size > endp;
2151 }
2152
2153 #define OVERFLOW_CHECK(offset, size, max_size) \
2154 do { \
2155 if (overflow(endp, (max_size), (offset), (size))) \
2156 return -EFAULT; \
2157 } while (0)
2158
2159 #define OVERFLOW_CHECK_u64(offset) \
2160 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2161
2162 static int
2163 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2164 {
2165 /*
2166 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2167 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2168 * check the format does not go past the end of the event.
2169 */
2170 if (sample_size + sizeof(event->header) > event->header.size)
2171 return -EFAULT;
2172
2173 return 0;
2174 }
2175
2176 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2177 struct perf_sample *data)
2178 {
2179 u64 type = evsel->attr.sample_type;
2180 bool swapped = evsel->needs_swap;
2181 const u64 *array;
2182 u16 max_size = event->header.size;
2183 const void *endp = (void *)event + max_size;
2184 u64 sz;
2185
2186 /*
2187 * used for cross-endian analysis. See git commit 65014ab3
2188 * for why this goofiness is needed.
2189 */
2190 union u64_swap u;
2191
2192 memset(data, 0, sizeof(*data));
2193 data->cpu = data->pid = data->tid = -1;
2194 data->stream_id = data->id = data->time = -1ULL;
2195 data->period = evsel->attr.sample_period;
2196 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2197 data->misc = event->header.misc;
2198 data->id = -1ULL;
2199 data->data_src = PERF_MEM_DATA_SRC_NONE;
2200
2201 if (event->header.type != PERF_RECORD_SAMPLE) {
2202 if (!evsel->attr.sample_id_all)
2203 return 0;
2204 return perf_evsel__parse_id_sample(evsel, event, data);
2205 }
2206
2207 array = event->sample.array;
2208
2209 if (perf_event__check_size(event, evsel->sample_size))
2210 return -EFAULT;
2211
2212 if (type & PERF_SAMPLE_IDENTIFIER) {
2213 data->id = *array;
2214 array++;
2215 }
2216
2217 if (type & PERF_SAMPLE_IP) {
2218 data->ip = *array;
2219 array++;
2220 }
2221
2222 if (type & PERF_SAMPLE_TID) {
2223 u.val64 = *array;
2224 if (swapped) {
2225 /* undo swap of u64, then swap on individual u32s */
2226 u.val64 = bswap_64(u.val64);
2227 u.val32[0] = bswap_32(u.val32[0]);
2228 u.val32[1] = bswap_32(u.val32[1]);
2229 }
2230
2231 data->pid = u.val32[0];
2232 data->tid = u.val32[1];
2233 array++;
2234 }
2235
2236 if (type & PERF_SAMPLE_TIME) {
2237 data->time = *array;
2238 array++;
2239 }
2240
2241 if (type & PERF_SAMPLE_ADDR) {
2242 data->addr = *array;
2243 array++;
2244 }
2245
2246 if (type & PERF_SAMPLE_ID) {
2247 data->id = *array;
2248 array++;
2249 }
2250
2251 if (type & PERF_SAMPLE_STREAM_ID) {
2252 data->stream_id = *array;
2253 array++;
2254 }
2255
2256 if (type & PERF_SAMPLE_CPU) {
2257
2258 u.val64 = *array;
2259 if (swapped) {
2260 /* undo swap of u64, then swap on individual u32s */
2261 u.val64 = bswap_64(u.val64);
2262 u.val32[0] = bswap_32(u.val32[0]);
2263 }
2264
2265 data->cpu = u.val32[0];
2266 array++;
2267 }
2268
2269 if (type & PERF_SAMPLE_PERIOD) {
2270 data->period = *array;
2271 array++;
2272 }
2273
2274 if (type & PERF_SAMPLE_READ) {
2275 u64 read_format = evsel->attr.read_format;
2276
2277 OVERFLOW_CHECK_u64(array);
2278 if (read_format & PERF_FORMAT_GROUP)
2279 data->read.group.nr = *array;
2280 else
2281 data->read.one.value = *array;
2282
2283 array++;
2284
2285 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2286 OVERFLOW_CHECK_u64(array);
2287 data->read.time_enabled = *array;
2288 array++;
2289 }
2290
2291 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2292 OVERFLOW_CHECK_u64(array);
2293 data->read.time_running = *array;
2294 array++;
2295 }
2296
2297 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2298 if (read_format & PERF_FORMAT_GROUP) {
2299 const u64 max_group_nr = UINT64_MAX /
2300 sizeof(struct sample_read_value);
2301
2302 if (data->read.group.nr > max_group_nr)
2303 return -EFAULT;
2304 sz = data->read.group.nr *
2305 sizeof(struct sample_read_value);
2306 OVERFLOW_CHECK(array, sz, max_size);
2307 data->read.group.values =
2308 (struct sample_read_value *)array;
2309 array = (void *)array + sz;
2310 } else {
2311 OVERFLOW_CHECK_u64(array);
2312 data->read.one.id = *array;
2313 array++;
2314 }
2315 }
2316
2317 if (evsel__has_callchain(evsel)) {
2318 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2319
2320 OVERFLOW_CHECK_u64(array);
2321 data->callchain = (struct ip_callchain *)array++;
2322 if (data->callchain->nr > max_callchain_nr)
2323 return -EFAULT;
2324 sz = data->callchain->nr * sizeof(u64);
2325 OVERFLOW_CHECK(array, sz, max_size);
2326 array = (void *)array + sz;
2327 }
2328
2329 if (type & PERF_SAMPLE_RAW) {
2330 OVERFLOW_CHECK_u64(array);
2331 u.val64 = *array;
2332
2333 /*
2334 * Undo swap of u64, then swap on individual u32s,
2335 * get the size of the raw area and undo all of the
2336 * swap. The pevent interface handles endianity by
2337 * itself.
2338 */
2339 if (swapped) {
2340 u.val64 = bswap_64(u.val64);
2341 u.val32[0] = bswap_32(u.val32[0]);
2342 u.val32[1] = bswap_32(u.val32[1]);
2343 }
2344 data->raw_size = u.val32[0];
2345
2346 /*
2347 * The raw data is aligned on 64bits including the
2348 * u32 size, so it's safe to use mem_bswap_64.
2349 */
2350 if (swapped)
2351 mem_bswap_64((void *) array, data->raw_size);
2352
2353 array = (void *)array + sizeof(u32);
2354
2355 OVERFLOW_CHECK(array, data->raw_size, max_size);
2356 data->raw_data = (void *)array;
2357 array = (void *)array + data->raw_size;
2358 }
2359
2360 if (type & PERF_SAMPLE_BRANCH_STACK) {
2361 const u64 max_branch_nr = UINT64_MAX /
2362 sizeof(struct branch_entry);
2363
2364 OVERFLOW_CHECK_u64(array);
2365 data->branch_stack = (struct branch_stack *)array++;
2366
2367 if (data->branch_stack->nr > max_branch_nr)
2368 return -EFAULT;
2369 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2370 OVERFLOW_CHECK(array, sz, max_size);
2371 array = (void *)array + sz;
2372 }
2373
2374 if (type & PERF_SAMPLE_REGS_USER) {
2375 OVERFLOW_CHECK_u64(array);
2376 data->user_regs.abi = *array;
2377 array++;
2378
2379 if (data->user_regs.abi) {
2380 u64 mask = evsel->attr.sample_regs_user;
2381
2382 sz = hweight64(mask) * sizeof(u64);
2383 OVERFLOW_CHECK(array, sz, max_size);
2384 data->user_regs.mask = mask;
2385 data->user_regs.regs = (u64 *)array;
2386 array = (void *)array + sz;
2387 }
2388 }
2389
2390 if (type & PERF_SAMPLE_STACK_USER) {
2391 OVERFLOW_CHECK_u64(array);
2392 sz = *array++;
2393
2394 data->user_stack.offset = ((char *)(array - 1)
2395 - (char *) event);
2396
2397 if (!sz) {
2398 data->user_stack.size = 0;
2399 } else {
2400 OVERFLOW_CHECK(array, sz, max_size);
2401 data->user_stack.data = (char *)array;
2402 array = (void *)array + sz;
2403 OVERFLOW_CHECK_u64(array);
2404 data->user_stack.size = *array++;
2405 if (WARN_ONCE(data->user_stack.size > sz,
2406 "user stack dump failure\n"))
2407 return -EFAULT;
2408 }
2409 }
2410
2411 if (type & PERF_SAMPLE_WEIGHT) {
2412 OVERFLOW_CHECK_u64(array);
2413 data->weight = *array;
2414 array++;
2415 }
2416
2417 if (type & PERF_SAMPLE_DATA_SRC) {
2418 OVERFLOW_CHECK_u64(array);
2419 data->data_src = *array;
2420 array++;
2421 }
2422
2423 if (type & PERF_SAMPLE_TRANSACTION) {
2424 OVERFLOW_CHECK_u64(array);
2425 data->transaction = *array;
2426 array++;
2427 }
2428
2429 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2430 if (type & PERF_SAMPLE_REGS_INTR) {
2431 OVERFLOW_CHECK_u64(array);
2432 data->intr_regs.abi = *array;
2433 array++;
2434
2435 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2436 u64 mask = evsel->attr.sample_regs_intr;
2437
2438 sz = hweight64(mask) * sizeof(u64);
2439 OVERFLOW_CHECK(array, sz, max_size);
2440 data->intr_regs.mask = mask;
2441 data->intr_regs.regs = (u64 *)array;
2442 array = (void *)array + sz;
2443 }
2444 }
2445
2446 data->phys_addr = 0;
2447 if (type & PERF_SAMPLE_PHYS_ADDR) {
2448 data->phys_addr = *array;
2449 array++;
2450 }
2451
2452 return 0;
2453 }
2454
2455 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2456 union perf_event *event,
2457 u64 *timestamp)
2458 {
2459 u64 type = evsel->attr.sample_type;
2460 const u64 *array;
2461
2462 if (!(type & PERF_SAMPLE_TIME))
2463 return -1;
2464
2465 if (event->header.type != PERF_RECORD_SAMPLE) {
2466 struct perf_sample data = {
2467 .time = -1ULL,
2468 };
2469
2470 if (!evsel->attr.sample_id_all)
2471 return -1;
2472 if (perf_evsel__parse_id_sample(evsel, event, &data))
2473 return -1;
2474
2475 *timestamp = data.time;
2476 return 0;
2477 }
2478
2479 array = event->sample.array;
2480
2481 if (perf_event__check_size(event, evsel->sample_size))
2482 return -EFAULT;
2483
2484 if (type & PERF_SAMPLE_IDENTIFIER)
2485 array++;
2486
2487 if (type & PERF_SAMPLE_IP)
2488 array++;
2489
2490 if (type & PERF_SAMPLE_TID)
2491 array++;
2492
2493 if (type & PERF_SAMPLE_TIME)
2494 *timestamp = *array;
2495
2496 return 0;
2497 }
2498
2499 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2500 u64 read_format)
2501 {
2502 size_t sz, result = sizeof(struct sample_event);
2503
2504 if (type & PERF_SAMPLE_IDENTIFIER)
2505 result += sizeof(u64);
2506
2507 if (type & PERF_SAMPLE_IP)
2508 result += sizeof(u64);
2509
2510 if (type & PERF_SAMPLE_TID)
2511 result += sizeof(u64);
2512
2513 if (type & PERF_SAMPLE_TIME)
2514 result += sizeof(u64);
2515
2516 if (type & PERF_SAMPLE_ADDR)
2517 result += sizeof(u64);
2518
2519 if (type & PERF_SAMPLE_ID)
2520 result += sizeof(u64);
2521
2522 if (type & PERF_SAMPLE_STREAM_ID)
2523 result += sizeof(u64);
2524
2525 if (type & PERF_SAMPLE_CPU)
2526 result += sizeof(u64);
2527
2528 if (type & PERF_SAMPLE_PERIOD)
2529 result += sizeof(u64);
2530
2531 if (type & PERF_SAMPLE_READ) {
2532 result += sizeof(u64);
2533 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2534 result += sizeof(u64);
2535 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2536 result += sizeof(u64);
2537 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2538 if (read_format & PERF_FORMAT_GROUP) {
2539 sz = sample->read.group.nr *
2540 sizeof(struct sample_read_value);
2541 result += sz;
2542 } else {
2543 result += sizeof(u64);
2544 }
2545 }
2546
2547 if (type & PERF_SAMPLE_CALLCHAIN) {
2548 sz = (sample->callchain->nr + 1) * sizeof(u64);
2549 result += sz;
2550 }
2551
2552 if (type & PERF_SAMPLE_RAW) {
2553 result += sizeof(u32);
2554 result += sample->raw_size;
2555 }
2556
2557 if (type & PERF_SAMPLE_BRANCH_STACK) {
2558 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2559 sz += sizeof(u64);
2560 result += sz;
2561 }
2562
2563 if (type & PERF_SAMPLE_REGS_USER) {
2564 if (sample->user_regs.abi) {
2565 result += sizeof(u64);
2566 sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2567 result += sz;
2568 } else {
2569 result += sizeof(u64);
2570 }
2571 }
2572
2573 if (type & PERF_SAMPLE_STACK_USER) {
2574 sz = sample->user_stack.size;
2575 result += sizeof(u64);
2576 if (sz) {
2577 result += sz;
2578 result += sizeof(u64);
2579 }
2580 }
2581
2582 if (type & PERF_SAMPLE_WEIGHT)
2583 result += sizeof(u64);
2584
2585 if (type & PERF_SAMPLE_DATA_SRC)
2586 result += sizeof(u64);
2587
2588 if (type & PERF_SAMPLE_TRANSACTION)
2589 result += sizeof(u64);
2590
2591 if (type & PERF_SAMPLE_REGS_INTR) {
2592 if (sample->intr_regs.abi) {
2593 result += sizeof(u64);
2594 sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2595 result += sz;
2596 } else {
2597 result += sizeof(u64);
2598 }
2599 }
2600
2601 if (type & PERF_SAMPLE_PHYS_ADDR)
2602 result += sizeof(u64);
2603
2604 return result;
2605 }
2606
2607 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2608 u64 read_format,
2609 const struct perf_sample *sample)
2610 {
2611 u64 *array;
2612 size_t sz;
2613 /*
2614 * used for cross-endian analysis. See git commit 65014ab3
2615 * for why this goofiness is needed.
2616 */
2617 union u64_swap u;
2618
2619 array = event->sample.array;
2620
2621 if (type & PERF_SAMPLE_IDENTIFIER) {
2622 *array = sample->id;
2623 array++;
2624 }
2625
2626 if (type & PERF_SAMPLE_IP) {
2627 *array = sample->ip;
2628 array++;
2629 }
2630
2631 if (type & PERF_SAMPLE_TID) {
2632 u.val32[0] = sample->pid;
2633 u.val32[1] = sample->tid;
2634 *array = u.val64;
2635 array++;
2636 }
2637
2638 if (type & PERF_SAMPLE_TIME) {
2639 *array = sample->time;
2640 array++;
2641 }
2642
2643 if (type & PERF_SAMPLE_ADDR) {
2644 *array = sample->addr;
2645 array++;
2646 }
2647
2648 if (type & PERF_SAMPLE_ID) {
2649 *array = sample->id;
2650 array++;
2651 }
2652
2653 if (type & PERF_SAMPLE_STREAM_ID) {
2654 *array = sample->stream_id;
2655 array++;
2656 }
2657
2658 if (type & PERF_SAMPLE_CPU) {
2659 u.val32[0] = sample->cpu;
2660 u.val32[1] = 0;
2661 *array = u.val64;
2662 array++;
2663 }
2664
2665 if (type & PERF_SAMPLE_PERIOD) {
2666 *array = sample->period;
2667 array++;
2668 }
2669
2670 if (type & PERF_SAMPLE_READ) {
2671 if (read_format & PERF_FORMAT_GROUP)
2672 *array = sample->read.group.nr;
2673 else
2674 *array = sample->read.one.value;
2675 array++;
2676
2677 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2678 *array = sample->read.time_enabled;
2679 array++;
2680 }
2681
2682 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2683 *array = sample->read.time_running;
2684 array++;
2685 }
2686
2687 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2688 if (read_format & PERF_FORMAT_GROUP) {
2689 sz = sample->read.group.nr *
2690 sizeof(struct sample_read_value);
2691 memcpy(array, sample->read.group.values, sz);
2692 array = (void *)array + sz;
2693 } else {
2694 *array = sample->read.one.id;
2695 array++;
2696 }
2697 }
2698
2699 if (type & PERF_SAMPLE_CALLCHAIN) {
2700 sz = (sample->callchain->nr + 1) * sizeof(u64);
2701 memcpy(array, sample->callchain, sz);
2702 array = (void *)array + sz;
2703 }
2704
2705 if (type & PERF_SAMPLE_RAW) {
2706 u.val32[0] = sample->raw_size;
2707 *array = u.val64;
2708 array = (void *)array + sizeof(u32);
2709
2710 memcpy(array, sample->raw_data, sample->raw_size);
2711 array = (void *)array + sample->raw_size;
2712 }
2713
2714 if (type & PERF_SAMPLE_BRANCH_STACK) {
2715 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2716 sz += sizeof(u64);
2717 memcpy(array, sample->branch_stack, sz);
2718 array = (void *)array + sz;
2719 }
2720
2721 if (type & PERF_SAMPLE_REGS_USER) {
2722 if (sample->user_regs.abi) {
2723 *array++ = sample->user_regs.abi;
2724 sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2725 memcpy(array, sample->user_regs.regs, sz);
2726 array = (void *)array + sz;
2727 } else {
2728 *array++ = 0;
2729 }
2730 }
2731
2732 if (type & PERF_SAMPLE_STACK_USER) {
2733 sz = sample->user_stack.size;
2734 *array++ = sz;
2735 if (sz) {
2736 memcpy(array, sample->user_stack.data, sz);
2737 array = (void *)array + sz;
2738 *array++ = sz;
2739 }
2740 }
2741
2742 if (type & PERF_SAMPLE_WEIGHT) {
2743 *array = sample->weight;
2744 array++;
2745 }
2746
2747 if (type & PERF_SAMPLE_DATA_SRC) {
2748 *array = sample->data_src;
2749 array++;
2750 }
2751
2752 if (type & PERF_SAMPLE_TRANSACTION) {
2753 *array = sample->transaction;
2754 array++;
2755 }
2756
2757 if (type & PERF_SAMPLE_REGS_INTR) {
2758 if (sample->intr_regs.abi) {
2759 *array++ = sample->intr_regs.abi;
2760 sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2761 memcpy(array, sample->intr_regs.regs, sz);
2762 array = (void *)array + sz;
2763 } else {
2764 *array++ = 0;
2765 }
2766 }
2767
2768 if (type & PERF_SAMPLE_PHYS_ADDR) {
2769 *array = sample->phys_addr;
2770 array++;
2771 }
2772
2773 return 0;
2774 }
2775
2776 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2777 {
2778 return tep_find_field(evsel->tp_format, name);
2779 }
2780
2781 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2782 const char *name)
2783 {
2784 struct tep_format_field *field = perf_evsel__field(evsel, name);
2785 int offset;
2786
2787 if (!field)
2788 return NULL;
2789
2790 offset = field->offset;
2791
2792 if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2793 offset = *(int *)(sample->raw_data + field->offset);
2794 offset &= 0xffff;
2795 }
2796
2797 return sample->raw_data + offset;
2798 }
2799
2800 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2801 bool needs_swap)
2802 {
2803 u64 value;
2804 void *ptr = sample->raw_data + field->offset;
2805
2806 switch (field->size) {
2807 case 1:
2808 return *(u8 *)ptr;
2809 case 2:
2810 value = *(u16 *)ptr;
2811 break;
2812 case 4:
2813 value = *(u32 *)ptr;
2814 break;
2815 case 8:
2816 memcpy(&value, ptr, sizeof(u64));
2817 break;
2818 default:
2819 return 0;
2820 }
2821
2822 if (!needs_swap)
2823 return value;
2824
2825 switch (field->size) {
2826 case 2:
2827 return bswap_16(value);
2828 case 4:
2829 return bswap_32(value);
2830 case 8:
2831 return bswap_64(value);
2832 default:
2833 return 0;
2834 }
2835
2836 return 0;
2837 }
2838
2839 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2840 const char *name)
2841 {
2842 struct tep_format_field *field = perf_evsel__field(evsel, name);
2843
2844 if (!field)
2845 return 0;
2846
2847 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2848 }
2849
2850 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2851 char *msg, size_t msgsize)
2852 {
2853 int paranoid;
2854
2855 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2856 evsel->attr.type == PERF_TYPE_HARDWARE &&
2857 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2858 /*
2859 * If it's cycles then fall back to hrtimer based
2860 * cpu-clock-tick sw counter, which is always available even if
2861 * no PMU support.
2862 *
2863 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2864 * b0a873e).
2865 */
2866 scnprintf(msg, msgsize, "%s",
2867 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2868
2869 evsel->attr.type = PERF_TYPE_SOFTWARE;
2870 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2871
2872 zfree(&evsel->name);
2873 return true;
2874 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2875 (paranoid = perf_event_paranoid()) > 1) {
2876 const char *name = perf_evsel__name(evsel);
2877 char *new_name;
2878 const char *sep = ":";
2879
2880 /* Is there already the separator in the name. */
2881 if (strchr(name, '/') ||
2882 strchr(name, ':'))
2883 sep = "";
2884
2885 if (asprintf(&new_name, "%s%su", name, sep) < 0)
2886 return false;
2887
2888 if (evsel->name)
2889 free(evsel->name);
2890 evsel->name = new_name;
2891 scnprintf(msg, msgsize,
2892 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2893 evsel->attr.exclude_kernel = 1;
2894
2895 return true;
2896 }
2897
2898 return false;
2899 }
2900
2901 static bool find_process(const char *name)
2902 {
2903 size_t len = strlen(name);
2904 DIR *dir;
2905 struct dirent *d;
2906 int ret = -1;
2907
2908 dir = opendir(procfs__mountpoint());
2909 if (!dir)
2910 return false;
2911
2912 /* Walk through the directory. */
2913 while (ret && (d = readdir(dir)) != NULL) {
2914 char path[PATH_MAX];
2915 char *data;
2916 size_t size;
2917
2918 if ((d->d_type != DT_DIR) ||
2919 !strcmp(".", d->d_name) ||
2920 !strcmp("..", d->d_name))
2921 continue;
2922
2923 scnprintf(path, sizeof(path), "%s/%s/comm",
2924 procfs__mountpoint(), d->d_name);
2925
2926 if (filename__read_str(path, &data, &size))
2927 continue;
2928
2929 ret = strncmp(name, data, len);
2930 free(data);
2931 }
2932
2933 closedir(dir);
2934 return ret ? false : true;
2935 }
2936
2937 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2938 int err, char *msg, size_t size)
2939 {
2940 char sbuf[STRERR_BUFSIZE];
2941 int printed = 0;
2942
2943 switch (err) {
2944 case EPERM:
2945 case EACCES:
2946 if (err == EPERM)
2947 printed = scnprintf(msg, size,
2948 "No permission to enable %s event.\n\n",
2949 perf_evsel__name(evsel));
2950
2951 return scnprintf(msg + printed, size - printed,
2952 "You may not have permission to collect %sstats.\n\n"
2953 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2954 "which controls use of the performance events system by\n"
2955 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2956 "The current value is %d:\n\n"
2957 " -1: Allow use of (almost) all events by all users\n"
2958 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2959 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2960 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2961 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2962 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2963 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2964 " kernel.perf_event_paranoid = -1\n" ,
2965 target->system_wide ? "system-wide " : "",
2966 perf_event_paranoid());
2967 case ENOENT:
2968 return scnprintf(msg, size, "The %s event is not supported.",
2969 perf_evsel__name(evsel));
2970 case EMFILE:
2971 return scnprintf(msg, size, "%s",
2972 "Too many events are opened.\n"
2973 "Probably the maximum number of open file descriptors has been reached.\n"
2974 "Hint: Try again after reducing the number of events.\n"
2975 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2976 case ENOMEM:
2977 if (evsel__has_callchain(evsel) &&
2978 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2979 return scnprintf(msg, size,
2980 "Not enough memory to setup event with callchain.\n"
2981 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2982 "Hint: Current value: %d", sysctl__max_stack());
2983 break;
2984 case ENODEV:
2985 if (target->cpu_list)
2986 return scnprintf(msg, size, "%s",
2987 "No such device - did you specify an out-of-range profile CPU?");
2988 break;
2989 case EOPNOTSUPP:
2990 if (evsel->attr.sample_period != 0)
2991 return scnprintf(msg, size,
2992 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
2993 perf_evsel__name(evsel));
2994 if (evsel->attr.precise_ip)
2995 return scnprintf(msg, size, "%s",
2996 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2997 #if defined(__i386__) || defined(__x86_64__)
2998 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2999 return scnprintf(msg, size, "%s",
3000 "No hardware sampling interrupt available.\n");
3001 #endif
3002 break;
3003 case EBUSY:
3004 if (find_process("oprofiled"))
3005 return scnprintf(msg, size,
3006 "The PMU counters are busy/taken by another profiler.\n"
3007 "We found oprofile daemon running, please stop it and try again.");
3008 break;
3009 case EINVAL:
3010 if (evsel->attr.write_backward && perf_missing_features.write_backward)
3011 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
3012 if (perf_missing_features.clockid)
3013 return scnprintf(msg, size, "clockid feature not supported.");
3014 if (perf_missing_features.clockid_wrong)
3015 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
3016 break;
3017 default:
3018 break;
3019 }
3020
3021 return scnprintf(msg, size,
3022 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
3023 "/bin/dmesg | grep -i perf may provide additional information.\n",
3024 err, str_error_r(err, sbuf, sizeof(sbuf)),
3025 perf_evsel__name(evsel));
3026 }
3027
3028 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
3029 {
3030 if (evsel && evsel->evlist)
3031 return evsel->evlist->env;
3032 return NULL;
3033 }
3034
3035 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3036 {
3037 int cpu, thread;
3038
3039 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
3040 for (thread = 0; thread < xyarray__max_y(evsel->fd);
3041 thread++) {
3042 int fd = FD(evsel, cpu, thread);
3043
3044 if (perf_evlist__id_add_fd(evlist, evsel,
3045 cpu, thread, fd) < 0)
3046 return -1;
3047 }
3048 }
3049
3050 return 0;
3051 }
3052
3053 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3054 {
3055 struct cpu_map *cpus = evsel->cpus;
3056 struct thread_map *threads = evsel->threads;
3057
3058 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
3059 return -ENOMEM;
3060
3061 return store_evsel_ids(evsel, evlist);
3062 }