]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - tools/perf/util/evsel.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/err.h>
19 #include <sys/ioctl.h>
20 #include <sys/resource.h>
21 #include "asm/bug.h"
22 #include "callchain.h"
23 #include "cgroup.h"
24 #include "event.h"
25 #include "evsel.h"
26 #include "evlist.h"
27 #include "util.h"
28 #include "cpumap.h"
29 #include "thread_map.h"
30 #include "target.h"
31 #include "perf_regs.h"
32 #include "debug.h"
33 #include "trace-event.h"
34 #include "stat.h"
35 #include "util/parse-branch-options.h"
36
37 #include "sane_ctype.h"
38
39 static struct {
40 bool sample_id_all;
41 bool exclude_guest;
42 bool mmap2;
43 bool cloexec;
44 bool clockid;
45 bool clockid_wrong;
46 bool lbr_flags;
47 bool write_backward;
48 } perf_missing_features;
49
50 static clockid_t clockid;
51
52 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
53 {
54 return 0;
55 }
56
57 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
58 {
59 }
60
61 static struct {
62 size_t size;
63 int (*init)(struct perf_evsel *evsel);
64 void (*fini)(struct perf_evsel *evsel);
65 } perf_evsel__object = {
66 .size = sizeof(struct perf_evsel),
67 .init = perf_evsel__no_extra_init,
68 .fini = perf_evsel__no_extra_fini,
69 };
70
71 int perf_evsel__object_config(size_t object_size,
72 int (*init)(struct perf_evsel *evsel),
73 void (*fini)(struct perf_evsel *evsel))
74 {
75
76 if (object_size == 0)
77 goto set_methods;
78
79 if (perf_evsel__object.size > object_size)
80 return -EINVAL;
81
82 perf_evsel__object.size = object_size;
83
84 set_methods:
85 if (init != NULL)
86 perf_evsel__object.init = init;
87
88 if (fini != NULL)
89 perf_evsel__object.fini = fini;
90
91 return 0;
92 }
93
94 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
95
96 int __perf_evsel__sample_size(u64 sample_type)
97 {
98 u64 mask = sample_type & PERF_SAMPLE_MASK;
99 int size = 0;
100 int i;
101
102 for (i = 0; i < 64; i++) {
103 if (mask & (1ULL << i))
104 size++;
105 }
106
107 size *= sizeof(u64);
108
109 return size;
110 }
111
112 /**
113 * __perf_evsel__calc_id_pos - calculate id_pos.
114 * @sample_type: sample type
115 *
116 * This function returns the position of the event id (PERF_SAMPLE_ID or
117 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
118 * sample_event.
119 */
120 static int __perf_evsel__calc_id_pos(u64 sample_type)
121 {
122 int idx = 0;
123
124 if (sample_type & PERF_SAMPLE_IDENTIFIER)
125 return 0;
126
127 if (!(sample_type & PERF_SAMPLE_ID))
128 return -1;
129
130 if (sample_type & PERF_SAMPLE_IP)
131 idx += 1;
132
133 if (sample_type & PERF_SAMPLE_TID)
134 idx += 1;
135
136 if (sample_type & PERF_SAMPLE_TIME)
137 idx += 1;
138
139 if (sample_type & PERF_SAMPLE_ADDR)
140 idx += 1;
141
142 return idx;
143 }
144
145 /**
146 * __perf_evsel__calc_is_pos - calculate is_pos.
147 * @sample_type: sample type
148 *
149 * This function returns the position (counting backwards) of the event id
150 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
151 * sample_id_all is used there is an id sample appended to non-sample events.
152 */
153 static int __perf_evsel__calc_is_pos(u64 sample_type)
154 {
155 int idx = 1;
156
157 if (sample_type & PERF_SAMPLE_IDENTIFIER)
158 return 1;
159
160 if (!(sample_type & PERF_SAMPLE_ID))
161 return -1;
162
163 if (sample_type & PERF_SAMPLE_CPU)
164 idx += 1;
165
166 if (sample_type & PERF_SAMPLE_STREAM_ID)
167 idx += 1;
168
169 return idx;
170 }
171
172 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
173 {
174 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
175 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
176 }
177
178 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
179 enum perf_event_sample_format bit)
180 {
181 if (!(evsel->attr.sample_type & bit)) {
182 evsel->attr.sample_type |= bit;
183 evsel->sample_size += sizeof(u64);
184 perf_evsel__calc_id_pos(evsel);
185 }
186 }
187
188 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
189 enum perf_event_sample_format bit)
190 {
191 if (evsel->attr.sample_type & bit) {
192 evsel->attr.sample_type &= ~bit;
193 evsel->sample_size -= sizeof(u64);
194 perf_evsel__calc_id_pos(evsel);
195 }
196 }
197
198 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
199 bool can_sample_identifier)
200 {
201 if (can_sample_identifier) {
202 perf_evsel__reset_sample_bit(evsel, ID);
203 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
204 } else {
205 perf_evsel__set_sample_bit(evsel, ID);
206 }
207 evsel->attr.read_format |= PERF_FORMAT_ID;
208 }
209
210 /**
211 * perf_evsel__is_function_event - Return whether given evsel is a function
212 * trace event
213 *
214 * @evsel - evsel selector to be tested
215 *
216 * Return %true if event is function trace event
217 */
218 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
219 {
220 #define FUNCTION_EVENT "ftrace:function"
221
222 return evsel->name &&
223 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
224
225 #undef FUNCTION_EVENT
226 }
227
228 void perf_evsel__init(struct perf_evsel *evsel,
229 struct perf_event_attr *attr, int idx)
230 {
231 evsel->idx = idx;
232 evsel->tracking = !idx;
233 evsel->attr = *attr;
234 evsel->leader = evsel;
235 evsel->unit = "";
236 evsel->scale = 1.0;
237 evsel->evlist = NULL;
238 evsel->bpf_fd = -1;
239 INIT_LIST_HEAD(&evsel->node);
240 INIT_LIST_HEAD(&evsel->config_terms);
241 perf_evsel__object.init(evsel);
242 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
243 perf_evsel__calc_id_pos(evsel);
244 evsel->cmdline_group_boundary = false;
245 evsel->metric_expr = NULL;
246 evsel->metric_name = NULL;
247 evsel->metric_events = NULL;
248 evsel->collect_stat = false;
249 }
250
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254
255 if (evsel != NULL)
256 perf_evsel__init(evsel, attr, idx);
257
258 if (perf_evsel__is_bpf_output(evsel)) {
259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261 evsel->attr.sample_period = 1;
262 }
263
264 return evsel;
265 }
266
267 struct perf_evsel *perf_evsel__new_cycles(void)
268 {
269 struct perf_event_attr attr = {
270 .type = PERF_TYPE_HARDWARE,
271 .config = PERF_COUNT_HW_CPU_CYCLES,
272 };
273 struct perf_evsel *evsel;
274
275 event_attr_init(&attr);
276 /*
277 * Unnamed union member, not supported as struct member named
278 * initializer in older compilers such as gcc 4.4.7
279 *
280 * Just for probing the precise_ip:
281 */
282 attr.sample_period = 1;
283
284 perf_event_attr__set_max_precise_ip(&attr);
285 /*
286 * Now let the usual logic to set up the perf_event_attr defaults
287 * to kick in when we return and before perf_evsel__open() is called.
288 */
289 attr.sample_period = 0;
290
291 evsel = perf_evsel__new(&attr);
292 if (evsel == NULL)
293 goto out;
294
295 /* use asprintf() because free(evsel) assumes name is allocated */
296 if (asprintf(&evsel->name, "cycles%.*s",
297 attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
298 goto error_free;
299 out:
300 return evsel;
301 error_free:
302 perf_evsel__delete(evsel);
303 evsel = NULL;
304 goto out;
305 }
306
307 /*
308 * Returns pointer with encoded error via <linux/err.h> interface.
309 */
310 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
311 {
312 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
313 int err = -ENOMEM;
314
315 if (evsel == NULL) {
316 goto out_err;
317 } else {
318 struct perf_event_attr attr = {
319 .type = PERF_TYPE_TRACEPOINT,
320 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
321 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
322 };
323
324 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
325 goto out_free;
326
327 evsel->tp_format = trace_event__tp_format(sys, name);
328 if (IS_ERR(evsel->tp_format)) {
329 err = PTR_ERR(evsel->tp_format);
330 goto out_free;
331 }
332
333 event_attr_init(&attr);
334 attr.config = evsel->tp_format->id;
335 attr.sample_period = 1;
336 perf_evsel__init(evsel, &attr, idx);
337 }
338
339 return evsel;
340
341 out_free:
342 zfree(&evsel->name);
343 free(evsel);
344 out_err:
345 return ERR_PTR(err);
346 }
347
348 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
349 "cycles",
350 "instructions",
351 "cache-references",
352 "cache-misses",
353 "branches",
354 "branch-misses",
355 "bus-cycles",
356 "stalled-cycles-frontend",
357 "stalled-cycles-backend",
358 "ref-cycles",
359 };
360
361 static const char *__perf_evsel__hw_name(u64 config)
362 {
363 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
364 return perf_evsel__hw_names[config];
365
366 return "unknown-hardware";
367 }
368
369 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
370 {
371 int colon = 0, r = 0;
372 struct perf_event_attr *attr = &evsel->attr;
373 bool exclude_guest_default = false;
374
375 #define MOD_PRINT(context, mod) do { \
376 if (!attr->exclude_##context) { \
377 if (!colon) colon = ++r; \
378 r += scnprintf(bf + r, size - r, "%c", mod); \
379 } } while(0)
380
381 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
382 MOD_PRINT(kernel, 'k');
383 MOD_PRINT(user, 'u');
384 MOD_PRINT(hv, 'h');
385 exclude_guest_default = true;
386 }
387
388 if (attr->precise_ip) {
389 if (!colon)
390 colon = ++r;
391 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
392 exclude_guest_default = true;
393 }
394
395 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
396 MOD_PRINT(host, 'H');
397 MOD_PRINT(guest, 'G');
398 }
399 #undef MOD_PRINT
400 if (colon)
401 bf[colon - 1] = ':';
402 return r;
403 }
404
405 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
406 {
407 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
408 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
409 }
410
411 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
412 "cpu-clock",
413 "task-clock",
414 "page-faults",
415 "context-switches",
416 "cpu-migrations",
417 "minor-faults",
418 "major-faults",
419 "alignment-faults",
420 "emulation-faults",
421 "dummy",
422 };
423
424 static const char *__perf_evsel__sw_name(u64 config)
425 {
426 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
427 return perf_evsel__sw_names[config];
428 return "unknown-software";
429 }
430
431 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
432 {
433 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
434 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
435 }
436
437 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
438 {
439 int r;
440
441 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
442
443 if (type & HW_BREAKPOINT_R)
444 r += scnprintf(bf + r, size - r, "r");
445
446 if (type & HW_BREAKPOINT_W)
447 r += scnprintf(bf + r, size - r, "w");
448
449 if (type & HW_BREAKPOINT_X)
450 r += scnprintf(bf + r, size - r, "x");
451
452 return r;
453 }
454
455 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
456 {
457 struct perf_event_attr *attr = &evsel->attr;
458 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
459 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
460 }
461
462 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
463 [PERF_EVSEL__MAX_ALIASES] = {
464 { "L1-dcache", "l1-d", "l1d", "L1-data", },
465 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
466 { "LLC", "L2", },
467 { "dTLB", "d-tlb", "Data-TLB", },
468 { "iTLB", "i-tlb", "Instruction-TLB", },
469 { "branch", "branches", "bpu", "btb", "bpc", },
470 { "node", },
471 };
472
473 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
474 [PERF_EVSEL__MAX_ALIASES] = {
475 { "load", "loads", "read", },
476 { "store", "stores", "write", },
477 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
478 };
479
480 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
481 [PERF_EVSEL__MAX_ALIASES] = {
482 { "refs", "Reference", "ops", "access", },
483 { "misses", "miss", },
484 };
485
486 #define C(x) PERF_COUNT_HW_CACHE_##x
487 #define CACHE_READ (1 << C(OP_READ))
488 #define CACHE_WRITE (1 << C(OP_WRITE))
489 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
490 #define COP(x) (1 << x)
491
492 /*
493 * cache operartion stat
494 * L1I : Read and prefetch only
495 * ITLB and BPU : Read-only
496 */
497 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
498 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
499 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
500 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
501 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
502 [C(ITLB)] = (CACHE_READ),
503 [C(BPU)] = (CACHE_READ),
504 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
505 };
506
507 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
508 {
509 if (perf_evsel__hw_cache_stat[type] & COP(op))
510 return true; /* valid */
511 else
512 return false; /* invalid */
513 }
514
515 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
516 char *bf, size_t size)
517 {
518 if (result) {
519 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
520 perf_evsel__hw_cache_op[op][0],
521 perf_evsel__hw_cache_result[result][0]);
522 }
523
524 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
525 perf_evsel__hw_cache_op[op][1]);
526 }
527
528 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
529 {
530 u8 op, result, type = (config >> 0) & 0xff;
531 const char *err = "unknown-ext-hardware-cache-type";
532
533 if (type >= PERF_COUNT_HW_CACHE_MAX)
534 goto out_err;
535
536 op = (config >> 8) & 0xff;
537 err = "unknown-ext-hardware-cache-op";
538 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
539 goto out_err;
540
541 result = (config >> 16) & 0xff;
542 err = "unknown-ext-hardware-cache-result";
543 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
544 goto out_err;
545
546 err = "invalid-cache";
547 if (!perf_evsel__is_cache_op_valid(type, op))
548 goto out_err;
549
550 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
551 out_err:
552 return scnprintf(bf, size, "%s", err);
553 }
554
555 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
556 {
557 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
558 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
559 }
560
561 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
562 {
563 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
564 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
565 }
566
567 const char *perf_evsel__name(struct perf_evsel *evsel)
568 {
569 char bf[128];
570
571 if (evsel->name)
572 return evsel->name;
573
574 switch (evsel->attr.type) {
575 case PERF_TYPE_RAW:
576 perf_evsel__raw_name(evsel, bf, sizeof(bf));
577 break;
578
579 case PERF_TYPE_HARDWARE:
580 perf_evsel__hw_name(evsel, bf, sizeof(bf));
581 break;
582
583 case PERF_TYPE_HW_CACHE:
584 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
585 break;
586
587 case PERF_TYPE_SOFTWARE:
588 perf_evsel__sw_name(evsel, bf, sizeof(bf));
589 break;
590
591 case PERF_TYPE_TRACEPOINT:
592 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
593 break;
594
595 case PERF_TYPE_BREAKPOINT:
596 perf_evsel__bp_name(evsel, bf, sizeof(bf));
597 break;
598
599 default:
600 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
601 evsel->attr.type);
602 break;
603 }
604
605 evsel->name = strdup(bf);
606
607 return evsel->name ?: "unknown";
608 }
609
610 const char *perf_evsel__group_name(struct perf_evsel *evsel)
611 {
612 return evsel->group_name ?: "anon group";
613 }
614
615 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
616 {
617 int ret;
618 struct perf_evsel *pos;
619 const char *group_name = perf_evsel__group_name(evsel);
620
621 ret = scnprintf(buf, size, "%s", group_name);
622
623 ret += scnprintf(buf + ret, size - ret, " { %s",
624 perf_evsel__name(evsel));
625
626 for_each_group_member(pos, evsel)
627 ret += scnprintf(buf + ret, size - ret, ", %s",
628 perf_evsel__name(pos));
629
630 ret += scnprintf(buf + ret, size - ret, " }");
631
632 return ret;
633 }
634
635 void perf_evsel__config_callchain(struct perf_evsel *evsel,
636 struct record_opts *opts,
637 struct callchain_param *param)
638 {
639 bool function = perf_evsel__is_function_event(evsel);
640 struct perf_event_attr *attr = &evsel->attr;
641
642 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
643
644 attr->sample_max_stack = param->max_stack;
645
646 if (param->record_mode == CALLCHAIN_LBR) {
647 if (!opts->branch_stack) {
648 if (attr->exclude_user) {
649 pr_warning("LBR callstack option is only available "
650 "to get user callchain information. "
651 "Falling back to framepointers.\n");
652 } else {
653 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
654 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
655 PERF_SAMPLE_BRANCH_CALL_STACK |
656 PERF_SAMPLE_BRANCH_NO_CYCLES |
657 PERF_SAMPLE_BRANCH_NO_FLAGS;
658 }
659 } else
660 pr_warning("Cannot use LBR callstack with branch stack. "
661 "Falling back to framepointers.\n");
662 }
663
664 if (param->record_mode == CALLCHAIN_DWARF) {
665 if (!function) {
666 perf_evsel__set_sample_bit(evsel, REGS_USER);
667 perf_evsel__set_sample_bit(evsel, STACK_USER);
668 attr->sample_regs_user = PERF_REGS_MASK;
669 attr->sample_stack_user = param->dump_size;
670 attr->exclude_callchain_user = 1;
671 } else {
672 pr_info("Cannot use DWARF unwind for function trace event,"
673 " falling back to framepointers.\n");
674 }
675 }
676
677 if (function) {
678 pr_info("Disabling user space callchains for function trace event.\n");
679 attr->exclude_callchain_user = 1;
680 }
681 }
682
683 static void
684 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
685 struct callchain_param *param)
686 {
687 struct perf_event_attr *attr = &evsel->attr;
688
689 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
690 if (param->record_mode == CALLCHAIN_LBR) {
691 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
692 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
693 PERF_SAMPLE_BRANCH_CALL_STACK);
694 }
695 if (param->record_mode == CALLCHAIN_DWARF) {
696 perf_evsel__reset_sample_bit(evsel, REGS_USER);
697 perf_evsel__reset_sample_bit(evsel, STACK_USER);
698 }
699 }
700
701 static void apply_config_terms(struct perf_evsel *evsel,
702 struct record_opts *opts)
703 {
704 struct perf_evsel_config_term *term;
705 struct list_head *config_terms = &evsel->config_terms;
706 struct perf_event_attr *attr = &evsel->attr;
707 struct callchain_param param;
708 u32 dump_size = 0;
709 int max_stack = 0;
710 const char *callgraph_buf = NULL;
711
712 /* callgraph default */
713 param.record_mode = callchain_param.record_mode;
714
715 list_for_each_entry(term, config_terms, list) {
716 switch (term->type) {
717 case PERF_EVSEL__CONFIG_TERM_PERIOD:
718 attr->sample_period = term->val.period;
719 attr->freq = 0;
720 break;
721 case PERF_EVSEL__CONFIG_TERM_FREQ:
722 attr->sample_freq = term->val.freq;
723 attr->freq = 1;
724 break;
725 case PERF_EVSEL__CONFIG_TERM_TIME:
726 if (term->val.time)
727 perf_evsel__set_sample_bit(evsel, TIME);
728 else
729 perf_evsel__reset_sample_bit(evsel, TIME);
730 break;
731 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
732 callgraph_buf = term->val.callgraph;
733 break;
734 case PERF_EVSEL__CONFIG_TERM_BRANCH:
735 if (term->val.branch && strcmp(term->val.branch, "no")) {
736 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
737 parse_branch_str(term->val.branch,
738 &attr->branch_sample_type);
739 } else
740 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
741 break;
742 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
743 dump_size = term->val.stack_user;
744 break;
745 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
746 max_stack = term->val.max_stack;
747 break;
748 case PERF_EVSEL__CONFIG_TERM_INHERIT:
749 /*
750 * attr->inherit should has already been set by
751 * perf_evsel__config. If user explicitly set
752 * inherit using config terms, override global
753 * opt->no_inherit setting.
754 */
755 attr->inherit = term->val.inherit ? 1 : 0;
756 break;
757 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
758 attr->write_backward = term->val.overwrite ? 1 : 0;
759 break;
760 default:
761 break;
762 }
763 }
764
765 /* User explicitly set per-event callgraph, clear the old setting and reset. */
766 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
767 if (max_stack) {
768 param.max_stack = max_stack;
769 if (callgraph_buf == NULL)
770 callgraph_buf = "fp";
771 }
772
773 /* parse callgraph parameters */
774 if (callgraph_buf != NULL) {
775 if (!strcmp(callgraph_buf, "no")) {
776 param.enabled = false;
777 param.record_mode = CALLCHAIN_NONE;
778 } else {
779 param.enabled = true;
780 if (parse_callchain_record(callgraph_buf, &param)) {
781 pr_err("per-event callgraph setting for %s failed. "
782 "Apply callgraph global setting for it\n",
783 evsel->name);
784 return;
785 }
786 }
787 }
788 if (dump_size > 0) {
789 dump_size = round_up(dump_size, sizeof(u64));
790 param.dump_size = dump_size;
791 }
792
793 /* If global callgraph set, clear it */
794 if (callchain_param.enabled)
795 perf_evsel__reset_callgraph(evsel, &callchain_param);
796
797 /* set perf-event callgraph */
798 if (param.enabled)
799 perf_evsel__config_callchain(evsel, opts, &param);
800 }
801 }
802
803 /*
804 * The enable_on_exec/disabled value strategy:
805 *
806 * 1) For any type of traced program:
807 * - all independent events and group leaders are disabled
808 * - all group members are enabled
809 *
810 * Group members are ruled by group leaders. They need to
811 * be enabled, because the group scheduling relies on that.
812 *
813 * 2) For traced programs executed by perf:
814 * - all independent events and group leaders have
815 * enable_on_exec set
816 * - we don't specifically enable or disable any event during
817 * the record command
818 *
819 * Independent events and group leaders are initially disabled
820 * and get enabled by exec. Group members are ruled by group
821 * leaders as stated in 1).
822 *
823 * 3) For traced programs attached by perf (pid/tid):
824 * - we specifically enable or disable all events during
825 * the record command
826 *
827 * When attaching events to already running traced we
828 * enable/disable events specifically, as there's no
829 * initial traced exec call.
830 */
831 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
832 struct callchain_param *callchain)
833 {
834 struct perf_evsel *leader = evsel->leader;
835 struct perf_event_attr *attr = &evsel->attr;
836 int track = evsel->tracking;
837 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
838
839 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
840 attr->inherit = !opts->no_inherit;
841 attr->write_backward = opts->overwrite ? 1 : 0;
842
843 perf_evsel__set_sample_bit(evsel, IP);
844 perf_evsel__set_sample_bit(evsel, TID);
845
846 if (evsel->sample_read) {
847 perf_evsel__set_sample_bit(evsel, READ);
848
849 /*
850 * We need ID even in case of single event, because
851 * PERF_SAMPLE_READ process ID specific data.
852 */
853 perf_evsel__set_sample_id(evsel, false);
854
855 /*
856 * Apply group format only if we belong to group
857 * with more than one members.
858 */
859 if (leader->nr_members > 1) {
860 attr->read_format |= PERF_FORMAT_GROUP;
861 attr->inherit = 0;
862 }
863 }
864
865 /*
866 * We default some events to have a default interval. But keep
867 * it a weak assumption overridable by the user.
868 */
869 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
870 opts->user_interval != ULLONG_MAX)) {
871 if (opts->freq) {
872 perf_evsel__set_sample_bit(evsel, PERIOD);
873 attr->freq = 1;
874 attr->sample_freq = opts->freq;
875 } else {
876 attr->sample_period = opts->default_interval;
877 }
878 }
879
880 /*
881 * Disable sampling for all group members other
882 * than leader in case leader 'leads' the sampling.
883 */
884 if ((leader != evsel) && leader->sample_read) {
885 attr->sample_freq = 0;
886 attr->sample_period = 0;
887 }
888
889 if (opts->no_samples)
890 attr->sample_freq = 0;
891
892 if (opts->inherit_stat)
893 attr->inherit_stat = 1;
894
895 if (opts->sample_address) {
896 perf_evsel__set_sample_bit(evsel, ADDR);
897 attr->mmap_data = track;
898 }
899
900 /*
901 * We don't allow user space callchains for function trace
902 * event, due to issues with page faults while tracing page
903 * fault handler and its overall trickiness nature.
904 */
905 if (perf_evsel__is_function_event(evsel))
906 evsel->attr.exclude_callchain_user = 1;
907
908 if (callchain && callchain->enabled && !evsel->no_aux_samples)
909 perf_evsel__config_callchain(evsel, opts, callchain);
910
911 if (opts->sample_intr_regs) {
912 attr->sample_regs_intr = opts->sample_intr_regs;
913 perf_evsel__set_sample_bit(evsel, REGS_INTR);
914 }
915
916 if (target__has_cpu(&opts->target) || opts->sample_cpu)
917 perf_evsel__set_sample_bit(evsel, CPU);
918
919 if (opts->period)
920 perf_evsel__set_sample_bit(evsel, PERIOD);
921
922 /*
923 * When the user explicitly disabled time don't force it here.
924 */
925 if (opts->sample_time &&
926 (!perf_missing_features.sample_id_all &&
927 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
928 opts->sample_time_set)))
929 perf_evsel__set_sample_bit(evsel, TIME);
930
931 if (opts->raw_samples && !evsel->no_aux_samples) {
932 perf_evsel__set_sample_bit(evsel, TIME);
933 perf_evsel__set_sample_bit(evsel, RAW);
934 perf_evsel__set_sample_bit(evsel, CPU);
935 }
936
937 if (opts->sample_address)
938 perf_evsel__set_sample_bit(evsel, DATA_SRC);
939
940 if (opts->no_buffering) {
941 attr->watermark = 0;
942 attr->wakeup_events = 1;
943 }
944 if (opts->branch_stack && !evsel->no_aux_samples) {
945 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
946 attr->branch_sample_type = opts->branch_stack;
947 }
948
949 if (opts->sample_weight)
950 perf_evsel__set_sample_bit(evsel, WEIGHT);
951
952 attr->task = track;
953 attr->mmap = track;
954 attr->mmap2 = track && !perf_missing_features.mmap2;
955 attr->comm = track;
956
957 if (opts->record_namespaces)
958 attr->namespaces = track;
959
960 if (opts->record_switch_events)
961 attr->context_switch = track;
962
963 if (opts->sample_transaction)
964 perf_evsel__set_sample_bit(evsel, TRANSACTION);
965
966 if (opts->running_time) {
967 evsel->attr.read_format |=
968 PERF_FORMAT_TOTAL_TIME_ENABLED |
969 PERF_FORMAT_TOTAL_TIME_RUNNING;
970 }
971
972 /*
973 * XXX see the function comment above
974 *
975 * Disabling only independent events or group leaders,
976 * keeping group members enabled.
977 */
978 if (perf_evsel__is_group_leader(evsel))
979 attr->disabled = 1;
980
981 /*
982 * Setting enable_on_exec for independent events and
983 * group leaders for traced executed by perf.
984 */
985 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
986 !opts->initial_delay)
987 attr->enable_on_exec = 1;
988
989 if (evsel->immediate) {
990 attr->disabled = 0;
991 attr->enable_on_exec = 0;
992 }
993
994 clockid = opts->clockid;
995 if (opts->use_clockid) {
996 attr->use_clockid = 1;
997 attr->clockid = opts->clockid;
998 }
999
1000 if (evsel->precise_max)
1001 perf_event_attr__set_max_precise_ip(attr);
1002
1003 if (opts->all_user) {
1004 attr->exclude_kernel = 1;
1005 attr->exclude_user = 0;
1006 }
1007
1008 if (opts->all_kernel) {
1009 attr->exclude_kernel = 0;
1010 attr->exclude_user = 1;
1011 }
1012
1013 /*
1014 * Apply event specific term settings,
1015 * it overloads any global configuration.
1016 */
1017 apply_config_terms(evsel, opts);
1018
1019 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1020 }
1021
1022 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1023 {
1024 if (evsel->system_wide)
1025 nthreads = 1;
1026
1027 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1028
1029 if (evsel->fd) {
1030 int cpu, thread;
1031 for (cpu = 0; cpu < ncpus; cpu++) {
1032 for (thread = 0; thread < nthreads; thread++) {
1033 FD(evsel, cpu, thread) = -1;
1034 }
1035 }
1036 }
1037
1038 return evsel->fd != NULL ? 0 : -ENOMEM;
1039 }
1040
1041 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1042 int ioc, void *arg)
1043 {
1044 int cpu, thread;
1045
1046 if (evsel->system_wide)
1047 nthreads = 1;
1048
1049 for (cpu = 0; cpu < ncpus; cpu++) {
1050 for (thread = 0; thread < nthreads; thread++) {
1051 int fd = FD(evsel, cpu, thread),
1052 err = ioctl(fd, ioc, arg);
1053
1054 if (err)
1055 return err;
1056 }
1057 }
1058
1059 return 0;
1060 }
1061
1062 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1063 const char *filter)
1064 {
1065 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1066 PERF_EVENT_IOC_SET_FILTER,
1067 (void *)filter);
1068 }
1069
1070 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1071 {
1072 char *new_filter = strdup(filter);
1073
1074 if (new_filter != NULL) {
1075 free(evsel->filter);
1076 evsel->filter = new_filter;
1077 return 0;
1078 }
1079
1080 return -1;
1081 }
1082
1083 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1084 const char *fmt, const char *filter)
1085 {
1086 char *new_filter;
1087
1088 if (evsel->filter == NULL)
1089 return perf_evsel__set_filter(evsel, filter);
1090
1091 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1092 free(evsel->filter);
1093 evsel->filter = new_filter;
1094 return 0;
1095 }
1096
1097 return -1;
1098 }
1099
1100 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1101 {
1102 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1103 }
1104
1105 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1106 {
1107 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1108 }
1109
1110 int perf_evsel__enable(struct perf_evsel *evsel)
1111 {
1112 int nthreads = thread_map__nr(evsel->threads);
1113 int ncpus = cpu_map__nr(evsel->cpus);
1114
1115 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1116 PERF_EVENT_IOC_ENABLE,
1117 0);
1118 }
1119
1120 int perf_evsel__disable(struct perf_evsel *evsel)
1121 {
1122 int nthreads = thread_map__nr(evsel->threads);
1123 int ncpus = cpu_map__nr(evsel->cpus);
1124
1125 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1126 PERF_EVENT_IOC_DISABLE,
1127 0);
1128 }
1129
1130 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1131 {
1132 if (ncpus == 0 || nthreads == 0)
1133 return 0;
1134
1135 if (evsel->system_wide)
1136 nthreads = 1;
1137
1138 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1139 if (evsel->sample_id == NULL)
1140 return -ENOMEM;
1141
1142 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1143 if (evsel->id == NULL) {
1144 xyarray__delete(evsel->sample_id);
1145 evsel->sample_id = NULL;
1146 return -ENOMEM;
1147 }
1148
1149 return 0;
1150 }
1151
1152 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1153 {
1154 xyarray__delete(evsel->fd);
1155 evsel->fd = NULL;
1156 }
1157
1158 static void perf_evsel__free_id(struct perf_evsel *evsel)
1159 {
1160 xyarray__delete(evsel->sample_id);
1161 evsel->sample_id = NULL;
1162 zfree(&evsel->id);
1163 }
1164
1165 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1166 {
1167 struct perf_evsel_config_term *term, *h;
1168
1169 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1170 list_del(&term->list);
1171 free(term);
1172 }
1173 }
1174
1175 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1176 {
1177 int cpu, thread;
1178
1179 if (evsel->system_wide)
1180 nthreads = 1;
1181
1182 for (cpu = 0; cpu < ncpus; cpu++)
1183 for (thread = 0; thread < nthreads; ++thread) {
1184 close(FD(evsel, cpu, thread));
1185 FD(evsel, cpu, thread) = -1;
1186 }
1187 }
1188
1189 void perf_evsel__exit(struct perf_evsel *evsel)
1190 {
1191 assert(list_empty(&evsel->node));
1192 assert(evsel->evlist == NULL);
1193 perf_evsel__free_fd(evsel);
1194 perf_evsel__free_id(evsel);
1195 perf_evsel__free_config_terms(evsel);
1196 close_cgroup(evsel->cgrp);
1197 cpu_map__put(evsel->cpus);
1198 cpu_map__put(evsel->own_cpus);
1199 thread_map__put(evsel->threads);
1200 zfree(&evsel->group_name);
1201 zfree(&evsel->name);
1202 perf_evsel__object.fini(evsel);
1203 }
1204
1205 void perf_evsel__delete(struct perf_evsel *evsel)
1206 {
1207 perf_evsel__exit(evsel);
1208 free(evsel);
1209 }
1210
1211 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1212 struct perf_counts_values *count)
1213 {
1214 struct perf_counts_values tmp;
1215
1216 if (!evsel->prev_raw_counts)
1217 return;
1218
1219 if (cpu == -1) {
1220 tmp = evsel->prev_raw_counts->aggr;
1221 evsel->prev_raw_counts->aggr = *count;
1222 } else {
1223 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1224 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1225 }
1226
1227 count->val = count->val - tmp.val;
1228 count->ena = count->ena - tmp.ena;
1229 count->run = count->run - tmp.run;
1230 }
1231
1232 void perf_counts_values__scale(struct perf_counts_values *count,
1233 bool scale, s8 *pscaled)
1234 {
1235 s8 scaled = 0;
1236
1237 if (scale) {
1238 if (count->run == 0) {
1239 scaled = -1;
1240 count->val = 0;
1241 } else if (count->run < count->ena) {
1242 scaled = 1;
1243 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1244 }
1245 } else
1246 count->ena = count->run = 0;
1247
1248 if (pscaled)
1249 *pscaled = scaled;
1250 }
1251
1252 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1253 struct perf_counts_values *count)
1254 {
1255 memset(count, 0, sizeof(*count));
1256
1257 if (FD(evsel, cpu, thread) < 0)
1258 return -EINVAL;
1259
1260 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0)
1261 return -errno;
1262
1263 return 0;
1264 }
1265
1266 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1267 int cpu, int thread, bool scale)
1268 {
1269 struct perf_counts_values count;
1270 size_t nv = scale ? 3 : 1;
1271
1272 if (FD(evsel, cpu, thread) < 0)
1273 return -EINVAL;
1274
1275 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1276 return -ENOMEM;
1277
1278 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1279 return -errno;
1280
1281 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1282 perf_counts_values__scale(&count, scale, NULL);
1283 *perf_counts(evsel->counts, cpu, thread) = count;
1284 return 0;
1285 }
1286
1287 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1288 {
1289 struct perf_evsel *leader = evsel->leader;
1290 int fd;
1291
1292 if (perf_evsel__is_group_leader(evsel))
1293 return -1;
1294
1295 /*
1296 * Leader must be already processed/open,
1297 * if not it's a bug.
1298 */
1299 BUG_ON(!leader->fd);
1300
1301 fd = FD(leader, cpu, thread);
1302 BUG_ON(fd == -1);
1303
1304 return fd;
1305 }
1306
1307 struct bit_names {
1308 int bit;
1309 const char *name;
1310 };
1311
1312 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1313 {
1314 bool first_bit = true;
1315 int i = 0;
1316
1317 do {
1318 if (value & bits[i].bit) {
1319 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1320 first_bit = false;
1321 }
1322 } while (bits[++i].name != NULL);
1323 }
1324
1325 static void __p_sample_type(char *buf, size_t size, u64 value)
1326 {
1327 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1328 struct bit_names bits[] = {
1329 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1330 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1331 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1332 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1333 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1334 bit_name(WEIGHT),
1335 { .name = NULL, }
1336 };
1337 #undef bit_name
1338 __p_bits(buf, size, value, bits);
1339 }
1340
1341 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1342 {
1343 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1344 struct bit_names bits[] = {
1345 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1346 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1347 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1348 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1349 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1350 { .name = NULL, }
1351 };
1352 #undef bit_name
1353 __p_bits(buf, size, value, bits);
1354 }
1355
1356 static void __p_read_format(char *buf, size_t size, u64 value)
1357 {
1358 #define bit_name(n) { PERF_FORMAT_##n, #n }
1359 struct bit_names bits[] = {
1360 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1361 bit_name(ID), bit_name(GROUP),
1362 { .name = NULL, }
1363 };
1364 #undef bit_name
1365 __p_bits(buf, size, value, bits);
1366 }
1367
1368 #define BUF_SIZE 1024
1369
1370 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1371 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1372 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1373 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1374 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1375 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1376
1377 #define PRINT_ATTRn(_n, _f, _p) \
1378 do { \
1379 if (attr->_f) { \
1380 _p(attr->_f); \
1381 ret += attr__fprintf(fp, _n, buf, priv);\
1382 } \
1383 } while (0)
1384
1385 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1386
1387 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1388 attr__fprintf_f attr__fprintf, void *priv)
1389 {
1390 char buf[BUF_SIZE];
1391 int ret = 0;
1392
1393 PRINT_ATTRf(type, p_unsigned);
1394 PRINT_ATTRf(size, p_unsigned);
1395 PRINT_ATTRf(config, p_hex);
1396 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1397 PRINT_ATTRf(sample_type, p_sample_type);
1398 PRINT_ATTRf(read_format, p_read_format);
1399
1400 PRINT_ATTRf(disabled, p_unsigned);
1401 PRINT_ATTRf(inherit, p_unsigned);
1402 PRINT_ATTRf(pinned, p_unsigned);
1403 PRINT_ATTRf(exclusive, p_unsigned);
1404 PRINT_ATTRf(exclude_user, p_unsigned);
1405 PRINT_ATTRf(exclude_kernel, p_unsigned);
1406 PRINT_ATTRf(exclude_hv, p_unsigned);
1407 PRINT_ATTRf(exclude_idle, p_unsigned);
1408 PRINT_ATTRf(mmap, p_unsigned);
1409 PRINT_ATTRf(comm, p_unsigned);
1410 PRINT_ATTRf(freq, p_unsigned);
1411 PRINT_ATTRf(inherit_stat, p_unsigned);
1412 PRINT_ATTRf(enable_on_exec, p_unsigned);
1413 PRINT_ATTRf(task, p_unsigned);
1414 PRINT_ATTRf(watermark, p_unsigned);
1415 PRINT_ATTRf(precise_ip, p_unsigned);
1416 PRINT_ATTRf(mmap_data, p_unsigned);
1417 PRINT_ATTRf(sample_id_all, p_unsigned);
1418 PRINT_ATTRf(exclude_host, p_unsigned);
1419 PRINT_ATTRf(exclude_guest, p_unsigned);
1420 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1421 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1422 PRINT_ATTRf(mmap2, p_unsigned);
1423 PRINT_ATTRf(comm_exec, p_unsigned);
1424 PRINT_ATTRf(use_clockid, p_unsigned);
1425 PRINT_ATTRf(context_switch, p_unsigned);
1426 PRINT_ATTRf(write_backward, p_unsigned);
1427
1428 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1429 PRINT_ATTRf(bp_type, p_unsigned);
1430 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1431 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1432 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1433 PRINT_ATTRf(sample_regs_user, p_hex);
1434 PRINT_ATTRf(sample_stack_user, p_unsigned);
1435 PRINT_ATTRf(clockid, p_signed);
1436 PRINT_ATTRf(sample_regs_intr, p_hex);
1437 PRINT_ATTRf(aux_watermark, p_unsigned);
1438 PRINT_ATTRf(sample_max_stack, p_unsigned);
1439
1440 return ret;
1441 }
1442
1443 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1444 void *priv __attribute__((unused)))
1445 {
1446 return fprintf(fp, " %-32s %s\n", name, val);
1447 }
1448
1449 static bool ignore_missing_thread(struct perf_evsel *evsel,
1450 struct thread_map *threads,
1451 int thread, int err)
1452 {
1453 if (!evsel->ignore_missing_thread)
1454 return false;
1455
1456 /* The system wide setup does not work with threads. */
1457 if (evsel->system_wide)
1458 return false;
1459
1460 /* The -ESRCH is perf event syscall errno for pid's not found. */
1461 if (err != -ESRCH)
1462 return false;
1463
1464 /* If there's only one thread, let it fail. */
1465 if (threads->nr == 1)
1466 return false;
1467
1468 if (thread_map__remove(threads, thread))
1469 return false;
1470
1471 pr_warning("WARNING: Ignored open failure for pid %d\n",
1472 thread_map__pid(threads, thread));
1473 return true;
1474 }
1475
1476 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1477 struct thread_map *threads)
1478 {
1479 int cpu, thread, nthreads;
1480 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1481 int pid = -1, err;
1482 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1483
1484 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1485 return -EINVAL;
1486
1487 if (cpus == NULL) {
1488 static struct cpu_map *empty_cpu_map;
1489
1490 if (empty_cpu_map == NULL) {
1491 empty_cpu_map = cpu_map__dummy_new();
1492 if (empty_cpu_map == NULL)
1493 return -ENOMEM;
1494 }
1495
1496 cpus = empty_cpu_map;
1497 }
1498
1499 if (threads == NULL) {
1500 static struct thread_map *empty_thread_map;
1501
1502 if (empty_thread_map == NULL) {
1503 empty_thread_map = thread_map__new_by_tid(-1);
1504 if (empty_thread_map == NULL)
1505 return -ENOMEM;
1506 }
1507
1508 threads = empty_thread_map;
1509 }
1510
1511 if (evsel->system_wide)
1512 nthreads = 1;
1513 else
1514 nthreads = threads->nr;
1515
1516 if (evsel->fd == NULL &&
1517 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1518 return -ENOMEM;
1519
1520 if (evsel->cgrp) {
1521 flags |= PERF_FLAG_PID_CGROUP;
1522 pid = evsel->cgrp->fd;
1523 }
1524
1525 fallback_missing_features:
1526 if (perf_missing_features.clockid_wrong)
1527 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1528 if (perf_missing_features.clockid) {
1529 evsel->attr.use_clockid = 0;
1530 evsel->attr.clockid = 0;
1531 }
1532 if (perf_missing_features.cloexec)
1533 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1534 if (perf_missing_features.mmap2)
1535 evsel->attr.mmap2 = 0;
1536 if (perf_missing_features.exclude_guest)
1537 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1538 if (perf_missing_features.lbr_flags)
1539 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1540 PERF_SAMPLE_BRANCH_NO_CYCLES);
1541 retry_sample_id:
1542 if (perf_missing_features.sample_id_all)
1543 evsel->attr.sample_id_all = 0;
1544
1545 if (verbose >= 2) {
1546 fprintf(stderr, "%.60s\n", graph_dotted_line);
1547 fprintf(stderr, "perf_event_attr:\n");
1548 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1549 fprintf(stderr, "%.60s\n", graph_dotted_line);
1550 }
1551
1552 for (cpu = 0; cpu < cpus->nr; cpu++) {
1553
1554 for (thread = 0; thread < nthreads; thread++) {
1555 int fd, group_fd;
1556
1557 if (!evsel->cgrp && !evsel->system_wide)
1558 pid = thread_map__pid(threads, thread);
1559
1560 group_fd = get_group_fd(evsel, cpu, thread);
1561 retry_open:
1562 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1563 pid, cpus->map[cpu], group_fd, flags);
1564
1565 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1566 group_fd, flags);
1567
1568 FD(evsel, cpu, thread) = fd;
1569
1570 if (fd < 0) {
1571 err = -errno;
1572
1573 if (ignore_missing_thread(evsel, threads, thread, err)) {
1574 /*
1575 * We just removed 1 thread, so take a step
1576 * back on thread index and lower the upper
1577 * nthreads limit.
1578 */
1579 nthreads--;
1580 thread--;
1581
1582 /* ... and pretend like nothing have happened. */
1583 err = 0;
1584 continue;
1585 }
1586
1587 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1588 err);
1589 goto try_fallback;
1590 }
1591
1592 pr_debug2(" = %d\n", fd);
1593
1594 if (evsel->bpf_fd >= 0) {
1595 int evt_fd = fd;
1596 int bpf_fd = evsel->bpf_fd;
1597
1598 err = ioctl(evt_fd,
1599 PERF_EVENT_IOC_SET_BPF,
1600 bpf_fd);
1601 if (err && errno != EEXIST) {
1602 pr_err("failed to attach bpf fd %d: %s\n",
1603 bpf_fd, strerror(errno));
1604 err = -EINVAL;
1605 goto out_close;
1606 }
1607 }
1608
1609 set_rlimit = NO_CHANGE;
1610
1611 /*
1612 * If we succeeded but had to kill clockid, fail and
1613 * have perf_evsel__open_strerror() print us a nice
1614 * error.
1615 */
1616 if (perf_missing_features.clockid ||
1617 perf_missing_features.clockid_wrong) {
1618 err = -EINVAL;
1619 goto out_close;
1620 }
1621 }
1622 }
1623
1624 return 0;
1625
1626 try_fallback:
1627 /*
1628 * perf stat needs between 5 and 22 fds per CPU. When we run out
1629 * of them try to increase the limits.
1630 */
1631 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1632 struct rlimit l;
1633 int old_errno = errno;
1634
1635 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1636 if (set_rlimit == NO_CHANGE)
1637 l.rlim_cur = l.rlim_max;
1638 else {
1639 l.rlim_cur = l.rlim_max + 1000;
1640 l.rlim_max = l.rlim_cur;
1641 }
1642 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1643 set_rlimit++;
1644 errno = old_errno;
1645 goto retry_open;
1646 }
1647 }
1648 errno = old_errno;
1649 }
1650
1651 if (err != -EINVAL || cpu > 0 || thread > 0)
1652 goto out_close;
1653
1654 /*
1655 * Must probe features in the order they were added to the
1656 * perf_event_attr interface.
1657 */
1658 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1659 perf_missing_features.write_backward = true;
1660 goto out_close;
1661 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1662 perf_missing_features.clockid_wrong = true;
1663 goto fallback_missing_features;
1664 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1665 perf_missing_features.clockid = true;
1666 goto fallback_missing_features;
1667 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1668 perf_missing_features.cloexec = true;
1669 goto fallback_missing_features;
1670 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1671 perf_missing_features.mmap2 = true;
1672 goto fallback_missing_features;
1673 } else if (!perf_missing_features.exclude_guest &&
1674 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1675 perf_missing_features.exclude_guest = true;
1676 goto fallback_missing_features;
1677 } else if (!perf_missing_features.sample_id_all) {
1678 perf_missing_features.sample_id_all = true;
1679 goto retry_sample_id;
1680 } else if (!perf_missing_features.lbr_flags &&
1681 (evsel->attr.branch_sample_type &
1682 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1683 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1684 perf_missing_features.lbr_flags = true;
1685 goto fallback_missing_features;
1686 }
1687 out_close:
1688 do {
1689 while (--thread >= 0) {
1690 close(FD(evsel, cpu, thread));
1691 FD(evsel, cpu, thread) = -1;
1692 }
1693 thread = nthreads;
1694 } while (--cpu >= 0);
1695 return err;
1696 }
1697
1698 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1699 {
1700 if (evsel->fd == NULL)
1701 return;
1702
1703 perf_evsel__close_fd(evsel, ncpus, nthreads);
1704 perf_evsel__free_fd(evsel);
1705 }
1706
1707 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1708 struct cpu_map *cpus)
1709 {
1710 return perf_evsel__open(evsel, cpus, NULL);
1711 }
1712
1713 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1714 struct thread_map *threads)
1715 {
1716 return perf_evsel__open(evsel, NULL, threads);
1717 }
1718
1719 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1720 const union perf_event *event,
1721 struct perf_sample *sample)
1722 {
1723 u64 type = evsel->attr.sample_type;
1724 const u64 *array = event->sample.array;
1725 bool swapped = evsel->needs_swap;
1726 union u64_swap u;
1727
1728 array += ((event->header.size -
1729 sizeof(event->header)) / sizeof(u64)) - 1;
1730
1731 if (type & PERF_SAMPLE_IDENTIFIER) {
1732 sample->id = *array;
1733 array--;
1734 }
1735
1736 if (type & PERF_SAMPLE_CPU) {
1737 u.val64 = *array;
1738 if (swapped) {
1739 /* undo swap of u64, then swap on individual u32s */
1740 u.val64 = bswap_64(u.val64);
1741 u.val32[0] = bswap_32(u.val32[0]);
1742 }
1743
1744 sample->cpu = u.val32[0];
1745 array--;
1746 }
1747
1748 if (type & PERF_SAMPLE_STREAM_ID) {
1749 sample->stream_id = *array;
1750 array--;
1751 }
1752
1753 if (type & PERF_SAMPLE_ID) {
1754 sample->id = *array;
1755 array--;
1756 }
1757
1758 if (type & PERF_SAMPLE_TIME) {
1759 sample->time = *array;
1760 array--;
1761 }
1762
1763 if (type & PERF_SAMPLE_TID) {
1764 u.val64 = *array;
1765 if (swapped) {
1766 /* undo swap of u64, then swap on individual u32s */
1767 u.val64 = bswap_64(u.val64);
1768 u.val32[0] = bswap_32(u.val32[0]);
1769 u.val32[1] = bswap_32(u.val32[1]);
1770 }
1771
1772 sample->pid = u.val32[0];
1773 sample->tid = u.val32[1];
1774 array--;
1775 }
1776
1777 return 0;
1778 }
1779
1780 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1781 u64 size)
1782 {
1783 return size > max_size || offset + size > endp;
1784 }
1785
1786 #define OVERFLOW_CHECK(offset, size, max_size) \
1787 do { \
1788 if (overflow(endp, (max_size), (offset), (size))) \
1789 return -EFAULT; \
1790 } while (0)
1791
1792 #define OVERFLOW_CHECK_u64(offset) \
1793 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1794
1795 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1796 struct perf_sample *data)
1797 {
1798 u64 type = evsel->attr.sample_type;
1799 bool swapped = evsel->needs_swap;
1800 const u64 *array;
1801 u16 max_size = event->header.size;
1802 const void *endp = (void *)event + max_size;
1803 u64 sz;
1804
1805 /*
1806 * used for cross-endian analysis. See git commit 65014ab3
1807 * for why this goofiness is needed.
1808 */
1809 union u64_swap u;
1810
1811 memset(data, 0, sizeof(*data));
1812 data->cpu = data->pid = data->tid = -1;
1813 data->stream_id = data->id = data->time = -1ULL;
1814 data->period = evsel->attr.sample_period;
1815 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1816
1817 if (event->header.type != PERF_RECORD_SAMPLE) {
1818 if (!evsel->attr.sample_id_all)
1819 return 0;
1820 return perf_evsel__parse_id_sample(evsel, event, data);
1821 }
1822
1823 array = event->sample.array;
1824
1825 /*
1826 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1827 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1828 * check the format does not go past the end of the event.
1829 */
1830 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1831 return -EFAULT;
1832
1833 data->id = -1ULL;
1834 if (type & PERF_SAMPLE_IDENTIFIER) {
1835 data->id = *array;
1836 array++;
1837 }
1838
1839 if (type & PERF_SAMPLE_IP) {
1840 data->ip = *array;
1841 array++;
1842 }
1843
1844 if (type & PERF_SAMPLE_TID) {
1845 u.val64 = *array;
1846 if (swapped) {
1847 /* undo swap of u64, then swap on individual u32s */
1848 u.val64 = bswap_64(u.val64);
1849 u.val32[0] = bswap_32(u.val32[0]);
1850 u.val32[1] = bswap_32(u.val32[1]);
1851 }
1852
1853 data->pid = u.val32[0];
1854 data->tid = u.val32[1];
1855 array++;
1856 }
1857
1858 if (type & PERF_SAMPLE_TIME) {
1859 data->time = *array;
1860 array++;
1861 }
1862
1863 data->addr = 0;
1864 if (type & PERF_SAMPLE_ADDR) {
1865 data->addr = *array;
1866 array++;
1867 }
1868
1869 if (type & PERF_SAMPLE_ID) {
1870 data->id = *array;
1871 array++;
1872 }
1873
1874 if (type & PERF_SAMPLE_STREAM_ID) {
1875 data->stream_id = *array;
1876 array++;
1877 }
1878
1879 if (type & PERF_SAMPLE_CPU) {
1880
1881 u.val64 = *array;
1882 if (swapped) {
1883 /* undo swap of u64, then swap on individual u32s */
1884 u.val64 = bswap_64(u.val64);
1885 u.val32[0] = bswap_32(u.val32[0]);
1886 }
1887
1888 data->cpu = u.val32[0];
1889 array++;
1890 }
1891
1892 if (type & PERF_SAMPLE_PERIOD) {
1893 data->period = *array;
1894 array++;
1895 }
1896
1897 if (type & PERF_SAMPLE_READ) {
1898 u64 read_format = evsel->attr.read_format;
1899
1900 OVERFLOW_CHECK_u64(array);
1901 if (read_format & PERF_FORMAT_GROUP)
1902 data->read.group.nr = *array;
1903 else
1904 data->read.one.value = *array;
1905
1906 array++;
1907
1908 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1909 OVERFLOW_CHECK_u64(array);
1910 data->read.time_enabled = *array;
1911 array++;
1912 }
1913
1914 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1915 OVERFLOW_CHECK_u64(array);
1916 data->read.time_running = *array;
1917 array++;
1918 }
1919
1920 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1921 if (read_format & PERF_FORMAT_GROUP) {
1922 const u64 max_group_nr = UINT64_MAX /
1923 sizeof(struct sample_read_value);
1924
1925 if (data->read.group.nr > max_group_nr)
1926 return -EFAULT;
1927 sz = data->read.group.nr *
1928 sizeof(struct sample_read_value);
1929 OVERFLOW_CHECK(array, sz, max_size);
1930 data->read.group.values =
1931 (struct sample_read_value *)array;
1932 array = (void *)array + sz;
1933 } else {
1934 OVERFLOW_CHECK_u64(array);
1935 data->read.one.id = *array;
1936 array++;
1937 }
1938 }
1939
1940 if (type & PERF_SAMPLE_CALLCHAIN) {
1941 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1942
1943 OVERFLOW_CHECK_u64(array);
1944 data->callchain = (struct ip_callchain *)array++;
1945 if (data->callchain->nr > max_callchain_nr)
1946 return -EFAULT;
1947 sz = data->callchain->nr * sizeof(u64);
1948 OVERFLOW_CHECK(array, sz, max_size);
1949 array = (void *)array + sz;
1950 }
1951
1952 if (type & PERF_SAMPLE_RAW) {
1953 OVERFLOW_CHECK_u64(array);
1954 u.val64 = *array;
1955 if (WARN_ONCE(swapped,
1956 "Endianness of raw data not corrected!\n")) {
1957 /* undo swap of u64, then swap on individual u32s */
1958 u.val64 = bswap_64(u.val64);
1959 u.val32[0] = bswap_32(u.val32[0]);
1960 u.val32[1] = bswap_32(u.val32[1]);
1961 }
1962 data->raw_size = u.val32[0];
1963 array = (void *)array + sizeof(u32);
1964
1965 OVERFLOW_CHECK(array, data->raw_size, max_size);
1966 data->raw_data = (void *)array;
1967 array = (void *)array + data->raw_size;
1968 }
1969
1970 if (type & PERF_SAMPLE_BRANCH_STACK) {
1971 const u64 max_branch_nr = UINT64_MAX /
1972 sizeof(struct branch_entry);
1973
1974 OVERFLOW_CHECK_u64(array);
1975 data->branch_stack = (struct branch_stack *)array++;
1976
1977 if (data->branch_stack->nr > max_branch_nr)
1978 return -EFAULT;
1979 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1980 OVERFLOW_CHECK(array, sz, max_size);
1981 array = (void *)array + sz;
1982 }
1983
1984 if (type & PERF_SAMPLE_REGS_USER) {
1985 OVERFLOW_CHECK_u64(array);
1986 data->user_regs.abi = *array;
1987 array++;
1988
1989 if (data->user_regs.abi) {
1990 u64 mask = evsel->attr.sample_regs_user;
1991
1992 sz = hweight_long(mask) * sizeof(u64);
1993 OVERFLOW_CHECK(array, sz, max_size);
1994 data->user_regs.mask = mask;
1995 data->user_regs.regs = (u64 *)array;
1996 array = (void *)array + sz;
1997 }
1998 }
1999
2000 if (type & PERF_SAMPLE_STACK_USER) {
2001 OVERFLOW_CHECK_u64(array);
2002 sz = *array++;
2003
2004 data->user_stack.offset = ((char *)(array - 1)
2005 - (char *) event);
2006
2007 if (!sz) {
2008 data->user_stack.size = 0;
2009 } else {
2010 OVERFLOW_CHECK(array, sz, max_size);
2011 data->user_stack.data = (char *)array;
2012 array = (void *)array + sz;
2013 OVERFLOW_CHECK_u64(array);
2014 data->user_stack.size = *array++;
2015 if (WARN_ONCE(data->user_stack.size > sz,
2016 "user stack dump failure\n"))
2017 return -EFAULT;
2018 }
2019 }
2020
2021 if (type & PERF_SAMPLE_WEIGHT) {
2022 OVERFLOW_CHECK_u64(array);
2023 data->weight = *array;
2024 array++;
2025 }
2026
2027 data->data_src = PERF_MEM_DATA_SRC_NONE;
2028 if (type & PERF_SAMPLE_DATA_SRC) {
2029 OVERFLOW_CHECK_u64(array);
2030 data->data_src = *array;
2031 array++;
2032 }
2033
2034 data->transaction = 0;
2035 if (type & PERF_SAMPLE_TRANSACTION) {
2036 OVERFLOW_CHECK_u64(array);
2037 data->transaction = *array;
2038 array++;
2039 }
2040
2041 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2042 if (type & PERF_SAMPLE_REGS_INTR) {
2043 OVERFLOW_CHECK_u64(array);
2044 data->intr_regs.abi = *array;
2045 array++;
2046
2047 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2048 u64 mask = evsel->attr.sample_regs_intr;
2049
2050 sz = hweight_long(mask) * sizeof(u64);
2051 OVERFLOW_CHECK(array, sz, max_size);
2052 data->intr_regs.mask = mask;
2053 data->intr_regs.regs = (u64 *)array;
2054 array = (void *)array + sz;
2055 }
2056 }
2057
2058 return 0;
2059 }
2060
2061 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2062 u64 read_format)
2063 {
2064 size_t sz, result = sizeof(struct sample_event);
2065
2066 if (type & PERF_SAMPLE_IDENTIFIER)
2067 result += sizeof(u64);
2068
2069 if (type & PERF_SAMPLE_IP)
2070 result += sizeof(u64);
2071
2072 if (type & PERF_SAMPLE_TID)
2073 result += sizeof(u64);
2074
2075 if (type & PERF_SAMPLE_TIME)
2076 result += sizeof(u64);
2077
2078 if (type & PERF_SAMPLE_ADDR)
2079 result += sizeof(u64);
2080
2081 if (type & PERF_SAMPLE_ID)
2082 result += sizeof(u64);
2083
2084 if (type & PERF_SAMPLE_STREAM_ID)
2085 result += sizeof(u64);
2086
2087 if (type & PERF_SAMPLE_CPU)
2088 result += sizeof(u64);
2089
2090 if (type & PERF_SAMPLE_PERIOD)
2091 result += sizeof(u64);
2092
2093 if (type & PERF_SAMPLE_READ) {
2094 result += sizeof(u64);
2095 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2096 result += sizeof(u64);
2097 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2098 result += sizeof(u64);
2099 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2100 if (read_format & PERF_FORMAT_GROUP) {
2101 sz = sample->read.group.nr *
2102 sizeof(struct sample_read_value);
2103 result += sz;
2104 } else {
2105 result += sizeof(u64);
2106 }
2107 }
2108
2109 if (type & PERF_SAMPLE_CALLCHAIN) {
2110 sz = (sample->callchain->nr + 1) * sizeof(u64);
2111 result += sz;
2112 }
2113
2114 if (type & PERF_SAMPLE_RAW) {
2115 result += sizeof(u32);
2116 result += sample->raw_size;
2117 }
2118
2119 if (type & PERF_SAMPLE_BRANCH_STACK) {
2120 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2121 sz += sizeof(u64);
2122 result += sz;
2123 }
2124
2125 if (type & PERF_SAMPLE_REGS_USER) {
2126 if (sample->user_regs.abi) {
2127 result += sizeof(u64);
2128 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2129 result += sz;
2130 } else {
2131 result += sizeof(u64);
2132 }
2133 }
2134
2135 if (type & PERF_SAMPLE_STACK_USER) {
2136 sz = sample->user_stack.size;
2137 result += sizeof(u64);
2138 if (sz) {
2139 result += sz;
2140 result += sizeof(u64);
2141 }
2142 }
2143
2144 if (type & PERF_SAMPLE_WEIGHT)
2145 result += sizeof(u64);
2146
2147 if (type & PERF_SAMPLE_DATA_SRC)
2148 result += sizeof(u64);
2149
2150 if (type & PERF_SAMPLE_TRANSACTION)
2151 result += sizeof(u64);
2152
2153 if (type & PERF_SAMPLE_REGS_INTR) {
2154 if (sample->intr_regs.abi) {
2155 result += sizeof(u64);
2156 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2157 result += sz;
2158 } else {
2159 result += sizeof(u64);
2160 }
2161 }
2162
2163 return result;
2164 }
2165
2166 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2167 u64 read_format,
2168 const struct perf_sample *sample,
2169 bool swapped)
2170 {
2171 u64 *array;
2172 size_t sz;
2173 /*
2174 * used for cross-endian analysis. See git commit 65014ab3
2175 * for why this goofiness is needed.
2176 */
2177 union u64_swap u;
2178
2179 array = event->sample.array;
2180
2181 if (type & PERF_SAMPLE_IDENTIFIER) {
2182 *array = sample->id;
2183 array++;
2184 }
2185
2186 if (type & PERF_SAMPLE_IP) {
2187 *array = sample->ip;
2188 array++;
2189 }
2190
2191 if (type & PERF_SAMPLE_TID) {
2192 u.val32[0] = sample->pid;
2193 u.val32[1] = sample->tid;
2194 if (swapped) {
2195 /*
2196 * Inverse of what is done in perf_evsel__parse_sample
2197 */
2198 u.val32[0] = bswap_32(u.val32[0]);
2199 u.val32[1] = bswap_32(u.val32[1]);
2200 u.val64 = bswap_64(u.val64);
2201 }
2202
2203 *array = u.val64;
2204 array++;
2205 }
2206
2207 if (type & PERF_SAMPLE_TIME) {
2208 *array = sample->time;
2209 array++;
2210 }
2211
2212 if (type & PERF_SAMPLE_ADDR) {
2213 *array = sample->addr;
2214 array++;
2215 }
2216
2217 if (type & PERF_SAMPLE_ID) {
2218 *array = sample->id;
2219 array++;
2220 }
2221
2222 if (type & PERF_SAMPLE_STREAM_ID) {
2223 *array = sample->stream_id;
2224 array++;
2225 }
2226
2227 if (type & PERF_SAMPLE_CPU) {
2228 u.val32[0] = sample->cpu;
2229 if (swapped) {
2230 /*
2231 * Inverse of what is done in perf_evsel__parse_sample
2232 */
2233 u.val32[0] = bswap_32(u.val32[0]);
2234 u.val64 = bswap_64(u.val64);
2235 }
2236 *array = u.val64;
2237 array++;
2238 }
2239
2240 if (type & PERF_SAMPLE_PERIOD) {
2241 *array = sample->period;
2242 array++;
2243 }
2244
2245 if (type & PERF_SAMPLE_READ) {
2246 if (read_format & PERF_FORMAT_GROUP)
2247 *array = sample->read.group.nr;
2248 else
2249 *array = sample->read.one.value;
2250 array++;
2251
2252 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2253 *array = sample->read.time_enabled;
2254 array++;
2255 }
2256
2257 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2258 *array = sample->read.time_running;
2259 array++;
2260 }
2261
2262 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2263 if (read_format & PERF_FORMAT_GROUP) {
2264 sz = sample->read.group.nr *
2265 sizeof(struct sample_read_value);
2266 memcpy(array, sample->read.group.values, sz);
2267 array = (void *)array + sz;
2268 } else {
2269 *array = sample->read.one.id;
2270 array++;
2271 }
2272 }
2273
2274 if (type & PERF_SAMPLE_CALLCHAIN) {
2275 sz = (sample->callchain->nr + 1) * sizeof(u64);
2276 memcpy(array, sample->callchain, sz);
2277 array = (void *)array + sz;
2278 }
2279
2280 if (type & PERF_SAMPLE_RAW) {
2281 u.val32[0] = sample->raw_size;
2282 if (WARN_ONCE(swapped,
2283 "Endianness of raw data not corrected!\n")) {
2284 /*
2285 * Inverse of what is done in perf_evsel__parse_sample
2286 */
2287 u.val32[0] = bswap_32(u.val32[0]);
2288 u.val32[1] = bswap_32(u.val32[1]);
2289 u.val64 = bswap_64(u.val64);
2290 }
2291 *array = u.val64;
2292 array = (void *)array + sizeof(u32);
2293
2294 memcpy(array, sample->raw_data, sample->raw_size);
2295 array = (void *)array + sample->raw_size;
2296 }
2297
2298 if (type & PERF_SAMPLE_BRANCH_STACK) {
2299 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2300 sz += sizeof(u64);
2301 memcpy(array, sample->branch_stack, sz);
2302 array = (void *)array + sz;
2303 }
2304
2305 if (type & PERF_SAMPLE_REGS_USER) {
2306 if (sample->user_regs.abi) {
2307 *array++ = sample->user_regs.abi;
2308 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2309 memcpy(array, sample->user_regs.regs, sz);
2310 array = (void *)array + sz;
2311 } else {
2312 *array++ = 0;
2313 }
2314 }
2315
2316 if (type & PERF_SAMPLE_STACK_USER) {
2317 sz = sample->user_stack.size;
2318 *array++ = sz;
2319 if (sz) {
2320 memcpy(array, sample->user_stack.data, sz);
2321 array = (void *)array + sz;
2322 *array++ = sz;
2323 }
2324 }
2325
2326 if (type & PERF_SAMPLE_WEIGHT) {
2327 *array = sample->weight;
2328 array++;
2329 }
2330
2331 if (type & PERF_SAMPLE_DATA_SRC) {
2332 *array = sample->data_src;
2333 array++;
2334 }
2335
2336 if (type & PERF_SAMPLE_TRANSACTION) {
2337 *array = sample->transaction;
2338 array++;
2339 }
2340
2341 if (type & PERF_SAMPLE_REGS_INTR) {
2342 if (sample->intr_regs.abi) {
2343 *array++ = sample->intr_regs.abi;
2344 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2345 memcpy(array, sample->intr_regs.regs, sz);
2346 array = (void *)array + sz;
2347 } else {
2348 *array++ = 0;
2349 }
2350 }
2351
2352 return 0;
2353 }
2354
2355 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2356 {
2357 return pevent_find_field(evsel->tp_format, name);
2358 }
2359
2360 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2361 const char *name)
2362 {
2363 struct format_field *field = perf_evsel__field(evsel, name);
2364 int offset;
2365
2366 if (!field)
2367 return NULL;
2368
2369 offset = field->offset;
2370
2371 if (field->flags & FIELD_IS_DYNAMIC) {
2372 offset = *(int *)(sample->raw_data + field->offset);
2373 offset &= 0xffff;
2374 }
2375
2376 return sample->raw_data + offset;
2377 }
2378
2379 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2380 bool needs_swap)
2381 {
2382 u64 value;
2383 void *ptr = sample->raw_data + field->offset;
2384
2385 switch (field->size) {
2386 case 1:
2387 return *(u8 *)ptr;
2388 case 2:
2389 value = *(u16 *)ptr;
2390 break;
2391 case 4:
2392 value = *(u32 *)ptr;
2393 break;
2394 case 8:
2395 memcpy(&value, ptr, sizeof(u64));
2396 break;
2397 default:
2398 return 0;
2399 }
2400
2401 if (!needs_swap)
2402 return value;
2403
2404 switch (field->size) {
2405 case 2:
2406 return bswap_16(value);
2407 case 4:
2408 return bswap_32(value);
2409 case 8:
2410 return bswap_64(value);
2411 default:
2412 return 0;
2413 }
2414
2415 return 0;
2416 }
2417
2418 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2419 const char *name)
2420 {
2421 struct format_field *field = perf_evsel__field(evsel, name);
2422
2423 if (!field)
2424 return 0;
2425
2426 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2427 }
2428
2429 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2430 char *msg, size_t msgsize)
2431 {
2432 int paranoid;
2433
2434 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2435 evsel->attr.type == PERF_TYPE_HARDWARE &&
2436 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2437 /*
2438 * If it's cycles then fall back to hrtimer based
2439 * cpu-clock-tick sw counter, which is always available even if
2440 * no PMU support.
2441 *
2442 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2443 * b0a873e).
2444 */
2445 scnprintf(msg, msgsize, "%s",
2446 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2447
2448 evsel->attr.type = PERF_TYPE_SOFTWARE;
2449 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2450
2451 zfree(&evsel->name);
2452 return true;
2453 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2454 (paranoid = perf_event_paranoid()) > 1) {
2455 const char *name = perf_evsel__name(evsel);
2456 char *new_name;
2457
2458 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2459 return false;
2460
2461 if (evsel->name)
2462 free(evsel->name);
2463 evsel->name = new_name;
2464 scnprintf(msg, msgsize,
2465 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2466 evsel->attr.exclude_kernel = 1;
2467
2468 return true;
2469 }
2470
2471 return false;
2472 }
2473
2474 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2475 int err, char *msg, size_t size)
2476 {
2477 char sbuf[STRERR_BUFSIZE];
2478 int printed = 0;
2479
2480 switch (err) {
2481 case EPERM:
2482 case EACCES:
2483 if (err == EPERM)
2484 printed = scnprintf(msg, size,
2485 "No permission to enable %s event.\n\n",
2486 perf_evsel__name(evsel));
2487
2488 return scnprintf(msg + printed, size - printed,
2489 "You may not have permission to collect %sstats.\n\n"
2490 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2491 "which controls use of the performance events system by\n"
2492 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2493 "The current value is %d:\n\n"
2494 " -1: Allow use of (almost) all events by all users\n"
2495 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2496 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2497 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2498 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2499 " kernel.perf_event_paranoid = -1\n" ,
2500 target->system_wide ? "system-wide " : "",
2501 perf_event_paranoid());
2502 case ENOENT:
2503 return scnprintf(msg, size, "The %s event is not supported.",
2504 perf_evsel__name(evsel));
2505 case EMFILE:
2506 return scnprintf(msg, size, "%s",
2507 "Too many events are opened.\n"
2508 "Probably the maximum number of open file descriptors has been reached.\n"
2509 "Hint: Try again after reducing the number of events.\n"
2510 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2511 case ENOMEM:
2512 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2513 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2514 return scnprintf(msg, size,
2515 "Not enough memory to setup event with callchain.\n"
2516 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2517 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2518 break;
2519 case ENODEV:
2520 if (target->cpu_list)
2521 return scnprintf(msg, size, "%s",
2522 "No such device - did you specify an out-of-range profile CPU?");
2523 break;
2524 case EOPNOTSUPP:
2525 if (evsel->attr.sample_period != 0)
2526 return scnprintf(msg, size, "%s",
2527 "PMU Hardware doesn't support sampling/overflow-interrupts.");
2528 if (evsel->attr.precise_ip)
2529 return scnprintf(msg, size, "%s",
2530 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2531 #if defined(__i386__) || defined(__x86_64__)
2532 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2533 return scnprintf(msg, size, "%s",
2534 "No hardware sampling interrupt available.\n"
2535 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2536 #endif
2537 break;
2538 case EBUSY:
2539 if (find_process("oprofiled"))
2540 return scnprintf(msg, size,
2541 "The PMU counters are busy/taken by another profiler.\n"
2542 "We found oprofile daemon running, please stop it and try again.");
2543 break;
2544 case EINVAL:
2545 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2546 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2547 if (perf_missing_features.clockid)
2548 return scnprintf(msg, size, "clockid feature not supported.");
2549 if (perf_missing_features.clockid_wrong)
2550 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2551 break;
2552 default:
2553 break;
2554 }
2555
2556 return scnprintf(msg, size,
2557 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2558 "/bin/dmesg may provide additional information.\n"
2559 "No CONFIG_PERF_EVENTS=y kernel support configured?",
2560 err, str_error_r(err, sbuf, sizeof(sbuf)),
2561 perf_evsel__name(evsel));
2562 }
2563
2564 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2565 {
2566 if (evsel && evsel->evlist && evsel->evlist->env)
2567 return evsel->evlist->env->arch;
2568 return NULL;
2569 }