]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - tools/perf/util/evsel.c
spi: Fix double "when"
[mirror_ubuntu-hirsute-kernel.git] / tools / perf / util / evsel.c
1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <errno.h>
12 #include <inttypes.h>
13 #include <linux/bitops.h>
14 #include <api/fs/fs.h>
15 #include <api/fs/tracing_path.h>
16 #include <traceevent/event-parse.h>
17 #include <linux/hw_breakpoint.h>
18 #include <linux/perf_event.h>
19 #include <linux/compiler.h>
20 #include <linux/err.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "util.h"
32 #include "cpumap.h"
33 #include "thread_map.h"
34 #include "target.h"
35 #include "perf_regs.h"
36 #include "debug.h"
37 #include "trace-event.h"
38 #include "stat.h"
39 #include "util/parse-branch-options.h"
40
41 #include "sane_ctype.h"
42
43 static struct {
44 bool sample_id_all;
45 bool exclude_guest;
46 bool mmap2;
47 bool cloexec;
48 bool clockid;
49 bool clockid_wrong;
50 bool lbr_flags;
51 bool write_backward;
52 bool group_read;
53 } perf_missing_features;
54
55 static clockid_t clockid;
56
57 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
58 {
59 return 0;
60 }
61
62 void __weak test_attr__ready(void) { }
63
64 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
65 {
66 }
67
68 static struct {
69 size_t size;
70 int (*init)(struct perf_evsel *evsel);
71 void (*fini)(struct perf_evsel *evsel);
72 } perf_evsel__object = {
73 .size = sizeof(struct perf_evsel),
74 .init = perf_evsel__no_extra_init,
75 .fini = perf_evsel__no_extra_fini,
76 };
77
78 int perf_evsel__object_config(size_t object_size,
79 int (*init)(struct perf_evsel *evsel),
80 void (*fini)(struct perf_evsel *evsel))
81 {
82
83 if (object_size == 0)
84 goto set_methods;
85
86 if (perf_evsel__object.size > object_size)
87 return -EINVAL;
88
89 perf_evsel__object.size = object_size;
90
91 set_methods:
92 if (init != NULL)
93 perf_evsel__object.init = init;
94
95 if (fini != NULL)
96 perf_evsel__object.fini = fini;
97
98 return 0;
99 }
100
101 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
102
103 int __perf_evsel__sample_size(u64 sample_type)
104 {
105 u64 mask = sample_type & PERF_SAMPLE_MASK;
106 int size = 0;
107 int i;
108
109 for (i = 0; i < 64; i++) {
110 if (mask & (1ULL << i))
111 size++;
112 }
113
114 size *= sizeof(u64);
115
116 return size;
117 }
118
119 /**
120 * __perf_evsel__calc_id_pos - calculate id_pos.
121 * @sample_type: sample type
122 *
123 * This function returns the position of the event id (PERF_SAMPLE_ID or
124 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
125 * sample_event.
126 */
127 static int __perf_evsel__calc_id_pos(u64 sample_type)
128 {
129 int idx = 0;
130
131 if (sample_type & PERF_SAMPLE_IDENTIFIER)
132 return 0;
133
134 if (!(sample_type & PERF_SAMPLE_ID))
135 return -1;
136
137 if (sample_type & PERF_SAMPLE_IP)
138 idx += 1;
139
140 if (sample_type & PERF_SAMPLE_TID)
141 idx += 1;
142
143 if (sample_type & PERF_SAMPLE_TIME)
144 idx += 1;
145
146 if (sample_type & PERF_SAMPLE_ADDR)
147 idx += 1;
148
149 return idx;
150 }
151
152 /**
153 * __perf_evsel__calc_is_pos - calculate is_pos.
154 * @sample_type: sample type
155 *
156 * This function returns the position (counting backwards) of the event id
157 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
158 * sample_id_all is used there is an id sample appended to non-sample events.
159 */
160 static int __perf_evsel__calc_is_pos(u64 sample_type)
161 {
162 int idx = 1;
163
164 if (sample_type & PERF_SAMPLE_IDENTIFIER)
165 return 1;
166
167 if (!(sample_type & PERF_SAMPLE_ID))
168 return -1;
169
170 if (sample_type & PERF_SAMPLE_CPU)
171 idx += 1;
172
173 if (sample_type & PERF_SAMPLE_STREAM_ID)
174 idx += 1;
175
176 return idx;
177 }
178
179 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
180 {
181 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
182 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
183 }
184
185 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
186 enum perf_event_sample_format bit)
187 {
188 if (!(evsel->attr.sample_type & bit)) {
189 evsel->attr.sample_type |= bit;
190 evsel->sample_size += sizeof(u64);
191 perf_evsel__calc_id_pos(evsel);
192 }
193 }
194
195 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
196 enum perf_event_sample_format bit)
197 {
198 if (evsel->attr.sample_type & bit) {
199 evsel->attr.sample_type &= ~bit;
200 evsel->sample_size -= sizeof(u64);
201 perf_evsel__calc_id_pos(evsel);
202 }
203 }
204
205 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
206 bool can_sample_identifier)
207 {
208 if (can_sample_identifier) {
209 perf_evsel__reset_sample_bit(evsel, ID);
210 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
211 } else {
212 perf_evsel__set_sample_bit(evsel, ID);
213 }
214 evsel->attr.read_format |= PERF_FORMAT_ID;
215 }
216
217 /**
218 * perf_evsel__is_function_event - Return whether given evsel is a function
219 * trace event
220 *
221 * @evsel - evsel selector to be tested
222 *
223 * Return %true if event is function trace event
224 */
225 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
226 {
227 #define FUNCTION_EVENT "ftrace:function"
228
229 return evsel->name &&
230 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
231
232 #undef FUNCTION_EVENT
233 }
234
235 void perf_evsel__init(struct perf_evsel *evsel,
236 struct perf_event_attr *attr, int idx)
237 {
238 evsel->idx = idx;
239 evsel->tracking = !idx;
240 evsel->attr = *attr;
241 evsel->leader = evsel;
242 evsel->unit = "";
243 evsel->scale = 1.0;
244 evsel->evlist = NULL;
245 evsel->bpf_fd = -1;
246 INIT_LIST_HEAD(&evsel->node);
247 INIT_LIST_HEAD(&evsel->config_terms);
248 perf_evsel__object.init(evsel);
249 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
250 perf_evsel__calc_id_pos(evsel);
251 evsel->cmdline_group_boundary = false;
252 evsel->metric_expr = NULL;
253 evsel->metric_name = NULL;
254 evsel->metric_events = NULL;
255 evsel->collect_stat = false;
256 }
257
258 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
259 {
260 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
261
262 if (evsel != NULL)
263 perf_evsel__init(evsel, attr, idx);
264
265 if (perf_evsel__is_bpf_output(evsel)) {
266 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
267 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
268 evsel->attr.sample_period = 1;
269 }
270
271 return evsel;
272 }
273
274 static bool perf_event_can_profile_kernel(void)
275 {
276 return geteuid() == 0 || perf_event_paranoid() == -1;
277 }
278
279 struct perf_evsel *perf_evsel__new_cycles(bool precise)
280 {
281 struct perf_event_attr attr = {
282 .type = PERF_TYPE_HARDWARE,
283 .config = PERF_COUNT_HW_CPU_CYCLES,
284 .exclude_kernel = !perf_event_can_profile_kernel(),
285 };
286 struct perf_evsel *evsel;
287
288 event_attr_init(&attr);
289
290 if (!precise)
291 goto new_event;
292 /*
293 * Unnamed union member, not supported as struct member named
294 * initializer in older compilers such as gcc 4.4.7
295 *
296 * Just for probing the precise_ip:
297 */
298 attr.sample_period = 1;
299
300 perf_event_attr__set_max_precise_ip(&attr);
301 /*
302 * Now let the usual logic to set up the perf_event_attr defaults
303 * to kick in when we return and before perf_evsel__open() is called.
304 */
305 attr.sample_period = 0;
306 new_event:
307 evsel = perf_evsel__new(&attr);
308 if (evsel == NULL)
309 goto out;
310
311 /* use asprintf() because free(evsel) assumes name is allocated */
312 if (asprintf(&evsel->name, "cycles%s%s%.*s",
313 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
314 attr.exclude_kernel ? "u" : "",
315 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
316 goto error_free;
317 out:
318 return evsel;
319 error_free:
320 perf_evsel__delete(evsel);
321 evsel = NULL;
322 goto out;
323 }
324
325 /*
326 * Returns pointer with encoded error via <linux/err.h> interface.
327 */
328 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
329 {
330 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
331 int err = -ENOMEM;
332
333 if (evsel == NULL) {
334 goto out_err;
335 } else {
336 struct perf_event_attr attr = {
337 .type = PERF_TYPE_TRACEPOINT,
338 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
339 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
340 };
341
342 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
343 goto out_free;
344
345 evsel->tp_format = trace_event__tp_format(sys, name);
346 if (IS_ERR(evsel->tp_format)) {
347 err = PTR_ERR(evsel->tp_format);
348 goto out_free;
349 }
350
351 event_attr_init(&attr);
352 attr.config = evsel->tp_format->id;
353 attr.sample_period = 1;
354 perf_evsel__init(evsel, &attr, idx);
355 }
356
357 return evsel;
358
359 out_free:
360 zfree(&evsel->name);
361 free(evsel);
362 out_err:
363 return ERR_PTR(err);
364 }
365
366 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
367 "cycles",
368 "instructions",
369 "cache-references",
370 "cache-misses",
371 "branches",
372 "branch-misses",
373 "bus-cycles",
374 "stalled-cycles-frontend",
375 "stalled-cycles-backend",
376 "ref-cycles",
377 };
378
379 static const char *__perf_evsel__hw_name(u64 config)
380 {
381 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
382 return perf_evsel__hw_names[config];
383
384 return "unknown-hardware";
385 }
386
387 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
388 {
389 int colon = 0, r = 0;
390 struct perf_event_attr *attr = &evsel->attr;
391 bool exclude_guest_default = false;
392
393 #define MOD_PRINT(context, mod) do { \
394 if (!attr->exclude_##context) { \
395 if (!colon) colon = ++r; \
396 r += scnprintf(bf + r, size - r, "%c", mod); \
397 } } while(0)
398
399 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
400 MOD_PRINT(kernel, 'k');
401 MOD_PRINT(user, 'u');
402 MOD_PRINT(hv, 'h');
403 exclude_guest_default = true;
404 }
405
406 if (attr->precise_ip) {
407 if (!colon)
408 colon = ++r;
409 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
410 exclude_guest_default = true;
411 }
412
413 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
414 MOD_PRINT(host, 'H');
415 MOD_PRINT(guest, 'G');
416 }
417 #undef MOD_PRINT
418 if (colon)
419 bf[colon - 1] = ':';
420 return r;
421 }
422
423 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
424 {
425 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
426 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
427 }
428
429 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
430 "cpu-clock",
431 "task-clock",
432 "page-faults",
433 "context-switches",
434 "cpu-migrations",
435 "minor-faults",
436 "major-faults",
437 "alignment-faults",
438 "emulation-faults",
439 "dummy",
440 };
441
442 static const char *__perf_evsel__sw_name(u64 config)
443 {
444 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
445 return perf_evsel__sw_names[config];
446 return "unknown-software";
447 }
448
449 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
450 {
451 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
452 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
453 }
454
455 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
456 {
457 int r;
458
459 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
460
461 if (type & HW_BREAKPOINT_R)
462 r += scnprintf(bf + r, size - r, "r");
463
464 if (type & HW_BREAKPOINT_W)
465 r += scnprintf(bf + r, size - r, "w");
466
467 if (type & HW_BREAKPOINT_X)
468 r += scnprintf(bf + r, size - r, "x");
469
470 return r;
471 }
472
473 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
474 {
475 struct perf_event_attr *attr = &evsel->attr;
476 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
477 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
478 }
479
480 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
481 [PERF_EVSEL__MAX_ALIASES] = {
482 { "L1-dcache", "l1-d", "l1d", "L1-data", },
483 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
484 { "LLC", "L2", },
485 { "dTLB", "d-tlb", "Data-TLB", },
486 { "iTLB", "i-tlb", "Instruction-TLB", },
487 { "branch", "branches", "bpu", "btb", "bpc", },
488 { "node", },
489 };
490
491 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
492 [PERF_EVSEL__MAX_ALIASES] = {
493 { "load", "loads", "read", },
494 { "store", "stores", "write", },
495 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
496 };
497
498 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
499 [PERF_EVSEL__MAX_ALIASES] = {
500 { "refs", "Reference", "ops", "access", },
501 { "misses", "miss", },
502 };
503
504 #define C(x) PERF_COUNT_HW_CACHE_##x
505 #define CACHE_READ (1 << C(OP_READ))
506 #define CACHE_WRITE (1 << C(OP_WRITE))
507 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
508 #define COP(x) (1 << x)
509
510 /*
511 * cache operartion stat
512 * L1I : Read and prefetch only
513 * ITLB and BPU : Read-only
514 */
515 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
516 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
517 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
518 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
519 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
520 [C(ITLB)] = (CACHE_READ),
521 [C(BPU)] = (CACHE_READ),
522 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
523 };
524
525 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
526 {
527 if (perf_evsel__hw_cache_stat[type] & COP(op))
528 return true; /* valid */
529 else
530 return false; /* invalid */
531 }
532
533 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
534 char *bf, size_t size)
535 {
536 if (result) {
537 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
538 perf_evsel__hw_cache_op[op][0],
539 perf_evsel__hw_cache_result[result][0]);
540 }
541
542 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
543 perf_evsel__hw_cache_op[op][1]);
544 }
545
546 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
547 {
548 u8 op, result, type = (config >> 0) & 0xff;
549 const char *err = "unknown-ext-hardware-cache-type";
550
551 if (type >= PERF_COUNT_HW_CACHE_MAX)
552 goto out_err;
553
554 op = (config >> 8) & 0xff;
555 err = "unknown-ext-hardware-cache-op";
556 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
557 goto out_err;
558
559 result = (config >> 16) & 0xff;
560 err = "unknown-ext-hardware-cache-result";
561 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
562 goto out_err;
563
564 err = "invalid-cache";
565 if (!perf_evsel__is_cache_op_valid(type, op))
566 goto out_err;
567
568 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
569 out_err:
570 return scnprintf(bf, size, "%s", err);
571 }
572
573 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
574 {
575 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
576 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
577 }
578
579 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
580 {
581 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
582 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
583 }
584
585 const char *perf_evsel__name(struct perf_evsel *evsel)
586 {
587 char bf[128];
588
589 if (evsel->name)
590 return evsel->name;
591
592 switch (evsel->attr.type) {
593 case PERF_TYPE_RAW:
594 perf_evsel__raw_name(evsel, bf, sizeof(bf));
595 break;
596
597 case PERF_TYPE_HARDWARE:
598 perf_evsel__hw_name(evsel, bf, sizeof(bf));
599 break;
600
601 case PERF_TYPE_HW_CACHE:
602 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
603 break;
604
605 case PERF_TYPE_SOFTWARE:
606 perf_evsel__sw_name(evsel, bf, sizeof(bf));
607 break;
608
609 case PERF_TYPE_TRACEPOINT:
610 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
611 break;
612
613 case PERF_TYPE_BREAKPOINT:
614 perf_evsel__bp_name(evsel, bf, sizeof(bf));
615 break;
616
617 default:
618 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
619 evsel->attr.type);
620 break;
621 }
622
623 evsel->name = strdup(bf);
624
625 return evsel->name ?: "unknown";
626 }
627
628 const char *perf_evsel__group_name(struct perf_evsel *evsel)
629 {
630 return evsel->group_name ?: "anon group";
631 }
632
633 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
634 {
635 int ret;
636 struct perf_evsel *pos;
637 const char *group_name = perf_evsel__group_name(evsel);
638
639 ret = scnprintf(buf, size, "%s", group_name);
640
641 ret += scnprintf(buf + ret, size - ret, " { %s",
642 perf_evsel__name(evsel));
643
644 for_each_group_member(pos, evsel)
645 ret += scnprintf(buf + ret, size - ret, ", %s",
646 perf_evsel__name(pos));
647
648 ret += scnprintf(buf + ret, size - ret, " }");
649
650 return ret;
651 }
652
653 void perf_evsel__config_callchain(struct perf_evsel *evsel,
654 struct record_opts *opts,
655 struct callchain_param *param)
656 {
657 bool function = perf_evsel__is_function_event(evsel);
658 struct perf_event_attr *attr = &evsel->attr;
659
660 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
661
662 attr->sample_max_stack = param->max_stack;
663
664 if (param->record_mode == CALLCHAIN_LBR) {
665 if (!opts->branch_stack) {
666 if (attr->exclude_user) {
667 pr_warning("LBR callstack option is only available "
668 "to get user callchain information. "
669 "Falling back to framepointers.\n");
670 } else {
671 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
672 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
673 PERF_SAMPLE_BRANCH_CALL_STACK |
674 PERF_SAMPLE_BRANCH_NO_CYCLES |
675 PERF_SAMPLE_BRANCH_NO_FLAGS;
676 }
677 } else
678 pr_warning("Cannot use LBR callstack with branch stack. "
679 "Falling back to framepointers.\n");
680 }
681
682 if (param->record_mode == CALLCHAIN_DWARF) {
683 if (!function) {
684 perf_evsel__set_sample_bit(evsel, REGS_USER);
685 perf_evsel__set_sample_bit(evsel, STACK_USER);
686 attr->sample_regs_user |= PERF_REGS_MASK;
687 attr->sample_stack_user = param->dump_size;
688 attr->exclude_callchain_user = 1;
689 } else {
690 pr_info("Cannot use DWARF unwind for function trace event,"
691 " falling back to framepointers.\n");
692 }
693 }
694
695 if (function) {
696 pr_info("Disabling user space callchains for function trace event.\n");
697 attr->exclude_callchain_user = 1;
698 }
699 }
700
701 static void
702 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
703 struct callchain_param *param)
704 {
705 struct perf_event_attr *attr = &evsel->attr;
706
707 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
708 if (param->record_mode == CALLCHAIN_LBR) {
709 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
710 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
711 PERF_SAMPLE_BRANCH_CALL_STACK);
712 }
713 if (param->record_mode == CALLCHAIN_DWARF) {
714 perf_evsel__reset_sample_bit(evsel, REGS_USER);
715 perf_evsel__reset_sample_bit(evsel, STACK_USER);
716 }
717 }
718
719 static void apply_config_terms(struct perf_evsel *evsel,
720 struct record_opts *opts)
721 {
722 struct perf_evsel_config_term *term;
723 struct list_head *config_terms = &evsel->config_terms;
724 struct perf_event_attr *attr = &evsel->attr;
725 struct callchain_param param;
726 u32 dump_size = 0;
727 int max_stack = 0;
728 const char *callgraph_buf = NULL;
729
730 /* callgraph default */
731 param.record_mode = callchain_param.record_mode;
732
733 list_for_each_entry(term, config_terms, list) {
734 switch (term->type) {
735 case PERF_EVSEL__CONFIG_TERM_PERIOD:
736 attr->sample_period = term->val.period;
737 attr->freq = 0;
738 break;
739 case PERF_EVSEL__CONFIG_TERM_FREQ:
740 attr->sample_freq = term->val.freq;
741 attr->freq = 1;
742 break;
743 case PERF_EVSEL__CONFIG_TERM_TIME:
744 if (term->val.time)
745 perf_evsel__set_sample_bit(evsel, TIME);
746 else
747 perf_evsel__reset_sample_bit(evsel, TIME);
748 break;
749 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
750 callgraph_buf = term->val.callgraph;
751 break;
752 case PERF_EVSEL__CONFIG_TERM_BRANCH:
753 if (term->val.branch && strcmp(term->val.branch, "no")) {
754 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
755 parse_branch_str(term->val.branch,
756 &attr->branch_sample_type);
757 } else
758 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
759 break;
760 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
761 dump_size = term->val.stack_user;
762 break;
763 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
764 max_stack = term->val.max_stack;
765 break;
766 case PERF_EVSEL__CONFIG_TERM_INHERIT:
767 /*
768 * attr->inherit should has already been set by
769 * perf_evsel__config. If user explicitly set
770 * inherit using config terms, override global
771 * opt->no_inherit setting.
772 */
773 attr->inherit = term->val.inherit ? 1 : 0;
774 break;
775 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
776 attr->write_backward = term->val.overwrite ? 1 : 0;
777 break;
778 default:
779 break;
780 }
781 }
782
783 /* User explicitly set per-event callgraph, clear the old setting and reset. */
784 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
785 if (max_stack) {
786 param.max_stack = max_stack;
787 if (callgraph_buf == NULL)
788 callgraph_buf = "fp";
789 }
790
791 /* parse callgraph parameters */
792 if (callgraph_buf != NULL) {
793 if (!strcmp(callgraph_buf, "no")) {
794 param.enabled = false;
795 param.record_mode = CALLCHAIN_NONE;
796 } else {
797 param.enabled = true;
798 if (parse_callchain_record(callgraph_buf, &param)) {
799 pr_err("per-event callgraph setting for %s failed. "
800 "Apply callgraph global setting for it\n",
801 evsel->name);
802 return;
803 }
804 }
805 }
806 if (dump_size > 0) {
807 dump_size = round_up(dump_size, sizeof(u64));
808 param.dump_size = dump_size;
809 }
810
811 /* If global callgraph set, clear it */
812 if (callchain_param.enabled)
813 perf_evsel__reset_callgraph(evsel, &callchain_param);
814
815 /* set perf-event callgraph */
816 if (param.enabled)
817 perf_evsel__config_callchain(evsel, opts, &param);
818 }
819 }
820
821 /*
822 * The enable_on_exec/disabled value strategy:
823 *
824 * 1) For any type of traced program:
825 * - all independent events and group leaders are disabled
826 * - all group members are enabled
827 *
828 * Group members are ruled by group leaders. They need to
829 * be enabled, because the group scheduling relies on that.
830 *
831 * 2) For traced programs executed by perf:
832 * - all independent events and group leaders have
833 * enable_on_exec set
834 * - we don't specifically enable or disable any event during
835 * the record command
836 *
837 * Independent events and group leaders are initially disabled
838 * and get enabled by exec. Group members are ruled by group
839 * leaders as stated in 1).
840 *
841 * 3) For traced programs attached by perf (pid/tid):
842 * - we specifically enable or disable all events during
843 * the record command
844 *
845 * When attaching events to already running traced we
846 * enable/disable events specifically, as there's no
847 * initial traced exec call.
848 */
849 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
850 struct callchain_param *callchain)
851 {
852 struct perf_evsel *leader = evsel->leader;
853 struct perf_event_attr *attr = &evsel->attr;
854 int track = evsel->tracking;
855 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
856
857 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
858 attr->inherit = !opts->no_inherit;
859 attr->write_backward = opts->overwrite ? 1 : 0;
860
861 perf_evsel__set_sample_bit(evsel, IP);
862 perf_evsel__set_sample_bit(evsel, TID);
863
864 if (evsel->sample_read) {
865 perf_evsel__set_sample_bit(evsel, READ);
866
867 /*
868 * We need ID even in case of single event, because
869 * PERF_SAMPLE_READ process ID specific data.
870 */
871 perf_evsel__set_sample_id(evsel, false);
872
873 /*
874 * Apply group format only if we belong to group
875 * with more than one members.
876 */
877 if (leader->nr_members > 1) {
878 attr->read_format |= PERF_FORMAT_GROUP;
879 attr->inherit = 0;
880 }
881 }
882
883 /*
884 * We default some events to have a default interval. But keep
885 * it a weak assumption overridable by the user.
886 */
887 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
888 opts->user_interval != ULLONG_MAX)) {
889 if (opts->freq) {
890 perf_evsel__set_sample_bit(evsel, PERIOD);
891 attr->freq = 1;
892 attr->sample_freq = opts->freq;
893 } else {
894 attr->sample_period = opts->default_interval;
895 }
896 }
897
898 /*
899 * Disable sampling for all group members other
900 * than leader in case leader 'leads' the sampling.
901 */
902 if ((leader != evsel) && leader->sample_read) {
903 attr->sample_freq = 0;
904 attr->sample_period = 0;
905 }
906
907 if (opts->no_samples)
908 attr->sample_freq = 0;
909
910 if (opts->inherit_stat) {
911 evsel->attr.read_format |=
912 PERF_FORMAT_TOTAL_TIME_ENABLED |
913 PERF_FORMAT_TOTAL_TIME_RUNNING |
914 PERF_FORMAT_ID;
915 attr->inherit_stat = 1;
916 }
917
918 if (opts->sample_address) {
919 perf_evsel__set_sample_bit(evsel, ADDR);
920 attr->mmap_data = track;
921 }
922
923 /*
924 * We don't allow user space callchains for function trace
925 * event, due to issues with page faults while tracing page
926 * fault handler and its overall trickiness nature.
927 */
928 if (perf_evsel__is_function_event(evsel))
929 evsel->attr.exclude_callchain_user = 1;
930
931 if (callchain && callchain->enabled && !evsel->no_aux_samples)
932 perf_evsel__config_callchain(evsel, opts, callchain);
933
934 if (opts->sample_intr_regs) {
935 attr->sample_regs_intr = opts->sample_intr_regs;
936 perf_evsel__set_sample_bit(evsel, REGS_INTR);
937 }
938
939 if (opts->sample_user_regs) {
940 attr->sample_regs_user |= opts->sample_user_regs;
941 perf_evsel__set_sample_bit(evsel, REGS_USER);
942 }
943
944 if (target__has_cpu(&opts->target) || opts->sample_cpu)
945 perf_evsel__set_sample_bit(evsel, CPU);
946
947 if (opts->period)
948 perf_evsel__set_sample_bit(evsel, PERIOD);
949
950 /*
951 * When the user explicitly disabled time don't force it here.
952 */
953 if (opts->sample_time &&
954 (!perf_missing_features.sample_id_all &&
955 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
956 opts->sample_time_set)))
957 perf_evsel__set_sample_bit(evsel, TIME);
958
959 if (opts->raw_samples && !evsel->no_aux_samples) {
960 perf_evsel__set_sample_bit(evsel, TIME);
961 perf_evsel__set_sample_bit(evsel, RAW);
962 perf_evsel__set_sample_bit(evsel, CPU);
963 }
964
965 if (opts->sample_address)
966 perf_evsel__set_sample_bit(evsel, DATA_SRC);
967
968 if (opts->sample_phys_addr)
969 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
970
971 if (opts->no_buffering) {
972 attr->watermark = 0;
973 attr->wakeup_events = 1;
974 }
975 if (opts->branch_stack && !evsel->no_aux_samples) {
976 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
977 attr->branch_sample_type = opts->branch_stack;
978 }
979
980 if (opts->sample_weight)
981 perf_evsel__set_sample_bit(evsel, WEIGHT);
982
983 attr->task = track;
984 attr->mmap = track;
985 attr->mmap2 = track && !perf_missing_features.mmap2;
986 attr->comm = track;
987
988 if (opts->record_namespaces)
989 attr->namespaces = track;
990
991 if (opts->record_switch_events)
992 attr->context_switch = track;
993
994 if (opts->sample_transaction)
995 perf_evsel__set_sample_bit(evsel, TRANSACTION);
996
997 if (opts->running_time) {
998 evsel->attr.read_format |=
999 PERF_FORMAT_TOTAL_TIME_ENABLED |
1000 PERF_FORMAT_TOTAL_TIME_RUNNING;
1001 }
1002
1003 /*
1004 * XXX see the function comment above
1005 *
1006 * Disabling only independent events or group leaders,
1007 * keeping group members enabled.
1008 */
1009 if (perf_evsel__is_group_leader(evsel))
1010 attr->disabled = 1;
1011
1012 /*
1013 * Setting enable_on_exec for independent events and
1014 * group leaders for traced executed by perf.
1015 */
1016 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1017 !opts->initial_delay)
1018 attr->enable_on_exec = 1;
1019
1020 if (evsel->immediate) {
1021 attr->disabled = 0;
1022 attr->enable_on_exec = 0;
1023 }
1024
1025 clockid = opts->clockid;
1026 if (opts->use_clockid) {
1027 attr->use_clockid = 1;
1028 attr->clockid = opts->clockid;
1029 }
1030
1031 if (evsel->precise_max)
1032 perf_event_attr__set_max_precise_ip(attr);
1033
1034 if (opts->all_user) {
1035 attr->exclude_kernel = 1;
1036 attr->exclude_user = 0;
1037 }
1038
1039 if (opts->all_kernel) {
1040 attr->exclude_kernel = 0;
1041 attr->exclude_user = 1;
1042 }
1043
1044 /*
1045 * Apply event specific term settings,
1046 * it overloads any global configuration.
1047 */
1048 apply_config_terms(evsel, opts);
1049
1050 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1051 }
1052
1053 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1054 {
1055 if (evsel->system_wide)
1056 nthreads = 1;
1057
1058 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1059
1060 if (evsel->fd) {
1061 int cpu, thread;
1062 for (cpu = 0; cpu < ncpus; cpu++) {
1063 for (thread = 0; thread < nthreads; thread++) {
1064 FD(evsel, cpu, thread) = -1;
1065 }
1066 }
1067 }
1068
1069 return evsel->fd != NULL ? 0 : -ENOMEM;
1070 }
1071
1072 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1073 int ioc, void *arg)
1074 {
1075 int cpu, thread;
1076
1077 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1078 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1079 int fd = FD(evsel, cpu, thread),
1080 err = ioctl(fd, ioc, arg);
1081
1082 if (err)
1083 return err;
1084 }
1085 }
1086
1087 return 0;
1088 }
1089
1090 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1091 {
1092 return perf_evsel__run_ioctl(evsel,
1093 PERF_EVENT_IOC_SET_FILTER,
1094 (void *)filter);
1095 }
1096
1097 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1098 {
1099 char *new_filter = strdup(filter);
1100
1101 if (new_filter != NULL) {
1102 free(evsel->filter);
1103 evsel->filter = new_filter;
1104 return 0;
1105 }
1106
1107 return -1;
1108 }
1109
1110 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1111 const char *fmt, const char *filter)
1112 {
1113 char *new_filter;
1114
1115 if (evsel->filter == NULL)
1116 return perf_evsel__set_filter(evsel, filter);
1117
1118 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1119 free(evsel->filter);
1120 evsel->filter = new_filter;
1121 return 0;
1122 }
1123
1124 return -1;
1125 }
1126
1127 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1128 {
1129 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1130 }
1131
1132 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1133 {
1134 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1135 }
1136
1137 int perf_evsel__enable(struct perf_evsel *evsel)
1138 {
1139 return perf_evsel__run_ioctl(evsel,
1140 PERF_EVENT_IOC_ENABLE,
1141 0);
1142 }
1143
1144 int perf_evsel__disable(struct perf_evsel *evsel)
1145 {
1146 return perf_evsel__run_ioctl(evsel,
1147 PERF_EVENT_IOC_DISABLE,
1148 0);
1149 }
1150
1151 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1152 {
1153 if (ncpus == 0 || nthreads == 0)
1154 return 0;
1155
1156 if (evsel->system_wide)
1157 nthreads = 1;
1158
1159 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1160 if (evsel->sample_id == NULL)
1161 return -ENOMEM;
1162
1163 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1164 if (evsel->id == NULL) {
1165 xyarray__delete(evsel->sample_id);
1166 evsel->sample_id = NULL;
1167 return -ENOMEM;
1168 }
1169
1170 return 0;
1171 }
1172
1173 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1174 {
1175 xyarray__delete(evsel->fd);
1176 evsel->fd = NULL;
1177 }
1178
1179 static void perf_evsel__free_id(struct perf_evsel *evsel)
1180 {
1181 xyarray__delete(evsel->sample_id);
1182 evsel->sample_id = NULL;
1183 zfree(&evsel->id);
1184 }
1185
1186 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1187 {
1188 struct perf_evsel_config_term *term, *h;
1189
1190 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1191 list_del(&term->list);
1192 free(term);
1193 }
1194 }
1195
1196 void perf_evsel__close_fd(struct perf_evsel *evsel)
1197 {
1198 int cpu, thread;
1199
1200 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1201 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1202 close(FD(evsel, cpu, thread));
1203 FD(evsel, cpu, thread) = -1;
1204 }
1205 }
1206
1207 void perf_evsel__exit(struct perf_evsel *evsel)
1208 {
1209 assert(list_empty(&evsel->node));
1210 assert(evsel->evlist == NULL);
1211 perf_evsel__free_fd(evsel);
1212 perf_evsel__free_id(evsel);
1213 perf_evsel__free_config_terms(evsel);
1214 close_cgroup(evsel->cgrp);
1215 cpu_map__put(evsel->cpus);
1216 cpu_map__put(evsel->own_cpus);
1217 thread_map__put(evsel->threads);
1218 zfree(&evsel->group_name);
1219 zfree(&evsel->name);
1220 perf_evsel__object.fini(evsel);
1221 }
1222
1223 void perf_evsel__delete(struct perf_evsel *evsel)
1224 {
1225 perf_evsel__exit(evsel);
1226 free(evsel);
1227 }
1228
1229 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1230 struct perf_counts_values *count)
1231 {
1232 struct perf_counts_values tmp;
1233
1234 if (!evsel->prev_raw_counts)
1235 return;
1236
1237 if (cpu == -1) {
1238 tmp = evsel->prev_raw_counts->aggr;
1239 evsel->prev_raw_counts->aggr = *count;
1240 } else {
1241 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1242 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1243 }
1244
1245 count->val = count->val - tmp.val;
1246 count->ena = count->ena - tmp.ena;
1247 count->run = count->run - tmp.run;
1248 }
1249
1250 void perf_counts_values__scale(struct perf_counts_values *count,
1251 bool scale, s8 *pscaled)
1252 {
1253 s8 scaled = 0;
1254
1255 if (scale) {
1256 if (count->run == 0) {
1257 scaled = -1;
1258 count->val = 0;
1259 } else if (count->run < count->ena) {
1260 scaled = 1;
1261 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1262 }
1263 } else
1264 count->ena = count->run = 0;
1265
1266 if (pscaled)
1267 *pscaled = scaled;
1268 }
1269
1270 static int perf_evsel__read_size(struct perf_evsel *evsel)
1271 {
1272 u64 read_format = evsel->attr.read_format;
1273 int entry = sizeof(u64); /* value */
1274 int size = 0;
1275 int nr = 1;
1276
1277 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1278 size += sizeof(u64);
1279
1280 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1281 size += sizeof(u64);
1282
1283 if (read_format & PERF_FORMAT_ID)
1284 entry += sizeof(u64);
1285
1286 if (read_format & PERF_FORMAT_GROUP) {
1287 nr = evsel->nr_members;
1288 size += sizeof(u64);
1289 }
1290
1291 size += entry * nr;
1292 return size;
1293 }
1294
1295 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1296 struct perf_counts_values *count)
1297 {
1298 size_t size = perf_evsel__read_size(evsel);
1299
1300 memset(count, 0, sizeof(*count));
1301
1302 if (FD(evsel, cpu, thread) < 0)
1303 return -EINVAL;
1304
1305 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1306 return -errno;
1307
1308 return 0;
1309 }
1310
1311 static int
1312 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1313 {
1314 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1315
1316 return perf_evsel__read(evsel, cpu, thread, count);
1317 }
1318
1319 static void
1320 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1321 u64 val, u64 ena, u64 run)
1322 {
1323 struct perf_counts_values *count;
1324
1325 count = perf_counts(counter->counts, cpu, thread);
1326
1327 count->val = val;
1328 count->ena = ena;
1329 count->run = run;
1330 count->loaded = true;
1331 }
1332
1333 static int
1334 perf_evsel__process_group_data(struct perf_evsel *leader,
1335 int cpu, int thread, u64 *data)
1336 {
1337 u64 read_format = leader->attr.read_format;
1338 struct sample_read_value *v;
1339 u64 nr, ena = 0, run = 0, i;
1340
1341 nr = *data++;
1342
1343 if (nr != (u64) leader->nr_members)
1344 return -EINVAL;
1345
1346 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1347 ena = *data++;
1348
1349 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1350 run = *data++;
1351
1352 v = (struct sample_read_value *) data;
1353
1354 perf_evsel__set_count(leader, cpu, thread,
1355 v[0].value, ena, run);
1356
1357 for (i = 1; i < nr; i++) {
1358 struct perf_evsel *counter;
1359
1360 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1361 if (!counter)
1362 return -EINVAL;
1363
1364 perf_evsel__set_count(counter, cpu, thread,
1365 v[i].value, ena, run);
1366 }
1367
1368 return 0;
1369 }
1370
1371 static int
1372 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1373 {
1374 struct perf_stat_evsel *ps = leader->priv;
1375 u64 read_format = leader->attr.read_format;
1376 int size = perf_evsel__read_size(leader);
1377 u64 *data = ps->group_data;
1378
1379 if (!(read_format & PERF_FORMAT_ID))
1380 return -EINVAL;
1381
1382 if (!perf_evsel__is_group_leader(leader))
1383 return -EINVAL;
1384
1385 if (!data) {
1386 data = zalloc(size);
1387 if (!data)
1388 return -ENOMEM;
1389
1390 ps->group_data = data;
1391 }
1392
1393 if (FD(leader, cpu, thread) < 0)
1394 return -EINVAL;
1395
1396 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1397 return -errno;
1398
1399 return perf_evsel__process_group_data(leader, cpu, thread, data);
1400 }
1401
1402 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1403 {
1404 u64 read_format = evsel->attr.read_format;
1405
1406 if (read_format & PERF_FORMAT_GROUP)
1407 return perf_evsel__read_group(evsel, cpu, thread);
1408 else
1409 return perf_evsel__read_one(evsel, cpu, thread);
1410 }
1411
1412 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1413 int cpu, int thread, bool scale)
1414 {
1415 struct perf_counts_values count;
1416 size_t nv = scale ? 3 : 1;
1417
1418 if (FD(evsel, cpu, thread) < 0)
1419 return -EINVAL;
1420
1421 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1422 return -ENOMEM;
1423
1424 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1425 return -errno;
1426
1427 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1428 perf_counts_values__scale(&count, scale, NULL);
1429 *perf_counts(evsel->counts, cpu, thread) = count;
1430 return 0;
1431 }
1432
1433 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1434 {
1435 struct perf_evsel *leader = evsel->leader;
1436 int fd;
1437
1438 if (perf_evsel__is_group_leader(evsel))
1439 return -1;
1440
1441 /*
1442 * Leader must be already processed/open,
1443 * if not it's a bug.
1444 */
1445 BUG_ON(!leader->fd);
1446
1447 fd = FD(leader, cpu, thread);
1448 BUG_ON(fd == -1);
1449
1450 return fd;
1451 }
1452
1453 struct bit_names {
1454 int bit;
1455 const char *name;
1456 };
1457
1458 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1459 {
1460 bool first_bit = true;
1461 int i = 0;
1462
1463 do {
1464 if (value & bits[i].bit) {
1465 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1466 first_bit = false;
1467 }
1468 } while (bits[++i].name != NULL);
1469 }
1470
1471 static void __p_sample_type(char *buf, size_t size, u64 value)
1472 {
1473 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1474 struct bit_names bits[] = {
1475 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1476 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1477 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1478 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1479 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1480 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1481 { .name = NULL, }
1482 };
1483 #undef bit_name
1484 __p_bits(buf, size, value, bits);
1485 }
1486
1487 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1488 {
1489 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1490 struct bit_names bits[] = {
1491 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1492 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1493 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1494 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1495 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1496 { .name = NULL, }
1497 };
1498 #undef bit_name
1499 __p_bits(buf, size, value, bits);
1500 }
1501
1502 static void __p_read_format(char *buf, size_t size, u64 value)
1503 {
1504 #define bit_name(n) { PERF_FORMAT_##n, #n }
1505 struct bit_names bits[] = {
1506 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1507 bit_name(ID), bit_name(GROUP),
1508 { .name = NULL, }
1509 };
1510 #undef bit_name
1511 __p_bits(buf, size, value, bits);
1512 }
1513
1514 #define BUF_SIZE 1024
1515
1516 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1517 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1518 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1519 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1520 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1521 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1522
1523 #define PRINT_ATTRn(_n, _f, _p) \
1524 do { \
1525 if (attr->_f) { \
1526 _p(attr->_f); \
1527 ret += attr__fprintf(fp, _n, buf, priv);\
1528 } \
1529 } while (0)
1530
1531 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1532
1533 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1534 attr__fprintf_f attr__fprintf, void *priv)
1535 {
1536 char buf[BUF_SIZE];
1537 int ret = 0;
1538
1539 PRINT_ATTRf(type, p_unsigned);
1540 PRINT_ATTRf(size, p_unsigned);
1541 PRINT_ATTRf(config, p_hex);
1542 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1543 PRINT_ATTRf(sample_type, p_sample_type);
1544 PRINT_ATTRf(read_format, p_read_format);
1545
1546 PRINT_ATTRf(disabled, p_unsigned);
1547 PRINT_ATTRf(inherit, p_unsigned);
1548 PRINT_ATTRf(pinned, p_unsigned);
1549 PRINT_ATTRf(exclusive, p_unsigned);
1550 PRINT_ATTRf(exclude_user, p_unsigned);
1551 PRINT_ATTRf(exclude_kernel, p_unsigned);
1552 PRINT_ATTRf(exclude_hv, p_unsigned);
1553 PRINT_ATTRf(exclude_idle, p_unsigned);
1554 PRINT_ATTRf(mmap, p_unsigned);
1555 PRINT_ATTRf(comm, p_unsigned);
1556 PRINT_ATTRf(freq, p_unsigned);
1557 PRINT_ATTRf(inherit_stat, p_unsigned);
1558 PRINT_ATTRf(enable_on_exec, p_unsigned);
1559 PRINT_ATTRf(task, p_unsigned);
1560 PRINT_ATTRf(watermark, p_unsigned);
1561 PRINT_ATTRf(precise_ip, p_unsigned);
1562 PRINT_ATTRf(mmap_data, p_unsigned);
1563 PRINT_ATTRf(sample_id_all, p_unsigned);
1564 PRINT_ATTRf(exclude_host, p_unsigned);
1565 PRINT_ATTRf(exclude_guest, p_unsigned);
1566 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1567 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1568 PRINT_ATTRf(mmap2, p_unsigned);
1569 PRINT_ATTRf(comm_exec, p_unsigned);
1570 PRINT_ATTRf(use_clockid, p_unsigned);
1571 PRINT_ATTRf(context_switch, p_unsigned);
1572 PRINT_ATTRf(write_backward, p_unsigned);
1573
1574 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1575 PRINT_ATTRf(bp_type, p_unsigned);
1576 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1577 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1578 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1579 PRINT_ATTRf(sample_regs_user, p_hex);
1580 PRINT_ATTRf(sample_stack_user, p_unsigned);
1581 PRINT_ATTRf(clockid, p_signed);
1582 PRINT_ATTRf(sample_regs_intr, p_hex);
1583 PRINT_ATTRf(aux_watermark, p_unsigned);
1584 PRINT_ATTRf(sample_max_stack, p_unsigned);
1585
1586 return ret;
1587 }
1588
1589 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1590 void *priv __maybe_unused)
1591 {
1592 return fprintf(fp, " %-32s %s\n", name, val);
1593 }
1594
1595 static bool ignore_missing_thread(struct perf_evsel *evsel,
1596 struct thread_map *threads,
1597 int thread, int err)
1598 {
1599 if (!evsel->ignore_missing_thread)
1600 return false;
1601
1602 /* The system wide setup does not work with threads. */
1603 if (evsel->system_wide)
1604 return false;
1605
1606 /* The -ESRCH is perf event syscall errno for pid's not found. */
1607 if (err != -ESRCH)
1608 return false;
1609
1610 /* If there's only one thread, let it fail. */
1611 if (threads->nr == 1)
1612 return false;
1613
1614 if (thread_map__remove(threads, thread))
1615 return false;
1616
1617 pr_warning("WARNING: Ignored open failure for pid %d\n",
1618 thread_map__pid(threads, thread));
1619 return true;
1620 }
1621
1622 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1623 struct thread_map *threads)
1624 {
1625 int cpu, thread, nthreads;
1626 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1627 int pid = -1, err;
1628 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1629
1630 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1631 return -EINVAL;
1632
1633 if (cpus == NULL) {
1634 static struct cpu_map *empty_cpu_map;
1635
1636 if (empty_cpu_map == NULL) {
1637 empty_cpu_map = cpu_map__dummy_new();
1638 if (empty_cpu_map == NULL)
1639 return -ENOMEM;
1640 }
1641
1642 cpus = empty_cpu_map;
1643 }
1644
1645 if (threads == NULL) {
1646 static struct thread_map *empty_thread_map;
1647
1648 if (empty_thread_map == NULL) {
1649 empty_thread_map = thread_map__new_by_tid(-1);
1650 if (empty_thread_map == NULL)
1651 return -ENOMEM;
1652 }
1653
1654 threads = empty_thread_map;
1655 }
1656
1657 if (evsel->system_wide)
1658 nthreads = 1;
1659 else
1660 nthreads = threads->nr;
1661
1662 if (evsel->fd == NULL &&
1663 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1664 return -ENOMEM;
1665
1666 if (evsel->cgrp) {
1667 flags |= PERF_FLAG_PID_CGROUP;
1668 pid = evsel->cgrp->fd;
1669 }
1670
1671 fallback_missing_features:
1672 if (perf_missing_features.clockid_wrong)
1673 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1674 if (perf_missing_features.clockid) {
1675 evsel->attr.use_clockid = 0;
1676 evsel->attr.clockid = 0;
1677 }
1678 if (perf_missing_features.cloexec)
1679 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1680 if (perf_missing_features.mmap2)
1681 evsel->attr.mmap2 = 0;
1682 if (perf_missing_features.exclude_guest)
1683 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1684 if (perf_missing_features.lbr_flags)
1685 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1686 PERF_SAMPLE_BRANCH_NO_CYCLES);
1687 if (perf_missing_features.group_read && evsel->attr.inherit)
1688 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1689 retry_sample_id:
1690 if (perf_missing_features.sample_id_all)
1691 evsel->attr.sample_id_all = 0;
1692
1693 if (verbose >= 2) {
1694 fprintf(stderr, "%.60s\n", graph_dotted_line);
1695 fprintf(stderr, "perf_event_attr:\n");
1696 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1697 fprintf(stderr, "%.60s\n", graph_dotted_line);
1698 }
1699
1700 for (cpu = 0; cpu < cpus->nr; cpu++) {
1701
1702 for (thread = 0; thread < nthreads; thread++) {
1703 int fd, group_fd;
1704
1705 if (!evsel->cgrp && !evsel->system_wide)
1706 pid = thread_map__pid(threads, thread);
1707
1708 group_fd = get_group_fd(evsel, cpu, thread);
1709 retry_open:
1710 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1711 pid, cpus->map[cpu], group_fd, flags);
1712
1713 test_attr__ready();
1714
1715 fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1716 group_fd, flags);
1717
1718 FD(evsel, cpu, thread) = fd;
1719
1720 if (fd < 0) {
1721 err = -errno;
1722
1723 if (ignore_missing_thread(evsel, threads, thread, err)) {
1724 /*
1725 * We just removed 1 thread, so take a step
1726 * back on thread index and lower the upper
1727 * nthreads limit.
1728 */
1729 nthreads--;
1730 thread--;
1731
1732 /* ... and pretend like nothing have happened. */
1733 err = 0;
1734 continue;
1735 }
1736
1737 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1738 err);
1739 goto try_fallback;
1740 }
1741
1742 pr_debug2(" = %d\n", fd);
1743
1744 if (evsel->bpf_fd >= 0) {
1745 int evt_fd = fd;
1746 int bpf_fd = evsel->bpf_fd;
1747
1748 err = ioctl(evt_fd,
1749 PERF_EVENT_IOC_SET_BPF,
1750 bpf_fd);
1751 if (err && errno != EEXIST) {
1752 pr_err("failed to attach bpf fd %d: %s\n",
1753 bpf_fd, strerror(errno));
1754 err = -EINVAL;
1755 goto out_close;
1756 }
1757 }
1758
1759 set_rlimit = NO_CHANGE;
1760
1761 /*
1762 * If we succeeded but had to kill clockid, fail and
1763 * have perf_evsel__open_strerror() print us a nice
1764 * error.
1765 */
1766 if (perf_missing_features.clockid ||
1767 perf_missing_features.clockid_wrong) {
1768 err = -EINVAL;
1769 goto out_close;
1770 }
1771 }
1772 }
1773
1774 return 0;
1775
1776 try_fallback:
1777 /*
1778 * perf stat needs between 5 and 22 fds per CPU. When we run out
1779 * of them try to increase the limits.
1780 */
1781 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1782 struct rlimit l;
1783 int old_errno = errno;
1784
1785 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1786 if (set_rlimit == NO_CHANGE)
1787 l.rlim_cur = l.rlim_max;
1788 else {
1789 l.rlim_cur = l.rlim_max + 1000;
1790 l.rlim_max = l.rlim_cur;
1791 }
1792 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1793 set_rlimit++;
1794 errno = old_errno;
1795 goto retry_open;
1796 }
1797 }
1798 errno = old_errno;
1799 }
1800
1801 if (err != -EINVAL || cpu > 0 || thread > 0)
1802 goto out_close;
1803
1804 /*
1805 * Must probe features in the order they were added to the
1806 * perf_event_attr interface.
1807 */
1808 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1809 perf_missing_features.write_backward = true;
1810 pr_debug2("switching off write_backward\n");
1811 goto out_close;
1812 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1813 perf_missing_features.clockid_wrong = true;
1814 pr_debug2("switching off clockid\n");
1815 goto fallback_missing_features;
1816 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1817 perf_missing_features.clockid = true;
1818 pr_debug2("switching off use_clockid\n");
1819 goto fallback_missing_features;
1820 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1821 perf_missing_features.cloexec = true;
1822 pr_debug2("switching off cloexec flag\n");
1823 goto fallback_missing_features;
1824 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1825 perf_missing_features.mmap2 = true;
1826 pr_debug2("switching off mmap2\n");
1827 goto fallback_missing_features;
1828 } else if (!perf_missing_features.exclude_guest &&
1829 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1830 perf_missing_features.exclude_guest = true;
1831 pr_debug2("switching off exclude_guest, exclude_host\n");
1832 goto fallback_missing_features;
1833 } else if (!perf_missing_features.sample_id_all) {
1834 perf_missing_features.sample_id_all = true;
1835 pr_debug2("switching off sample_id_all\n");
1836 goto retry_sample_id;
1837 } else if (!perf_missing_features.lbr_flags &&
1838 (evsel->attr.branch_sample_type &
1839 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1840 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1841 perf_missing_features.lbr_flags = true;
1842 pr_debug2("switching off branch sample type no (cycles/flags)\n");
1843 goto fallback_missing_features;
1844 } else if (!perf_missing_features.group_read &&
1845 evsel->attr.inherit &&
1846 (evsel->attr.read_format & PERF_FORMAT_GROUP)) {
1847 perf_missing_features.group_read = true;
1848 pr_debug2("switching off group read\n");
1849 goto fallback_missing_features;
1850 }
1851 out_close:
1852 do {
1853 while (--thread >= 0) {
1854 close(FD(evsel, cpu, thread));
1855 FD(evsel, cpu, thread) = -1;
1856 }
1857 thread = nthreads;
1858 } while (--cpu >= 0);
1859 return err;
1860 }
1861
1862 void perf_evsel__close(struct perf_evsel *evsel)
1863 {
1864 if (evsel->fd == NULL)
1865 return;
1866
1867 perf_evsel__close_fd(evsel);
1868 perf_evsel__free_fd(evsel);
1869 }
1870
1871 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1872 struct cpu_map *cpus)
1873 {
1874 return perf_evsel__open(evsel, cpus, NULL);
1875 }
1876
1877 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1878 struct thread_map *threads)
1879 {
1880 return perf_evsel__open(evsel, NULL, threads);
1881 }
1882
1883 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1884 const union perf_event *event,
1885 struct perf_sample *sample)
1886 {
1887 u64 type = evsel->attr.sample_type;
1888 const u64 *array = event->sample.array;
1889 bool swapped = evsel->needs_swap;
1890 union u64_swap u;
1891
1892 array += ((event->header.size -
1893 sizeof(event->header)) / sizeof(u64)) - 1;
1894
1895 if (type & PERF_SAMPLE_IDENTIFIER) {
1896 sample->id = *array;
1897 array--;
1898 }
1899
1900 if (type & PERF_SAMPLE_CPU) {
1901 u.val64 = *array;
1902 if (swapped) {
1903 /* undo swap of u64, then swap on individual u32s */
1904 u.val64 = bswap_64(u.val64);
1905 u.val32[0] = bswap_32(u.val32[0]);
1906 }
1907
1908 sample->cpu = u.val32[0];
1909 array--;
1910 }
1911
1912 if (type & PERF_SAMPLE_STREAM_ID) {
1913 sample->stream_id = *array;
1914 array--;
1915 }
1916
1917 if (type & PERF_SAMPLE_ID) {
1918 sample->id = *array;
1919 array--;
1920 }
1921
1922 if (type & PERF_SAMPLE_TIME) {
1923 sample->time = *array;
1924 array--;
1925 }
1926
1927 if (type & PERF_SAMPLE_TID) {
1928 u.val64 = *array;
1929 if (swapped) {
1930 /* undo swap of u64, then swap on individual u32s */
1931 u.val64 = bswap_64(u.val64);
1932 u.val32[0] = bswap_32(u.val32[0]);
1933 u.val32[1] = bswap_32(u.val32[1]);
1934 }
1935
1936 sample->pid = u.val32[0];
1937 sample->tid = u.val32[1];
1938 array--;
1939 }
1940
1941 return 0;
1942 }
1943
1944 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1945 u64 size)
1946 {
1947 return size > max_size || offset + size > endp;
1948 }
1949
1950 #define OVERFLOW_CHECK(offset, size, max_size) \
1951 do { \
1952 if (overflow(endp, (max_size), (offset), (size))) \
1953 return -EFAULT; \
1954 } while (0)
1955
1956 #define OVERFLOW_CHECK_u64(offset) \
1957 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1958
1959 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1960 struct perf_sample *data)
1961 {
1962 u64 type = evsel->attr.sample_type;
1963 bool swapped = evsel->needs_swap;
1964 const u64 *array;
1965 u16 max_size = event->header.size;
1966 const void *endp = (void *)event + max_size;
1967 u64 sz;
1968
1969 /*
1970 * used for cross-endian analysis. See git commit 65014ab3
1971 * for why this goofiness is needed.
1972 */
1973 union u64_swap u;
1974
1975 memset(data, 0, sizeof(*data));
1976 data->cpu = data->pid = data->tid = -1;
1977 data->stream_id = data->id = data->time = -1ULL;
1978 data->period = evsel->attr.sample_period;
1979 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1980
1981 if (event->header.type != PERF_RECORD_SAMPLE) {
1982 if (!evsel->attr.sample_id_all)
1983 return 0;
1984 return perf_evsel__parse_id_sample(evsel, event, data);
1985 }
1986
1987 array = event->sample.array;
1988
1989 /*
1990 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1991 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1992 * check the format does not go past the end of the event.
1993 */
1994 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1995 return -EFAULT;
1996
1997 data->id = -1ULL;
1998 if (type & PERF_SAMPLE_IDENTIFIER) {
1999 data->id = *array;
2000 array++;
2001 }
2002
2003 if (type & PERF_SAMPLE_IP) {
2004 data->ip = *array;
2005 array++;
2006 }
2007
2008 if (type & PERF_SAMPLE_TID) {
2009 u.val64 = *array;
2010 if (swapped) {
2011 /* undo swap of u64, then swap on individual u32s */
2012 u.val64 = bswap_64(u.val64);
2013 u.val32[0] = bswap_32(u.val32[0]);
2014 u.val32[1] = bswap_32(u.val32[1]);
2015 }
2016
2017 data->pid = u.val32[0];
2018 data->tid = u.val32[1];
2019 array++;
2020 }
2021
2022 if (type & PERF_SAMPLE_TIME) {
2023 data->time = *array;
2024 array++;
2025 }
2026
2027 data->addr = 0;
2028 if (type & PERF_SAMPLE_ADDR) {
2029 data->addr = *array;
2030 array++;
2031 }
2032
2033 if (type & PERF_SAMPLE_ID) {
2034 data->id = *array;
2035 array++;
2036 }
2037
2038 if (type & PERF_SAMPLE_STREAM_ID) {
2039 data->stream_id = *array;
2040 array++;
2041 }
2042
2043 if (type & PERF_SAMPLE_CPU) {
2044
2045 u.val64 = *array;
2046 if (swapped) {
2047 /* undo swap of u64, then swap on individual u32s */
2048 u.val64 = bswap_64(u.val64);
2049 u.val32[0] = bswap_32(u.val32[0]);
2050 }
2051
2052 data->cpu = u.val32[0];
2053 array++;
2054 }
2055
2056 if (type & PERF_SAMPLE_PERIOD) {
2057 data->period = *array;
2058 array++;
2059 }
2060
2061 if (type & PERF_SAMPLE_READ) {
2062 u64 read_format = evsel->attr.read_format;
2063
2064 OVERFLOW_CHECK_u64(array);
2065 if (read_format & PERF_FORMAT_GROUP)
2066 data->read.group.nr = *array;
2067 else
2068 data->read.one.value = *array;
2069
2070 array++;
2071
2072 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2073 OVERFLOW_CHECK_u64(array);
2074 data->read.time_enabled = *array;
2075 array++;
2076 }
2077
2078 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2079 OVERFLOW_CHECK_u64(array);
2080 data->read.time_running = *array;
2081 array++;
2082 }
2083
2084 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2085 if (read_format & PERF_FORMAT_GROUP) {
2086 const u64 max_group_nr = UINT64_MAX /
2087 sizeof(struct sample_read_value);
2088
2089 if (data->read.group.nr > max_group_nr)
2090 return -EFAULT;
2091 sz = data->read.group.nr *
2092 sizeof(struct sample_read_value);
2093 OVERFLOW_CHECK(array, sz, max_size);
2094 data->read.group.values =
2095 (struct sample_read_value *)array;
2096 array = (void *)array + sz;
2097 } else {
2098 OVERFLOW_CHECK_u64(array);
2099 data->read.one.id = *array;
2100 array++;
2101 }
2102 }
2103
2104 if (type & PERF_SAMPLE_CALLCHAIN) {
2105 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2106
2107 OVERFLOW_CHECK_u64(array);
2108 data->callchain = (struct ip_callchain *)array++;
2109 if (data->callchain->nr > max_callchain_nr)
2110 return -EFAULT;
2111 sz = data->callchain->nr * sizeof(u64);
2112 OVERFLOW_CHECK(array, sz, max_size);
2113 array = (void *)array + sz;
2114 }
2115
2116 if (type & PERF_SAMPLE_RAW) {
2117 OVERFLOW_CHECK_u64(array);
2118 u.val64 = *array;
2119 if (WARN_ONCE(swapped,
2120 "Endianness of raw data not corrected!\n")) {
2121 /* undo swap of u64, then swap on individual u32s */
2122 u.val64 = bswap_64(u.val64);
2123 u.val32[0] = bswap_32(u.val32[0]);
2124 u.val32[1] = bswap_32(u.val32[1]);
2125 }
2126 data->raw_size = u.val32[0];
2127 array = (void *)array + sizeof(u32);
2128
2129 OVERFLOW_CHECK(array, data->raw_size, max_size);
2130 data->raw_data = (void *)array;
2131 array = (void *)array + data->raw_size;
2132 }
2133
2134 if (type & PERF_SAMPLE_BRANCH_STACK) {
2135 const u64 max_branch_nr = UINT64_MAX /
2136 sizeof(struct branch_entry);
2137
2138 OVERFLOW_CHECK_u64(array);
2139 data->branch_stack = (struct branch_stack *)array++;
2140
2141 if (data->branch_stack->nr > max_branch_nr)
2142 return -EFAULT;
2143 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2144 OVERFLOW_CHECK(array, sz, max_size);
2145 array = (void *)array + sz;
2146 }
2147
2148 if (type & PERF_SAMPLE_REGS_USER) {
2149 OVERFLOW_CHECK_u64(array);
2150 data->user_regs.abi = *array;
2151 array++;
2152
2153 if (data->user_regs.abi) {
2154 u64 mask = evsel->attr.sample_regs_user;
2155
2156 sz = hweight_long(mask) * sizeof(u64);
2157 OVERFLOW_CHECK(array, sz, max_size);
2158 data->user_regs.mask = mask;
2159 data->user_regs.regs = (u64 *)array;
2160 array = (void *)array + sz;
2161 }
2162 }
2163
2164 if (type & PERF_SAMPLE_STACK_USER) {
2165 OVERFLOW_CHECK_u64(array);
2166 sz = *array++;
2167
2168 data->user_stack.offset = ((char *)(array - 1)
2169 - (char *) event);
2170
2171 if (!sz) {
2172 data->user_stack.size = 0;
2173 } else {
2174 OVERFLOW_CHECK(array, sz, max_size);
2175 data->user_stack.data = (char *)array;
2176 array = (void *)array + sz;
2177 OVERFLOW_CHECK_u64(array);
2178 data->user_stack.size = *array++;
2179 if (WARN_ONCE(data->user_stack.size > sz,
2180 "user stack dump failure\n"))
2181 return -EFAULT;
2182 }
2183 }
2184
2185 if (type & PERF_SAMPLE_WEIGHT) {
2186 OVERFLOW_CHECK_u64(array);
2187 data->weight = *array;
2188 array++;
2189 }
2190
2191 data->data_src = PERF_MEM_DATA_SRC_NONE;
2192 if (type & PERF_SAMPLE_DATA_SRC) {
2193 OVERFLOW_CHECK_u64(array);
2194 data->data_src = *array;
2195 array++;
2196 }
2197
2198 data->transaction = 0;
2199 if (type & PERF_SAMPLE_TRANSACTION) {
2200 OVERFLOW_CHECK_u64(array);
2201 data->transaction = *array;
2202 array++;
2203 }
2204
2205 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2206 if (type & PERF_SAMPLE_REGS_INTR) {
2207 OVERFLOW_CHECK_u64(array);
2208 data->intr_regs.abi = *array;
2209 array++;
2210
2211 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2212 u64 mask = evsel->attr.sample_regs_intr;
2213
2214 sz = hweight_long(mask) * sizeof(u64);
2215 OVERFLOW_CHECK(array, sz, max_size);
2216 data->intr_regs.mask = mask;
2217 data->intr_regs.regs = (u64 *)array;
2218 array = (void *)array + sz;
2219 }
2220 }
2221
2222 data->phys_addr = 0;
2223 if (type & PERF_SAMPLE_PHYS_ADDR) {
2224 data->phys_addr = *array;
2225 array++;
2226 }
2227
2228 return 0;
2229 }
2230
2231 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2232 u64 read_format)
2233 {
2234 size_t sz, result = sizeof(struct sample_event);
2235
2236 if (type & PERF_SAMPLE_IDENTIFIER)
2237 result += sizeof(u64);
2238
2239 if (type & PERF_SAMPLE_IP)
2240 result += sizeof(u64);
2241
2242 if (type & PERF_SAMPLE_TID)
2243 result += sizeof(u64);
2244
2245 if (type & PERF_SAMPLE_TIME)
2246 result += sizeof(u64);
2247
2248 if (type & PERF_SAMPLE_ADDR)
2249 result += sizeof(u64);
2250
2251 if (type & PERF_SAMPLE_ID)
2252 result += sizeof(u64);
2253
2254 if (type & PERF_SAMPLE_STREAM_ID)
2255 result += sizeof(u64);
2256
2257 if (type & PERF_SAMPLE_CPU)
2258 result += sizeof(u64);
2259
2260 if (type & PERF_SAMPLE_PERIOD)
2261 result += sizeof(u64);
2262
2263 if (type & PERF_SAMPLE_READ) {
2264 result += sizeof(u64);
2265 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2266 result += sizeof(u64);
2267 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2268 result += sizeof(u64);
2269 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2270 if (read_format & PERF_FORMAT_GROUP) {
2271 sz = sample->read.group.nr *
2272 sizeof(struct sample_read_value);
2273 result += sz;
2274 } else {
2275 result += sizeof(u64);
2276 }
2277 }
2278
2279 if (type & PERF_SAMPLE_CALLCHAIN) {
2280 sz = (sample->callchain->nr + 1) * sizeof(u64);
2281 result += sz;
2282 }
2283
2284 if (type & PERF_SAMPLE_RAW) {
2285 result += sizeof(u32);
2286 result += sample->raw_size;
2287 }
2288
2289 if (type & PERF_SAMPLE_BRANCH_STACK) {
2290 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2291 sz += sizeof(u64);
2292 result += sz;
2293 }
2294
2295 if (type & PERF_SAMPLE_REGS_USER) {
2296 if (sample->user_regs.abi) {
2297 result += sizeof(u64);
2298 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2299 result += sz;
2300 } else {
2301 result += sizeof(u64);
2302 }
2303 }
2304
2305 if (type & PERF_SAMPLE_STACK_USER) {
2306 sz = sample->user_stack.size;
2307 result += sizeof(u64);
2308 if (sz) {
2309 result += sz;
2310 result += sizeof(u64);
2311 }
2312 }
2313
2314 if (type & PERF_SAMPLE_WEIGHT)
2315 result += sizeof(u64);
2316
2317 if (type & PERF_SAMPLE_DATA_SRC)
2318 result += sizeof(u64);
2319
2320 if (type & PERF_SAMPLE_TRANSACTION)
2321 result += sizeof(u64);
2322
2323 if (type & PERF_SAMPLE_REGS_INTR) {
2324 if (sample->intr_regs.abi) {
2325 result += sizeof(u64);
2326 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2327 result += sz;
2328 } else {
2329 result += sizeof(u64);
2330 }
2331 }
2332
2333 if (type & PERF_SAMPLE_PHYS_ADDR)
2334 result += sizeof(u64);
2335
2336 return result;
2337 }
2338
2339 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2340 u64 read_format,
2341 const struct perf_sample *sample,
2342 bool swapped)
2343 {
2344 u64 *array;
2345 size_t sz;
2346 /*
2347 * used for cross-endian analysis. See git commit 65014ab3
2348 * for why this goofiness is needed.
2349 */
2350 union u64_swap u;
2351
2352 array = event->sample.array;
2353
2354 if (type & PERF_SAMPLE_IDENTIFIER) {
2355 *array = sample->id;
2356 array++;
2357 }
2358
2359 if (type & PERF_SAMPLE_IP) {
2360 *array = sample->ip;
2361 array++;
2362 }
2363
2364 if (type & PERF_SAMPLE_TID) {
2365 u.val32[0] = sample->pid;
2366 u.val32[1] = sample->tid;
2367 if (swapped) {
2368 /*
2369 * Inverse of what is done in perf_evsel__parse_sample
2370 */
2371 u.val32[0] = bswap_32(u.val32[0]);
2372 u.val32[1] = bswap_32(u.val32[1]);
2373 u.val64 = bswap_64(u.val64);
2374 }
2375
2376 *array = u.val64;
2377 array++;
2378 }
2379
2380 if (type & PERF_SAMPLE_TIME) {
2381 *array = sample->time;
2382 array++;
2383 }
2384
2385 if (type & PERF_SAMPLE_ADDR) {
2386 *array = sample->addr;
2387 array++;
2388 }
2389
2390 if (type & PERF_SAMPLE_ID) {
2391 *array = sample->id;
2392 array++;
2393 }
2394
2395 if (type & PERF_SAMPLE_STREAM_ID) {
2396 *array = sample->stream_id;
2397 array++;
2398 }
2399
2400 if (type & PERF_SAMPLE_CPU) {
2401 u.val32[0] = sample->cpu;
2402 if (swapped) {
2403 /*
2404 * Inverse of what is done in perf_evsel__parse_sample
2405 */
2406 u.val32[0] = bswap_32(u.val32[0]);
2407 u.val64 = bswap_64(u.val64);
2408 }
2409 *array = u.val64;
2410 array++;
2411 }
2412
2413 if (type & PERF_SAMPLE_PERIOD) {
2414 *array = sample->period;
2415 array++;
2416 }
2417
2418 if (type & PERF_SAMPLE_READ) {
2419 if (read_format & PERF_FORMAT_GROUP)
2420 *array = sample->read.group.nr;
2421 else
2422 *array = sample->read.one.value;
2423 array++;
2424
2425 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2426 *array = sample->read.time_enabled;
2427 array++;
2428 }
2429
2430 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2431 *array = sample->read.time_running;
2432 array++;
2433 }
2434
2435 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2436 if (read_format & PERF_FORMAT_GROUP) {
2437 sz = sample->read.group.nr *
2438 sizeof(struct sample_read_value);
2439 memcpy(array, sample->read.group.values, sz);
2440 array = (void *)array + sz;
2441 } else {
2442 *array = sample->read.one.id;
2443 array++;
2444 }
2445 }
2446
2447 if (type & PERF_SAMPLE_CALLCHAIN) {
2448 sz = (sample->callchain->nr + 1) * sizeof(u64);
2449 memcpy(array, sample->callchain, sz);
2450 array = (void *)array + sz;
2451 }
2452
2453 if (type & PERF_SAMPLE_RAW) {
2454 u.val32[0] = sample->raw_size;
2455 if (WARN_ONCE(swapped,
2456 "Endianness of raw data not corrected!\n")) {
2457 /*
2458 * Inverse of what is done in perf_evsel__parse_sample
2459 */
2460 u.val32[0] = bswap_32(u.val32[0]);
2461 u.val32[1] = bswap_32(u.val32[1]);
2462 u.val64 = bswap_64(u.val64);
2463 }
2464 *array = u.val64;
2465 array = (void *)array + sizeof(u32);
2466
2467 memcpy(array, sample->raw_data, sample->raw_size);
2468 array = (void *)array + sample->raw_size;
2469 }
2470
2471 if (type & PERF_SAMPLE_BRANCH_STACK) {
2472 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2473 sz += sizeof(u64);
2474 memcpy(array, sample->branch_stack, sz);
2475 array = (void *)array + sz;
2476 }
2477
2478 if (type & PERF_SAMPLE_REGS_USER) {
2479 if (sample->user_regs.abi) {
2480 *array++ = sample->user_regs.abi;
2481 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2482 memcpy(array, sample->user_regs.regs, sz);
2483 array = (void *)array + sz;
2484 } else {
2485 *array++ = 0;
2486 }
2487 }
2488
2489 if (type & PERF_SAMPLE_STACK_USER) {
2490 sz = sample->user_stack.size;
2491 *array++ = sz;
2492 if (sz) {
2493 memcpy(array, sample->user_stack.data, sz);
2494 array = (void *)array + sz;
2495 *array++ = sz;
2496 }
2497 }
2498
2499 if (type & PERF_SAMPLE_WEIGHT) {
2500 *array = sample->weight;
2501 array++;
2502 }
2503
2504 if (type & PERF_SAMPLE_DATA_SRC) {
2505 *array = sample->data_src;
2506 array++;
2507 }
2508
2509 if (type & PERF_SAMPLE_TRANSACTION) {
2510 *array = sample->transaction;
2511 array++;
2512 }
2513
2514 if (type & PERF_SAMPLE_REGS_INTR) {
2515 if (sample->intr_regs.abi) {
2516 *array++ = sample->intr_regs.abi;
2517 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2518 memcpy(array, sample->intr_regs.regs, sz);
2519 array = (void *)array + sz;
2520 } else {
2521 *array++ = 0;
2522 }
2523 }
2524
2525 if (type & PERF_SAMPLE_PHYS_ADDR) {
2526 *array = sample->phys_addr;
2527 array++;
2528 }
2529
2530 return 0;
2531 }
2532
2533 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2534 {
2535 return pevent_find_field(evsel->tp_format, name);
2536 }
2537
2538 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2539 const char *name)
2540 {
2541 struct format_field *field = perf_evsel__field(evsel, name);
2542 int offset;
2543
2544 if (!field)
2545 return NULL;
2546
2547 offset = field->offset;
2548
2549 if (field->flags & FIELD_IS_DYNAMIC) {
2550 offset = *(int *)(sample->raw_data + field->offset);
2551 offset &= 0xffff;
2552 }
2553
2554 return sample->raw_data + offset;
2555 }
2556
2557 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2558 bool needs_swap)
2559 {
2560 u64 value;
2561 void *ptr = sample->raw_data + field->offset;
2562
2563 switch (field->size) {
2564 case 1:
2565 return *(u8 *)ptr;
2566 case 2:
2567 value = *(u16 *)ptr;
2568 break;
2569 case 4:
2570 value = *(u32 *)ptr;
2571 break;
2572 case 8:
2573 memcpy(&value, ptr, sizeof(u64));
2574 break;
2575 default:
2576 return 0;
2577 }
2578
2579 if (!needs_swap)
2580 return value;
2581
2582 switch (field->size) {
2583 case 2:
2584 return bswap_16(value);
2585 case 4:
2586 return bswap_32(value);
2587 case 8:
2588 return bswap_64(value);
2589 default:
2590 return 0;
2591 }
2592
2593 return 0;
2594 }
2595
2596 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2597 const char *name)
2598 {
2599 struct format_field *field = perf_evsel__field(evsel, name);
2600
2601 if (!field)
2602 return 0;
2603
2604 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2605 }
2606
2607 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2608 char *msg, size_t msgsize)
2609 {
2610 int paranoid;
2611
2612 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2613 evsel->attr.type == PERF_TYPE_HARDWARE &&
2614 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2615 /*
2616 * If it's cycles then fall back to hrtimer based
2617 * cpu-clock-tick sw counter, which is always available even if
2618 * no PMU support.
2619 *
2620 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2621 * b0a873e).
2622 */
2623 scnprintf(msg, msgsize, "%s",
2624 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2625
2626 evsel->attr.type = PERF_TYPE_SOFTWARE;
2627 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2628
2629 zfree(&evsel->name);
2630 return true;
2631 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2632 (paranoid = perf_event_paranoid()) > 1) {
2633 const char *name = perf_evsel__name(evsel);
2634 char *new_name;
2635
2636 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2637 return false;
2638
2639 if (evsel->name)
2640 free(evsel->name);
2641 evsel->name = new_name;
2642 scnprintf(msg, msgsize,
2643 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2644 evsel->attr.exclude_kernel = 1;
2645
2646 return true;
2647 }
2648
2649 return false;
2650 }
2651
2652 static bool find_process(const char *name)
2653 {
2654 size_t len = strlen(name);
2655 DIR *dir;
2656 struct dirent *d;
2657 int ret = -1;
2658
2659 dir = opendir(procfs__mountpoint());
2660 if (!dir)
2661 return false;
2662
2663 /* Walk through the directory. */
2664 while (ret && (d = readdir(dir)) != NULL) {
2665 char path[PATH_MAX];
2666 char *data;
2667 size_t size;
2668
2669 if ((d->d_type != DT_DIR) ||
2670 !strcmp(".", d->d_name) ||
2671 !strcmp("..", d->d_name))
2672 continue;
2673
2674 scnprintf(path, sizeof(path), "%s/%s/comm",
2675 procfs__mountpoint(), d->d_name);
2676
2677 if (filename__read_str(path, &data, &size))
2678 continue;
2679
2680 ret = strncmp(name, data, len);
2681 free(data);
2682 }
2683
2684 closedir(dir);
2685 return ret ? false : true;
2686 }
2687
2688 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2689 int err, char *msg, size_t size)
2690 {
2691 char sbuf[STRERR_BUFSIZE];
2692 int printed = 0;
2693
2694 switch (err) {
2695 case EPERM:
2696 case EACCES:
2697 if (err == EPERM)
2698 printed = scnprintf(msg, size,
2699 "No permission to enable %s event.\n\n",
2700 perf_evsel__name(evsel));
2701
2702 return scnprintf(msg + printed, size - printed,
2703 "You may not have permission to collect %sstats.\n\n"
2704 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2705 "which controls use of the performance events system by\n"
2706 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2707 "The current value is %d:\n\n"
2708 " -1: Allow use of (almost) all events by all users\n"
2709 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2710 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2711 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2712 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2713 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2714 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2715 " kernel.perf_event_paranoid = -1\n" ,
2716 target->system_wide ? "system-wide " : "",
2717 perf_event_paranoid());
2718 case ENOENT:
2719 return scnprintf(msg, size, "The %s event is not supported.",
2720 perf_evsel__name(evsel));
2721 case EMFILE:
2722 return scnprintf(msg, size, "%s",
2723 "Too many events are opened.\n"
2724 "Probably the maximum number of open file descriptors has been reached.\n"
2725 "Hint: Try again after reducing the number of events.\n"
2726 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2727 case ENOMEM:
2728 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2729 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2730 return scnprintf(msg, size,
2731 "Not enough memory to setup event with callchain.\n"
2732 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2733 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2734 break;
2735 case ENODEV:
2736 if (target->cpu_list)
2737 return scnprintf(msg, size, "%s",
2738 "No such device - did you specify an out-of-range profile CPU?");
2739 break;
2740 case EOPNOTSUPP:
2741 if (evsel->attr.sample_period != 0)
2742 return scnprintf(msg, size, "%s",
2743 "PMU Hardware doesn't support sampling/overflow-interrupts.");
2744 if (evsel->attr.precise_ip)
2745 return scnprintf(msg, size, "%s",
2746 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2747 #if defined(__i386__) || defined(__x86_64__)
2748 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2749 return scnprintf(msg, size, "%s",
2750 "No hardware sampling interrupt available.\n"
2751 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2752 #endif
2753 break;
2754 case EBUSY:
2755 if (find_process("oprofiled"))
2756 return scnprintf(msg, size,
2757 "The PMU counters are busy/taken by another profiler.\n"
2758 "We found oprofile daemon running, please stop it and try again.");
2759 break;
2760 case EINVAL:
2761 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2762 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2763 if (perf_missing_features.clockid)
2764 return scnprintf(msg, size, "clockid feature not supported.");
2765 if (perf_missing_features.clockid_wrong)
2766 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2767 break;
2768 default:
2769 break;
2770 }
2771
2772 return scnprintf(msg, size,
2773 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2774 "/bin/dmesg may provide additional information.\n"
2775 "No CONFIG_PERF_EVENTS=y kernel support configured?",
2776 err, str_error_r(err, sbuf, sizeof(sbuf)),
2777 perf_evsel__name(evsel));
2778 }
2779
2780 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2781 {
2782 if (evsel && evsel->evlist && evsel->evlist->env)
2783 return evsel->evlist->env->arch;
2784 return NULL;
2785 }
2786
2787 char *perf_evsel__env_cpuid(struct perf_evsel *evsel)
2788 {
2789 if (evsel && evsel->evlist && evsel->evlist->env)
2790 return evsel->evlist->env->cpuid;
2791 return NULL;
2792 }