]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - tools/perf/util/evsel.c
mlxsw: spectrum_router: Only handle IPv4 and IPv6 events
[mirror_ubuntu-focal-kernel.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "util/parse-branch-options.h"
40
41 #include "sane_ctype.h"
42
43 static struct {
44 bool sample_id_all;
45 bool exclude_guest;
46 bool mmap2;
47 bool cloexec;
48 bool clockid;
49 bool clockid_wrong;
50 bool lbr_flags;
51 bool write_backward;
52 bool group_read;
53 } perf_missing_features;
54
55 static clockid_t clockid;
56
57 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
58 {
59 return 0;
60 }
61
62 void __weak test_attr__ready(void) { }
63
64 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
65 {
66 }
67
68 static struct {
69 size_t size;
70 int (*init)(struct perf_evsel *evsel);
71 void (*fini)(struct perf_evsel *evsel);
72 } perf_evsel__object = {
73 .size = sizeof(struct perf_evsel),
74 .init = perf_evsel__no_extra_init,
75 .fini = perf_evsel__no_extra_fini,
76 };
77
78 int perf_evsel__object_config(size_t object_size,
79 int (*init)(struct perf_evsel *evsel),
80 void (*fini)(struct perf_evsel *evsel))
81 {
82
83 if (object_size == 0)
84 goto set_methods;
85
86 if (perf_evsel__object.size > object_size)
87 return -EINVAL;
88
89 perf_evsel__object.size = object_size;
90
91 set_methods:
92 if (init != NULL)
93 perf_evsel__object.init = init;
94
95 if (fini != NULL)
96 perf_evsel__object.fini = fini;
97
98 return 0;
99 }
100
101 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
102
103 int __perf_evsel__sample_size(u64 sample_type)
104 {
105 u64 mask = sample_type & PERF_SAMPLE_MASK;
106 int size = 0;
107 int i;
108
109 for (i = 0; i < 64; i++) {
110 if (mask & (1ULL << i))
111 size++;
112 }
113
114 size *= sizeof(u64);
115
116 return size;
117 }
118
119 /**
120 * __perf_evsel__calc_id_pos - calculate id_pos.
121 * @sample_type: sample type
122 *
123 * This function returns the position of the event id (PERF_SAMPLE_ID or
124 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
125 * sample_event.
126 */
127 static int __perf_evsel__calc_id_pos(u64 sample_type)
128 {
129 int idx = 0;
130
131 if (sample_type & PERF_SAMPLE_IDENTIFIER)
132 return 0;
133
134 if (!(sample_type & PERF_SAMPLE_ID))
135 return -1;
136
137 if (sample_type & PERF_SAMPLE_IP)
138 idx += 1;
139
140 if (sample_type & PERF_SAMPLE_TID)
141 idx += 1;
142
143 if (sample_type & PERF_SAMPLE_TIME)
144 idx += 1;
145
146 if (sample_type & PERF_SAMPLE_ADDR)
147 idx += 1;
148
149 return idx;
150 }
151
152 /**
153 * __perf_evsel__calc_is_pos - calculate is_pos.
154 * @sample_type: sample type
155 *
156 * This function returns the position (counting backwards) of the event id
157 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
158 * sample_id_all is used there is an id sample appended to non-sample events.
159 */
160 static int __perf_evsel__calc_is_pos(u64 sample_type)
161 {
162 int idx = 1;
163
164 if (sample_type & PERF_SAMPLE_IDENTIFIER)
165 return 1;
166
167 if (!(sample_type & PERF_SAMPLE_ID))
168 return -1;
169
170 if (sample_type & PERF_SAMPLE_CPU)
171 idx += 1;
172
173 if (sample_type & PERF_SAMPLE_STREAM_ID)
174 idx += 1;
175
176 return idx;
177 }
178
179 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
180 {
181 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
182 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
183 }
184
185 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
186 enum perf_event_sample_format bit)
187 {
188 if (!(evsel->attr.sample_type & bit)) {
189 evsel->attr.sample_type |= bit;
190 evsel->sample_size += sizeof(u64);
191 perf_evsel__calc_id_pos(evsel);
192 }
193 }
194
195 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
196 enum perf_event_sample_format bit)
197 {
198 if (evsel->attr.sample_type & bit) {
199 evsel->attr.sample_type &= ~bit;
200 evsel->sample_size -= sizeof(u64);
201 perf_evsel__calc_id_pos(evsel);
202 }
203 }
204
205 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
206 bool can_sample_identifier)
207 {
208 if (can_sample_identifier) {
209 perf_evsel__reset_sample_bit(evsel, ID);
210 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
211 } else {
212 perf_evsel__set_sample_bit(evsel, ID);
213 }
214 evsel->attr.read_format |= PERF_FORMAT_ID;
215 }
216
217 /**
218 * perf_evsel__is_function_event - Return whether given evsel is a function
219 * trace event
220 *
221 * @evsel - evsel selector to be tested
222 *
223 * Return %true if event is function trace event
224 */
225 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
226 {
227 #define FUNCTION_EVENT "ftrace:function"
228
229 return evsel->name &&
230 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
231
232 #undef FUNCTION_EVENT
233 }
234
235 void perf_evsel__init(struct perf_evsel *evsel,
236 struct perf_event_attr *attr, int idx)
237 {
238 evsel->idx = idx;
239 evsel->tracking = !idx;
240 evsel->attr = *attr;
241 evsel->leader = evsel;
242 evsel->unit = "";
243 evsel->scale = 1.0;
244 evsel->evlist = NULL;
245 evsel->bpf_fd = -1;
246 INIT_LIST_HEAD(&evsel->node);
247 INIT_LIST_HEAD(&evsel->config_terms);
248 perf_evsel__object.init(evsel);
249 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
250 perf_evsel__calc_id_pos(evsel);
251 evsel->cmdline_group_boundary = false;
252 evsel->metric_expr = NULL;
253 evsel->metric_name = NULL;
254 evsel->metric_events = NULL;
255 evsel->collect_stat = false;
256 }
257
258 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
259 {
260 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
261
262 if (evsel != NULL)
263 perf_evsel__init(evsel, attr, idx);
264
265 if (perf_evsel__is_bpf_output(evsel)) {
266 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
267 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
268 evsel->attr.sample_period = 1;
269 }
270
271 return evsel;
272 }
273
274 struct perf_evsel *perf_evsel__new_cycles(bool precise)
275 {
276 struct perf_event_attr attr = {
277 .type = PERF_TYPE_HARDWARE,
278 .config = PERF_COUNT_HW_CPU_CYCLES,
279 .exclude_kernel = geteuid() != 0,
280 };
281 struct perf_evsel *evsel;
282
283 event_attr_init(&attr);
284
285 if (!precise)
286 goto new_event;
287 /*
288 * Unnamed union member, not supported as struct member named
289 * initializer in older compilers such as gcc 4.4.7
290 *
291 * Just for probing the precise_ip:
292 */
293 attr.sample_period = 1;
294
295 perf_event_attr__set_max_precise_ip(&attr);
296 /*
297 * Now let the usual logic to set up the perf_event_attr defaults
298 * to kick in when we return and before perf_evsel__open() is called.
299 */
300 attr.sample_period = 0;
301 new_event:
302 evsel = perf_evsel__new(&attr);
303 if (evsel == NULL)
304 goto out;
305
306 /* use asprintf() because free(evsel) assumes name is allocated */
307 if (asprintf(&evsel->name, "cycles%s%s%.*s",
308 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
309 attr.exclude_kernel ? "u" : "",
310 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
311 goto error_free;
312 out:
313 return evsel;
314 error_free:
315 perf_evsel__delete(evsel);
316 evsel = NULL;
317 goto out;
318 }
319
320 /*
321 * Returns pointer with encoded error via <linux/err.h> interface.
322 */
323 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
324 {
325 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
326 int err = -ENOMEM;
327
328 if (evsel == NULL) {
329 goto out_err;
330 } else {
331 struct perf_event_attr attr = {
332 .type = PERF_TYPE_TRACEPOINT,
333 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
334 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
335 };
336
337 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
338 goto out_free;
339
340 evsel->tp_format = trace_event__tp_format(sys, name);
341 if (IS_ERR(evsel->tp_format)) {
342 err = PTR_ERR(evsel->tp_format);
343 goto out_free;
344 }
345
346 event_attr_init(&attr);
347 attr.config = evsel->tp_format->id;
348 attr.sample_period = 1;
349 perf_evsel__init(evsel, &attr, idx);
350 }
351
352 return evsel;
353
354 out_free:
355 zfree(&evsel->name);
356 free(evsel);
357 out_err:
358 return ERR_PTR(err);
359 }
360
361 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
362 "cycles",
363 "instructions",
364 "cache-references",
365 "cache-misses",
366 "branches",
367 "branch-misses",
368 "bus-cycles",
369 "stalled-cycles-frontend",
370 "stalled-cycles-backend",
371 "ref-cycles",
372 };
373
374 static const char *__perf_evsel__hw_name(u64 config)
375 {
376 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
377 return perf_evsel__hw_names[config];
378
379 return "unknown-hardware";
380 }
381
382 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
383 {
384 int colon = 0, r = 0;
385 struct perf_event_attr *attr = &evsel->attr;
386 bool exclude_guest_default = false;
387
388 #define MOD_PRINT(context, mod) do { \
389 if (!attr->exclude_##context) { \
390 if (!colon) colon = ++r; \
391 r += scnprintf(bf + r, size - r, "%c", mod); \
392 } } while(0)
393
394 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
395 MOD_PRINT(kernel, 'k');
396 MOD_PRINT(user, 'u');
397 MOD_PRINT(hv, 'h');
398 exclude_guest_default = true;
399 }
400
401 if (attr->precise_ip) {
402 if (!colon)
403 colon = ++r;
404 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
405 exclude_guest_default = true;
406 }
407
408 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
409 MOD_PRINT(host, 'H');
410 MOD_PRINT(guest, 'G');
411 }
412 #undef MOD_PRINT
413 if (colon)
414 bf[colon - 1] = ':';
415 return r;
416 }
417
418 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
419 {
420 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
421 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
422 }
423
424 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
425 "cpu-clock",
426 "task-clock",
427 "page-faults",
428 "context-switches",
429 "cpu-migrations",
430 "minor-faults",
431 "major-faults",
432 "alignment-faults",
433 "emulation-faults",
434 "dummy",
435 };
436
437 static const char *__perf_evsel__sw_name(u64 config)
438 {
439 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
440 return perf_evsel__sw_names[config];
441 return "unknown-software";
442 }
443
444 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
445 {
446 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
447 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
448 }
449
450 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
451 {
452 int r;
453
454 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
455
456 if (type & HW_BREAKPOINT_R)
457 r += scnprintf(bf + r, size - r, "r");
458
459 if (type & HW_BREAKPOINT_W)
460 r += scnprintf(bf + r, size - r, "w");
461
462 if (type & HW_BREAKPOINT_X)
463 r += scnprintf(bf + r, size - r, "x");
464
465 return r;
466 }
467
468 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
469 {
470 struct perf_event_attr *attr = &evsel->attr;
471 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
472 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
473 }
474
475 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
476 [PERF_EVSEL__MAX_ALIASES] = {
477 { "L1-dcache", "l1-d", "l1d", "L1-data", },
478 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
479 { "LLC", "L2", },
480 { "dTLB", "d-tlb", "Data-TLB", },
481 { "iTLB", "i-tlb", "Instruction-TLB", },
482 { "branch", "branches", "bpu", "btb", "bpc", },
483 { "node", },
484 };
485
486 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
487 [PERF_EVSEL__MAX_ALIASES] = {
488 { "load", "loads", "read", },
489 { "store", "stores", "write", },
490 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
491 };
492
493 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
494 [PERF_EVSEL__MAX_ALIASES] = {
495 { "refs", "Reference", "ops", "access", },
496 { "misses", "miss", },
497 };
498
499 #define C(x) PERF_COUNT_HW_CACHE_##x
500 #define CACHE_READ (1 << C(OP_READ))
501 #define CACHE_WRITE (1 << C(OP_WRITE))
502 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
503 #define COP(x) (1 << x)
504
505 /*
506 * cache operartion stat
507 * L1I : Read and prefetch only
508 * ITLB and BPU : Read-only
509 */
510 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
511 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
512 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
513 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
514 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
515 [C(ITLB)] = (CACHE_READ),
516 [C(BPU)] = (CACHE_READ),
517 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518 };
519
520 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
521 {
522 if (perf_evsel__hw_cache_stat[type] & COP(op))
523 return true; /* valid */
524 else
525 return false; /* invalid */
526 }
527
528 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
529 char *bf, size_t size)
530 {
531 if (result) {
532 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
533 perf_evsel__hw_cache_op[op][0],
534 perf_evsel__hw_cache_result[result][0]);
535 }
536
537 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
538 perf_evsel__hw_cache_op[op][1]);
539 }
540
541 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
542 {
543 u8 op, result, type = (config >> 0) & 0xff;
544 const char *err = "unknown-ext-hardware-cache-type";
545
546 if (type >= PERF_COUNT_HW_CACHE_MAX)
547 goto out_err;
548
549 op = (config >> 8) & 0xff;
550 err = "unknown-ext-hardware-cache-op";
551 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
552 goto out_err;
553
554 result = (config >> 16) & 0xff;
555 err = "unknown-ext-hardware-cache-result";
556 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
557 goto out_err;
558
559 err = "invalid-cache";
560 if (!perf_evsel__is_cache_op_valid(type, op))
561 goto out_err;
562
563 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
564 out_err:
565 return scnprintf(bf, size, "%s", err);
566 }
567
568 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
569 {
570 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
571 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
572 }
573
574 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
575 {
576 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
577 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
578 }
579
580 const char *perf_evsel__name(struct perf_evsel *evsel)
581 {
582 char bf[128];
583
584 if (evsel->name)
585 return evsel->name;
586
587 switch (evsel->attr.type) {
588 case PERF_TYPE_RAW:
589 perf_evsel__raw_name(evsel, bf, sizeof(bf));
590 break;
591
592 case PERF_TYPE_HARDWARE:
593 perf_evsel__hw_name(evsel, bf, sizeof(bf));
594 break;
595
596 case PERF_TYPE_HW_CACHE:
597 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
598 break;
599
600 case PERF_TYPE_SOFTWARE:
601 perf_evsel__sw_name(evsel, bf, sizeof(bf));
602 break;
603
604 case PERF_TYPE_TRACEPOINT:
605 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
606 break;
607
608 case PERF_TYPE_BREAKPOINT:
609 perf_evsel__bp_name(evsel, bf, sizeof(bf));
610 break;
611
612 default:
613 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
614 evsel->attr.type);
615 break;
616 }
617
618 evsel->name = strdup(bf);
619
620 return evsel->name ?: "unknown";
621 }
622
623 const char *perf_evsel__group_name(struct perf_evsel *evsel)
624 {
625 return evsel->group_name ?: "anon group";
626 }
627
628 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
629 {
630 int ret;
631 struct perf_evsel *pos;
632 const char *group_name = perf_evsel__group_name(evsel);
633
634 ret = scnprintf(buf, size, "%s", group_name);
635
636 ret += scnprintf(buf + ret, size - ret, " { %s",
637 perf_evsel__name(evsel));
638
639 for_each_group_member(pos, evsel)
640 ret += scnprintf(buf + ret, size - ret, ", %s",
641 perf_evsel__name(pos));
642
643 ret += scnprintf(buf + ret, size - ret, " }");
644
645 return ret;
646 }
647
648 void perf_evsel__config_callchain(struct perf_evsel *evsel,
649 struct record_opts *opts,
650 struct callchain_param *param)
651 {
652 bool function = perf_evsel__is_function_event(evsel);
653 struct perf_event_attr *attr = &evsel->attr;
654
655 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
656
657 attr->sample_max_stack = param->max_stack;
658
659 if (param->record_mode == CALLCHAIN_LBR) {
660 if (!opts->branch_stack) {
661 if (attr->exclude_user) {
662 pr_warning("LBR callstack option is only available "
663 "to get user callchain information. "
664 "Falling back to framepointers.\n");
665 } else {
666 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
667 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
668 PERF_SAMPLE_BRANCH_CALL_STACK |
669 PERF_SAMPLE_BRANCH_NO_CYCLES |
670 PERF_SAMPLE_BRANCH_NO_FLAGS;
671 }
672 } else
673 pr_warning("Cannot use LBR callstack with branch stack. "
674 "Falling back to framepointers.\n");
675 }
676
677 if (param->record_mode == CALLCHAIN_DWARF) {
678 if (!function) {
679 perf_evsel__set_sample_bit(evsel, REGS_USER);
680 perf_evsel__set_sample_bit(evsel, STACK_USER);
681 attr->sample_regs_user = PERF_REGS_MASK;
682 attr->sample_stack_user = param->dump_size;
683 attr->exclude_callchain_user = 1;
684 } else {
685 pr_info("Cannot use DWARF unwind for function trace event,"
686 " falling back to framepointers.\n");
687 }
688 }
689
690 if (function) {
691 pr_info("Disabling user space callchains for function trace event.\n");
692 attr->exclude_callchain_user = 1;
693 }
694 }
695
696 static void
697 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
698 struct callchain_param *param)
699 {
700 struct perf_event_attr *attr = &evsel->attr;
701
702 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
703 if (param->record_mode == CALLCHAIN_LBR) {
704 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
705 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
706 PERF_SAMPLE_BRANCH_CALL_STACK);
707 }
708 if (param->record_mode == CALLCHAIN_DWARF) {
709 perf_evsel__reset_sample_bit(evsel, REGS_USER);
710 perf_evsel__reset_sample_bit(evsel, STACK_USER);
711 }
712 }
713
714 static void apply_config_terms(struct perf_evsel *evsel,
715 struct record_opts *opts)
716 {
717 struct perf_evsel_config_term *term;
718 struct list_head *config_terms = &evsel->config_terms;
719 struct perf_event_attr *attr = &evsel->attr;
720 struct callchain_param param;
721 u32 dump_size = 0;
722 int max_stack = 0;
723 const char *callgraph_buf = NULL;
724
725 /* callgraph default */
726 param.record_mode = callchain_param.record_mode;
727
728 list_for_each_entry(term, config_terms, list) {
729 switch (term->type) {
730 case PERF_EVSEL__CONFIG_TERM_PERIOD:
731 attr->sample_period = term->val.period;
732 attr->freq = 0;
733 break;
734 case PERF_EVSEL__CONFIG_TERM_FREQ:
735 attr->sample_freq = term->val.freq;
736 attr->freq = 1;
737 break;
738 case PERF_EVSEL__CONFIG_TERM_TIME:
739 if (term->val.time)
740 perf_evsel__set_sample_bit(evsel, TIME);
741 else
742 perf_evsel__reset_sample_bit(evsel, TIME);
743 break;
744 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
745 callgraph_buf = term->val.callgraph;
746 break;
747 case PERF_EVSEL__CONFIG_TERM_BRANCH:
748 if (term->val.branch && strcmp(term->val.branch, "no")) {
749 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
750 parse_branch_str(term->val.branch,
751 &attr->branch_sample_type);
752 } else
753 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
754 break;
755 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
756 dump_size = term->val.stack_user;
757 break;
758 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
759 max_stack = term->val.max_stack;
760 break;
761 case PERF_EVSEL__CONFIG_TERM_INHERIT:
762 /*
763 * attr->inherit should has already been set by
764 * perf_evsel__config. If user explicitly set
765 * inherit using config terms, override global
766 * opt->no_inherit setting.
767 */
768 attr->inherit = term->val.inherit ? 1 : 0;
769 break;
770 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
771 attr->write_backward = term->val.overwrite ? 1 : 0;
772 break;
773 default:
774 break;
775 }
776 }
777
778 /* User explicitly set per-event callgraph, clear the old setting and reset. */
779 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
780 if (max_stack) {
781 param.max_stack = max_stack;
782 if (callgraph_buf == NULL)
783 callgraph_buf = "fp";
784 }
785
786 /* parse callgraph parameters */
787 if (callgraph_buf != NULL) {
788 if (!strcmp(callgraph_buf, "no")) {
789 param.enabled = false;
790 param.record_mode = CALLCHAIN_NONE;
791 } else {
792 param.enabled = true;
793 if (parse_callchain_record(callgraph_buf, &param)) {
794 pr_err("per-event callgraph setting for %s failed. "
795 "Apply callgraph global setting for it\n",
796 evsel->name);
797 return;
798 }
799 }
800 }
801 if (dump_size > 0) {
802 dump_size = round_up(dump_size, sizeof(u64));
803 param.dump_size = dump_size;
804 }
805
806 /* If global callgraph set, clear it */
807 if (callchain_param.enabled)
808 perf_evsel__reset_callgraph(evsel, &callchain_param);
809
810 /* set perf-event callgraph */
811 if (param.enabled)
812 perf_evsel__config_callchain(evsel, opts, &param);
813 }
814 }
815
816 /*
817 * The enable_on_exec/disabled value strategy:
818 *
819 * 1) For any type of traced program:
820 * - all independent events and group leaders are disabled
821 * - all group members are enabled
822 *
823 * Group members are ruled by group leaders. They need to
824 * be enabled, because the group scheduling relies on that.
825 *
826 * 2) For traced programs executed by perf:
827 * - all independent events and group leaders have
828 * enable_on_exec set
829 * - we don't specifically enable or disable any event during
830 * the record command
831 *
832 * Independent events and group leaders are initially disabled
833 * and get enabled by exec. Group members are ruled by group
834 * leaders as stated in 1).
835 *
836 * 3) For traced programs attached by perf (pid/tid):
837 * - we specifically enable or disable all events during
838 * the record command
839 *
840 * When attaching events to already running traced we
841 * enable/disable events specifically, as there's no
842 * initial traced exec call.
843 */
844 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
845 struct callchain_param *callchain)
846 {
847 struct perf_evsel *leader = evsel->leader;
848 struct perf_event_attr *attr = &evsel->attr;
849 int track = evsel->tracking;
850 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
851
852 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
853 attr->inherit = !opts->no_inherit;
854 attr->write_backward = opts->overwrite ? 1 : 0;
855
856 perf_evsel__set_sample_bit(evsel, IP);
857 perf_evsel__set_sample_bit(evsel, TID);
858
859 if (evsel->sample_read) {
860 perf_evsel__set_sample_bit(evsel, READ);
861
862 /*
863 * We need ID even in case of single event, because
864 * PERF_SAMPLE_READ process ID specific data.
865 */
866 perf_evsel__set_sample_id(evsel, false);
867
868 /*
869 * Apply group format only if we belong to group
870 * with more than one members.
871 */
872 if (leader->nr_members > 1) {
873 attr->read_format |= PERF_FORMAT_GROUP;
874 attr->inherit = 0;
875 }
876 }
877
878 /*
879 * We default some events to have a default interval. But keep
880 * it a weak assumption overridable by the user.
881 */
882 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
883 opts->user_interval != ULLONG_MAX)) {
884 if (opts->freq) {
885 perf_evsel__set_sample_bit(evsel, PERIOD);
886 attr->freq = 1;
887 attr->sample_freq = opts->freq;
888 } else {
889 attr->sample_period = opts->default_interval;
890 }
891 }
892
893 /*
894 * Disable sampling for all group members other
895 * than leader in case leader 'leads' the sampling.
896 */
897 if ((leader != evsel) && leader->sample_read) {
898 attr->sample_freq = 0;
899 attr->sample_period = 0;
900 }
901
902 if (opts->no_samples)
903 attr->sample_freq = 0;
904
905 if (opts->inherit_stat) {
906 evsel->attr.read_format |=
907 PERF_FORMAT_TOTAL_TIME_ENABLED |
908 PERF_FORMAT_TOTAL_TIME_RUNNING |
909 PERF_FORMAT_ID;
910 attr->inherit_stat = 1;
911 }
912
913 if (opts->sample_address) {
914 perf_evsel__set_sample_bit(evsel, ADDR);
915 attr->mmap_data = track;
916 }
917
918 /*
919 * We don't allow user space callchains for function trace
920 * event, due to issues with page faults while tracing page
921 * fault handler and its overall trickiness nature.
922 */
923 if (perf_evsel__is_function_event(evsel))
924 evsel->attr.exclude_callchain_user = 1;
925
926 if (callchain && callchain->enabled && !evsel->no_aux_samples)
927 perf_evsel__config_callchain(evsel, opts, callchain);
928
929 if (opts->sample_intr_regs) {
930 attr->sample_regs_intr = opts->sample_intr_regs;
931 perf_evsel__set_sample_bit(evsel, REGS_INTR);
932 }
933
934 if (target__has_cpu(&opts->target) || opts->sample_cpu)
935 perf_evsel__set_sample_bit(evsel, CPU);
936
937 if (opts->period)
938 perf_evsel__set_sample_bit(evsel, PERIOD);
939
940 /*
941 * When the user explicitly disabled time don't force it here.
942 */
943 if (opts->sample_time &&
944 (!perf_missing_features.sample_id_all &&
945 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
946 opts->sample_time_set)))
947 perf_evsel__set_sample_bit(evsel, TIME);
948
949 if (opts->raw_samples && !evsel->no_aux_samples) {
950 perf_evsel__set_sample_bit(evsel, TIME);
951 perf_evsel__set_sample_bit(evsel, RAW);
952 perf_evsel__set_sample_bit(evsel, CPU);
953 }
954
955 if (opts->sample_address)
956 perf_evsel__set_sample_bit(evsel, DATA_SRC);
957
958 if (opts->no_buffering) {
959 attr->watermark = 0;
960 attr->wakeup_events = 1;
961 }
962 if (opts->branch_stack && !evsel->no_aux_samples) {
963 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
964 attr->branch_sample_type = opts->branch_stack;
965 }
966
967 if (opts->sample_weight)
968 perf_evsel__set_sample_bit(evsel, WEIGHT);
969
970 attr->task = track;
971 attr->mmap = track;
972 attr->mmap2 = track && !perf_missing_features.mmap2;
973 attr->comm = track;
974
975 if (opts->record_namespaces)
976 attr->namespaces = track;
977
978 if (opts->record_switch_events)
979 attr->context_switch = track;
980
981 if (opts->sample_transaction)
982 perf_evsel__set_sample_bit(evsel, TRANSACTION);
983
984 if (opts->running_time) {
985 evsel->attr.read_format |=
986 PERF_FORMAT_TOTAL_TIME_ENABLED |
987 PERF_FORMAT_TOTAL_TIME_RUNNING;
988 }
989
990 /*
991 * XXX see the function comment above
992 *
993 * Disabling only independent events or group leaders,
994 * keeping group members enabled.
995 */
996 if (perf_evsel__is_group_leader(evsel))
997 attr->disabled = 1;
998
999 /*
1000 * Setting enable_on_exec for independent events and
1001 * group leaders for traced executed by perf.
1002 */
1003 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1004 !opts->initial_delay)
1005 attr->enable_on_exec = 1;
1006
1007 if (evsel->immediate) {
1008 attr->disabled = 0;
1009 attr->enable_on_exec = 0;
1010 }
1011
1012 clockid = opts->clockid;
1013 if (opts->use_clockid) {
1014 attr->use_clockid = 1;
1015 attr->clockid = opts->clockid;
1016 }
1017
1018 if (evsel->precise_max)
1019 perf_event_attr__set_max_precise_ip(attr);
1020
1021 if (opts->all_user) {
1022 attr->exclude_kernel = 1;
1023 attr->exclude_user = 0;
1024 }
1025
1026 if (opts->all_kernel) {
1027 attr->exclude_kernel = 0;
1028 attr->exclude_user = 1;
1029 }
1030
1031 /*
1032 * Apply event specific term settings,
1033 * it overloads any global configuration.
1034 */
1035 apply_config_terms(evsel, opts);
1036
1037 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1038 }
1039
1040 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1041 {
1042 if (evsel->system_wide)
1043 nthreads = 1;
1044
1045 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1046
1047 if (evsel->fd) {
1048 int cpu, thread;
1049 for (cpu = 0; cpu < ncpus; cpu++) {
1050 for (thread = 0; thread < nthreads; thread++) {
1051 FD(evsel, cpu, thread) = -1;
1052 }
1053 }
1054 }
1055
1056 return evsel->fd != NULL ? 0 : -ENOMEM;
1057 }
1058
1059 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1060 int ioc, void *arg)
1061 {
1062 int cpu, thread;
1063
1064 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1065 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1066 int fd = FD(evsel, cpu, thread),
1067 err = ioctl(fd, ioc, arg);
1068
1069 if (err)
1070 return err;
1071 }
1072 }
1073
1074 return 0;
1075 }
1076
1077 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1078 {
1079 return perf_evsel__run_ioctl(evsel,
1080 PERF_EVENT_IOC_SET_FILTER,
1081 (void *)filter);
1082 }
1083
1084 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1085 {
1086 char *new_filter = strdup(filter);
1087
1088 if (new_filter != NULL) {
1089 free(evsel->filter);
1090 evsel->filter = new_filter;
1091 return 0;
1092 }
1093
1094 return -1;
1095 }
1096
1097 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1098 const char *fmt, const char *filter)
1099 {
1100 char *new_filter;
1101
1102 if (evsel->filter == NULL)
1103 return perf_evsel__set_filter(evsel, filter);
1104
1105 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1106 free(evsel->filter);
1107 evsel->filter = new_filter;
1108 return 0;
1109 }
1110
1111 return -1;
1112 }
1113
1114 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1115 {
1116 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1117 }
1118
1119 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1120 {
1121 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1122 }
1123
1124 int perf_evsel__enable(struct perf_evsel *evsel)
1125 {
1126 return perf_evsel__run_ioctl(evsel,
1127 PERF_EVENT_IOC_ENABLE,
1128 0);
1129 }
1130
1131 int perf_evsel__disable(struct perf_evsel *evsel)
1132 {
1133 return perf_evsel__run_ioctl(evsel,
1134 PERF_EVENT_IOC_DISABLE,
1135 0);
1136 }
1137
1138 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1139 {
1140 if (ncpus == 0 || nthreads == 0)
1141 return 0;
1142
1143 if (evsel->system_wide)
1144 nthreads = 1;
1145
1146 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1147 if (evsel->sample_id == NULL)
1148 return -ENOMEM;
1149
1150 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1151 if (evsel->id == NULL) {
1152 xyarray__delete(evsel->sample_id);
1153 evsel->sample_id = NULL;
1154 return -ENOMEM;
1155 }
1156
1157 return 0;
1158 }
1159
1160 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1161 {
1162 xyarray__delete(evsel->fd);
1163 evsel->fd = NULL;
1164 }
1165
1166 static void perf_evsel__free_id(struct perf_evsel *evsel)
1167 {
1168 xyarray__delete(evsel->sample_id);
1169 evsel->sample_id = NULL;
1170 zfree(&evsel->id);
1171 }
1172
1173 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1174 {
1175 struct perf_evsel_config_term *term, *h;
1176
1177 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1178 list_del(&term->list);
1179 free(term);
1180 }
1181 }
1182
1183 void perf_evsel__close_fd(struct perf_evsel *evsel)
1184 {
1185 int cpu, thread;
1186
1187 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1188 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1189 close(FD(evsel, cpu, thread));
1190 FD(evsel, cpu, thread) = -1;
1191 }
1192 }
1193
1194 void perf_evsel__exit(struct perf_evsel *evsel)
1195 {
1196 assert(list_empty(&evsel->node));
1197 assert(evsel->evlist == NULL);
1198 perf_evsel__free_fd(evsel);
1199 perf_evsel__free_id(evsel);
1200 perf_evsel__free_config_terms(evsel);
1201 close_cgroup(evsel->cgrp);
1202 cpu_map__put(evsel->cpus);
1203 cpu_map__put(evsel->own_cpus);
1204 thread_map__put(evsel->threads);
1205 zfree(&evsel->group_name);
1206 zfree(&evsel->name);
1207 perf_evsel__object.fini(evsel);
1208 }
1209
1210 void perf_evsel__delete(struct perf_evsel *evsel)
1211 {
1212 perf_evsel__exit(evsel);
1213 free(evsel);
1214 }
1215
1216 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1217 struct perf_counts_values *count)
1218 {
1219 struct perf_counts_values tmp;
1220
1221 if (!evsel->prev_raw_counts)
1222 return;
1223
1224 if (cpu == -1) {
1225 tmp = evsel->prev_raw_counts->aggr;
1226 evsel->prev_raw_counts->aggr = *count;
1227 } else {
1228 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1229 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1230 }
1231
1232 count->val = count->val - tmp.val;
1233 count->ena = count->ena - tmp.ena;
1234 count->run = count->run - tmp.run;
1235 }
1236
1237 void perf_counts_values__scale(struct perf_counts_values *count,
1238 bool scale, s8 *pscaled)
1239 {
1240 s8 scaled = 0;
1241
1242 if (scale) {
1243 if (count->run == 0) {
1244 scaled = -1;
1245 count->val = 0;
1246 } else if (count->run < count->ena) {
1247 scaled = 1;
1248 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1249 }
1250 } else
1251 count->ena = count->run = 0;
1252
1253 if (pscaled)
1254 *pscaled = scaled;
1255 }
1256
1257 static int perf_evsel__read_size(struct perf_evsel *evsel)
1258 {
1259 u64 read_format = evsel->attr.read_format;
1260 int entry = sizeof(u64); /* value */
1261 int size = 0;
1262 int nr = 1;
1263
1264 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1265 size += sizeof(u64);
1266
1267 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1268 size += sizeof(u64);
1269
1270 if (read_format & PERF_FORMAT_ID)
1271 entry += sizeof(u64);
1272
1273 if (read_format & PERF_FORMAT_GROUP) {
1274 nr = evsel->nr_members;
1275 size += sizeof(u64);
1276 }
1277
1278 size += entry * nr;
1279 return size;
1280 }
1281
1282 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1283 struct perf_counts_values *count)
1284 {
1285 size_t size = perf_evsel__read_size(evsel);
1286
1287 memset(count, 0, sizeof(*count));
1288
1289 if (FD(evsel, cpu, thread) < 0)
1290 return -EINVAL;
1291
1292 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1293 return -errno;
1294
1295 return 0;
1296 }
1297
1298 static int
1299 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1300 {
1301 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1302
1303 return perf_evsel__read(evsel, cpu, thread, count);
1304 }
1305
1306 static void
1307 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1308 u64 val, u64 ena, u64 run)
1309 {
1310 struct perf_counts_values *count;
1311
1312 count = perf_counts(counter->counts, cpu, thread);
1313
1314 count->val = val;
1315 count->ena = ena;
1316 count->run = run;
1317 count->loaded = true;
1318 }
1319
1320 static int
1321 perf_evsel__process_group_data(struct perf_evsel *leader,
1322 int cpu, int thread, u64 *data)
1323 {
1324 u64 read_format = leader->attr.read_format;
1325 struct sample_read_value *v;
1326 u64 nr, ena = 0, run = 0, i;
1327
1328 nr = *data++;
1329
1330 if (nr != (u64) leader->nr_members)
1331 return -EINVAL;
1332
1333 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1334 ena = *data++;
1335
1336 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1337 run = *data++;
1338
1339 v = (struct sample_read_value *) data;
1340
1341 perf_evsel__set_count(leader, cpu, thread,
1342 v[0].value, ena, run);
1343
1344 for (i = 1; i < nr; i++) {
1345 struct perf_evsel *counter;
1346
1347 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1348 if (!counter)
1349 return -EINVAL;
1350
1351 perf_evsel__set_count(counter, cpu, thread,
1352 v[i].value, ena, run);
1353 }
1354
1355 return 0;
1356 }
1357
1358 static int
1359 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1360 {
1361 struct perf_stat_evsel *ps = leader->priv;
1362 u64 read_format = leader->attr.read_format;
1363 int size = perf_evsel__read_size(leader);
1364 u64 *data = ps->group_data;
1365
1366 if (!(read_format & PERF_FORMAT_ID))
1367 return -EINVAL;
1368
1369 if (!perf_evsel__is_group_leader(leader))
1370 return -EINVAL;
1371
1372 if (!data) {
1373 data = zalloc(size);
1374 if (!data)
1375 return -ENOMEM;
1376
1377 ps->group_data = data;
1378 }
1379
1380 if (FD(leader, cpu, thread) < 0)
1381 return -EINVAL;
1382
1383 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1384 return -errno;
1385
1386 return perf_evsel__process_group_data(leader, cpu, thread, data);
1387 }
1388
1389 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1390 {
1391 u64 read_format = evsel->attr.read_format;
1392
1393 if (read_format & PERF_FORMAT_GROUP)
1394 return perf_evsel__read_group(evsel, cpu, thread);
1395 else
1396 return perf_evsel__read_one(evsel, cpu, thread);
1397 }
1398
1399 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1400 int cpu, int thread, bool scale)
1401 {
1402 struct perf_counts_values count;
1403 size_t nv = scale ? 3 : 1;
1404
1405 if (FD(evsel, cpu, thread) < 0)
1406 return -EINVAL;
1407
1408 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1409 return -ENOMEM;
1410
1411 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1412 return -errno;
1413
1414 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1415 perf_counts_values__scale(&count, scale, NULL);
1416 *perf_counts(evsel->counts, cpu, thread) = count;
1417 return 0;
1418 }
1419
1420 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1421 {
1422 struct perf_evsel *leader = evsel->leader;
1423 int fd;
1424
1425 if (perf_evsel__is_group_leader(evsel))
1426 return -1;
1427
1428 /*
1429 * Leader must be already processed/open,
1430 * if not it's a bug.
1431 */
1432 BUG_ON(!leader->fd);
1433
1434 fd = FD(leader, cpu, thread);
1435 BUG_ON(fd == -1);
1436
1437 return fd;
1438 }
1439
1440 struct bit_names {
1441 int bit;
1442 const char *name;
1443 };
1444
1445 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1446 {
1447 bool first_bit = true;
1448 int i = 0;
1449
1450 do {
1451 if (value & bits[i].bit) {
1452 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1453 first_bit = false;
1454 }
1455 } while (bits[++i].name != NULL);
1456 }
1457
1458 static void __p_sample_type(char *buf, size_t size, u64 value)
1459 {
1460 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1461 struct bit_names bits[] = {
1462 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1463 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1464 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1465 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1466 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1467 bit_name(WEIGHT),
1468 { .name = NULL, }
1469 };
1470 #undef bit_name
1471 __p_bits(buf, size, value, bits);
1472 }
1473
1474 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1475 {
1476 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1477 struct bit_names bits[] = {
1478 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1479 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1480 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1481 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1482 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1483 { .name = NULL, }
1484 };
1485 #undef bit_name
1486 __p_bits(buf, size, value, bits);
1487 }
1488
1489 static void __p_read_format(char *buf, size_t size, u64 value)
1490 {
1491 #define bit_name(n) { PERF_FORMAT_##n, #n }
1492 struct bit_names bits[] = {
1493 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1494 bit_name(ID), bit_name(GROUP),
1495 { .name = NULL, }
1496 };
1497 #undef bit_name
1498 __p_bits(buf, size, value, bits);
1499 }
1500
1501 #define BUF_SIZE 1024
1502
1503 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1504 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1505 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1506 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1507 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1508 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1509
1510 #define PRINT_ATTRn(_n, _f, _p) \
1511 do { \
1512 if (attr->_f) { \
1513 _p(attr->_f); \
1514 ret += attr__fprintf(fp, _n, buf, priv);\
1515 } \
1516 } while (0)
1517
1518 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1519
1520 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1521 attr__fprintf_f attr__fprintf, void *priv)
1522 {
1523 char buf[BUF_SIZE];
1524 int ret = 0;
1525
1526 PRINT_ATTRf(type, p_unsigned);
1527 PRINT_ATTRf(size, p_unsigned);
1528 PRINT_ATTRf(config, p_hex);
1529 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1530 PRINT_ATTRf(sample_type, p_sample_type);
1531 PRINT_ATTRf(read_format, p_read_format);
1532
1533 PRINT_ATTRf(disabled, p_unsigned);
1534 PRINT_ATTRf(inherit, p_unsigned);
1535 PRINT_ATTRf(pinned, p_unsigned);
1536 PRINT_ATTRf(exclusive, p_unsigned);
1537 PRINT_ATTRf(exclude_user, p_unsigned);
1538 PRINT_ATTRf(exclude_kernel, p_unsigned);
1539 PRINT_ATTRf(exclude_hv, p_unsigned);
1540 PRINT_ATTRf(exclude_idle, p_unsigned);
1541 PRINT_ATTRf(mmap, p_unsigned);
1542 PRINT_ATTRf(comm, p_unsigned);
1543 PRINT_ATTRf(freq, p_unsigned);
1544 PRINT_ATTRf(inherit_stat, p_unsigned);
1545 PRINT_ATTRf(enable_on_exec, p_unsigned);
1546 PRINT_ATTRf(task, p_unsigned);
1547 PRINT_ATTRf(watermark, p_unsigned);
1548 PRINT_ATTRf(precise_ip, p_unsigned);
1549 PRINT_ATTRf(mmap_data, p_unsigned);
1550 PRINT_ATTRf(sample_id_all, p_unsigned);
1551 PRINT_ATTRf(exclude_host, p_unsigned);
1552 PRINT_ATTRf(exclude_guest, p_unsigned);
1553 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1554 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1555 PRINT_ATTRf(mmap2, p_unsigned);
1556 PRINT_ATTRf(comm_exec, p_unsigned);
1557 PRINT_ATTRf(use_clockid, p_unsigned);
1558 PRINT_ATTRf(context_switch, p_unsigned);
1559 PRINT_ATTRf(write_backward, p_unsigned);
1560
1561 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1562 PRINT_ATTRf(bp_type, p_unsigned);
1563 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1564 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1565 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1566 PRINT_ATTRf(sample_regs_user, p_hex);
1567 PRINT_ATTRf(sample_stack_user, p_unsigned);
1568 PRINT_ATTRf(clockid, p_signed);
1569 PRINT_ATTRf(sample_regs_intr, p_hex);
1570 PRINT_ATTRf(aux_watermark, p_unsigned);
1571 PRINT_ATTRf(sample_max_stack, p_unsigned);
1572
1573 return ret;
1574 }
1575
1576 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1577 void *priv __maybe_unused)
1578 {
1579 return fprintf(fp, " %-32s %s\n", name, val);
1580 }
1581
1582 static bool ignore_missing_thread(struct perf_evsel *evsel,
1583 struct thread_map *threads,
1584 int thread, int err)
1585 {
1586 if (!evsel->ignore_missing_thread)
1587 return false;
1588
1589 /* The system wide setup does not work with threads. */
1590 if (evsel->system_wide)
1591 return false;
1592
1593 /* The -ESRCH is perf event syscall errno for pid's not found. */
1594 if (err != -ESRCH)
1595 return false;
1596
1597 /* If there's only one thread, let it fail. */
1598 if (threads->nr == 1)
1599 return false;
1600
1601 if (thread_map__remove(threads, thread))
1602 return false;
1603
1604 pr_warning("WARNING: Ignored open failure for pid %d\n",
1605 thread_map__pid(threads, thread));
1606 return true;
1607 }
1608
1609 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1610 struct thread_map *threads)
1611 {
1612 int cpu, thread, nthreads;
1613 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1614 int pid = -1, err;
1615 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1616
1617 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1618 return -EINVAL;
1619
1620 if (cpus == NULL) {
1621 static struct cpu_map *empty_cpu_map;
1622
1623 if (empty_cpu_map == NULL) {
1624 empty_cpu_map = cpu_map__dummy_new();
1625 if (empty_cpu_map == NULL)
1626 return -ENOMEM;
1627 }
1628
1629 cpus = empty_cpu_map;
1630 }
1631
1632 if (threads == NULL) {
1633 static struct thread_map *empty_thread_map;
1634
1635 if (empty_thread_map == NULL) {
1636 empty_thread_map = thread_map__new_by_tid(-1);
1637 if (empty_thread_map == NULL)
1638 return -ENOMEM;
1639 }
1640
1641 threads = empty_thread_map;
1642 }
1643
1644 if (evsel->system_wide)
1645 nthreads = 1;
1646 else
1647 nthreads = threads->nr;
1648
1649 if (evsel->fd == NULL &&
1650 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1651 return -ENOMEM;
1652
1653 if (evsel->cgrp) {
1654 flags |= PERF_FLAG_PID_CGROUP;
1655 pid = evsel->cgrp->fd;
1656 }
1657
1658 fallback_missing_features:
1659 if (perf_missing_features.clockid_wrong)
1660 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1661 if (perf_missing_features.clockid) {
1662 evsel->attr.use_clockid = 0;
1663 evsel->attr.clockid = 0;
1664 }
1665 if (perf_missing_features.cloexec)
1666 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1667 if (perf_missing_features.mmap2)
1668 evsel->attr.mmap2 = 0;
1669 if (perf_missing_features.exclude_guest)
1670 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1671 if (perf_missing_features.lbr_flags)
1672 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1673 PERF_SAMPLE_BRANCH_NO_CYCLES);
1674 if (perf_missing_features.group_read && evsel->attr.inherit)
1675 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1676 retry_sample_id:
1677 if (perf_missing_features.sample_id_all)
1678 evsel->attr.sample_id_all = 0;
1679
1680 if (verbose >= 2) {
1681 fprintf(stderr, "%.60s\n", graph_dotted_line);
1682 fprintf(stderr, "perf_event_attr:\n");
1683 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1684 fprintf(stderr, "%.60s\n", graph_dotted_line);
1685 }
1686
1687 for (cpu = 0; cpu < cpus->nr; cpu++) {
1688
1689 for (thread = 0; thread < nthreads; thread++) {
1690 int fd, group_fd;
1691
1692 if (!evsel->cgrp && !evsel->system_wide)
1693 pid = thread_map__pid(threads, thread);
1694
1695 group_fd = get_group_fd(evsel, cpu, thread);
1696 retry_open:
1697 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1698 pid, cpus->map[cpu], group_fd, flags);
1699
1700 test_attr__ready();
1701
1702 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1703 group_fd, flags);
1704
1705 FD(evsel, cpu, thread) = fd;
1706
1707 if (fd < 0) {
1708 err = -errno;
1709
1710 if (ignore_missing_thread(evsel, threads, thread, err)) {
1711 /*
1712 * We just removed 1 thread, so take a step
1713 * back on thread index and lower the upper
1714 * nthreads limit.
1715 */
1716 nthreads--;
1717 thread--;
1718
1719 /* ... and pretend like nothing have happened. */
1720 err = 0;
1721 continue;
1722 }
1723
1724 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1725 err);
1726 goto try_fallback;
1727 }
1728
1729 pr_debug2(" = %d\n", fd);
1730
1731 if (evsel->bpf_fd >= 0) {
1732 int evt_fd = fd;
1733 int bpf_fd = evsel->bpf_fd;
1734
1735 err = ioctl(evt_fd,
1736 PERF_EVENT_IOC_SET_BPF,
1737 bpf_fd);
1738 if (err && errno != EEXIST) {
1739 pr_err("failed to attach bpf fd %d: %s\n",
1740 bpf_fd, strerror(errno));
1741 err = -EINVAL;
1742 goto out_close;
1743 }
1744 }
1745
1746 set_rlimit = NO_CHANGE;
1747
1748 /*
1749 * If we succeeded but had to kill clockid, fail and
1750 * have perf_evsel__open_strerror() print us a nice
1751 * error.
1752 */
1753 if (perf_missing_features.clockid ||
1754 perf_missing_features.clockid_wrong) {
1755 err = -EINVAL;
1756 goto out_close;
1757 }
1758 }
1759 }
1760
1761 return 0;
1762
1763 try_fallback:
1764 /*
1765 * perf stat needs between 5 and 22 fds per CPU. When we run out
1766 * of them try to increase the limits.
1767 */
1768 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1769 struct rlimit l;
1770 int old_errno = errno;
1771
1772 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1773 if (set_rlimit == NO_CHANGE)
1774 l.rlim_cur = l.rlim_max;
1775 else {
1776 l.rlim_cur = l.rlim_max + 1000;
1777 l.rlim_max = l.rlim_cur;
1778 }
1779 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1780 set_rlimit++;
1781 errno = old_errno;
1782 goto retry_open;
1783 }
1784 }
1785 errno = old_errno;
1786 }
1787
1788 if (err != -EINVAL || cpu > 0 || thread > 0)
1789 goto out_close;
1790
1791 /*
1792 * Must probe features in the order they were added to the
1793 * perf_event_attr interface.
1794 */
1795 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1796 perf_missing_features.write_backward = true;
1797 pr_debug2("switching off write_backward\n");
1798 goto out_close;
1799 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1800 perf_missing_features.clockid_wrong = true;
1801 pr_debug2("switching off clockid\n");
1802 goto fallback_missing_features;
1803 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1804 perf_missing_features.clockid = true;
1805 pr_debug2("switching off use_clockid\n");
1806 goto fallback_missing_features;
1807 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1808 perf_missing_features.cloexec = true;
1809 pr_debug2("switching off cloexec flag\n");
1810 goto fallback_missing_features;
1811 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1812 perf_missing_features.mmap2 = true;
1813 pr_debug2("switching off mmap2\n");
1814 goto fallback_missing_features;
1815 } else if (!perf_missing_features.exclude_guest &&
1816 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1817 perf_missing_features.exclude_guest = true;
1818 pr_debug2("switching off exclude_guest, exclude_host\n");
1819 goto fallback_missing_features;
1820 } else if (!perf_missing_features.sample_id_all) {
1821 perf_missing_features.sample_id_all = true;
1822 pr_debug2("switching off sample_id_all\n");
1823 goto retry_sample_id;
1824 } else if (!perf_missing_features.lbr_flags &&
1825 (evsel->attr.branch_sample_type &
1826 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1827 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1828 perf_missing_features.lbr_flags = true;
1829 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1830 goto fallback_missing_features;
1831 } else if (!perf_missing_features.group_read &&
1832 evsel->attr.inherit &&
1833 (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1834 perf_missing_features.group_read = true;
1835 pr_debug2("switching off group read\n");
1836 goto fallback_missing_features;
1837 }
1838 out_close:
1839 do {
1840 while (--thread >= 0) {
1841 close(FD(evsel, cpu, thread));
1842 FD(evsel, cpu, thread) = -1;
1843 }
1844 thread = nthreads;
1845 } while (--cpu >= 0);
1846 return err;
1847 }
1848
1849 void perf_evsel__close(struct perf_evsel *evsel)
1850 {
1851 if (evsel->fd == NULL)
1852 return;
1853
1854 perf_evsel__close_fd(evsel);
1855 perf_evsel__free_fd(evsel);
1856 }
1857
1858 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1859 struct cpu_map *cpus)
1860 {
1861 return perf_evsel__open(evsel, cpus, NULL);
1862 }
1863
1864 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1865 struct thread_map *threads)
1866 {
1867 return perf_evsel__open(evsel, NULL, threads);
1868 }
1869
1870 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1871 const union perf_event *event,
1872 struct perf_sample *sample)
1873 {
1874 u64 type = evsel->attr.sample_type;
1875 const u64 *array = event->sample.array;
1876 bool swapped = evsel->needs_swap;
1877 union u64_swap u;
1878
1879 array += ((event->header.size -
1880 sizeof(event->header)) / sizeof(u64)) - 1;
1881
1882 if (type & PERF_SAMPLE_IDENTIFIER) {
1883 sample->id = *array;
1884 array--;
1885 }
1886
1887 if (type & PERF_SAMPLE_CPU) {
1888 u.val64 = *array;
1889 if (swapped) {
1890 /* undo swap of u64, then swap on individual u32s */
1891 u.val64 = bswap_64(u.val64);
1892 u.val32[0] = bswap_32(u.val32[0]);
1893 }
1894
1895 sample->cpu = u.val32[0];
1896 array--;
1897 }
1898
1899 if (type & PERF_SAMPLE_STREAM_ID) {
1900 sample->stream_id = *array;
1901 array--;
1902 }
1903
1904 if (type & PERF_SAMPLE_ID) {
1905 sample->id = *array;
1906 array--;
1907 }
1908
1909 if (type & PERF_SAMPLE_TIME) {
1910 sample->time = *array;
1911 array--;
1912 }
1913
1914 if (type & PERF_SAMPLE_TID) {
1915 u.val64 = *array;
1916 if (swapped) {
1917 /* undo swap of u64, then swap on individual u32s */
1918 u.val64 = bswap_64(u.val64);
1919 u.val32[0] = bswap_32(u.val32[0]);
1920 u.val32[1] = bswap_32(u.val32[1]);
1921 }
1922
1923 sample->pid = u.val32[0];
1924 sample->tid = u.val32[1];
1925 array--;
1926 }
1927
1928 return 0;
1929 }
1930
1931 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1932 u64 size)
1933 {
1934 return size > max_size || offset + size > endp;
1935 }
1936
1937 #define OVERFLOW_CHECK(offset, size, max_size) \
1938 do { \
1939 if (overflow(endp, (max_size), (offset), (size))) \
1940 return -EFAULT; \
1941 } while (0)
1942
1943 #define OVERFLOW_CHECK_u64(offset) \
1944 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1945
1946 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1947 struct perf_sample *data)
1948 {
1949 u64 type = evsel->attr.sample_type;
1950 bool swapped = evsel->needs_swap;
1951 const u64 *array;
1952 u16 max_size = event->header.size;
1953 const void *endp = (void *)event + max_size;
1954 u64 sz;
1955
1956 /*
1957 * used for cross-endian analysis. See git commit 65014ab3
1958 * for why this goofiness is needed.
1959 */
1960 union u64_swap u;
1961
1962 memset(data, 0, sizeof(*data));
1963 data->cpu = data->pid = data->tid = -1;
1964 data->stream_id = data->id = data->time = -1ULL;
1965 data->period = evsel->attr.sample_period;
1966 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1967
1968 if (event->header.type != PERF_RECORD_SAMPLE) {
1969 if (!evsel->attr.sample_id_all)
1970 return 0;
1971 return perf_evsel__parse_id_sample(evsel, event, data);
1972 }
1973
1974 array = event->sample.array;
1975
1976 /*
1977 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1978 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1979 * check the format does not go past the end of the event.
1980 */
1981 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1982 return -EFAULT;
1983
1984 data->id = -1ULL;
1985 if (type & PERF_SAMPLE_IDENTIFIER) {
1986 data->id = *array;
1987 array++;
1988 }
1989
1990 if (type & PERF_SAMPLE_IP) {
1991 data->ip = *array;
1992 array++;
1993 }
1994
1995 if (type & PERF_SAMPLE_TID) {
1996 u.val64 = *array;
1997 if (swapped) {
1998 /* undo swap of u64, then swap on individual u32s */
1999 u.val64 = bswap_64(u.val64);
2000 u.val32[0] = bswap_32(u.val32[0]);
2001 u.val32[1] = bswap_32(u.val32[1]);
2002 }
2003
2004 data->pid = u.val32[0];
2005 data->tid = u.val32[1];
2006 array++;
2007 }
2008
2009 if (type & PERF_SAMPLE_TIME) {
2010 data->time = *array;
2011 array++;
2012 }
2013
2014 data->addr = 0;
2015 if (type & PERF_SAMPLE_ADDR) {
2016 data->addr = *array;
2017 array++;
2018 }
2019
2020 if (type & PERF_SAMPLE_ID) {
2021 data->id = *array;
2022 array++;
2023 }
2024
2025 if (type & PERF_SAMPLE_STREAM_ID) {
2026 data->stream_id = *array;
2027 array++;
2028 }
2029
2030 if (type & PERF_SAMPLE_CPU) {
2031
2032 u.val64 = *array;
2033 if (swapped) {
2034 /* undo swap of u64, then swap on individual u32s */
2035 u.val64 = bswap_64(u.val64);
2036 u.val32[0] = bswap_32(u.val32[0]);
2037 }
2038
2039 data->cpu = u.val32[0];
2040 array++;
2041 }
2042
2043 if (type & PERF_SAMPLE_PERIOD) {
2044 data->period = *array;
2045 array++;
2046 }
2047
2048 if (type & PERF_SAMPLE_READ) {
2049 u64 read_format = evsel->attr.read_format;
2050
2051 OVERFLOW_CHECK_u64(array);
2052 if (read_format & PERF_FORMAT_GROUP)
2053 data->read.group.nr = *array;
2054 else
2055 data->read.one.value = *array;
2056
2057 array++;
2058
2059 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2060 OVERFLOW_CHECK_u64(array);
2061 data->read.time_enabled = *array;
2062 array++;
2063 }
2064
2065 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2066 OVERFLOW_CHECK_u64(array);
2067 data->read.time_running = *array;
2068 array++;
2069 }
2070
2071 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2072 if (read_format & PERF_FORMAT_GROUP) {
2073 const u64 max_group_nr = UINT64_MAX /
2074 sizeof(struct sample_read_value);
2075
2076 if (data->read.group.nr > max_group_nr)
2077 return -EFAULT;
2078 sz = data->read.group.nr *
2079 sizeof(struct sample_read_value);
2080 OVERFLOW_CHECK(array, sz, max_size);
2081 data->read.group.values =
2082 (struct sample_read_value *)array;
2083 array = (void *)array + sz;
2084 } else {
2085 OVERFLOW_CHECK_u64(array);
2086 data->read.one.id = *array;
2087 array++;
2088 }
2089 }
2090
2091 if (type & PERF_SAMPLE_CALLCHAIN) {
2092 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2093
2094 OVERFLOW_CHECK_u64(array);
2095 data->callchain = (struct ip_callchain *)array++;
2096 if (data->callchain->nr > max_callchain_nr)
2097 return -EFAULT;
2098 sz = data->callchain->nr * sizeof(u64);
2099 OVERFLOW_CHECK(array, sz, max_size);
2100 array = (void *)array + sz;
2101 }
2102
2103 if (type & PERF_SAMPLE_RAW) {
2104 OVERFLOW_CHECK_u64(array);
2105 u.val64 = *array;
2106 if (WARN_ONCE(swapped,
2107 "Endianness of raw data not corrected!\n")) {
2108 /* undo swap of u64, then swap on individual u32s */
2109 u.val64 = bswap_64(u.val64);
2110 u.val32[0] = bswap_32(u.val32[0]);
2111 u.val32[1] = bswap_32(u.val32[1]);
2112 }
2113 data->raw_size = u.val32[0];
2114 array = (void *)array + sizeof(u32);
2115
2116 OVERFLOW_CHECK(array, data->raw_size, max_size);
2117 data->raw_data = (void *)array;
2118 array = (void *)array + data->raw_size;
2119 }
2120
2121 if (type & PERF_SAMPLE_BRANCH_STACK) {
2122 const u64 max_branch_nr = UINT64_MAX /
2123 sizeof(struct branch_entry);
2124
2125 OVERFLOW_CHECK_u64(array);
2126 data->branch_stack = (struct branch_stack *)array++;
2127
2128 if (data->branch_stack->nr > max_branch_nr)
2129 return -EFAULT;
2130 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2131 OVERFLOW_CHECK(array, sz, max_size);
2132 array = (void *)array + sz;
2133 }
2134
2135 if (type & PERF_SAMPLE_REGS_USER) {
2136 OVERFLOW_CHECK_u64(array);
2137 data->user_regs.abi = *array;
2138 array++;
2139
2140 if (data->user_regs.abi) {
2141 u64 mask = evsel->attr.sample_regs_user;
2142
2143 sz = hweight_long(mask) * sizeof(u64);
2144 OVERFLOW_CHECK(array, sz, max_size);
2145 data->user_regs.mask = mask;
2146 data->user_regs.regs = (u64 *)array;
2147 array = (void *)array + sz;
2148 }
2149 }
2150
2151 if (type & PERF_SAMPLE_STACK_USER) {
2152 OVERFLOW_CHECK_u64(array);
2153 sz = *array++;
2154
2155 data->user_stack.offset = ((char *)(array - 1)
2156 - (char *) event);
2157
2158 if (!sz) {
2159 data->user_stack.size = 0;
2160 } else {
2161 OVERFLOW_CHECK(array, sz, max_size);
2162 data->user_stack.data = (char *)array;
2163 array = (void *)array + sz;
2164 OVERFLOW_CHECK_u64(array);
2165 data->user_stack.size = *array++;
2166 if (WARN_ONCE(data->user_stack.size > sz,
2167 "user stack dump failure\n"))
2168 return -EFAULT;
2169 }
2170 }
2171
2172 if (type & PERF_SAMPLE_WEIGHT) {
2173 OVERFLOW_CHECK_u64(array);
2174 data->weight = *array;
2175 array++;
2176 }
2177
2178 data->data_src = PERF_MEM_DATA_SRC_NONE;
2179 if (type & PERF_SAMPLE_DATA_SRC) {
2180 OVERFLOW_CHECK_u64(array);
2181 data->data_src = *array;
2182 array++;
2183 }
2184
2185 data->transaction = 0;
2186 if (type & PERF_SAMPLE_TRANSACTION) {
2187 OVERFLOW_CHECK_u64(array);
2188 data->transaction = *array;
2189 array++;
2190 }
2191
2192 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2193 if (type & PERF_SAMPLE_REGS_INTR) {
2194 OVERFLOW_CHECK_u64(array);
2195 data->intr_regs.abi = *array;
2196 array++;
2197
2198 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2199 u64 mask = evsel->attr.sample_regs_intr;
2200
2201 sz = hweight_long(mask) * sizeof(u64);
2202 OVERFLOW_CHECK(array, sz, max_size);
2203 data->intr_regs.mask = mask;
2204 data->intr_regs.regs = (u64 *)array;
2205 array = (void *)array + sz;
2206 }
2207 }
2208
2209 return 0;
2210 }
2211
2212 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2213 u64 read_format)
2214 {
2215 size_t sz, result = sizeof(struct sample_event);
2216
2217 if (type & PERF_SAMPLE_IDENTIFIER)
2218 result += sizeof(u64);
2219
2220 if (type & PERF_SAMPLE_IP)
2221 result += sizeof(u64);
2222
2223 if (type & PERF_SAMPLE_TID)
2224 result += sizeof(u64);
2225
2226 if (type & PERF_SAMPLE_TIME)
2227 result += sizeof(u64);
2228
2229 if (type & PERF_SAMPLE_ADDR)
2230 result += sizeof(u64);
2231
2232 if (type & PERF_SAMPLE_ID)
2233 result += sizeof(u64);
2234
2235 if (type & PERF_SAMPLE_STREAM_ID)
2236 result += sizeof(u64);
2237
2238 if (type & PERF_SAMPLE_CPU)
2239 result += sizeof(u64);
2240
2241 if (type & PERF_SAMPLE_PERIOD)
2242 result += sizeof(u64);
2243
2244 if (type & PERF_SAMPLE_READ) {
2245 result += sizeof(u64);
2246 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2247 result += sizeof(u64);
2248 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2249 result += sizeof(u64);
2250 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2251 if (read_format & PERF_FORMAT_GROUP) {
2252 sz = sample->read.group.nr *
2253 sizeof(struct sample_read_value);
2254 result += sz;
2255 } else {
2256 result += sizeof(u64);
2257 }
2258 }
2259
2260 if (type & PERF_SAMPLE_CALLCHAIN) {
2261 sz = (sample->callchain->nr + 1) * sizeof(u64);
2262 result += sz;
2263 }
2264
2265 if (type & PERF_SAMPLE_RAW) {
2266 result += sizeof(u32);
2267 result += sample->raw_size;
2268 }
2269
2270 if (type & PERF_SAMPLE_BRANCH_STACK) {
2271 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2272 sz += sizeof(u64);
2273 result += sz;
2274 }
2275
2276 if (type & PERF_SAMPLE_REGS_USER) {
2277 if (sample->user_regs.abi) {
2278 result += sizeof(u64);
2279 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2280 result += sz;
2281 } else {
2282 result += sizeof(u64);
2283 }
2284 }
2285
2286 if (type & PERF_SAMPLE_STACK_USER) {
2287 sz = sample->user_stack.size;
2288 result += sizeof(u64);
2289 if (sz) {
2290 result += sz;
2291 result += sizeof(u64);
2292 }
2293 }
2294
2295 if (type & PERF_SAMPLE_WEIGHT)
2296 result += sizeof(u64);
2297
2298 if (type & PERF_SAMPLE_DATA_SRC)
2299 result += sizeof(u64);
2300
2301 if (type & PERF_SAMPLE_TRANSACTION)
2302 result += sizeof(u64);
2303
2304 if (type & PERF_SAMPLE_REGS_INTR) {
2305 if (sample->intr_regs.abi) {
2306 result += sizeof(u64);
2307 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2308 result += sz;
2309 } else {
2310 result += sizeof(u64);
2311 }
2312 }
2313
2314 return result;
2315 }
2316
2317 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2318 u64 read_format,
2319 const struct perf_sample *sample,
2320 bool swapped)
2321 {
2322 u64 *array;
2323 size_t sz;
2324 /*
2325 * used for cross-endian analysis. See git commit 65014ab3
2326 * for why this goofiness is needed.
2327 */
2328 union u64_swap u;
2329
2330 array = event->sample.array;
2331
2332 if (type & PERF_SAMPLE_IDENTIFIER) {
2333 *array = sample->id;
2334 array++;
2335 }
2336
2337 if (type & PERF_SAMPLE_IP) {
2338 *array = sample->ip;
2339 array++;
2340 }
2341
2342 if (type & PERF_SAMPLE_TID) {
2343 u.val32[0] = sample->pid;
2344 u.val32[1] = sample->tid;
2345 if (swapped) {
2346 /*
2347 * Inverse of what is done in perf_evsel__parse_sample
2348 */
2349 u.val32[0] = bswap_32(u.val32[0]);
2350 u.val32[1] = bswap_32(u.val32[1]);
2351 u.val64 = bswap_64(u.val64);
2352 }
2353
2354 *array = u.val64;
2355 array++;
2356 }
2357
2358 if (type & PERF_SAMPLE_TIME) {
2359 *array = sample->time;
2360 array++;
2361 }
2362
2363 if (type & PERF_SAMPLE_ADDR) {
2364 *array = sample->addr;
2365 array++;
2366 }
2367
2368 if (type & PERF_SAMPLE_ID) {
2369 *array = sample->id;
2370 array++;
2371 }
2372
2373 if (type & PERF_SAMPLE_STREAM_ID) {
2374 *array = sample->stream_id;
2375 array++;
2376 }
2377
2378 if (type & PERF_SAMPLE_CPU) {
2379 u.val32[0] = sample->cpu;
2380 if (swapped) {
2381 /*
2382 * Inverse of what is done in perf_evsel__parse_sample
2383 */
2384 u.val32[0] = bswap_32(u.val32[0]);
2385 u.val64 = bswap_64(u.val64);
2386 }
2387 *array = u.val64;
2388 array++;
2389 }
2390
2391 if (type & PERF_SAMPLE_PERIOD) {
2392 *array = sample->period;
2393 array++;
2394 }
2395
2396 if (type & PERF_SAMPLE_READ) {
2397 if (read_format & PERF_FORMAT_GROUP)
2398 *array = sample->read.group.nr;
2399 else
2400 *array = sample->read.one.value;
2401 array++;
2402
2403 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2404 *array = sample->read.time_enabled;
2405 array++;
2406 }
2407
2408 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2409 *array = sample->read.time_running;
2410 array++;
2411 }
2412
2413 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2414 if (read_format & PERF_FORMAT_GROUP) {
2415 sz = sample->read.group.nr *
2416 sizeof(struct sample_read_value);
2417 memcpy(array, sample->read.group.values, sz);
2418 array = (void *)array + sz;
2419 } else {
2420 *array = sample->read.one.id;
2421 array++;
2422 }
2423 }
2424
2425 if (type & PERF_SAMPLE_CALLCHAIN) {
2426 sz = (sample->callchain->nr + 1) * sizeof(u64);
2427 memcpy(array, sample->callchain, sz);
2428 array = (void *)array + sz;
2429 }
2430
2431 if (type & PERF_SAMPLE_RAW) {
2432 u.val32[0] = sample->raw_size;
2433 if (WARN_ONCE(swapped,
2434 "Endianness of raw data not corrected!\n")) {
2435 /*
2436 * Inverse of what is done in perf_evsel__parse_sample
2437 */
2438 u.val32[0] = bswap_32(u.val32[0]);
2439 u.val32[1] = bswap_32(u.val32[1]);
2440 u.val64 = bswap_64(u.val64);
2441 }
2442 *array = u.val64;
2443 array = (void *)array + sizeof(u32);
2444
2445 memcpy(array, sample->raw_data, sample->raw_size);
2446 array = (void *)array + sample->raw_size;
2447 }
2448
2449 if (type & PERF_SAMPLE_BRANCH_STACK) {
2450 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2451 sz += sizeof(u64);
2452 memcpy(array, sample->branch_stack, sz);
2453 array = (void *)array + sz;
2454 }
2455
2456 if (type & PERF_SAMPLE_REGS_USER) {
2457 if (sample->user_regs.abi) {
2458 *array++ = sample->user_regs.abi;
2459 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2460 memcpy(array, sample->user_regs.regs, sz);
2461 array = (void *)array + sz;
2462 } else {
2463 *array++ = 0;
2464 }
2465 }
2466
2467 if (type & PERF_SAMPLE_STACK_USER) {
2468 sz = sample->user_stack.size;
2469 *array++ = sz;
2470 if (sz) {
2471 memcpy(array, sample->user_stack.data, sz);
2472 array = (void *)array + sz;
2473 *array++ = sz;
2474 }
2475 }
2476
2477 if (type & PERF_SAMPLE_WEIGHT) {
2478 *array = sample->weight;
2479 array++;
2480 }
2481
2482 if (type & PERF_SAMPLE_DATA_SRC) {
2483 *array = sample->data_src;
2484 array++;
2485 }
2486
2487 if (type & PERF_SAMPLE_TRANSACTION) {
2488 *array = sample->transaction;
2489 array++;
2490 }
2491
2492 if (type & PERF_SAMPLE_REGS_INTR) {
2493 if (sample->intr_regs.abi) {
2494 *array++ = sample->intr_regs.abi;
2495 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2496 memcpy(array, sample->intr_regs.regs, sz);
2497 array = (void *)array + sz;
2498 } else {
2499 *array++ = 0;
2500 }
2501 }
2502
2503 return 0;
2504 }
2505
2506 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2507 {
2508 return pevent_find_field(evsel->tp_format, name);
2509 }
2510
2511 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2512 const char *name)
2513 {
2514 struct format_field *field = perf_evsel__field(evsel, name);
2515 int offset;
2516
2517 if (!field)
2518 return NULL;
2519
2520 offset = field->offset;
2521
2522 if (field->flags & FIELD_IS_DYNAMIC) {
2523 offset = *(int *)(sample->raw_data + field->offset);
2524 offset &= 0xffff;
2525 }
2526
2527 return sample->raw_data + offset;
2528 }
2529
2530 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2531 bool needs_swap)
2532 {
2533 u64 value;
2534 void *ptr = sample->raw_data + field->offset;
2535
2536 switch (field->size) {
2537 case 1:
2538 return *(u8 *)ptr;
2539 case 2:
2540 value = *(u16 *)ptr;
2541 break;
2542 case 4:
2543 value = *(u32 *)ptr;
2544 break;
2545 case 8:
2546 memcpy(&value, ptr, sizeof(u64));
2547 break;
2548 default:
2549 return 0;
2550 }
2551
2552 if (!needs_swap)
2553 return value;
2554
2555 switch (field->size) {
2556 case 2:
2557 return bswap_16(value);
2558 case 4:
2559 return bswap_32(value);
2560 case 8:
2561 return bswap_64(value);
2562 default:
2563 return 0;
2564 }
2565
2566 return 0;
2567 }
2568
2569 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2570 const char *name)
2571 {
2572 struct format_field *field = perf_evsel__field(evsel, name);
2573
2574 if (!field)
2575 return 0;
2576
2577 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2578 }
2579
2580 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2581 char *msg, size_t msgsize)
2582 {
2583 int paranoid;
2584
2585 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2586 evsel->attr.type == PERF_TYPE_HARDWARE &&
2587 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2588 /*
2589 * If it's cycles then fall back to hrtimer based
2590 * cpu-clock-tick sw counter, which is always available even if
2591 * no PMU support.
2592 *
2593 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2594 * b0a873e).
2595 */
2596 scnprintf(msg, msgsize, "%s",
2597 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2598
2599 evsel->attr.type = PERF_TYPE_SOFTWARE;
2600 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2601
2602 zfree(&evsel->name);
2603 return true;
2604 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2605 (paranoid = perf_event_paranoid()) > 1) {
2606 const char *name = perf_evsel__name(evsel);
2607 char *new_name;
2608
2609 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2610 return false;
2611
2612 if (evsel->name)
2613 free(evsel->name);
2614 evsel->name = new_name;
2615 scnprintf(msg, msgsize,
2616 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2617 evsel->attr.exclude_kernel = 1;
2618
2619 return true;
2620 }
2621
2622 return false;
2623 }
2624
2625 static bool find_process(const char *name)
2626 {
2627 size_t len = strlen(name);
2628 DIR *dir;
2629 struct dirent *d;
2630 int ret = -1;
2631
2632 dir = opendir(procfs__mountpoint());
2633 if (!dir)
2634 return false;
2635
2636 /* Walk through the directory. */
2637 while (ret && (d = readdir(dir)) != NULL) {
2638 char path[PATH_MAX];
2639 char *data;
2640 size_t size;
2641
2642 if ((d->d_type != DT_DIR) ||
2643 !strcmp(".", d->d_name) ||
2644 !strcmp("..", d->d_name))
2645 continue;
2646
2647 scnprintf(path, sizeof(path), "%s/%s/comm",
2648 procfs__mountpoint(), d->d_name);
2649
2650 if (filename__read_str(path, &data, &size))
2651 continue;
2652
2653 ret = strncmp(name, data, len);
2654 free(data);
2655 }
2656
2657 closedir(dir);
2658 return ret ? false : true;
2659 }
2660
2661 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2662 int err, char *msg, size_t size)
2663 {
2664 char sbuf[STRERR_BUFSIZE];
2665 int printed = 0;
2666
2667 switch (err) {
2668 case EPERM:
2669 case EACCES:
2670 if (err == EPERM)
2671 printed = scnprintf(msg, size,
2672 "No permission to enable %s event.\n\n",
2673 perf_evsel__name(evsel));
2674
2675 return scnprintf(msg + printed, size - printed,
2676 "You may not have permission to collect %sstats.\n\n"
2677 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2678 "which controls use of the performance events system by\n"
2679 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2680 "The current value is %d:\n\n"
2681 " -1: Allow use of (almost) all events by all users\n"
2682 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2683 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2684 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2685 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2686 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2687 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2688 " kernel.perf_event_paranoid = -1\n" ,
2689 target->system_wide ? "system-wide " : "",
2690 perf_event_paranoid());
2691 case ENOENT:
2692 return scnprintf(msg, size, "The %s event is not supported.",
2693 perf_evsel__name(evsel));
2694 case EMFILE:
2695 return scnprintf(msg, size, "%s",
2696 "Too many events are opened.\n"
2697 "Probably the maximum number of open file descriptors has been reached.\n"
2698 "Hint: Try again after reducing the number of events.\n"
2699 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2700 case ENOMEM:
2701 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2702 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2703 return scnprintf(msg, size,
2704 "Not enough memory to setup event with callchain.\n"
2705 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2706 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2707 break;
2708 case ENODEV:
2709 if (target->cpu_list)
2710 return scnprintf(msg, size, "%s",
2711 "No such device - did you specify an out-of-range profile CPU?");
2712 break;
2713 case EOPNOTSUPP:
2714 if (evsel->attr.sample_period != 0)
2715 return scnprintf(msg, size, "%s",
2716 "PMU Hardware doesn't support sampling/overflow-interrupts.");
2717 if (evsel->attr.precise_ip)
2718 return scnprintf(msg, size, "%s",
2719 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2720 #if defined(__i386__) || defined(__x86_64__)
2721 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2722 return scnprintf(msg, size, "%s",
2723 "No hardware sampling interrupt available.\n"
2724 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2725 #endif
2726 break;
2727 case EBUSY:
2728 if (find_process("oprofiled"))
2729 return scnprintf(msg, size,
2730 "The PMU counters are busy/taken by another profiler.\n"
2731 "We found oprofile daemon running, please stop it and try again.");
2732 break;
2733 case EINVAL:
2734 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2735 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2736 if (perf_missing_features.clockid)
2737 return scnprintf(msg, size, "clockid feature not supported.");
2738 if (perf_missing_features.clockid_wrong)
2739 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2740 break;
2741 default:
2742 break;
2743 }
2744
2745 return scnprintf(msg, size,
2746 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2747 "/bin/dmesg may provide additional information.\n"
2748 "No CONFIG_PERF_EVENTS=y kernel support configured?",
2749 err, str_error_r(err, sbuf, sizeof(sbuf)),
2750 perf_evsel__name(evsel));
2751 }
2752
2753 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2754 {
2755 if (evsel && evsel->evlist && evsel->evlist->env)
2756 return evsel->evlist->env->arch;
2757 return NULL;
2758 }
2759
2760 char *perf_evsel__env_cpuid(struct perf_evsel *evsel)
2761 {
2762 if (evsel && evsel->evlist && evsel->evlist->env)
2763 return evsel->evlist->env->cpuid;
2764 return NULL;
2765 }