]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - tools/perf/util/evsel.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/err.h>
19 #include <sys/ioctl.h>
20 #include <sys/resource.h>
21 #include "asm/bug.h"
22 #include "callchain.h"
23 #include "cgroup.h"
24 #include "event.h"
25 #include "evsel.h"
26 #include "evlist.h"
27 #include "util.h"
28 #include "cpumap.h"
29 #include "thread_map.h"
30 #include "target.h"
31 #include "perf_regs.h"
32 #include "debug.h"
33 #include "trace-event.h"
34 #include "stat.h"
35 #include "util/parse-branch-options.h"
36
37 #include "sane_ctype.h"
38
39 static struct {
40 bool sample_id_all;
41 bool exclude_guest;
42 bool mmap2;
43 bool cloexec;
44 bool clockid;
45 bool clockid_wrong;
46 bool lbr_flags;
47 bool write_backward;
48 } perf_missing_features;
49
50 static clockid_t clockid;
51
52 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
53 {
54 return 0;
55 }
56
57 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
58 {
59 }
60
61 static struct {
62 size_t size;
63 int (*init)(struct perf_evsel *evsel);
64 void (*fini)(struct perf_evsel *evsel);
65 } perf_evsel__object = {
66 .size = sizeof(struct perf_evsel),
67 .init = perf_evsel__no_extra_init,
68 .fini = perf_evsel__no_extra_fini,
69 };
70
71 int perf_evsel__object_config(size_t object_size,
72 int (*init)(struct perf_evsel *evsel),
73 void (*fini)(struct perf_evsel *evsel))
74 {
75
76 if (object_size == 0)
77 goto set_methods;
78
79 if (perf_evsel__object.size > object_size)
80 return -EINVAL;
81
82 perf_evsel__object.size = object_size;
83
84 set_methods:
85 if (init != NULL)
86 perf_evsel__object.init = init;
87
88 if (fini != NULL)
89 perf_evsel__object.fini = fini;
90
91 return 0;
92 }
93
94 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
95
96 int __perf_evsel__sample_size(u64 sample_type)
97 {
98 u64 mask = sample_type & PERF_SAMPLE_MASK;
99 int size = 0;
100 int i;
101
102 for (i = 0; i < 64; i++) {
103 if (mask & (1ULL << i))
104 size++;
105 }
106
107 size *= sizeof(u64);
108
109 return size;
110 }
111
112 /**
113 * __perf_evsel__calc_id_pos - calculate id_pos.
114 * @sample_type: sample type
115 *
116 * This function returns the position of the event id (PERF_SAMPLE_ID or
117 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
118 * sample_event.
119 */
120 static int __perf_evsel__calc_id_pos(u64 sample_type)
121 {
122 int idx = 0;
123
124 if (sample_type & PERF_SAMPLE_IDENTIFIER)
125 return 0;
126
127 if (!(sample_type & PERF_SAMPLE_ID))
128 return -1;
129
130 if (sample_type & PERF_SAMPLE_IP)
131 idx += 1;
132
133 if (sample_type & PERF_SAMPLE_TID)
134 idx += 1;
135
136 if (sample_type & PERF_SAMPLE_TIME)
137 idx += 1;
138
139 if (sample_type & PERF_SAMPLE_ADDR)
140 idx += 1;
141
142 return idx;
143 }
144
145 /**
146 * __perf_evsel__calc_is_pos - calculate is_pos.
147 * @sample_type: sample type
148 *
149 * This function returns the position (counting backwards) of the event id
150 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
151 * sample_id_all is used there is an id sample appended to non-sample events.
152 */
153 static int __perf_evsel__calc_is_pos(u64 sample_type)
154 {
155 int idx = 1;
156
157 if (sample_type & PERF_SAMPLE_IDENTIFIER)
158 return 1;
159
160 if (!(sample_type & PERF_SAMPLE_ID))
161 return -1;
162
163 if (sample_type & PERF_SAMPLE_CPU)
164 idx += 1;
165
166 if (sample_type & PERF_SAMPLE_STREAM_ID)
167 idx += 1;
168
169 return idx;
170 }
171
172 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
173 {
174 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
175 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
176 }
177
178 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
179 enum perf_event_sample_format bit)
180 {
181 if (!(evsel->attr.sample_type & bit)) {
182 evsel->attr.sample_type |= bit;
183 evsel->sample_size += sizeof(u64);
184 perf_evsel__calc_id_pos(evsel);
185 }
186 }
187
188 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
189 enum perf_event_sample_format bit)
190 {
191 if (evsel->attr.sample_type & bit) {
192 evsel->attr.sample_type &= ~bit;
193 evsel->sample_size -= sizeof(u64);
194 perf_evsel__calc_id_pos(evsel);
195 }
196 }
197
198 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
199 bool can_sample_identifier)
200 {
201 if (can_sample_identifier) {
202 perf_evsel__reset_sample_bit(evsel, ID);
203 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
204 } else {
205 perf_evsel__set_sample_bit(evsel, ID);
206 }
207 evsel->attr.read_format |= PERF_FORMAT_ID;
208 }
209
210 /**
211 * perf_evsel__is_function_event - Return whether given evsel is a function
212 * trace event
213 *
214 * @evsel - evsel selector to be tested
215 *
216 * Return %true if event is function trace event
217 */
218 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
219 {
220 #define FUNCTION_EVENT "ftrace:function"
221
222 return evsel->name &&
223 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
224
225 #undef FUNCTION_EVENT
226 }
227
228 void perf_evsel__init(struct perf_evsel *evsel,
229 struct perf_event_attr *attr, int idx)
230 {
231 evsel->idx = idx;
232 evsel->tracking = !idx;
233 evsel->attr = *attr;
234 evsel->leader = evsel;
235 evsel->unit = "";
236 evsel->scale = 1.0;
237 evsel->evlist = NULL;
238 evsel->bpf_fd = -1;
239 INIT_LIST_HEAD(&evsel->node);
240 INIT_LIST_HEAD(&evsel->config_terms);
241 perf_evsel__object.init(evsel);
242 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
243 perf_evsel__calc_id_pos(evsel);
244 evsel->cmdline_group_boundary = false;
245 evsel->metric_expr = NULL;
246 evsel->metric_name = NULL;
247 evsel->metric_events = NULL;
248 evsel->collect_stat = false;
249 }
250
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254
255 if (evsel != NULL)
256 perf_evsel__init(evsel, attr, idx);
257
258 if (perf_evsel__is_bpf_output(evsel)) {
259 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
260 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
261 evsel->attr.sample_period = 1;
262 }
263
264 return evsel;
265 }
266
267 struct perf_evsel *perf_evsel__new_cycles(void)
268 {
269 struct perf_event_attr attr = {
270 .type = PERF_TYPE_HARDWARE,
271 .config = PERF_COUNT_HW_CPU_CYCLES,
272 };
273 struct perf_evsel *evsel;
274
275 event_attr_init(&attr);
276
277 perf_event_attr__set_max_precise_ip(&attr);
278
279 evsel = perf_evsel__new(&attr);
280 if (evsel == NULL)
281 goto out;
282
283 /* use asprintf() because free(evsel) assumes name is allocated */
284 if (asprintf(&evsel->name, "cycles%.*s",
285 attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
286 goto error_free;
287 out:
288 return evsel;
289 error_free:
290 perf_evsel__delete(evsel);
291 evsel = NULL;
292 goto out;
293 }
294
295 /*
296 * Returns pointer with encoded error via <linux/err.h> interface.
297 */
298 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
299 {
300 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
301 int err = -ENOMEM;
302
303 if (evsel == NULL) {
304 goto out_err;
305 } else {
306 struct perf_event_attr attr = {
307 .type = PERF_TYPE_TRACEPOINT,
308 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
309 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
310 };
311
312 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
313 goto out_free;
314
315 evsel->tp_format = trace_event__tp_format(sys, name);
316 if (IS_ERR(evsel->tp_format)) {
317 err = PTR_ERR(evsel->tp_format);
318 goto out_free;
319 }
320
321 event_attr_init(&attr);
322 attr.config = evsel->tp_format->id;
323 attr.sample_period = 1;
324 perf_evsel__init(evsel, &attr, idx);
325 }
326
327 return evsel;
328
329 out_free:
330 zfree(&evsel->name);
331 free(evsel);
332 out_err:
333 return ERR_PTR(err);
334 }
335
336 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
337 "cycles",
338 "instructions",
339 "cache-references",
340 "cache-misses",
341 "branches",
342 "branch-misses",
343 "bus-cycles",
344 "stalled-cycles-frontend",
345 "stalled-cycles-backend",
346 "ref-cycles",
347 };
348
349 static const char *__perf_evsel__hw_name(u64 config)
350 {
351 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
352 return perf_evsel__hw_names[config];
353
354 return "unknown-hardware";
355 }
356
357 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
358 {
359 int colon = 0, r = 0;
360 struct perf_event_attr *attr = &evsel->attr;
361 bool exclude_guest_default = false;
362
363 #define MOD_PRINT(context, mod) do { \
364 if (!attr->exclude_##context) { \
365 if (!colon) colon = ++r; \
366 r += scnprintf(bf + r, size - r, "%c", mod); \
367 } } while(0)
368
369 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
370 MOD_PRINT(kernel, 'k');
371 MOD_PRINT(user, 'u');
372 MOD_PRINT(hv, 'h');
373 exclude_guest_default = true;
374 }
375
376 if (attr->precise_ip) {
377 if (!colon)
378 colon = ++r;
379 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
380 exclude_guest_default = true;
381 }
382
383 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
384 MOD_PRINT(host, 'H');
385 MOD_PRINT(guest, 'G');
386 }
387 #undef MOD_PRINT
388 if (colon)
389 bf[colon - 1] = ':';
390 return r;
391 }
392
393 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
394 {
395 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
396 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
397 }
398
399 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
400 "cpu-clock",
401 "task-clock",
402 "page-faults",
403 "context-switches",
404 "cpu-migrations",
405 "minor-faults",
406 "major-faults",
407 "alignment-faults",
408 "emulation-faults",
409 "dummy",
410 };
411
412 static const char *__perf_evsel__sw_name(u64 config)
413 {
414 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
415 return perf_evsel__sw_names[config];
416 return "unknown-software";
417 }
418
419 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
420 {
421 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
422 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
423 }
424
425 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
426 {
427 int r;
428
429 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
430
431 if (type & HW_BREAKPOINT_R)
432 r += scnprintf(bf + r, size - r, "r");
433
434 if (type & HW_BREAKPOINT_W)
435 r += scnprintf(bf + r, size - r, "w");
436
437 if (type & HW_BREAKPOINT_X)
438 r += scnprintf(bf + r, size - r, "x");
439
440 return r;
441 }
442
443 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
444 {
445 struct perf_event_attr *attr = &evsel->attr;
446 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
447 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
448 }
449
450 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
451 [PERF_EVSEL__MAX_ALIASES] = {
452 { "L1-dcache", "l1-d", "l1d", "L1-data", },
453 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
454 { "LLC", "L2", },
455 { "dTLB", "d-tlb", "Data-TLB", },
456 { "iTLB", "i-tlb", "Instruction-TLB", },
457 { "branch", "branches", "bpu", "btb", "bpc", },
458 { "node", },
459 };
460
461 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
462 [PERF_EVSEL__MAX_ALIASES] = {
463 { "load", "loads", "read", },
464 { "store", "stores", "write", },
465 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
466 };
467
468 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
469 [PERF_EVSEL__MAX_ALIASES] = {
470 { "refs", "Reference", "ops", "access", },
471 { "misses", "miss", },
472 };
473
474 #define C(x) PERF_COUNT_HW_CACHE_##x
475 #define CACHE_READ (1 << C(OP_READ))
476 #define CACHE_WRITE (1 << C(OP_WRITE))
477 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
478 #define COP(x) (1 << x)
479
480 /*
481 * cache operartion stat
482 * L1I : Read and prefetch only
483 * ITLB and BPU : Read-only
484 */
485 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
486 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
487 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
488 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
489 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
490 [C(ITLB)] = (CACHE_READ),
491 [C(BPU)] = (CACHE_READ),
492 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
493 };
494
495 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
496 {
497 if (perf_evsel__hw_cache_stat[type] & COP(op))
498 return true; /* valid */
499 else
500 return false; /* invalid */
501 }
502
503 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
504 char *bf, size_t size)
505 {
506 if (result) {
507 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
508 perf_evsel__hw_cache_op[op][0],
509 perf_evsel__hw_cache_result[result][0]);
510 }
511
512 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
513 perf_evsel__hw_cache_op[op][1]);
514 }
515
516 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
517 {
518 u8 op, result, type = (config >> 0) & 0xff;
519 const char *err = "unknown-ext-hardware-cache-type";
520
521 if (type >= PERF_COUNT_HW_CACHE_MAX)
522 goto out_err;
523
524 op = (config >> 8) & 0xff;
525 err = "unknown-ext-hardware-cache-op";
526 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
527 goto out_err;
528
529 result = (config >> 16) & 0xff;
530 err = "unknown-ext-hardware-cache-result";
531 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
532 goto out_err;
533
534 err = "invalid-cache";
535 if (!perf_evsel__is_cache_op_valid(type, op))
536 goto out_err;
537
538 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
539 out_err:
540 return scnprintf(bf, size, "%s", err);
541 }
542
543 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
544 {
545 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
546 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
547 }
548
549 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
550 {
551 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
552 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
553 }
554
555 const char *perf_evsel__name(struct perf_evsel *evsel)
556 {
557 char bf[128];
558
559 if (evsel->name)
560 return evsel->name;
561
562 switch (evsel->attr.type) {
563 case PERF_TYPE_RAW:
564 perf_evsel__raw_name(evsel, bf, sizeof(bf));
565 break;
566
567 case PERF_TYPE_HARDWARE:
568 perf_evsel__hw_name(evsel, bf, sizeof(bf));
569 break;
570
571 case PERF_TYPE_HW_CACHE:
572 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
573 break;
574
575 case PERF_TYPE_SOFTWARE:
576 perf_evsel__sw_name(evsel, bf, sizeof(bf));
577 break;
578
579 case PERF_TYPE_TRACEPOINT:
580 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
581 break;
582
583 case PERF_TYPE_BREAKPOINT:
584 perf_evsel__bp_name(evsel, bf, sizeof(bf));
585 break;
586
587 default:
588 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
589 evsel->attr.type);
590 break;
591 }
592
593 evsel->name = strdup(bf);
594
595 return evsel->name ?: "unknown";
596 }
597
598 const char *perf_evsel__group_name(struct perf_evsel *evsel)
599 {
600 return evsel->group_name ?: "anon group";
601 }
602
603 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
604 {
605 int ret;
606 struct perf_evsel *pos;
607 const char *group_name = perf_evsel__group_name(evsel);
608
609 ret = scnprintf(buf, size, "%s", group_name);
610
611 ret += scnprintf(buf + ret, size - ret, " { %s",
612 perf_evsel__name(evsel));
613
614 for_each_group_member(pos, evsel)
615 ret += scnprintf(buf + ret, size - ret, ", %s",
616 perf_evsel__name(pos));
617
618 ret += scnprintf(buf + ret, size - ret, " }");
619
620 return ret;
621 }
622
623 void perf_evsel__config_callchain(struct perf_evsel *evsel,
624 struct record_opts *opts,
625 struct callchain_param *param)
626 {
627 bool function = perf_evsel__is_function_event(evsel);
628 struct perf_event_attr *attr = &evsel->attr;
629
630 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
631
632 attr->sample_max_stack = param->max_stack;
633
634 if (param->record_mode == CALLCHAIN_LBR) {
635 if (!opts->branch_stack) {
636 if (attr->exclude_user) {
637 pr_warning("LBR callstack option is only available "
638 "to get user callchain information. "
639 "Falling back to framepointers.\n");
640 } else {
641 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
642 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
643 PERF_SAMPLE_BRANCH_CALL_STACK |
644 PERF_SAMPLE_BRANCH_NO_CYCLES |
645 PERF_SAMPLE_BRANCH_NO_FLAGS;
646 }
647 } else
648 pr_warning("Cannot use LBR callstack with branch stack. "
649 "Falling back to framepointers.\n");
650 }
651
652 if (param->record_mode == CALLCHAIN_DWARF) {
653 if (!function) {
654 perf_evsel__set_sample_bit(evsel, REGS_USER);
655 perf_evsel__set_sample_bit(evsel, STACK_USER);
656 attr->sample_regs_user = PERF_REGS_MASK;
657 attr->sample_stack_user = param->dump_size;
658 attr->exclude_callchain_user = 1;
659 } else {
660 pr_info("Cannot use DWARF unwind for function trace event,"
661 " falling back to framepointers.\n");
662 }
663 }
664
665 if (function) {
666 pr_info("Disabling user space callchains for function trace event.\n");
667 attr->exclude_callchain_user = 1;
668 }
669 }
670
671 static void
672 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
673 struct callchain_param *param)
674 {
675 struct perf_event_attr *attr = &evsel->attr;
676
677 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
678 if (param->record_mode == CALLCHAIN_LBR) {
679 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
680 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
681 PERF_SAMPLE_BRANCH_CALL_STACK);
682 }
683 if (param->record_mode == CALLCHAIN_DWARF) {
684 perf_evsel__reset_sample_bit(evsel, REGS_USER);
685 perf_evsel__reset_sample_bit(evsel, STACK_USER);
686 }
687 }
688
689 static void apply_config_terms(struct perf_evsel *evsel,
690 struct record_opts *opts)
691 {
692 struct perf_evsel_config_term *term;
693 struct list_head *config_terms = &evsel->config_terms;
694 struct perf_event_attr *attr = &evsel->attr;
695 struct callchain_param param;
696 u32 dump_size = 0;
697 int max_stack = 0;
698 const char *callgraph_buf = NULL;
699
700 /* callgraph default */
701 param.record_mode = callchain_param.record_mode;
702
703 list_for_each_entry(term, config_terms, list) {
704 switch (term->type) {
705 case PERF_EVSEL__CONFIG_TERM_PERIOD:
706 attr->sample_period = term->val.period;
707 attr->freq = 0;
708 break;
709 case PERF_EVSEL__CONFIG_TERM_FREQ:
710 attr->sample_freq = term->val.freq;
711 attr->freq = 1;
712 break;
713 case PERF_EVSEL__CONFIG_TERM_TIME:
714 if (term->val.time)
715 perf_evsel__set_sample_bit(evsel, TIME);
716 else
717 perf_evsel__reset_sample_bit(evsel, TIME);
718 break;
719 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
720 callgraph_buf = term->val.callgraph;
721 break;
722 case PERF_EVSEL__CONFIG_TERM_BRANCH:
723 if (term->val.branch && strcmp(term->val.branch, "no")) {
724 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
725 parse_branch_str(term->val.branch,
726 &attr->branch_sample_type);
727 } else
728 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
729 break;
730 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
731 dump_size = term->val.stack_user;
732 break;
733 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
734 max_stack = term->val.max_stack;
735 break;
736 case PERF_EVSEL__CONFIG_TERM_INHERIT:
737 /*
738 * attr->inherit should has already been set by
739 * perf_evsel__config. If user explicitly set
740 * inherit using config terms, override global
741 * opt->no_inherit setting.
742 */
743 attr->inherit = term->val.inherit ? 1 : 0;
744 break;
745 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
746 attr->write_backward = term->val.overwrite ? 1 : 0;
747 break;
748 default:
749 break;
750 }
751 }
752
753 /* User explicitly set per-event callgraph, clear the old setting and reset. */
754 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
755 if (max_stack) {
756 param.max_stack = max_stack;
757 if (callgraph_buf == NULL)
758 callgraph_buf = "fp";
759 }
760
761 /* parse callgraph parameters */
762 if (callgraph_buf != NULL) {
763 if (!strcmp(callgraph_buf, "no")) {
764 param.enabled = false;
765 param.record_mode = CALLCHAIN_NONE;
766 } else {
767 param.enabled = true;
768 if (parse_callchain_record(callgraph_buf, &param)) {
769 pr_err("per-event callgraph setting for %s failed. "
770 "Apply callgraph global setting for it\n",
771 evsel->name);
772 return;
773 }
774 }
775 }
776 if (dump_size > 0) {
777 dump_size = round_up(dump_size, sizeof(u64));
778 param.dump_size = dump_size;
779 }
780
781 /* If global callgraph set, clear it */
782 if (callchain_param.enabled)
783 perf_evsel__reset_callgraph(evsel, &callchain_param);
784
785 /* set perf-event callgraph */
786 if (param.enabled)
787 perf_evsel__config_callchain(evsel, opts, &param);
788 }
789 }
790
791 /*
792 * The enable_on_exec/disabled value strategy:
793 *
794 * 1) For any type of traced program:
795 * - all independent events and group leaders are disabled
796 * - all group members are enabled
797 *
798 * Group members are ruled by group leaders. They need to
799 * be enabled, because the group scheduling relies on that.
800 *
801 * 2) For traced programs executed by perf:
802 * - all independent events and group leaders have
803 * enable_on_exec set
804 * - we don't specifically enable or disable any event during
805 * the record command
806 *
807 * Independent events and group leaders are initially disabled
808 * and get enabled by exec. Group members are ruled by group
809 * leaders as stated in 1).
810 *
811 * 3) For traced programs attached by perf (pid/tid):
812 * - we specifically enable or disable all events during
813 * the record command
814 *
815 * When attaching events to already running traced we
816 * enable/disable events specifically, as there's no
817 * initial traced exec call.
818 */
819 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
820 struct callchain_param *callchain)
821 {
822 struct perf_evsel *leader = evsel->leader;
823 struct perf_event_attr *attr = &evsel->attr;
824 int track = evsel->tracking;
825 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
826
827 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
828 attr->inherit = !opts->no_inherit;
829 attr->write_backward = opts->overwrite ? 1 : 0;
830
831 perf_evsel__set_sample_bit(evsel, IP);
832 perf_evsel__set_sample_bit(evsel, TID);
833
834 if (evsel->sample_read) {
835 perf_evsel__set_sample_bit(evsel, READ);
836
837 /*
838 * We need ID even in case of single event, because
839 * PERF_SAMPLE_READ process ID specific data.
840 */
841 perf_evsel__set_sample_id(evsel, false);
842
843 /*
844 * Apply group format only if we belong to group
845 * with more than one members.
846 */
847 if (leader->nr_members > 1) {
848 attr->read_format |= PERF_FORMAT_GROUP;
849 attr->inherit = 0;
850 }
851 }
852
853 /*
854 * We default some events to have a default interval. But keep
855 * it a weak assumption overridable by the user.
856 */
857 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
858 opts->user_interval != ULLONG_MAX)) {
859 if (opts->freq) {
860 perf_evsel__set_sample_bit(evsel, PERIOD);
861 attr->freq = 1;
862 attr->sample_freq = opts->freq;
863 } else {
864 attr->sample_period = opts->default_interval;
865 }
866 }
867
868 /*
869 * Disable sampling for all group members other
870 * than leader in case leader 'leads' the sampling.
871 */
872 if ((leader != evsel) && leader->sample_read) {
873 attr->sample_freq = 0;
874 attr->sample_period = 0;
875 }
876
877 if (opts->no_samples)
878 attr->sample_freq = 0;
879
880 if (opts->inherit_stat)
881 attr->inherit_stat = 1;
882
883 if (opts->sample_address) {
884 perf_evsel__set_sample_bit(evsel, ADDR);
885 attr->mmap_data = track;
886 }
887
888 /*
889 * We don't allow user space callchains for function trace
890 * event, due to issues with page faults while tracing page
891 * fault handler and its overall trickiness nature.
892 */
893 if (perf_evsel__is_function_event(evsel))
894 evsel->attr.exclude_callchain_user = 1;
895
896 if (callchain && callchain->enabled && !evsel->no_aux_samples)
897 perf_evsel__config_callchain(evsel, opts, callchain);
898
899 if (opts->sample_intr_regs) {
900 attr->sample_regs_intr = opts->sample_intr_regs;
901 perf_evsel__set_sample_bit(evsel, REGS_INTR);
902 }
903
904 if (target__has_cpu(&opts->target) || opts->sample_cpu)
905 perf_evsel__set_sample_bit(evsel, CPU);
906
907 if (opts->period)
908 perf_evsel__set_sample_bit(evsel, PERIOD);
909
910 /*
911 * When the user explicitly disabled time don't force it here.
912 */
913 if (opts->sample_time &&
914 (!perf_missing_features.sample_id_all &&
915 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
916 opts->sample_time_set)))
917 perf_evsel__set_sample_bit(evsel, TIME);
918
919 if (opts->raw_samples && !evsel->no_aux_samples) {
920 perf_evsel__set_sample_bit(evsel, TIME);
921 perf_evsel__set_sample_bit(evsel, RAW);
922 perf_evsel__set_sample_bit(evsel, CPU);
923 }
924
925 if (opts->sample_address)
926 perf_evsel__set_sample_bit(evsel, DATA_SRC);
927
928 if (opts->no_buffering) {
929 attr->watermark = 0;
930 attr->wakeup_events = 1;
931 }
932 if (opts->branch_stack && !evsel->no_aux_samples) {
933 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
934 attr->branch_sample_type = opts->branch_stack;
935 }
936
937 if (opts->sample_weight)
938 perf_evsel__set_sample_bit(evsel, WEIGHT);
939
940 attr->task = track;
941 attr->mmap = track;
942 attr->mmap2 = track && !perf_missing_features.mmap2;
943 attr->comm = track;
944
945 if (opts->record_namespaces)
946 attr->namespaces = track;
947
948 if (opts->record_switch_events)
949 attr->context_switch = track;
950
951 if (opts->sample_transaction)
952 perf_evsel__set_sample_bit(evsel, TRANSACTION);
953
954 if (opts->running_time) {
955 evsel->attr.read_format |=
956 PERF_FORMAT_TOTAL_TIME_ENABLED |
957 PERF_FORMAT_TOTAL_TIME_RUNNING;
958 }
959
960 /*
961 * XXX see the function comment above
962 *
963 * Disabling only independent events or group leaders,
964 * keeping group members enabled.
965 */
966 if (perf_evsel__is_group_leader(evsel))
967 attr->disabled = 1;
968
969 /*
970 * Setting enable_on_exec for independent events and
971 * group leaders for traced executed by perf.
972 */
973 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
974 !opts->initial_delay)
975 attr->enable_on_exec = 1;
976
977 if (evsel->immediate) {
978 attr->disabled = 0;
979 attr->enable_on_exec = 0;
980 }
981
982 clockid = opts->clockid;
983 if (opts->use_clockid) {
984 attr->use_clockid = 1;
985 attr->clockid = opts->clockid;
986 }
987
988 if (evsel->precise_max)
989 perf_event_attr__set_max_precise_ip(attr);
990
991 if (opts->all_user) {
992 attr->exclude_kernel = 1;
993 attr->exclude_user = 0;
994 }
995
996 if (opts->all_kernel) {
997 attr->exclude_kernel = 0;
998 attr->exclude_user = 1;
999 }
1000
1001 /*
1002 * Apply event specific term settings,
1003 * it overloads any global configuration.
1004 */
1005 apply_config_terms(evsel, opts);
1006
1007 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1008 }
1009
1010 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1011 {
1012 if (evsel->system_wide)
1013 nthreads = 1;
1014
1015 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1016
1017 if (evsel->fd) {
1018 int cpu, thread;
1019 for (cpu = 0; cpu < ncpus; cpu++) {
1020 for (thread = 0; thread < nthreads; thread++) {
1021 FD(evsel, cpu, thread) = -1;
1022 }
1023 }
1024 }
1025
1026 return evsel->fd != NULL ? 0 : -ENOMEM;
1027 }
1028
1029 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1030 int ioc, void *arg)
1031 {
1032 int cpu, thread;
1033
1034 if (evsel->system_wide)
1035 nthreads = 1;
1036
1037 for (cpu = 0; cpu < ncpus; cpu++) {
1038 for (thread = 0; thread < nthreads; thread++) {
1039 int fd = FD(evsel, cpu, thread),
1040 err = ioctl(fd, ioc, arg);
1041
1042 if (err)
1043 return err;
1044 }
1045 }
1046
1047 return 0;
1048 }
1049
1050 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1051 const char *filter)
1052 {
1053 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1054 PERF_EVENT_IOC_SET_FILTER,
1055 (void *)filter);
1056 }
1057
1058 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1059 {
1060 char *new_filter = strdup(filter);
1061
1062 if (new_filter != NULL) {
1063 free(evsel->filter);
1064 evsel->filter = new_filter;
1065 return 0;
1066 }
1067
1068 return -1;
1069 }
1070
1071 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1072 const char *fmt, const char *filter)
1073 {
1074 char *new_filter;
1075
1076 if (evsel->filter == NULL)
1077 return perf_evsel__set_filter(evsel, filter);
1078
1079 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1080 free(evsel->filter);
1081 evsel->filter = new_filter;
1082 return 0;
1083 }
1084
1085 return -1;
1086 }
1087
1088 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1089 {
1090 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1091 }
1092
1093 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1094 {
1095 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1096 }
1097
1098 int perf_evsel__enable(struct perf_evsel *evsel)
1099 {
1100 int nthreads = thread_map__nr(evsel->threads);
1101 int ncpus = cpu_map__nr(evsel->cpus);
1102
1103 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1104 PERF_EVENT_IOC_ENABLE,
1105 0);
1106 }
1107
1108 int perf_evsel__disable(struct perf_evsel *evsel)
1109 {
1110 int nthreads = thread_map__nr(evsel->threads);
1111 int ncpus = cpu_map__nr(evsel->cpus);
1112
1113 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1114 PERF_EVENT_IOC_DISABLE,
1115 0);
1116 }
1117
1118 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1119 {
1120 if (ncpus == 0 || nthreads == 0)
1121 return 0;
1122
1123 if (evsel->system_wide)
1124 nthreads = 1;
1125
1126 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1127 if (evsel->sample_id == NULL)
1128 return -ENOMEM;
1129
1130 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1131 if (evsel->id == NULL) {
1132 xyarray__delete(evsel->sample_id);
1133 evsel->sample_id = NULL;
1134 return -ENOMEM;
1135 }
1136
1137 return 0;
1138 }
1139
1140 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1141 {
1142 xyarray__delete(evsel->fd);
1143 evsel->fd = NULL;
1144 }
1145
1146 static void perf_evsel__free_id(struct perf_evsel *evsel)
1147 {
1148 xyarray__delete(evsel->sample_id);
1149 evsel->sample_id = NULL;
1150 zfree(&evsel->id);
1151 }
1152
1153 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1154 {
1155 struct perf_evsel_config_term *term, *h;
1156
1157 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1158 list_del(&term->list);
1159 free(term);
1160 }
1161 }
1162
1163 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1164 {
1165 int cpu, thread;
1166
1167 if (evsel->system_wide)
1168 nthreads = 1;
1169
1170 for (cpu = 0; cpu < ncpus; cpu++)
1171 for (thread = 0; thread < nthreads; ++thread) {
1172 close(FD(evsel, cpu, thread));
1173 FD(evsel, cpu, thread) = -1;
1174 }
1175 }
1176
1177 void perf_evsel__exit(struct perf_evsel *evsel)
1178 {
1179 assert(list_empty(&evsel->node));
1180 assert(evsel->evlist == NULL);
1181 perf_evsel__free_fd(evsel);
1182 perf_evsel__free_id(evsel);
1183 perf_evsel__free_config_terms(evsel);
1184 close_cgroup(evsel->cgrp);
1185 cpu_map__put(evsel->cpus);
1186 cpu_map__put(evsel->own_cpus);
1187 thread_map__put(evsel->threads);
1188 zfree(&evsel->group_name);
1189 zfree(&evsel->name);
1190 perf_evsel__object.fini(evsel);
1191 }
1192
1193 void perf_evsel__delete(struct perf_evsel *evsel)
1194 {
1195 perf_evsel__exit(evsel);
1196 free(evsel);
1197 }
1198
1199 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1200 struct perf_counts_values *count)
1201 {
1202 struct perf_counts_values tmp;
1203
1204 if (!evsel->prev_raw_counts)
1205 return;
1206
1207 if (cpu == -1) {
1208 tmp = evsel->prev_raw_counts->aggr;
1209 evsel->prev_raw_counts->aggr = *count;
1210 } else {
1211 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1212 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1213 }
1214
1215 count->val = count->val - tmp.val;
1216 count->ena = count->ena - tmp.ena;
1217 count->run = count->run - tmp.run;
1218 }
1219
1220 void perf_counts_values__scale(struct perf_counts_values *count,
1221 bool scale, s8 *pscaled)
1222 {
1223 s8 scaled = 0;
1224
1225 if (scale) {
1226 if (count->run == 0) {
1227 scaled = -1;
1228 count->val = 0;
1229 } else if (count->run < count->ena) {
1230 scaled = 1;
1231 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1232 }
1233 } else
1234 count->ena = count->run = 0;
1235
1236 if (pscaled)
1237 *pscaled = scaled;
1238 }
1239
1240 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1241 struct perf_counts_values *count)
1242 {
1243 memset(count, 0, sizeof(*count));
1244
1245 if (FD(evsel, cpu, thread) < 0)
1246 return -EINVAL;
1247
1248 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0)
1249 return -errno;
1250
1251 return 0;
1252 }
1253
1254 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1255 int cpu, int thread, bool scale)
1256 {
1257 struct perf_counts_values count;
1258 size_t nv = scale ? 3 : 1;
1259
1260 if (FD(evsel, cpu, thread) < 0)
1261 return -EINVAL;
1262
1263 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1264 return -ENOMEM;
1265
1266 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1267 return -errno;
1268
1269 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1270 perf_counts_values__scale(&count, scale, NULL);
1271 *perf_counts(evsel->counts, cpu, thread) = count;
1272 return 0;
1273 }
1274
1275 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1276 {
1277 struct perf_evsel *leader = evsel->leader;
1278 int fd;
1279
1280 if (perf_evsel__is_group_leader(evsel))
1281 return -1;
1282
1283 /*
1284 * Leader must be already processed/open,
1285 * if not it's a bug.
1286 */
1287 BUG_ON(!leader->fd);
1288
1289 fd = FD(leader, cpu, thread);
1290 BUG_ON(fd == -1);
1291
1292 return fd;
1293 }
1294
1295 struct bit_names {
1296 int bit;
1297 const char *name;
1298 };
1299
1300 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1301 {
1302 bool first_bit = true;
1303 int i = 0;
1304
1305 do {
1306 if (value & bits[i].bit) {
1307 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1308 first_bit = false;
1309 }
1310 } while (bits[++i].name != NULL);
1311 }
1312
1313 static void __p_sample_type(char *buf, size_t size, u64 value)
1314 {
1315 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1316 struct bit_names bits[] = {
1317 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1318 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1319 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1320 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1321 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1322 bit_name(WEIGHT),
1323 { .name = NULL, }
1324 };
1325 #undef bit_name
1326 __p_bits(buf, size, value, bits);
1327 }
1328
1329 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1330 {
1331 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1332 struct bit_names bits[] = {
1333 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1334 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1335 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1336 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1337 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1338 { .name = NULL, }
1339 };
1340 #undef bit_name
1341 __p_bits(buf, size, value, bits);
1342 }
1343
1344 static void __p_read_format(char *buf, size_t size, u64 value)
1345 {
1346 #define bit_name(n) { PERF_FORMAT_##n, #n }
1347 struct bit_names bits[] = {
1348 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1349 bit_name(ID), bit_name(GROUP),
1350 { .name = NULL, }
1351 };
1352 #undef bit_name
1353 __p_bits(buf, size, value, bits);
1354 }
1355
1356 #define BUF_SIZE 1024
1357
1358 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1359 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1360 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1361 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1362 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1363 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1364
1365 #define PRINT_ATTRn(_n, _f, _p) \
1366 do { \
1367 if (attr->_f) { \
1368 _p(attr->_f); \
1369 ret += attr__fprintf(fp, _n, buf, priv);\
1370 } \
1371 } while (0)
1372
1373 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1374
1375 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1376 attr__fprintf_f attr__fprintf, void *priv)
1377 {
1378 char buf[BUF_SIZE];
1379 int ret = 0;
1380
1381 PRINT_ATTRf(type, p_unsigned);
1382 PRINT_ATTRf(size, p_unsigned);
1383 PRINT_ATTRf(config, p_hex);
1384 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1385 PRINT_ATTRf(sample_type, p_sample_type);
1386 PRINT_ATTRf(read_format, p_read_format);
1387
1388 PRINT_ATTRf(disabled, p_unsigned);
1389 PRINT_ATTRf(inherit, p_unsigned);
1390 PRINT_ATTRf(pinned, p_unsigned);
1391 PRINT_ATTRf(exclusive, p_unsigned);
1392 PRINT_ATTRf(exclude_user, p_unsigned);
1393 PRINT_ATTRf(exclude_kernel, p_unsigned);
1394 PRINT_ATTRf(exclude_hv, p_unsigned);
1395 PRINT_ATTRf(exclude_idle, p_unsigned);
1396 PRINT_ATTRf(mmap, p_unsigned);
1397 PRINT_ATTRf(comm, p_unsigned);
1398 PRINT_ATTRf(freq, p_unsigned);
1399 PRINT_ATTRf(inherit_stat, p_unsigned);
1400 PRINT_ATTRf(enable_on_exec, p_unsigned);
1401 PRINT_ATTRf(task, p_unsigned);
1402 PRINT_ATTRf(watermark, p_unsigned);
1403 PRINT_ATTRf(precise_ip, p_unsigned);
1404 PRINT_ATTRf(mmap_data, p_unsigned);
1405 PRINT_ATTRf(sample_id_all, p_unsigned);
1406 PRINT_ATTRf(exclude_host, p_unsigned);
1407 PRINT_ATTRf(exclude_guest, p_unsigned);
1408 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1409 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1410 PRINT_ATTRf(mmap2, p_unsigned);
1411 PRINT_ATTRf(comm_exec, p_unsigned);
1412 PRINT_ATTRf(use_clockid, p_unsigned);
1413 PRINT_ATTRf(context_switch, p_unsigned);
1414 PRINT_ATTRf(write_backward, p_unsigned);
1415
1416 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1417 PRINT_ATTRf(bp_type, p_unsigned);
1418 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1419 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1420 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1421 PRINT_ATTRf(sample_regs_user, p_hex);
1422 PRINT_ATTRf(sample_stack_user, p_unsigned);
1423 PRINT_ATTRf(clockid, p_signed);
1424 PRINT_ATTRf(sample_regs_intr, p_hex);
1425 PRINT_ATTRf(aux_watermark, p_unsigned);
1426 PRINT_ATTRf(sample_max_stack, p_unsigned);
1427
1428 return ret;
1429 }
1430
1431 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1432 void *priv __attribute__((unused)))
1433 {
1434 return fprintf(fp, " %-32s %s\n", name, val);
1435 }
1436
1437 static bool ignore_missing_thread(struct perf_evsel *evsel,
1438 struct thread_map *threads,
1439 int thread, int err)
1440 {
1441 if (!evsel->ignore_missing_thread)
1442 return false;
1443
1444 /* The system wide setup does not work with threads. */
1445 if (evsel->system_wide)
1446 return false;
1447
1448 /* The -ESRCH is perf event syscall errno for pid's not found. */
1449 if (err != -ESRCH)
1450 return false;
1451
1452 /* If there's only one thread, let it fail. */
1453 if (threads->nr == 1)
1454 return false;
1455
1456 if (thread_map__remove(threads, thread))
1457 return false;
1458
1459 pr_warning("WARNING: Ignored open failure for pid %d\n",
1460 thread_map__pid(threads, thread));
1461 return true;
1462 }
1463
1464 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1465 struct thread_map *threads)
1466 {
1467 int cpu, thread, nthreads;
1468 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1469 int pid = -1, err;
1470 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1471
1472 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1473 return -EINVAL;
1474
1475 if (cpus == NULL) {
1476 static struct cpu_map *empty_cpu_map;
1477
1478 if (empty_cpu_map == NULL) {
1479 empty_cpu_map = cpu_map__dummy_new();
1480 if (empty_cpu_map == NULL)
1481 return -ENOMEM;
1482 }
1483
1484 cpus = empty_cpu_map;
1485 }
1486
1487 if (threads == NULL) {
1488 static struct thread_map *empty_thread_map;
1489
1490 if (empty_thread_map == NULL) {
1491 empty_thread_map = thread_map__new_by_tid(-1);
1492 if (empty_thread_map == NULL)
1493 return -ENOMEM;
1494 }
1495
1496 threads = empty_thread_map;
1497 }
1498
1499 if (evsel->system_wide)
1500 nthreads = 1;
1501 else
1502 nthreads = threads->nr;
1503
1504 if (evsel->fd == NULL &&
1505 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1506 return -ENOMEM;
1507
1508 if (evsel->cgrp) {
1509 flags |= PERF_FLAG_PID_CGROUP;
1510 pid = evsel->cgrp->fd;
1511 }
1512
1513 fallback_missing_features:
1514 if (perf_missing_features.clockid_wrong)
1515 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1516 if (perf_missing_features.clockid) {
1517 evsel->attr.use_clockid = 0;
1518 evsel->attr.clockid = 0;
1519 }
1520 if (perf_missing_features.cloexec)
1521 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1522 if (perf_missing_features.mmap2)
1523 evsel->attr.mmap2 = 0;
1524 if (perf_missing_features.exclude_guest)
1525 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1526 if (perf_missing_features.lbr_flags)
1527 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1528 PERF_SAMPLE_BRANCH_NO_CYCLES);
1529 retry_sample_id:
1530 if (perf_missing_features.sample_id_all)
1531 evsel->attr.sample_id_all = 0;
1532
1533 if (verbose >= 2) {
1534 fprintf(stderr, "%.60s\n", graph_dotted_line);
1535 fprintf(stderr, "perf_event_attr:\n");
1536 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1537 fprintf(stderr, "%.60s\n", graph_dotted_line);
1538 }
1539
1540 for (cpu = 0; cpu < cpus->nr; cpu++) {
1541
1542 for (thread = 0; thread < nthreads; thread++) {
1543 int fd, group_fd;
1544
1545 if (!evsel->cgrp && !evsel->system_wide)
1546 pid = thread_map__pid(threads, thread);
1547
1548 group_fd = get_group_fd(evsel, cpu, thread);
1549 retry_open:
1550 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1551 pid, cpus->map[cpu], group_fd, flags);
1552
1553 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1554 group_fd, flags);
1555
1556 FD(evsel, cpu, thread) = fd;
1557
1558 if (fd < 0) {
1559 err = -errno;
1560
1561 if (ignore_missing_thread(evsel, threads, thread, err)) {
1562 /*
1563 * We just removed 1 thread, so take a step
1564 * back on thread index and lower the upper
1565 * nthreads limit.
1566 */
1567 nthreads--;
1568 thread--;
1569
1570 /* ... and pretend like nothing have happened. */
1571 err = 0;
1572 continue;
1573 }
1574
1575 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1576 err);
1577 goto try_fallback;
1578 }
1579
1580 pr_debug2(" = %d\n", fd);
1581
1582 if (evsel->bpf_fd >= 0) {
1583 int evt_fd = fd;
1584 int bpf_fd = evsel->bpf_fd;
1585
1586 err = ioctl(evt_fd,
1587 PERF_EVENT_IOC_SET_BPF,
1588 bpf_fd);
1589 if (err && errno != EEXIST) {
1590 pr_err("failed to attach bpf fd %d: %s\n",
1591 bpf_fd, strerror(errno));
1592 err = -EINVAL;
1593 goto out_close;
1594 }
1595 }
1596
1597 set_rlimit = NO_CHANGE;
1598
1599 /*
1600 * If we succeeded but had to kill clockid, fail and
1601 * have perf_evsel__open_strerror() print us a nice
1602 * error.
1603 */
1604 if (perf_missing_features.clockid ||
1605 perf_missing_features.clockid_wrong) {
1606 err = -EINVAL;
1607 goto out_close;
1608 }
1609 }
1610 }
1611
1612 return 0;
1613
1614 try_fallback:
1615 /*
1616 * perf stat needs between 5 and 22 fds per CPU. When we run out
1617 * of them try to increase the limits.
1618 */
1619 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1620 struct rlimit l;
1621 int old_errno = errno;
1622
1623 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1624 if (set_rlimit == NO_CHANGE)
1625 l.rlim_cur = l.rlim_max;
1626 else {
1627 l.rlim_cur = l.rlim_max + 1000;
1628 l.rlim_max = l.rlim_cur;
1629 }
1630 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1631 set_rlimit++;
1632 errno = old_errno;
1633 goto retry_open;
1634 }
1635 }
1636 errno = old_errno;
1637 }
1638
1639 if (err != -EINVAL || cpu > 0 || thread > 0)
1640 goto out_close;
1641
1642 /*
1643 * Must probe features in the order they were added to the
1644 * perf_event_attr interface.
1645 */
1646 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1647 perf_missing_features.write_backward = true;
1648 goto out_close;
1649 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1650 perf_missing_features.clockid_wrong = true;
1651 goto fallback_missing_features;
1652 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1653 perf_missing_features.clockid = true;
1654 goto fallback_missing_features;
1655 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1656 perf_missing_features.cloexec = true;
1657 goto fallback_missing_features;
1658 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1659 perf_missing_features.mmap2 = true;
1660 goto fallback_missing_features;
1661 } else if (!perf_missing_features.exclude_guest &&
1662 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1663 perf_missing_features.exclude_guest = true;
1664 goto fallback_missing_features;
1665 } else if (!perf_missing_features.sample_id_all) {
1666 perf_missing_features.sample_id_all = true;
1667 goto retry_sample_id;
1668 } else if (!perf_missing_features.lbr_flags &&
1669 (evsel->attr.branch_sample_type &
1670 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1671 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1672 perf_missing_features.lbr_flags = true;
1673 goto fallback_missing_features;
1674 }
1675 out_close:
1676 do {
1677 while (--thread >= 0) {
1678 close(FD(evsel, cpu, thread));
1679 FD(evsel, cpu, thread) = -1;
1680 }
1681 thread = nthreads;
1682 } while (--cpu >= 0);
1683 return err;
1684 }
1685
1686 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1687 {
1688 if (evsel->fd == NULL)
1689 return;
1690
1691 perf_evsel__close_fd(evsel, ncpus, nthreads);
1692 perf_evsel__free_fd(evsel);
1693 }
1694
1695 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1696 struct cpu_map *cpus)
1697 {
1698 return perf_evsel__open(evsel, cpus, NULL);
1699 }
1700
1701 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1702 struct thread_map *threads)
1703 {
1704 return perf_evsel__open(evsel, NULL, threads);
1705 }
1706
1707 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1708 const union perf_event *event,
1709 struct perf_sample *sample)
1710 {
1711 u64 type = evsel->attr.sample_type;
1712 const u64 *array = event->sample.array;
1713 bool swapped = evsel->needs_swap;
1714 union u64_swap u;
1715
1716 array += ((event->header.size -
1717 sizeof(event->header)) / sizeof(u64)) - 1;
1718
1719 if (type & PERF_SAMPLE_IDENTIFIER) {
1720 sample->id = *array;
1721 array--;
1722 }
1723
1724 if (type & PERF_SAMPLE_CPU) {
1725 u.val64 = *array;
1726 if (swapped) {
1727 /* undo swap of u64, then swap on individual u32s */
1728 u.val64 = bswap_64(u.val64);
1729 u.val32[0] = bswap_32(u.val32[0]);
1730 }
1731
1732 sample->cpu = u.val32[0];
1733 array--;
1734 }
1735
1736 if (type & PERF_SAMPLE_STREAM_ID) {
1737 sample->stream_id = *array;
1738 array--;
1739 }
1740
1741 if (type & PERF_SAMPLE_ID) {
1742 sample->id = *array;
1743 array--;
1744 }
1745
1746 if (type & PERF_SAMPLE_TIME) {
1747 sample->time = *array;
1748 array--;
1749 }
1750
1751 if (type & PERF_SAMPLE_TID) {
1752 u.val64 = *array;
1753 if (swapped) {
1754 /* undo swap of u64, then swap on individual u32s */
1755 u.val64 = bswap_64(u.val64);
1756 u.val32[0] = bswap_32(u.val32[0]);
1757 u.val32[1] = bswap_32(u.val32[1]);
1758 }
1759
1760 sample->pid = u.val32[0];
1761 sample->tid = u.val32[1];
1762 array--;
1763 }
1764
1765 return 0;
1766 }
1767
1768 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1769 u64 size)
1770 {
1771 return size > max_size || offset + size > endp;
1772 }
1773
1774 #define OVERFLOW_CHECK(offset, size, max_size) \
1775 do { \
1776 if (overflow(endp, (max_size), (offset), (size))) \
1777 return -EFAULT; \
1778 } while (0)
1779
1780 #define OVERFLOW_CHECK_u64(offset) \
1781 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1782
1783 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1784 struct perf_sample *data)
1785 {
1786 u64 type = evsel->attr.sample_type;
1787 bool swapped = evsel->needs_swap;
1788 const u64 *array;
1789 u16 max_size = event->header.size;
1790 const void *endp = (void *)event + max_size;
1791 u64 sz;
1792
1793 /*
1794 * used for cross-endian analysis. See git commit 65014ab3
1795 * for why this goofiness is needed.
1796 */
1797 union u64_swap u;
1798
1799 memset(data, 0, sizeof(*data));
1800 data->cpu = data->pid = data->tid = -1;
1801 data->stream_id = data->id = data->time = -1ULL;
1802 data->period = evsel->attr.sample_period;
1803 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1804
1805 if (event->header.type != PERF_RECORD_SAMPLE) {
1806 if (!evsel->attr.sample_id_all)
1807 return 0;
1808 return perf_evsel__parse_id_sample(evsel, event, data);
1809 }
1810
1811 array = event->sample.array;
1812
1813 /*
1814 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1815 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1816 * check the format does not go past the end of the event.
1817 */
1818 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1819 return -EFAULT;
1820
1821 data->id = -1ULL;
1822 if (type & PERF_SAMPLE_IDENTIFIER) {
1823 data->id = *array;
1824 array++;
1825 }
1826
1827 if (type & PERF_SAMPLE_IP) {
1828 data->ip = *array;
1829 array++;
1830 }
1831
1832 if (type & PERF_SAMPLE_TID) {
1833 u.val64 = *array;
1834 if (swapped) {
1835 /* undo swap of u64, then swap on individual u32s */
1836 u.val64 = bswap_64(u.val64);
1837 u.val32[0] = bswap_32(u.val32[0]);
1838 u.val32[1] = bswap_32(u.val32[1]);
1839 }
1840
1841 data->pid = u.val32[0];
1842 data->tid = u.val32[1];
1843 array++;
1844 }
1845
1846 if (type & PERF_SAMPLE_TIME) {
1847 data->time = *array;
1848 array++;
1849 }
1850
1851 data->addr = 0;
1852 if (type & PERF_SAMPLE_ADDR) {
1853 data->addr = *array;
1854 array++;
1855 }
1856
1857 if (type & PERF_SAMPLE_ID) {
1858 data->id = *array;
1859 array++;
1860 }
1861
1862 if (type & PERF_SAMPLE_STREAM_ID) {
1863 data->stream_id = *array;
1864 array++;
1865 }
1866
1867 if (type & PERF_SAMPLE_CPU) {
1868
1869 u.val64 = *array;
1870 if (swapped) {
1871 /* undo swap of u64, then swap on individual u32s */
1872 u.val64 = bswap_64(u.val64);
1873 u.val32[0] = bswap_32(u.val32[0]);
1874 }
1875
1876 data->cpu = u.val32[0];
1877 array++;
1878 }
1879
1880 if (type & PERF_SAMPLE_PERIOD) {
1881 data->period = *array;
1882 array++;
1883 }
1884
1885 if (type & PERF_SAMPLE_READ) {
1886 u64 read_format = evsel->attr.read_format;
1887
1888 OVERFLOW_CHECK_u64(array);
1889 if (read_format & PERF_FORMAT_GROUP)
1890 data->read.group.nr = *array;
1891 else
1892 data->read.one.value = *array;
1893
1894 array++;
1895
1896 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1897 OVERFLOW_CHECK_u64(array);
1898 data->read.time_enabled = *array;
1899 array++;
1900 }
1901
1902 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1903 OVERFLOW_CHECK_u64(array);
1904 data->read.time_running = *array;
1905 array++;
1906 }
1907
1908 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1909 if (read_format & PERF_FORMAT_GROUP) {
1910 const u64 max_group_nr = UINT64_MAX /
1911 sizeof(struct sample_read_value);
1912
1913 if (data->read.group.nr > max_group_nr)
1914 return -EFAULT;
1915 sz = data->read.group.nr *
1916 sizeof(struct sample_read_value);
1917 OVERFLOW_CHECK(array, sz, max_size);
1918 data->read.group.values =
1919 (struct sample_read_value *)array;
1920 array = (void *)array + sz;
1921 } else {
1922 OVERFLOW_CHECK_u64(array);
1923 data->read.one.id = *array;
1924 array++;
1925 }
1926 }
1927
1928 if (type & PERF_SAMPLE_CALLCHAIN) {
1929 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1930
1931 OVERFLOW_CHECK_u64(array);
1932 data->callchain = (struct ip_callchain *)array++;
1933 if (data->callchain->nr > max_callchain_nr)
1934 return -EFAULT;
1935 sz = data->callchain->nr * sizeof(u64);
1936 OVERFLOW_CHECK(array, sz, max_size);
1937 array = (void *)array + sz;
1938 }
1939
1940 if (type & PERF_SAMPLE_RAW) {
1941 OVERFLOW_CHECK_u64(array);
1942 u.val64 = *array;
1943 if (WARN_ONCE(swapped,
1944 "Endianness of raw data not corrected!\n")) {
1945 /* undo swap of u64, then swap on individual u32s */
1946 u.val64 = bswap_64(u.val64);
1947 u.val32[0] = bswap_32(u.val32[0]);
1948 u.val32[1] = bswap_32(u.val32[1]);
1949 }
1950 data->raw_size = u.val32[0];
1951 array = (void *)array + sizeof(u32);
1952
1953 OVERFLOW_CHECK(array, data->raw_size, max_size);
1954 data->raw_data = (void *)array;
1955 array = (void *)array + data->raw_size;
1956 }
1957
1958 if (type & PERF_SAMPLE_BRANCH_STACK) {
1959 const u64 max_branch_nr = UINT64_MAX /
1960 sizeof(struct branch_entry);
1961
1962 OVERFLOW_CHECK_u64(array);
1963 data->branch_stack = (struct branch_stack *)array++;
1964
1965 if (data->branch_stack->nr > max_branch_nr)
1966 return -EFAULT;
1967 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1968 OVERFLOW_CHECK(array, sz, max_size);
1969 array = (void *)array + sz;
1970 }
1971
1972 if (type & PERF_SAMPLE_REGS_USER) {
1973 OVERFLOW_CHECK_u64(array);
1974 data->user_regs.abi = *array;
1975 array++;
1976
1977 if (data->user_regs.abi) {
1978 u64 mask = evsel->attr.sample_regs_user;
1979
1980 sz = hweight_long(mask) * sizeof(u64);
1981 OVERFLOW_CHECK(array, sz, max_size);
1982 data->user_regs.mask = mask;
1983 data->user_regs.regs = (u64 *)array;
1984 array = (void *)array + sz;
1985 }
1986 }
1987
1988 if (type & PERF_SAMPLE_STACK_USER) {
1989 OVERFLOW_CHECK_u64(array);
1990 sz = *array++;
1991
1992 data->user_stack.offset = ((char *)(array - 1)
1993 - (char *) event);
1994
1995 if (!sz) {
1996 data->user_stack.size = 0;
1997 } else {
1998 OVERFLOW_CHECK(array, sz, max_size);
1999 data->user_stack.data = (char *)array;
2000 array = (void *)array + sz;
2001 OVERFLOW_CHECK_u64(array);
2002 data->user_stack.size = *array++;
2003 if (WARN_ONCE(data->user_stack.size > sz,
2004 "user stack dump failure\n"))
2005 return -EFAULT;
2006 }
2007 }
2008
2009 if (type & PERF_SAMPLE_WEIGHT) {
2010 OVERFLOW_CHECK_u64(array);
2011 data->weight = *array;
2012 array++;
2013 }
2014
2015 data->data_src = PERF_MEM_DATA_SRC_NONE;
2016 if (type & PERF_SAMPLE_DATA_SRC) {
2017 OVERFLOW_CHECK_u64(array);
2018 data->data_src = *array;
2019 array++;
2020 }
2021
2022 data->transaction = 0;
2023 if (type & PERF_SAMPLE_TRANSACTION) {
2024 OVERFLOW_CHECK_u64(array);
2025 data->transaction = *array;
2026 array++;
2027 }
2028
2029 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2030 if (type & PERF_SAMPLE_REGS_INTR) {
2031 OVERFLOW_CHECK_u64(array);
2032 data->intr_regs.abi = *array;
2033 array++;
2034
2035 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2036 u64 mask = evsel->attr.sample_regs_intr;
2037
2038 sz = hweight_long(mask) * sizeof(u64);
2039 OVERFLOW_CHECK(array, sz, max_size);
2040 data->intr_regs.mask = mask;
2041 data->intr_regs.regs = (u64 *)array;
2042 array = (void *)array + sz;
2043 }
2044 }
2045
2046 return 0;
2047 }
2048
2049 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2050 u64 read_format)
2051 {
2052 size_t sz, result = sizeof(struct sample_event);
2053
2054 if (type & PERF_SAMPLE_IDENTIFIER)
2055 result += sizeof(u64);
2056
2057 if (type & PERF_SAMPLE_IP)
2058 result += sizeof(u64);
2059
2060 if (type & PERF_SAMPLE_TID)
2061 result += sizeof(u64);
2062
2063 if (type & PERF_SAMPLE_TIME)
2064 result += sizeof(u64);
2065
2066 if (type & PERF_SAMPLE_ADDR)
2067 result += sizeof(u64);
2068
2069 if (type & PERF_SAMPLE_ID)
2070 result += sizeof(u64);
2071
2072 if (type & PERF_SAMPLE_STREAM_ID)
2073 result += sizeof(u64);
2074
2075 if (type & PERF_SAMPLE_CPU)
2076 result += sizeof(u64);
2077
2078 if (type & PERF_SAMPLE_PERIOD)
2079 result += sizeof(u64);
2080
2081 if (type & PERF_SAMPLE_READ) {
2082 result += sizeof(u64);
2083 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2084 result += sizeof(u64);
2085 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2086 result += sizeof(u64);
2087 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2088 if (read_format & PERF_FORMAT_GROUP) {
2089 sz = sample->read.group.nr *
2090 sizeof(struct sample_read_value);
2091 result += sz;
2092 } else {
2093 result += sizeof(u64);
2094 }
2095 }
2096
2097 if (type & PERF_SAMPLE_CALLCHAIN) {
2098 sz = (sample->callchain->nr + 1) * sizeof(u64);
2099 result += sz;
2100 }
2101
2102 if (type & PERF_SAMPLE_RAW) {
2103 result += sizeof(u32);
2104 result += sample->raw_size;
2105 }
2106
2107 if (type & PERF_SAMPLE_BRANCH_STACK) {
2108 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2109 sz += sizeof(u64);
2110 result += sz;
2111 }
2112
2113 if (type & PERF_SAMPLE_REGS_USER) {
2114 if (sample->user_regs.abi) {
2115 result += sizeof(u64);
2116 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2117 result += sz;
2118 } else {
2119 result += sizeof(u64);
2120 }
2121 }
2122
2123 if (type & PERF_SAMPLE_STACK_USER) {
2124 sz = sample->user_stack.size;
2125 result += sizeof(u64);
2126 if (sz) {
2127 result += sz;
2128 result += sizeof(u64);
2129 }
2130 }
2131
2132 if (type & PERF_SAMPLE_WEIGHT)
2133 result += sizeof(u64);
2134
2135 if (type & PERF_SAMPLE_DATA_SRC)
2136 result += sizeof(u64);
2137
2138 if (type & PERF_SAMPLE_TRANSACTION)
2139 result += sizeof(u64);
2140
2141 if (type & PERF_SAMPLE_REGS_INTR) {
2142 if (sample->intr_regs.abi) {
2143 result += sizeof(u64);
2144 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2145 result += sz;
2146 } else {
2147 result += sizeof(u64);
2148 }
2149 }
2150
2151 return result;
2152 }
2153
2154 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2155 u64 read_format,
2156 const struct perf_sample *sample,
2157 bool swapped)
2158 {
2159 u64 *array;
2160 size_t sz;
2161 /*
2162 * used for cross-endian analysis. See git commit 65014ab3
2163 * for why this goofiness is needed.
2164 */
2165 union u64_swap u;
2166
2167 array = event->sample.array;
2168
2169 if (type & PERF_SAMPLE_IDENTIFIER) {
2170 *array = sample->id;
2171 array++;
2172 }
2173
2174 if (type & PERF_SAMPLE_IP) {
2175 *array = sample->ip;
2176 array++;
2177 }
2178
2179 if (type & PERF_SAMPLE_TID) {
2180 u.val32[0] = sample->pid;
2181 u.val32[1] = sample->tid;
2182 if (swapped) {
2183 /*
2184 * Inverse of what is done in perf_evsel__parse_sample
2185 */
2186 u.val32[0] = bswap_32(u.val32[0]);
2187 u.val32[1] = bswap_32(u.val32[1]);
2188 u.val64 = bswap_64(u.val64);
2189 }
2190
2191 *array = u.val64;
2192 array++;
2193 }
2194
2195 if (type & PERF_SAMPLE_TIME) {
2196 *array = sample->time;
2197 array++;
2198 }
2199
2200 if (type & PERF_SAMPLE_ADDR) {
2201 *array = sample->addr;
2202 array++;
2203 }
2204
2205 if (type & PERF_SAMPLE_ID) {
2206 *array = sample->id;
2207 array++;
2208 }
2209
2210 if (type & PERF_SAMPLE_STREAM_ID) {
2211 *array = sample->stream_id;
2212 array++;
2213 }
2214
2215 if (type & PERF_SAMPLE_CPU) {
2216 u.val32[0] = sample->cpu;
2217 if (swapped) {
2218 /*
2219 * Inverse of what is done in perf_evsel__parse_sample
2220 */
2221 u.val32[0] = bswap_32(u.val32[0]);
2222 u.val64 = bswap_64(u.val64);
2223 }
2224 *array = u.val64;
2225 array++;
2226 }
2227
2228 if (type & PERF_SAMPLE_PERIOD) {
2229 *array = sample->period;
2230 array++;
2231 }
2232
2233 if (type & PERF_SAMPLE_READ) {
2234 if (read_format & PERF_FORMAT_GROUP)
2235 *array = sample->read.group.nr;
2236 else
2237 *array = sample->read.one.value;
2238 array++;
2239
2240 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2241 *array = sample->read.time_enabled;
2242 array++;
2243 }
2244
2245 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2246 *array = sample->read.time_running;
2247 array++;
2248 }
2249
2250 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2251 if (read_format & PERF_FORMAT_GROUP) {
2252 sz = sample->read.group.nr *
2253 sizeof(struct sample_read_value);
2254 memcpy(array, sample->read.group.values, sz);
2255 array = (void *)array + sz;
2256 } else {
2257 *array = sample->read.one.id;
2258 array++;
2259 }
2260 }
2261
2262 if (type & PERF_SAMPLE_CALLCHAIN) {
2263 sz = (sample->callchain->nr + 1) * sizeof(u64);
2264 memcpy(array, sample->callchain, sz);
2265 array = (void *)array + sz;
2266 }
2267
2268 if (type & PERF_SAMPLE_RAW) {
2269 u.val32[0] = sample->raw_size;
2270 if (WARN_ONCE(swapped,
2271 "Endianness of raw data not corrected!\n")) {
2272 /*
2273 * Inverse of what is done in perf_evsel__parse_sample
2274 */
2275 u.val32[0] = bswap_32(u.val32[0]);
2276 u.val32[1] = bswap_32(u.val32[1]);
2277 u.val64 = bswap_64(u.val64);
2278 }
2279 *array = u.val64;
2280 array = (void *)array + sizeof(u32);
2281
2282 memcpy(array, sample->raw_data, sample->raw_size);
2283 array = (void *)array + sample->raw_size;
2284 }
2285
2286 if (type & PERF_SAMPLE_BRANCH_STACK) {
2287 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2288 sz += sizeof(u64);
2289 memcpy(array, sample->branch_stack, sz);
2290 array = (void *)array + sz;
2291 }
2292
2293 if (type & PERF_SAMPLE_REGS_USER) {
2294 if (sample->user_regs.abi) {
2295 *array++ = sample->user_regs.abi;
2296 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2297 memcpy(array, sample->user_regs.regs, sz);
2298 array = (void *)array + sz;
2299 } else {
2300 *array++ = 0;
2301 }
2302 }
2303
2304 if (type & PERF_SAMPLE_STACK_USER) {
2305 sz = sample->user_stack.size;
2306 *array++ = sz;
2307 if (sz) {
2308 memcpy(array, sample->user_stack.data, sz);
2309 array = (void *)array + sz;
2310 *array++ = sz;
2311 }
2312 }
2313
2314 if (type & PERF_SAMPLE_WEIGHT) {
2315 *array = sample->weight;
2316 array++;
2317 }
2318
2319 if (type & PERF_SAMPLE_DATA_SRC) {
2320 *array = sample->data_src;
2321 array++;
2322 }
2323
2324 if (type & PERF_SAMPLE_TRANSACTION) {
2325 *array = sample->transaction;
2326 array++;
2327 }
2328
2329 if (type & PERF_SAMPLE_REGS_INTR) {
2330 if (sample->intr_regs.abi) {
2331 *array++ = sample->intr_regs.abi;
2332 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2333 memcpy(array, sample->intr_regs.regs, sz);
2334 array = (void *)array + sz;
2335 } else {
2336 *array++ = 0;
2337 }
2338 }
2339
2340 return 0;
2341 }
2342
2343 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2344 {
2345 return pevent_find_field(evsel->tp_format, name);
2346 }
2347
2348 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2349 const char *name)
2350 {
2351 struct format_field *field = perf_evsel__field(evsel, name);
2352 int offset;
2353
2354 if (!field)
2355 return NULL;
2356
2357 offset = field->offset;
2358
2359 if (field->flags & FIELD_IS_DYNAMIC) {
2360 offset = *(int *)(sample->raw_data + field->offset);
2361 offset &= 0xffff;
2362 }
2363
2364 return sample->raw_data + offset;
2365 }
2366
2367 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2368 bool needs_swap)
2369 {
2370 u64 value;
2371 void *ptr = sample->raw_data + field->offset;
2372
2373 switch (field->size) {
2374 case 1:
2375 return *(u8 *)ptr;
2376 case 2:
2377 value = *(u16 *)ptr;
2378 break;
2379 case 4:
2380 value = *(u32 *)ptr;
2381 break;
2382 case 8:
2383 memcpy(&value, ptr, sizeof(u64));
2384 break;
2385 default:
2386 return 0;
2387 }
2388
2389 if (!needs_swap)
2390 return value;
2391
2392 switch (field->size) {
2393 case 2:
2394 return bswap_16(value);
2395 case 4:
2396 return bswap_32(value);
2397 case 8:
2398 return bswap_64(value);
2399 default:
2400 return 0;
2401 }
2402
2403 return 0;
2404 }
2405
2406 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2407 const char *name)
2408 {
2409 struct format_field *field = perf_evsel__field(evsel, name);
2410
2411 if (!field)
2412 return 0;
2413
2414 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2415 }
2416
2417 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2418 char *msg, size_t msgsize)
2419 {
2420 int paranoid;
2421
2422 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2423 evsel->attr.type == PERF_TYPE_HARDWARE &&
2424 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2425 /*
2426 * If it's cycles then fall back to hrtimer based
2427 * cpu-clock-tick sw counter, which is always available even if
2428 * no PMU support.
2429 *
2430 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2431 * b0a873e).
2432 */
2433 scnprintf(msg, msgsize, "%s",
2434 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2435
2436 evsel->attr.type = PERF_TYPE_SOFTWARE;
2437 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2438
2439 zfree(&evsel->name);
2440 return true;
2441 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2442 (paranoid = perf_event_paranoid()) > 1) {
2443 const char *name = perf_evsel__name(evsel);
2444 char *new_name;
2445
2446 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2447 return false;
2448
2449 if (evsel->name)
2450 free(evsel->name);
2451 evsel->name = new_name;
2452 scnprintf(msg, msgsize,
2453 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2454 evsel->attr.exclude_kernel = 1;
2455
2456 return true;
2457 }
2458
2459 return false;
2460 }
2461
2462 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2463 int err, char *msg, size_t size)
2464 {
2465 char sbuf[STRERR_BUFSIZE];
2466 int printed = 0;
2467
2468 switch (err) {
2469 case EPERM:
2470 case EACCES:
2471 if (err == EPERM)
2472 printed = scnprintf(msg, size,
2473 "No permission to enable %s event.\n\n",
2474 perf_evsel__name(evsel));
2475
2476 return scnprintf(msg + printed, size - printed,
2477 "You may not have permission to collect %sstats.\n\n"
2478 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2479 "which controls use of the performance events system by\n"
2480 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2481 "The current value is %d:\n\n"
2482 " -1: Allow use of (almost) all events by all users\n"
2483 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2484 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2485 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2486 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2487 " kernel.perf_event_paranoid = -1\n" ,
2488 target->system_wide ? "system-wide " : "",
2489 perf_event_paranoid());
2490 case ENOENT:
2491 return scnprintf(msg, size, "The %s event is not supported.",
2492 perf_evsel__name(evsel));
2493 case EMFILE:
2494 return scnprintf(msg, size, "%s",
2495 "Too many events are opened.\n"
2496 "Probably the maximum number of open file descriptors has been reached.\n"
2497 "Hint: Try again after reducing the number of events.\n"
2498 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2499 case ENOMEM:
2500 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2501 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2502 return scnprintf(msg, size,
2503 "Not enough memory to setup event with callchain.\n"
2504 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2505 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2506 break;
2507 case ENODEV:
2508 if (target->cpu_list)
2509 return scnprintf(msg, size, "%s",
2510 "No such device - did you specify an out-of-range profile CPU?");
2511 break;
2512 case EOPNOTSUPP:
2513 if (evsel->attr.sample_period != 0)
2514 return scnprintf(msg, size, "%s",
2515 "PMU Hardware doesn't support sampling/overflow-interrupts.");
2516 if (evsel->attr.precise_ip)
2517 return scnprintf(msg, size, "%s",
2518 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2519 #if defined(__i386__) || defined(__x86_64__)
2520 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2521 return scnprintf(msg, size, "%s",
2522 "No hardware sampling interrupt available.\n"
2523 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2524 #endif
2525 break;
2526 case EBUSY:
2527 if (find_process("oprofiled"))
2528 return scnprintf(msg, size,
2529 "The PMU counters are busy/taken by another profiler.\n"
2530 "We found oprofile daemon running, please stop it and try again.");
2531 break;
2532 case EINVAL:
2533 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2534 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2535 if (perf_missing_features.clockid)
2536 return scnprintf(msg, size, "clockid feature not supported.");
2537 if (perf_missing_features.clockid_wrong)
2538 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2539 break;
2540 default:
2541 break;
2542 }
2543
2544 return scnprintf(msg, size,
2545 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2546 "/bin/dmesg may provide additional information.\n"
2547 "No CONFIG_PERF_EVENTS=y kernel support configured?",
2548 err, str_error_r(err, sbuf, sizeof(sbuf)),
2549 perf_evsel__name(evsel));
2550 }
2551
2552 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2553 {
2554 if (evsel && evsel->evlist && evsel->evlist->env)
2555 return evsel->evlist->env->arch;
2556 return NULL;
2557 }