]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - tools/perf/util/evsel.c
Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-focal-kernel.git] / tools / perf / util / evsel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
4 *
5 * Parts came from builtin-{top,stat,record}.c, see those files for further
6 * copyright notes.
7 */
8
9 #include <byteswap.h>
10 #include <errno.h>
11 #include <inttypes.h>
12 #include <linux/bitops.h>
13 #include <api/fs/fs.h>
14 #include <api/fs/tracing_path.h>
15 #include <traceevent/event-parse.h>
16 #include <linux/hw_breakpoint.h>
17 #include <linux/perf_event.h>
18 #include <linux/compiler.h>
19 #include <linux/err.h>
20 #include <linux/zalloc.h>
21 #include <sys/ioctl.h>
22 #include <sys/resource.h>
23 #include <sys/types.h>
24 #include <dirent.h>
25 #include "asm/bug.h"
26 #include "callchain.h"
27 #include "cgroup.h"
28 #include "event.h"
29 #include "evsel.h"
30 #include "evlist.h"
31 #include "cpumap.h"
32 #include "thread_map.h"
33 #include "target.h"
34 #include "perf_regs.h"
35 #include "debug.h"
36 #include "trace-event.h"
37 #include "stat.h"
38 #include "string2.h"
39 #include "memswap.h"
40 #include "util/parse-branch-options.h"
41
42 #include <linux/ctype.h>
43
44 struct perf_missing_features perf_missing_features;
45
46 static clockid_t clockid;
47
48 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
49 {
50 return 0;
51 }
52
53 void __weak test_attr__ready(void) { }
54
55 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
56 {
57 }
58
59 static struct {
60 size_t size;
61 int (*init)(struct perf_evsel *evsel);
62 void (*fini)(struct perf_evsel *evsel);
63 } perf_evsel__object = {
64 .size = sizeof(struct perf_evsel),
65 .init = perf_evsel__no_extra_init,
66 .fini = perf_evsel__no_extra_fini,
67 };
68
69 int perf_evsel__object_config(size_t object_size,
70 int (*init)(struct perf_evsel *evsel),
71 void (*fini)(struct perf_evsel *evsel))
72 {
73
74 if (object_size == 0)
75 goto set_methods;
76
77 if (perf_evsel__object.size > object_size)
78 return -EINVAL;
79
80 perf_evsel__object.size = object_size;
81
82 set_methods:
83 if (init != NULL)
84 perf_evsel__object.init = init;
85
86 if (fini != NULL)
87 perf_evsel__object.fini = fini;
88
89 return 0;
90 }
91
92 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
93
94 int __perf_evsel__sample_size(u64 sample_type)
95 {
96 u64 mask = sample_type & PERF_SAMPLE_MASK;
97 int size = 0;
98 int i;
99
100 for (i = 0; i < 64; i++) {
101 if (mask & (1ULL << i))
102 size++;
103 }
104
105 size *= sizeof(u64);
106
107 return size;
108 }
109
110 /**
111 * __perf_evsel__calc_id_pos - calculate id_pos.
112 * @sample_type: sample type
113 *
114 * This function returns the position of the event id (PERF_SAMPLE_ID or
115 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
116 * sample_event.
117 */
118 static int __perf_evsel__calc_id_pos(u64 sample_type)
119 {
120 int idx = 0;
121
122 if (sample_type & PERF_SAMPLE_IDENTIFIER)
123 return 0;
124
125 if (!(sample_type & PERF_SAMPLE_ID))
126 return -1;
127
128 if (sample_type & PERF_SAMPLE_IP)
129 idx += 1;
130
131 if (sample_type & PERF_SAMPLE_TID)
132 idx += 1;
133
134 if (sample_type & PERF_SAMPLE_TIME)
135 idx += 1;
136
137 if (sample_type & PERF_SAMPLE_ADDR)
138 idx += 1;
139
140 return idx;
141 }
142
143 /**
144 * __perf_evsel__calc_is_pos - calculate is_pos.
145 * @sample_type: sample type
146 *
147 * This function returns the position (counting backwards) of the event id
148 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
149 * sample_id_all is used there is an id sample appended to non-sample events.
150 */
151 static int __perf_evsel__calc_is_pos(u64 sample_type)
152 {
153 int idx = 1;
154
155 if (sample_type & PERF_SAMPLE_IDENTIFIER)
156 return 1;
157
158 if (!(sample_type & PERF_SAMPLE_ID))
159 return -1;
160
161 if (sample_type & PERF_SAMPLE_CPU)
162 idx += 1;
163
164 if (sample_type & PERF_SAMPLE_STREAM_ID)
165 idx += 1;
166
167 return idx;
168 }
169
170 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
171 {
172 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
173 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
174 }
175
176 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
177 enum perf_event_sample_format bit)
178 {
179 if (!(evsel->attr.sample_type & bit)) {
180 evsel->attr.sample_type |= bit;
181 evsel->sample_size += sizeof(u64);
182 perf_evsel__calc_id_pos(evsel);
183 }
184 }
185
186 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
187 enum perf_event_sample_format bit)
188 {
189 if (evsel->attr.sample_type & bit) {
190 evsel->attr.sample_type &= ~bit;
191 evsel->sample_size -= sizeof(u64);
192 perf_evsel__calc_id_pos(evsel);
193 }
194 }
195
196 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
197 bool can_sample_identifier)
198 {
199 if (can_sample_identifier) {
200 perf_evsel__reset_sample_bit(evsel, ID);
201 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
202 } else {
203 perf_evsel__set_sample_bit(evsel, ID);
204 }
205 evsel->attr.read_format |= PERF_FORMAT_ID;
206 }
207
208 /**
209 * perf_evsel__is_function_event - Return whether given evsel is a function
210 * trace event
211 *
212 * @evsel - evsel selector to be tested
213 *
214 * Return %true if event is function trace event
215 */
216 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
217 {
218 #define FUNCTION_EVENT "ftrace:function"
219
220 return evsel->name &&
221 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
222
223 #undef FUNCTION_EVENT
224 }
225
226 void perf_evsel__init(struct perf_evsel *evsel,
227 struct perf_event_attr *attr, int idx)
228 {
229 evsel->idx = idx;
230 evsel->tracking = !idx;
231 evsel->attr = *attr;
232 evsel->leader = evsel;
233 evsel->unit = "";
234 evsel->scale = 1.0;
235 evsel->max_events = ULONG_MAX;
236 evsel->evlist = NULL;
237 evsel->bpf_fd = -1;
238 INIT_LIST_HEAD(&evsel->node);
239 INIT_LIST_HEAD(&evsel->config_terms);
240 perf_evsel__object.init(evsel);
241 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
242 perf_evsel__calc_id_pos(evsel);
243 evsel->cmdline_group_boundary = false;
244 evsel->metric_expr = NULL;
245 evsel->metric_name = NULL;
246 evsel->metric_events = NULL;
247 evsel->collect_stat = false;
248 evsel->pmu_name = NULL;
249 }
250
251 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
252 {
253 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
254
255 if (!evsel)
256 return NULL;
257 perf_evsel__init(evsel, attr, idx);
258
259 if (perf_evsel__is_bpf_output(evsel)) {
260 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
261 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
262 evsel->attr.sample_period = 1;
263 }
264
265 if (perf_evsel__is_clock(evsel)) {
266 /*
267 * The evsel->unit points to static alias->unit
268 * so it's ok to use static string in here.
269 */
270 static const char *unit = "msec";
271
272 evsel->unit = unit;
273 evsel->scale = 1e-6;
274 }
275
276 return evsel;
277 }
278
279 static bool perf_event_can_profile_kernel(void)
280 {
281 return geteuid() == 0 || perf_event_paranoid() == -1;
282 }
283
284 struct perf_evsel *perf_evsel__new_cycles(bool precise)
285 {
286 struct perf_event_attr attr = {
287 .type = PERF_TYPE_HARDWARE,
288 .config = PERF_COUNT_HW_CPU_CYCLES,
289 .exclude_kernel = !perf_event_can_profile_kernel(),
290 };
291 struct perf_evsel *evsel;
292
293 event_attr_init(&attr);
294
295 if (!precise)
296 goto new_event;
297
298 /*
299 * Now let the usual logic to set up the perf_event_attr defaults
300 * to kick in when we return and before perf_evsel__open() is called.
301 */
302 new_event:
303 evsel = perf_evsel__new(&attr);
304 if (evsel == NULL)
305 goto out;
306
307 evsel->precise_max = true;
308
309 /* use asprintf() because free(evsel) assumes name is allocated */
310 if (asprintf(&evsel->name, "cycles%s%s%.*s",
311 (attr.precise_ip || attr.exclude_kernel) ? ":" : "",
312 attr.exclude_kernel ? "u" : "",
313 attr.precise_ip ? attr.precise_ip + 1 : 0, "ppp") < 0)
314 goto error_free;
315 out:
316 return evsel;
317 error_free:
318 perf_evsel__delete(evsel);
319 evsel = NULL;
320 goto out;
321 }
322
323 /*
324 * Returns pointer with encoded error via <linux/err.h> interface.
325 */
326 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
327 {
328 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
329 int err = -ENOMEM;
330
331 if (evsel == NULL) {
332 goto out_err;
333 } else {
334 struct perf_event_attr attr = {
335 .type = PERF_TYPE_TRACEPOINT,
336 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
337 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
338 };
339
340 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
341 goto out_free;
342
343 evsel->tp_format = trace_event__tp_format(sys, name);
344 if (IS_ERR(evsel->tp_format)) {
345 err = PTR_ERR(evsel->tp_format);
346 goto out_free;
347 }
348
349 event_attr_init(&attr);
350 attr.config = evsel->tp_format->id;
351 attr.sample_period = 1;
352 perf_evsel__init(evsel, &attr, idx);
353 }
354
355 return evsel;
356
357 out_free:
358 zfree(&evsel->name);
359 free(evsel);
360 out_err:
361 return ERR_PTR(err);
362 }
363
364 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
365 "cycles",
366 "instructions",
367 "cache-references",
368 "cache-misses",
369 "branches",
370 "branch-misses",
371 "bus-cycles",
372 "stalled-cycles-frontend",
373 "stalled-cycles-backend",
374 "ref-cycles",
375 };
376
377 static const char *__perf_evsel__hw_name(u64 config)
378 {
379 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
380 return perf_evsel__hw_names[config];
381
382 return "unknown-hardware";
383 }
384
385 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
386 {
387 int colon = 0, r = 0;
388 struct perf_event_attr *attr = &evsel->attr;
389 bool exclude_guest_default = false;
390
391 #define MOD_PRINT(context, mod) do { \
392 if (!attr->exclude_##context) { \
393 if (!colon) colon = ++r; \
394 r += scnprintf(bf + r, size - r, "%c", mod); \
395 } } while(0)
396
397 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
398 MOD_PRINT(kernel, 'k');
399 MOD_PRINT(user, 'u');
400 MOD_PRINT(hv, 'h');
401 exclude_guest_default = true;
402 }
403
404 if (attr->precise_ip) {
405 if (!colon)
406 colon = ++r;
407 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
408 exclude_guest_default = true;
409 }
410
411 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
412 MOD_PRINT(host, 'H');
413 MOD_PRINT(guest, 'G');
414 }
415 #undef MOD_PRINT
416 if (colon)
417 bf[colon - 1] = ':';
418 return r;
419 }
420
421 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
422 {
423 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
424 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
425 }
426
427 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
428 "cpu-clock",
429 "task-clock",
430 "page-faults",
431 "context-switches",
432 "cpu-migrations",
433 "minor-faults",
434 "major-faults",
435 "alignment-faults",
436 "emulation-faults",
437 "dummy",
438 };
439
440 static const char *__perf_evsel__sw_name(u64 config)
441 {
442 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
443 return perf_evsel__sw_names[config];
444 return "unknown-software";
445 }
446
447 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
448 {
449 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
450 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
451 }
452
453 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
454 {
455 int r;
456
457 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
458
459 if (type & HW_BREAKPOINT_R)
460 r += scnprintf(bf + r, size - r, "r");
461
462 if (type & HW_BREAKPOINT_W)
463 r += scnprintf(bf + r, size - r, "w");
464
465 if (type & HW_BREAKPOINT_X)
466 r += scnprintf(bf + r, size - r, "x");
467
468 return r;
469 }
470
471 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
472 {
473 struct perf_event_attr *attr = &evsel->attr;
474 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
475 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
476 }
477
478 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
479 [PERF_EVSEL__MAX_ALIASES] = {
480 { "L1-dcache", "l1-d", "l1d", "L1-data", },
481 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
482 { "LLC", "L2", },
483 { "dTLB", "d-tlb", "Data-TLB", },
484 { "iTLB", "i-tlb", "Instruction-TLB", },
485 { "branch", "branches", "bpu", "btb", "bpc", },
486 { "node", },
487 };
488
489 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
490 [PERF_EVSEL__MAX_ALIASES] = {
491 { "load", "loads", "read", },
492 { "store", "stores", "write", },
493 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
494 };
495
496 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
497 [PERF_EVSEL__MAX_ALIASES] = {
498 { "refs", "Reference", "ops", "access", },
499 { "misses", "miss", },
500 };
501
502 #define C(x) PERF_COUNT_HW_CACHE_##x
503 #define CACHE_READ (1 << C(OP_READ))
504 #define CACHE_WRITE (1 << C(OP_WRITE))
505 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
506 #define COP(x) (1 << x)
507
508 /*
509 * cache operartion stat
510 * L1I : Read and prefetch only
511 * ITLB and BPU : Read-only
512 */
513 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
514 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
515 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
516 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
517 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
518 [C(ITLB)] = (CACHE_READ),
519 [C(BPU)] = (CACHE_READ),
520 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
521 };
522
523 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
524 {
525 if (perf_evsel__hw_cache_stat[type] & COP(op))
526 return true; /* valid */
527 else
528 return false; /* invalid */
529 }
530
531 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
532 char *bf, size_t size)
533 {
534 if (result) {
535 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
536 perf_evsel__hw_cache_op[op][0],
537 perf_evsel__hw_cache_result[result][0]);
538 }
539
540 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
541 perf_evsel__hw_cache_op[op][1]);
542 }
543
544 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
545 {
546 u8 op, result, type = (config >> 0) & 0xff;
547 const char *err = "unknown-ext-hardware-cache-type";
548
549 if (type >= PERF_COUNT_HW_CACHE_MAX)
550 goto out_err;
551
552 op = (config >> 8) & 0xff;
553 err = "unknown-ext-hardware-cache-op";
554 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
555 goto out_err;
556
557 result = (config >> 16) & 0xff;
558 err = "unknown-ext-hardware-cache-result";
559 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
560 goto out_err;
561
562 err = "invalid-cache";
563 if (!perf_evsel__is_cache_op_valid(type, op))
564 goto out_err;
565
566 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
567 out_err:
568 return scnprintf(bf, size, "%s", err);
569 }
570
571 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
572 {
573 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
574 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
575 }
576
577 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
578 {
579 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
580 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
581 }
582
583 static int perf_evsel__tool_name(char *bf, size_t size)
584 {
585 int ret = scnprintf(bf, size, "duration_time");
586 return ret;
587 }
588
589 const char *perf_evsel__name(struct perf_evsel *evsel)
590 {
591 char bf[128];
592
593 if (!evsel)
594 goto out_unknown;
595
596 if (evsel->name)
597 return evsel->name;
598
599 switch (evsel->attr.type) {
600 case PERF_TYPE_RAW:
601 perf_evsel__raw_name(evsel, bf, sizeof(bf));
602 break;
603
604 case PERF_TYPE_HARDWARE:
605 perf_evsel__hw_name(evsel, bf, sizeof(bf));
606 break;
607
608 case PERF_TYPE_HW_CACHE:
609 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
610 break;
611
612 case PERF_TYPE_SOFTWARE:
613 if (evsel->tool_event)
614 perf_evsel__tool_name(bf, sizeof(bf));
615 else
616 perf_evsel__sw_name(evsel, bf, sizeof(bf));
617 break;
618
619 case PERF_TYPE_TRACEPOINT:
620 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
621 break;
622
623 case PERF_TYPE_BREAKPOINT:
624 perf_evsel__bp_name(evsel, bf, sizeof(bf));
625 break;
626
627 default:
628 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
629 evsel->attr.type);
630 break;
631 }
632
633 evsel->name = strdup(bf);
634
635 if (evsel->name)
636 return evsel->name;
637 out_unknown:
638 return "unknown";
639 }
640
641 const char *perf_evsel__group_name(struct perf_evsel *evsel)
642 {
643 return evsel->group_name ?: "anon group";
644 }
645
646 /*
647 * Returns the group details for the specified leader,
648 * with following rules.
649 *
650 * For record -e '{cycles,instructions}'
651 * 'anon group { cycles:u, instructions:u }'
652 *
653 * For record -e 'cycles,instructions' and report --group
654 * 'cycles:u, instructions:u'
655 */
656 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
657 {
658 int ret = 0;
659 struct perf_evsel *pos;
660 const char *group_name = perf_evsel__group_name(evsel);
661
662 if (!evsel->forced_leader)
663 ret = scnprintf(buf, size, "%s { ", group_name);
664
665 ret += scnprintf(buf + ret, size - ret, "%s",
666 perf_evsel__name(evsel));
667
668 for_each_group_member(pos, evsel)
669 ret += scnprintf(buf + ret, size - ret, ", %s",
670 perf_evsel__name(pos));
671
672 if (!evsel->forced_leader)
673 ret += scnprintf(buf + ret, size - ret, " }");
674
675 return ret;
676 }
677
678 static void __perf_evsel__config_callchain(struct perf_evsel *evsel,
679 struct record_opts *opts,
680 struct callchain_param *param)
681 {
682 bool function = perf_evsel__is_function_event(evsel);
683 struct perf_event_attr *attr = &evsel->attr;
684
685 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
686
687 attr->sample_max_stack = param->max_stack;
688
689 if (opts->kernel_callchains)
690 attr->exclude_callchain_user = 1;
691 if (opts->user_callchains)
692 attr->exclude_callchain_kernel = 1;
693 if (param->record_mode == CALLCHAIN_LBR) {
694 if (!opts->branch_stack) {
695 if (attr->exclude_user) {
696 pr_warning("LBR callstack option is only available "
697 "to get user callchain information. "
698 "Falling back to framepointers.\n");
699 } else {
700 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
701 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
702 PERF_SAMPLE_BRANCH_CALL_STACK |
703 PERF_SAMPLE_BRANCH_NO_CYCLES |
704 PERF_SAMPLE_BRANCH_NO_FLAGS;
705 }
706 } else
707 pr_warning("Cannot use LBR callstack with branch stack. "
708 "Falling back to framepointers.\n");
709 }
710
711 if (param->record_mode == CALLCHAIN_DWARF) {
712 if (!function) {
713 perf_evsel__set_sample_bit(evsel, REGS_USER);
714 perf_evsel__set_sample_bit(evsel, STACK_USER);
715 if (opts->sample_user_regs && DWARF_MINIMAL_REGS != PERF_REGS_MASK) {
716 attr->sample_regs_user |= DWARF_MINIMAL_REGS;
717 pr_warning("WARNING: The use of --call-graph=dwarf may require all the user registers, "
718 "specifying a subset with --user-regs may render DWARF unwinding unreliable, "
719 "so the minimal registers set (IP, SP) is explicitly forced.\n");
720 } else {
721 attr->sample_regs_user |= PERF_REGS_MASK;
722 }
723 attr->sample_stack_user = param->dump_size;
724 attr->exclude_callchain_user = 1;
725 } else {
726 pr_info("Cannot use DWARF unwind for function trace event,"
727 " falling back to framepointers.\n");
728 }
729 }
730
731 if (function) {
732 pr_info("Disabling user space callchains for function trace event.\n");
733 attr->exclude_callchain_user = 1;
734 }
735 }
736
737 void perf_evsel__config_callchain(struct perf_evsel *evsel,
738 struct record_opts *opts,
739 struct callchain_param *param)
740 {
741 if (param->enabled)
742 return __perf_evsel__config_callchain(evsel, opts, param);
743 }
744
745 static void
746 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
747 struct callchain_param *param)
748 {
749 struct perf_event_attr *attr = &evsel->attr;
750
751 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
752 if (param->record_mode == CALLCHAIN_LBR) {
753 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
754 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
755 PERF_SAMPLE_BRANCH_CALL_STACK);
756 }
757 if (param->record_mode == CALLCHAIN_DWARF) {
758 perf_evsel__reset_sample_bit(evsel, REGS_USER);
759 perf_evsel__reset_sample_bit(evsel, STACK_USER);
760 }
761 }
762
763 static void apply_config_terms(struct perf_evsel *evsel,
764 struct record_opts *opts, bool track)
765 {
766 struct perf_evsel_config_term *term;
767 struct list_head *config_terms = &evsel->config_terms;
768 struct perf_event_attr *attr = &evsel->attr;
769 /* callgraph default */
770 struct callchain_param param = {
771 .record_mode = callchain_param.record_mode,
772 };
773 u32 dump_size = 0;
774 int max_stack = 0;
775 const char *callgraph_buf = NULL;
776
777 list_for_each_entry(term, config_terms, list) {
778 switch (term->type) {
779 case PERF_EVSEL__CONFIG_TERM_PERIOD:
780 if (!(term->weak && opts->user_interval != ULLONG_MAX)) {
781 attr->sample_period = term->val.period;
782 attr->freq = 0;
783 perf_evsel__reset_sample_bit(evsel, PERIOD);
784 }
785 break;
786 case PERF_EVSEL__CONFIG_TERM_FREQ:
787 if (!(term->weak && opts->user_freq != UINT_MAX)) {
788 attr->sample_freq = term->val.freq;
789 attr->freq = 1;
790 perf_evsel__set_sample_bit(evsel, PERIOD);
791 }
792 break;
793 case PERF_EVSEL__CONFIG_TERM_TIME:
794 if (term->val.time)
795 perf_evsel__set_sample_bit(evsel, TIME);
796 else
797 perf_evsel__reset_sample_bit(evsel, TIME);
798 break;
799 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
800 callgraph_buf = term->val.callgraph;
801 break;
802 case PERF_EVSEL__CONFIG_TERM_BRANCH:
803 if (term->val.branch && strcmp(term->val.branch, "no")) {
804 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
805 parse_branch_str(term->val.branch,
806 &attr->branch_sample_type);
807 } else
808 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
809 break;
810 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
811 dump_size = term->val.stack_user;
812 break;
813 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
814 max_stack = term->val.max_stack;
815 break;
816 case PERF_EVSEL__CONFIG_TERM_MAX_EVENTS:
817 evsel->max_events = term->val.max_events;
818 break;
819 case PERF_EVSEL__CONFIG_TERM_INHERIT:
820 /*
821 * attr->inherit should has already been set by
822 * perf_evsel__config. If user explicitly set
823 * inherit using config terms, override global
824 * opt->no_inherit setting.
825 */
826 attr->inherit = term->val.inherit ? 1 : 0;
827 break;
828 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
829 attr->write_backward = term->val.overwrite ? 1 : 0;
830 break;
831 case PERF_EVSEL__CONFIG_TERM_DRV_CFG:
832 break;
833 case PERF_EVSEL__CONFIG_TERM_PERCORE:
834 break;
835 default:
836 break;
837 }
838 }
839
840 /* User explicitly set per-event callgraph, clear the old setting and reset. */
841 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
842 bool sample_address = false;
843
844 if (max_stack) {
845 param.max_stack = max_stack;
846 if (callgraph_buf == NULL)
847 callgraph_buf = "fp";
848 }
849
850 /* parse callgraph parameters */
851 if (callgraph_buf != NULL) {
852 if (!strcmp(callgraph_buf, "no")) {
853 param.enabled = false;
854 param.record_mode = CALLCHAIN_NONE;
855 } else {
856 param.enabled = true;
857 if (parse_callchain_record(callgraph_buf, &param)) {
858 pr_err("per-event callgraph setting for %s failed. "
859 "Apply callgraph global setting for it\n",
860 evsel->name);
861 return;
862 }
863 if (param.record_mode == CALLCHAIN_DWARF)
864 sample_address = true;
865 }
866 }
867 if (dump_size > 0) {
868 dump_size = round_up(dump_size, sizeof(u64));
869 param.dump_size = dump_size;
870 }
871
872 /* If global callgraph set, clear it */
873 if (callchain_param.enabled)
874 perf_evsel__reset_callgraph(evsel, &callchain_param);
875
876 /* set perf-event callgraph */
877 if (param.enabled) {
878 if (sample_address) {
879 perf_evsel__set_sample_bit(evsel, ADDR);
880 perf_evsel__set_sample_bit(evsel, DATA_SRC);
881 evsel->attr.mmap_data = track;
882 }
883 perf_evsel__config_callchain(evsel, opts, &param);
884 }
885 }
886 }
887
888 static bool is_dummy_event(struct perf_evsel *evsel)
889 {
890 return (evsel->attr.type == PERF_TYPE_SOFTWARE) &&
891 (evsel->attr.config == PERF_COUNT_SW_DUMMY);
892 }
893
894 /*
895 * The enable_on_exec/disabled value strategy:
896 *
897 * 1) For any type of traced program:
898 * - all independent events and group leaders are disabled
899 * - all group members are enabled
900 *
901 * Group members are ruled by group leaders. They need to
902 * be enabled, because the group scheduling relies on that.
903 *
904 * 2) For traced programs executed by perf:
905 * - all independent events and group leaders have
906 * enable_on_exec set
907 * - we don't specifically enable or disable any event during
908 * the record command
909 *
910 * Independent events and group leaders are initially disabled
911 * and get enabled by exec. Group members are ruled by group
912 * leaders as stated in 1).
913 *
914 * 3) For traced programs attached by perf (pid/tid):
915 * - we specifically enable or disable all events during
916 * the record command
917 *
918 * When attaching events to already running traced we
919 * enable/disable events specifically, as there's no
920 * initial traced exec call.
921 */
922 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
923 struct callchain_param *callchain)
924 {
925 struct perf_evsel *leader = evsel->leader;
926 struct perf_event_attr *attr = &evsel->attr;
927 int track = evsel->tracking;
928 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
929
930 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
931 attr->inherit = !opts->no_inherit;
932 attr->write_backward = opts->overwrite ? 1 : 0;
933
934 perf_evsel__set_sample_bit(evsel, IP);
935 perf_evsel__set_sample_bit(evsel, TID);
936
937 if (evsel->sample_read) {
938 perf_evsel__set_sample_bit(evsel, READ);
939
940 /*
941 * We need ID even in case of single event, because
942 * PERF_SAMPLE_READ process ID specific data.
943 */
944 perf_evsel__set_sample_id(evsel, false);
945
946 /*
947 * Apply group format only if we belong to group
948 * with more than one members.
949 */
950 if (leader->nr_members > 1) {
951 attr->read_format |= PERF_FORMAT_GROUP;
952 attr->inherit = 0;
953 }
954 }
955
956 /*
957 * We default some events to have a default interval. But keep
958 * it a weak assumption overridable by the user.
959 */
960 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
961 opts->user_interval != ULLONG_MAX)) {
962 if (opts->freq) {
963 perf_evsel__set_sample_bit(evsel, PERIOD);
964 attr->freq = 1;
965 attr->sample_freq = opts->freq;
966 } else {
967 attr->sample_period = opts->default_interval;
968 }
969 }
970
971 /*
972 * Disable sampling for all group members other
973 * than leader in case leader 'leads' the sampling.
974 */
975 if ((leader != evsel) && leader->sample_read) {
976 attr->freq = 0;
977 attr->sample_freq = 0;
978 attr->sample_period = 0;
979 attr->write_backward = 0;
980
981 /*
982 * We don't get sample for slave events, we make them
983 * when delivering group leader sample. Set the slave
984 * event to follow the master sample_type to ease up
985 * report.
986 */
987 attr->sample_type = leader->attr.sample_type;
988 }
989
990 if (opts->no_samples)
991 attr->sample_freq = 0;
992
993 if (opts->inherit_stat) {
994 evsel->attr.read_format |=
995 PERF_FORMAT_TOTAL_TIME_ENABLED |
996 PERF_FORMAT_TOTAL_TIME_RUNNING |
997 PERF_FORMAT_ID;
998 attr->inherit_stat = 1;
999 }
1000
1001 if (opts->sample_address) {
1002 perf_evsel__set_sample_bit(evsel, ADDR);
1003 attr->mmap_data = track;
1004 }
1005
1006 /*
1007 * We don't allow user space callchains for function trace
1008 * event, due to issues with page faults while tracing page
1009 * fault handler and its overall trickiness nature.
1010 */
1011 if (perf_evsel__is_function_event(evsel))
1012 evsel->attr.exclude_callchain_user = 1;
1013
1014 if (callchain && callchain->enabled && !evsel->no_aux_samples)
1015 perf_evsel__config_callchain(evsel, opts, callchain);
1016
1017 if (opts->sample_intr_regs) {
1018 attr->sample_regs_intr = opts->sample_intr_regs;
1019 perf_evsel__set_sample_bit(evsel, REGS_INTR);
1020 }
1021
1022 if (opts->sample_user_regs) {
1023 attr->sample_regs_user |= opts->sample_user_regs;
1024 perf_evsel__set_sample_bit(evsel, REGS_USER);
1025 }
1026
1027 if (target__has_cpu(&opts->target) || opts->sample_cpu)
1028 perf_evsel__set_sample_bit(evsel, CPU);
1029
1030 /*
1031 * When the user explicitly disabled time don't force it here.
1032 */
1033 if (opts->sample_time &&
1034 (!perf_missing_features.sample_id_all &&
1035 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
1036 opts->sample_time_set)))
1037 perf_evsel__set_sample_bit(evsel, TIME);
1038
1039 if (opts->raw_samples && !evsel->no_aux_samples) {
1040 perf_evsel__set_sample_bit(evsel, TIME);
1041 perf_evsel__set_sample_bit(evsel, RAW);
1042 perf_evsel__set_sample_bit(evsel, CPU);
1043 }
1044
1045 if (opts->sample_address)
1046 perf_evsel__set_sample_bit(evsel, DATA_SRC);
1047
1048 if (opts->sample_phys_addr)
1049 perf_evsel__set_sample_bit(evsel, PHYS_ADDR);
1050
1051 if (opts->no_buffering) {
1052 attr->watermark = 0;
1053 attr->wakeup_events = 1;
1054 }
1055 if (opts->branch_stack && !evsel->no_aux_samples) {
1056 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
1057 attr->branch_sample_type = opts->branch_stack;
1058 }
1059
1060 if (opts->sample_weight)
1061 perf_evsel__set_sample_bit(evsel, WEIGHT);
1062
1063 attr->task = track;
1064 attr->mmap = track;
1065 attr->mmap2 = track && !perf_missing_features.mmap2;
1066 attr->comm = track;
1067 attr->ksymbol = track && !perf_missing_features.ksymbol;
1068 attr->bpf_event = track && !opts->no_bpf_event &&
1069 !perf_missing_features.bpf_event;
1070
1071 if (opts->record_namespaces)
1072 attr->namespaces = track;
1073
1074 if (opts->record_switch_events)
1075 attr->context_switch = track;
1076
1077 if (opts->sample_transaction)
1078 perf_evsel__set_sample_bit(evsel, TRANSACTION);
1079
1080 if (opts->running_time) {
1081 evsel->attr.read_format |=
1082 PERF_FORMAT_TOTAL_TIME_ENABLED |
1083 PERF_FORMAT_TOTAL_TIME_RUNNING;
1084 }
1085
1086 /*
1087 * XXX see the function comment above
1088 *
1089 * Disabling only independent events or group leaders,
1090 * keeping group members enabled.
1091 */
1092 if (perf_evsel__is_group_leader(evsel))
1093 attr->disabled = 1;
1094
1095 /*
1096 * Setting enable_on_exec for independent events and
1097 * group leaders for traced executed by perf.
1098 */
1099 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
1100 !opts->initial_delay)
1101 attr->enable_on_exec = 1;
1102
1103 if (evsel->immediate) {
1104 attr->disabled = 0;
1105 attr->enable_on_exec = 0;
1106 }
1107
1108 clockid = opts->clockid;
1109 if (opts->use_clockid) {
1110 attr->use_clockid = 1;
1111 attr->clockid = opts->clockid;
1112 }
1113
1114 if (evsel->precise_max)
1115 attr->precise_ip = 3;
1116
1117 if (opts->all_user) {
1118 attr->exclude_kernel = 1;
1119 attr->exclude_user = 0;
1120 }
1121
1122 if (opts->all_kernel) {
1123 attr->exclude_kernel = 0;
1124 attr->exclude_user = 1;
1125 }
1126
1127 if (evsel->own_cpus || evsel->unit)
1128 evsel->attr.read_format |= PERF_FORMAT_ID;
1129
1130 /*
1131 * Apply event specific term settings,
1132 * it overloads any global configuration.
1133 */
1134 apply_config_terms(evsel, opts, track);
1135
1136 evsel->ignore_missing_thread = opts->ignore_missing_thread;
1137
1138 /* The --period option takes the precedence. */
1139 if (opts->period_set) {
1140 if (opts->period)
1141 perf_evsel__set_sample_bit(evsel, PERIOD);
1142 else
1143 perf_evsel__reset_sample_bit(evsel, PERIOD);
1144 }
1145
1146 /*
1147 * For initial_delay, a dummy event is added implicitly.
1148 * The software event will trigger -EOPNOTSUPP error out,
1149 * if BRANCH_STACK bit is set.
1150 */
1151 if (opts->initial_delay && is_dummy_event(evsel))
1152 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
1153 }
1154
1155 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1156 {
1157 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1158
1159 if (evsel->fd) {
1160 int cpu, thread;
1161 for (cpu = 0; cpu < ncpus; cpu++) {
1162 for (thread = 0; thread < nthreads; thread++) {
1163 FD(evsel, cpu, thread) = -1;
1164 }
1165 }
1166 }
1167
1168 return evsel->fd != NULL ? 0 : -ENOMEM;
1169 }
1170
1171 static int perf_evsel__run_ioctl(struct perf_evsel *evsel,
1172 int ioc, void *arg)
1173 {
1174 int cpu, thread;
1175
1176 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
1177 for (thread = 0; thread < xyarray__max_y(evsel->fd); thread++) {
1178 int fd = FD(evsel, cpu, thread),
1179 err = ioctl(fd, ioc, arg);
1180
1181 if (err)
1182 return err;
1183 }
1184 }
1185
1186 return 0;
1187 }
1188
1189 int perf_evsel__apply_filter(struct perf_evsel *evsel, const char *filter)
1190 {
1191 return perf_evsel__run_ioctl(evsel,
1192 PERF_EVENT_IOC_SET_FILTER,
1193 (void *)filter);
1194 }
1195
1196 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1197 {
1198 char *new_filter = strdup(filter);
1199
1200 if (new_filter != NULL) {
1201 free(evsel->filter);
1202 evsel->filter = new_filter;
1203 return 0;
1204 }
1205
1206 return -1;
1207 }
1208
1209 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1210 const char *fmt, const char *filter)
1211 {
1212 char *new_filter;
1213
1214 if (evsel->filter == NULL)
1215 return perf_evsel__set_filter(evsel, filter);
1216
1217 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1218 free(evsel->filter);
1219 evsel->filter = new_filter;
1220 return 0;
1221 }
1222
1223 return -1;
1224 }
1225
1226 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1227 {
1228 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1229 }
1230
1231 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1232 {
1233 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1234 }
1235
1236 int perf_evsel__enable(struct perf_evsel *evsel)
1237 {
1238 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_ENABLE, 0);
1239
1240 if (!err)
1241 evsel->disabled = false;
1242
1243 return err;
1244 }
1245
1246 int perf_evsel__disable(struct perf_evsel *evsel)
1247 {
1248 int err = perf_evsel__run_ioctl(evsel, PERF_EVENT_IOC_DISABLE, 0);
1249 /*
1250 * We mark it disabled here so that tools that disable a event can
1251 * ignore events after they disable it. I.e. the ring buffer may have
1252 * already a few more events queued up before the kernel got the stop
1253 * request.
1254 */
1255 if (!err)
1256 evsel->disabled = true;
1257
1258 return err;
1259 }
1260
1261 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1262 {
1263 if (ncpus == 0 || nthreads == 0)
1264 return 0;
1265
1266 if (evsel->system_wide)
1267 nthreads = 1;
1268
1269 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1270 if (evsel->sample_id == NULL)
1271 return -ENOMEM;
1272
1273 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1274 if (evsel->id == NULL) {
1275 xyarray__delete(evsel->sample_id);
1276 evsel->sample_id = NULL;
1277 return -ENOMEM;
1278 }
1279
1280 return 0;
1281 }
1282
1283 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1284 {
1285 xyarray__delete(evsel->fd);
1286 evsel->fd = NULL;
1287 }
1288
1289 static void perf_evsel__free_id(struct perf_evsel *evsel)
1290 {
1291 xyarray__delete(evsel->sample_id);
1292 evsel->sample_id = NULL;
1293 zfree(&evsel->id);
1294 evsel->ids = 0;
1295 }
1296
1297 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1298 {
1299 struct perf_evsel_config_term *term, *h;
1300
1301 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1302 list_del_init(&term->list);
1303 free(term);
1304 }
1305 }
1306
1307 void perf_evsel__close_fd(struct perf_evsel *evsel)
1308 {
1309 int cpu, thread;
1310
1311 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++)
1312 for (thread = 0; thread < xyarray__max_y(evsel->fd); ++thread) {
1313 close(FD(evsel, cpu, thread));
1314 FD(evsel, cpu, thread) = -1;
1315 }
1316 }
1317
1318 void perf_evsel__exit(struct perf_evsel *evsel)
1319 {
1320 assert(list_empty(&evsel->node));
1321 assert(evsel->evlist == NULL);
1322 perf_evsel__free_counts(evsel);
1323 perf_evsel__free_fd(evsel);
1324 perf_evsel__free_id(evsel);
1325 perf_evsel__free_config_terms(evsel);
1326 cgroup__put(evsel->cgrp);
1327 cpu_map__put(evsel->cpus);
1328 cpu_map__put(evsel->own_cpus);
1329 thread_map__put(evsel->threads);
1330 zfree(&evsel->group_name);
1331 zfree(&evsel->name);
1332 perf_evsel__object.fini(evsel);
1333 }
1334
1335 void perf_evsel__delete(struct perf_evsel *evsel)
1336 {
1337 perf_evsel__exit(evsel);
1338 free(evsel);
1339 }
1340
1341 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1342 struct perf_counts_values *count)
1343 {
1344 struct perf_counts_values tmp;
1345
1346 if (!evsel->prev_raw_counts)
1347 return;
1348
1349 if (cpu == -1) {
1350 tmp = evsel->prev_raw_counts->aggr;
1351 evsel->prev_raw_counts->aggr = *count;
1352 } else {
1353 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1354 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1355 }
1356
1357 count->val = count->val - tmp.val;
1358 count->ena = count->ena - tmp.ena;
1359 count->run = count->run - tmp.run;
1360 }
1361
1362 void perf_counts_values__scale(struct perf_counts_values *count,
1363 bool scale, s8 *pscaled)
1364 {
1365 s8 scaled = 0;
1366
1367 if (scale) {
1368 if (count->run == 0) {
1369 scaled = -1;
1370 count->val = 0;
1371 } else if (count->run < count->ena) {
1372 scaled = 1;
1373 count->val = (u64)((double) count->val * count->ena / count->run);
1374 }
1375 }
1376
1377 if (pscaled)
1378 *pscaled = scaled;
1379 }
1380
1381 static int perf_evsel__read_size(struct perf_evsel *evsel)
1382 {
1383 u64 read_format = evsel->attr.read_format;
1384 int entry = sizeof(u64); /* value */
1385 int size = 0;
1386 int nr = 1;
1387
1388 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1389 size += sizeof(u64);
1390
1391 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1392 size += sizeof(u64);
1393
1394 if (read_format & PERF_FORMAT_ID)
1395 entry += sizeof(u64);
1396
1397 if (read_format & PERF_FORMAT_GROUP) {
1398 nr = evsel->nr_members;
1399 size += sizeof(u64);
1400 }
1401
1402 size += entry * nr;
1403 return size;
1404 }
1405
1406 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1407 struct perf_counts_values *count)
1408 {
1409 size_t size = perf_evsel__read_size(evsel);
1410
1411 memset(count, 0, sizeof(*count));
1412
1413 if (FD(evsel, cpu, thread) < 0)
1414 return -EINVAL;
1415
1416 if (readn(FD(evsel, cpu, thread), count->values, size) <= 0)
1417 return -errno;
1418
1419 return 0;
1420 }
1421
1422 static int
1423 perf_evsel__read_one(struct perf_evsel *evsel, int cpu, int thread)
1424 {
1425 struct perf_counts_values *count = perf_counts(evsel->counts, cpu, thread);
1426
1427 return perf_evsel__read(evsel, cpu, thread, count);
1428 }
1429
1430 static void
1431 perf_evsel__set_count(struct perf_evsel *counter, int cpu, int thread,
1432 u64 val, u64 ena, u64 run)
1433 {
1434 struct perf_counts_values *count;
1435
1436 count = perf_counts(counter->counts, cpu, thread);
1437
1438 count->val = val;
1439 count->ena = ena;
1440 count->run = run;
1441 count->loaded = true;
1442 }
1443
1444 static int
1445 perf_evsel__process_group_data(struct perf_evsel *leader,
1446 int cpu, int thread, u64 *data)
1447 {
1448 u64 read_format = leader->attr.read_format;
1449 struct sample_read_value *v;
1450 u64 nr, ena = 0, run = 0, i;
1451
1452 nr = *data++;
1453
1454 if (nr != (u64) leader->nr_members)
1455 return -EINVAL;
1456
1457 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1458 ena = *data++;
1459
1460 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1461 run = *data++;
1462
1463 v = (struct sample_read_value *) data;
1464
1465 perf_evsel__set_count(leader, cpu, thread,
1466 v[0].value, ena, run);
1467
1468 for (i = 1; i < nr; i++) {
1469 struct perf_evsel *counter;
1470
1471 counter = perf_evlist__id2evsel(leader->evlist, v[i].id);
1472 if (!counter)
1473 return -EINVAL;
1474
1475 perf_evsel__set_count(counter, cpu, thread,
1476 v[i].value, ena, run);
1477 }
1478
1479 return 0;
1480 }
1481
1482 static int
1483 perf_evsel__read_group(struct perf_evsel *leader, int cpu, int thread)
1484 {
1485 struct perf_stat_evsel *ps = leader->stats;
1486 u64 read_format = leader->attr.read_format;
1487 int size = perf_evsel__read_size(leader);
1488 u64 *data = ps->group_data;
1489
1490 if (!(read_format & PERF_FORMAT_ID))
1491 return -EINVAL;
1492
1493 if (!perf_evsel__is_group_leader(leader))
1494 return -EINVAL;
1495
1496 if (!data) {
1497 data = zalloc(size);
1498 if (!data)
1499 return -ENOMEM;
1500
1501 ps->group_data = data;
1502 }
1503
1504 if (FD(leader, cpu, thread) < 0)
1505 return -EINVAL;
1506
1507 if (readn(FD(leader, cpu, thread), data, size) <= 0)
1508 return -errno;
1509
1510 return perf_evsel__process_group_data(leader, cpu, thread, data);
1511 }
1512
1513 int perf_evsel__read_counter(struct perf_evsel *evsel, int cpu, int thread)
1514 {
1515 u64 read_format = evsel->attr.read_format;
1516
1517 if (read_format & PERF_FORMAT_GROUP)
1518 return perf_evsel__read_group(evsel, cpu, thread);
1519 else
1520 return perf_evsel__read_one(evsel, cpu, thread);
1521 }
1522
1523 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1524 int cpu, int thread, bool scale)
1525 {
1526 struct perf_counts_values count;
1527 size_t nv = scale ? 3 : 1;
1528
1529 if (FD(evsel, cpu, thread) < 0)
1530 return -EINVAL;
1531
1532 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1533 return -ENOMEM;
1534
1535 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1536 return -errno;
1537
1538 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1539 perf_counts_values__scale(&count, scale, NULL);
1540 *perf_counts(evsel->counts, cpu, thread) = count;
1541 return 0;
1542 }
1543
1544 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1545 {
1546 struct perf_evsel *leader = evsel->leader;
1547 int fd;
1548
1549 if (perf_evsel__is_group_leader(evsel))
1550 return -1;
1551
1552 /*
1553 * Leader must be already processed/open,
1554 * if not it's a bug.
1555 */
1556 BUG_ON(!leader->fd);
1557
1558 fd = FD(leader, cpu, thread);
1559 BUG_ON(fd == -1);
1560
1561 return fd;
1562 }
1563
1564 struct bit_names {
1565 int bit;
1566 const char *name;
1567 };
1568
1569 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1570 {
1571 bool first_bit = true;
1572 int i = 0;
1573
1574 do {
1575 if (value & bits[i].bit) {
1576 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1577 first_bit = false;
1578 }
1579 } while (bits[++i].name != NULL);
1580 }
1581
1582 static void __p_sample_type(char *buf, size_t size, u64 value)
1583 {
1584 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1585 struct bit_names bits[] = {
1586 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1587 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1588 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1589 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1590 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1591 bit_name(WEIGHT), bit_name(PHYS_ADDR),
1592 { .name = NULL, }
1593 };
1594 #undef bit_name
1595 __p_bits(buf, size, value, bits);
1596 }
1597
1598 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1599 {
1600 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1601 struct bit_names bits[] = {
1602 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1603 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1604 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1605 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1606 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1607 { .name = NULL, }
1608 };
1609 #undef bit_name
1610 __p_bits(buf, size, value, bits);
1611 }
1612
1613 static void __p_read_format(char *buf, size_t size, u64 value)
1614 {
1615 #define bit_name(n) { PERF_FORMAT_##n, #n }
1616 struct bit_names bits[] = {
1617 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1618 bit_name(ID), bit_name(GROUP),
1619 { .name = NULL, }
1620 };
1621 #undef bit_name
1622 __p_bits(buf, size, value, bits);
1623 }
1624
1625 #define BUF_SIZE 1024
1626
1627 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1628 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1629 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1630 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1631 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1632 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1633
1634 #define PRINT_ATTRn(_n, _f, _p) \
1635 do { \
1636 if (attr->_f) { \
1637 _p(attr->_f); \
1638 ret += attr__fprintf(fp, _n, buf, priv);\
1639 } \
1640 } while (0)
1641
1642 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1643
1644 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1645 attr__fprintf_f attr__fprintf, void *priv)
1646 {
1647 char buf[BUF_SIZE];
1648 int ret = 0;
1649
1650 PRINT_ATTRf(type, p_unsigned);
1651 PRINT_ATTRf(size, p_unsigned);
1652 PRINT_ATTRf(config, p_hex);
1653 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1654 PRINT_ATTRf(sample_type, p_sample_type);
1655 PRINT_ATTRf(read_format, p_read_format);
1656
1657 PRINT_ATTRf(disabled, p_unsigned);
1658 PRINT_ATTRf(inherit, p_unsigned);
1659 PRINT_ATTRf(pinned, p_unsigned);
1660 PRINT_ATTRf(exclusive, p_unsigned);
1661 PRINT_ATTRf(exclude_user, p_unsigned);
1662 PRINT_ATTRf(exclude_kernel, p_unsigned);
1663 PRINT_ATTRf(exclude_hv, p_unsigned);
1664 PRINT_ATTRf(exclude_idle, p_unsigned);
1665 PRINT_ATTRf(mmap, p_unsigned);
1666 PRINT_ATTRf(comm, p_unsigned);
1667 PRINT_ATTRf(freq, p_unsigned);
1668 PRINT_ATTRf(inherit_stat, p_unsigned);
1669 PRINT_ATTRf(enable_on_exec, p_unsigned);
1670 PRINT_ATTRf(task, p_unsigned);
1671 PRINT_ATTRf(watermark, p_unsigned);
1672 PRINT_ATTRf(precise_ip, p_unsigned);
1673 PRINT_ATTRf(mmap_data, p_unsigned);
1674 PRINT_ATTRf(sample_id_all, p_unsigned);
1675 PRINT_ATTRf(exclude_host, p_unsigned);
1676 PRINT_ATTRf(exclude_guest, p_unsigned);
1677 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1678 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1679 PRINT_ATTRf(mmap2, p_unsigned);
1680 PRINT_ATTRf(comm_exec, p_unsigned);
1681 PRINT_ATTRf(use_clockid, p_unsigned);
1682 PRINT_ATTRf(context_switch, p_unsigned);
1683 PRINT_ATTRf(write_backward, p_unsigned);
1684 PRINT_ATTRf(namespaces, p_unsigned);
1685 PRINT_ATTRf(ksymbol, p_unsigned);
1686 PRINT_ATTRf(bpf_event, p_unsigned);
1687
1688 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1689 PRINT_ATTRf(bp_type, p_unsigned);
1690 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1691 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1692 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1693 PRINT_ATTRf(sample_regs_user, p_hex);
1694 PRINT_ATTRf(sample_stack_user, p_unsigned);
1695 PRINT_ATTRf(clockid, p_signed);
1696 PRINT_ATTRf(sample_regs_intr, p_hex);
1697 PRINT_ATTRf(aux_watermark, p_unsigned);
1698 PRINT_ATTRf(sample_max_stack, p_unsigned);
1699
1700 return ret;
1701 }
1702
1703 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1704 void *priv __maybe_unused)
1705 {
1706 return fprintf(fp, " %-32s %s\n", name, val);
1707 }
1708
1709 static void perf_evsel__remove_fd(struct perf_evsel *pos,
1710 int nr_cpus, int nr_threads,
1711 int thread_idx)
1712 {
1713 for (int cpu = 0; cpu < nr_cpus; cpu++)
1714 for (int thread = thread_idx; thread < nr_threads - 1; thread++)
1715 FD(pos, cpu, thread) = FD(pos, cpu, thread + 1);
1716 }
1717
1718 static int update_fds(struct perf_evsel *evsel,
1719 int nr_cpus, int cpu_idx,
1720 int nr_threads, int thread_idx)
1721 {
1722 struct perf_evsel *pos;
1723
1724 if (cpu_idx >= nr_cpus || thread_idx >= nr_threads)
1725 return -EINVAL;
1726
1727 evlist__for_each_entry(evsel->evlist, pos) {
1728 nr_cpus = pos != evsel ? nr_cpus : cpu_idx;
1729
1730 perf_evsel__remove_fd(pos, nr_cpus, nr_threads, thread_idx);
1731
1732 /*
1733 * Since fds for next evsel has not been created,
1734 * there is no need to iterate whole event list.
1735 */
1736 if (pos == evsel)
1737 break;
1738 }
1739 return 0;
1740 }
1741
1742 static bool ignore_missing_thread(struct perf_evsel *evsel,
1743 int nr_cpus, int cpu,
1744 struct thread_map *threads,
1745 int thread, int err)
1746 {
1747 pid_t ignore_pid = thread_map__pid(threads, thread);
1748
1749 if (!evsel->ignore_missing_thread)
1750 return false;
1751
1752 /* The system wide setup does not work with threads. */
1753 if (evsel->system_wide)
1754 return false;
1755
1756 /* The -ESRCH is perf event syscall errno for pid's not found. */
1757 if (err != -ESRCH)
1758 return false;
1759
1760 /* If there's only one thread, let it fail. */
1761 if (threads->nr == 1)
1762 return false;
1763
1764 /*
1765 * We should remove fd for missing_thread first
1766 * because thread_map__remove() will decrease threads->nr.
1767 */
1768 if (update_fds(evsel, nr_cpus, cpu, threads->nr, thread))
1769 return false;
1770
1771 if (thread_map__remove(threads, thread))
1772 return false;
1773
1774 pr_warning("WARNING: Ignored open failure for pid %d\n",
1775 ignore_pid);
1776 return true;
1777 }
1778
1779 static void display_attr(struct perf_event_attr *attr)
1780 {
1781 if (verbose >= 2) {
1782 fprintf(stderr, "%.60s\n", graph_dotted_line);
1783 fprintf(stderr, "perf_event_attr:\n");
1784 perf_event_attr__fprintf(stderr, attr, __open_attr__fprintf, NULL);
1785 fprintf(stderr, "%.60s\n", graph_dotted_line);
1786 }
1787 }
1788
1789 static int perf_event_open(struct perf_evsel *evsel,
1790 pid_t pid, int cpu, int group_fd,
1791 unsigned long flags)
1792 {
1793 int precise_ip = evsel->attr.precise_ip;
1794 int fd;
1795
1796 while (1) {
1797 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx",
1798 pid, cpu, group_fd, flags);
1799
1800 fd = sys_perf_event_open(&evsel->attr, pid, cpu, group_fd, flags);
1801 if (fd >= 0)
1802 break;
1803
1804 /* Do not try less precise if not requested. */
1805 if (!evsel->precise_max)
1806 break;
1807
1808 /*
1809 * We tried all the precise_ip values, and it's
1810 * still failing, so leave it to standard fallback.
1811 */
1812 if (!evsel->attr.precise_ip) {
1813 evsel->attr.precise_ip = precise_ip;
1814 break;
1815 }
1816
1817 pr_debug2("\nsys_perf_event_open failed, error %d\n", -ENOTSUP);
1818 evsel->attr.precise_ip--;
1819 pr_debug2("decreasing precise_ip by one (%d)\n", evsel->attr.precise_ip);
1820 display_attr(&evsel->attr);
1821 }
1822
1823 return fd;
1824 }
1825
1826 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1827 struct thread_map *threads)
1828 {
1829 int cpu, thread, nthreads;
1830 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1831 int pid = -1, err;
1832 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1833
1834 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1835 return -EINVAL;
1836
1837 if (cpus == NULL) {
1838 static struct cpu_map *empty_cpu_map;
1839
1840 if (empty_cpu_map == NULL) {
1841 empty_cpu_map = cpu_map__dummy_new();
1842 if (empty_cpu_map == NULL)
1843 return -ENOMEM;
1844 }
1845
1846 cpus = empty_cpu_map;
1847 }
1848
1849 if (threads == NULL) {
1850 static struct thread_map *empty_thread_map;
1851
1852 if (empty_thread_map == NULL) {
1853 empty_thread_map = thread_map__new_by_tid(-1);
1854 if (empty_thread_map == NULL)
1855 return -ENOMEM;
1856 }
1857
1858 threads = empty_thread_map;
1859 }
1860
1861 if (evsel->system_wide)
1862 nthreads = 1;
1863 else
1864 nthreads = threads->nr;
1865
1866 if (evsel->fd == NULL &&
1867 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1868 return -ENOMEM;
1869
1870 if (evsel->cgrp) {
1871 flags |= PERF_FLAG_PID_CGROUP;
1872 pid = evsel->cgrp->fd;
1873 }
1874
1875 fallback_missing_features:
1876 if (perf_missing_features.clockid_wrong)
1877 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1878 if (perf_missing_features.clockid) {
1879 evsel->attr.use_clockid = 0;
1880 evsel->attr.clockid = 0;
1881 }
1882 if (perf_missing_features.cloexec)
1883 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1884 if (perf_missing_features.mmap2)
1885 evsel->attr.mmap2 = 0;
1886 if (perf_missing_features.exclude_guest)
1887 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1888 if (perf_missing_features.lbr_flags)
1889 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1890 PERF_SAMPLE_BRANCH_NO_CYCLES);
1891 if (perf_missing_features.group_read && evsel->attr.inherit)
1892 evsel->attr.read_format &= ~(PERF_FORMAT_GROUP|PERF_FORMAT_ID);
1893 if (perf_missing_features.ksymbol)
1894 evsel->attr.ksymbol = 0;
1895 if (perf_missing_features.bpf_event)
1896 evsel->attr.bpf_event = 0;
1897 retry_sample_id:
1898 if (perf_missing_features.sample_id_all)
1899 evsel->attr.sample_id_all = 0;
1900
1901 display_attr(&evsel->attr);
1902
1903 for (cpu = 0; cpu < cpus->nr; cpu++) {
1904
1905 for (thread = 0; thread < nthreads; thread++) {
1906 int fd, group_fd;
1907
1908 if (!evsel->cgrp && !evsel->system_wide)
1909 pid = thread_map__pid(threads, thread);
1910
1911 group_fd = get_group_fd(evsel, cpu, thread);
1912 retry_open:
1913 test_attr__ready();
1914
1915 fd = perf_event_open(evsel, pid, cpus->map[cpu],
1916 group_fd, flags);
1917
1918 FD(evsel, cpu, thread) = fd;
1919
1920 if (fd < 0) {
1921 err = -errno;
1922
1923 if (ignore_missing_thread(evsel, cpus->nr, cpu, threads, thread, err)) {
1924 /*
1925 * We just removed 1 thread, so take a step
1926 * back on thread index and lower the upper
1927 * nthreads limit.
1928 */
1929 nthreads--;
1930 thread--;
1931
1932 /* ... and pretend like nothing have happened. */
1933 err = 0;
1934 continue;
1935 }
1936
1937 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1938 err);
1939 goto try_fallback;
1940 }
1941
1942 pr_debug2(" = %d\n", fd);
1943
1944 if (evsel->bpf_fd >= 0) {
1945 int evt_fd = fd;
1946 int bpf_fd = evsel->bpf_fd;
1947
1948 err = ioctl(evt_fd,
1949 PERF_EVENT_IOC_SET_BPF,
1950 bpf_fd);
1951 if (err && errno != EEXIST) {
1952 pr_err("failed to attach bpf fd %d: %s\n",
1953 bpf_fd, strerror(errno));
1954 err = -EINVAL;
1955 goto out_close;
1956 }
1957 }
1958
1959 set_rlimit = NO_CHANGE;
1960
1961 /*
1962 * If we succeeded but had to kill clockid, fail and
1963 * have perf_evsel__open_strerror() print us a nice
1964 * error.
1965 */
1966 if (perf_missing_features.clockid ||
1967 perf_missing_features.clockid_wrong) {
1968 err = -EINVAL;
1969 goto out_close;
1970 }
1971 }
1972 }
1973
1974 return 0;
1975
1976 try_fallback:
1977 /*
1978 * perf stat needs between 5 and 22 fds per CPU. When we run out
1979 * of them try to increase the limits.
1980 */
1981 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1982 struct rlimit l;
1983 int old_errno = errno;
1984
1985 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1986 if (set_rlimit == NO_CHANGE)
1987 l.rlim_cur = l.rlim_max;
1988 else {
1989 l.rlim_cur = l.rlim_max + 1000;
1990 l.rlim_max = l.rlim_cur;
1991 }
1992 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1993 set_rlimit++;
1994 errno = old_errno;
1995 goto retry_open;
1996 }
1997 }
1998 errno = old_errno;
1999 }
2000
2001 if (err != -EINVAL || cpu > 0 || thread > 0)
2002 goto out_close;
2003
2004 /*
2005 * Must probe features in the order they were added to the
2006 * perf_event_attr interface.
2007 */
2008 if (!perf_missing_features.bpf_event && evsel->attr.bpf_event) {
2009 perf_missing_features.bpf_event = true;
2010 pr_debug2("switching off bpf_event\n");
2011 goto fallback_missing_features;
2012 } else if (!perf_missing_features.ksymbol && evsel->attr.ksymbol) {
2013 perf_missing_features.ksymbol = true;
2014 pr_debug2("switching off ksymbol\n");
2015 goto fallback_missing_features;
2016 } else if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
2017 perf_missing_features.write_backward = true;
2018 pr_debug2("switching off write_backward\n");
2019 goto out_close;
2020 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
2021 perf_missing_features.clockid_wrong = true;
2022 pr_debug2("switching off clockid\n");
2023 goto fallback_missing_features;
2024 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
2025 perf_missing_features.clockid = true;
2026 pr_debug2("switching off use_clockid\n");
2027 goto fallback_missing_features;
2028 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
2029 perf_missing_features.cloexec = true;
2030 pr_debug2("switching off cloexec flag\n");
2031 goto fallback_missing_features;
2032 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
2033 perf_missing_features.mmap2 = true;
2034 pr_debug2("switching off mmap2\n");
2035 goto fallback_missing_features;
2036 } else if (!perf_missing_features.exclude_guest &&
2037 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
2038 perf_missing_features.exclude_guest = true;
2039 pr_debug2("switching off exclude_guest, exclude_host\n");
2040 goto fallback_missing_features;
2041 } else if (!perf_missing_features.sample_id_all) {
2042 perf_missing_features.sample_id_all = true;
2043 pr_debug2("switching off sample_id_all\n");
2044 goto retry_sample_id;
2045 } else if (!perf_missing_features.lbr_flags &&
2046 (evsel->attr.branch_sample_type &
2047 (PERF_SAMPLE_BRANCH_NO_CYCLES |
2048 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
2049 perf_missing_features.lbr_flags = true;
2050 pr_debug2("switching off branch sample type no (cycles/flags)\n");
2051 goto fallback_missing_features;
2052 } else if (!perf_missing_features.group_read &&
2053 evsel->attr.inherit &&
2054 (evsel->attr.read_format & PERF_FORMAT_GROUP) &&
2055 perf_evsel__is_group_leader(evsel)) {
2056 perf_missing_features.group_read = true;
2057 pr_debug2("switching off group read\n");
2058 goto fallback_missing_features;
2059 }
2060 out_close:
2061 if (err)
2062 threads->err_thread = thread;
2063
2064 do {
2065 while (--thread >= 0) {
2066 close(FD(evsel, cpu, thread));
2067 FD(evsel, cpu, thread) = -1;
2068 }
2069 thread = nthreads;
2070 } while (--cpu >= 0);
2071 return err;
2072 }
2073
2074 void perf_evsel__close(struct perf_evsel *evsel)
2075 {
2076 if (evsel->fd == NULL)
2077 return;
2078
2079 perf_evsel__close_fd(evsel);
2080 perf_evsel__free_fd(evsel);
2081 perf_evsel__free_id(evsel);
2082 }
2083
2084 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
2085 struct cpu_map *cpus)
2086 {
2087 return perf_evsel__open(evsel, cpus, NULL);
2088 }
2089
2090 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
2091 struct thread_map *threads)
2092 {
2093 return perf_evsel__open(evsel, NULL, threads);
2094 }
2095
2096 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
2097 const union perf_event *event,
2098 struct perf_sample *sample)
2099 {
2100 u64 type = evsel->attr.sample_type;
2101 const u64 *array = event->sample.array;
2102 bool swapped = evsel->needs_swap;
2103 union u64_swap u;
2104
2105 array += ((event->header.size -
2106 sizeof(event->header)) / sizeof(u64)) - 1;
2107
2108 if (type & PERF_SAMPLE_IDENTIFIER) {
2109 sample->id = *array;
2110 array--;
2111 }
2112
2113 if (type & PERF_SAMPLE_CPU) {
2114 u.val64 = *array;
2115 if (swapped) {
2116 /* undo swap of u64, then swap on individual u32s */
2117 u.val64 = bswap_64(u.val64);
2118 u.val32[0] = bswap_32(u.val32[0]);
2119 }
2120
2121 sample->cpu = u.val32[0];
2122 array--;
2123 }
2124
2125 if (type & PERF_SAMPLE_STREAM_ID) {
2126 sample->stream_id = *array;
2127 array--;
2128 }
2129
2130 if (type & PERF_SAMPLE_ID) {
2131 sample->id = *array;
2132 array--;
2133 }
2134
2135 if (type & PERF_SAMPLE_TIME) {
2136 sample->time = *array;
2137 array--;
2138 }
2139
2140 if (type & PERF_SAMPLE_TID) {
2141 u.val64 = *array;
2142 if (swapped) {
2143 /* undo swap of u64, then swap on individual u32s */
2144 u.val64 = bswap_64(u.val64);
2145 u.val32[0] = bswap_32(u.val32[0]);
2146 u.val32[1] = bswap_32(u.val32[1]);
2147 }
2148
2149 sample->pid = u.val32[0];
2150 sample->tid = u.val32[1];
2151 array--;
2152 }
2153
2154 return 0;
2155 }
2156
2157 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
2158 u64 size)
2159 {
2160 return size > max_size || offset + size > endp;
2161 }
2162
2163 #define OVERFLOW_CHECK(offset, size, max_size) \
2164 do { \
2165 if (overflow(endp, (max_size), (offset), (size))) \
2166 return -EFAULT; \
2167 } while (0)
2168
2169 #define OVERFLOW_CHECK_u64(offset) \
2170 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
2171
2172 static int
2173 perf_event__check_size(union perf_event *event, unsigned int sample_size)
2174 {
2175 /*
2176 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
2177 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
2178 * check the format does not go past the end of the event.
2179 */
2180 if (sample_size + sizeof(event->header) > event->header.size)
2181 return -EFAULT;
2182
2183 return 0;
2184 }
2185
2186 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
2187 struct perf_sample *data)
2188 {
2189 u64 type = evsel->attr.sample_type;
2190 bool swapped = evsel->needs_swap;
2191 const u64 *array;
2192 u16 max_size = event->header.size;
2193 const void *endp = (void *)event + max_size;
2194 u64 sz;
2195
2196 /*
2197 * used for cross-endian analysis. See git commit 65014ab3
2198 * for why this goofiness is needed.
2199 */
2200 union u64_swap u;
2201
2202 memset(data, 0, sizeof(*data));
2203 data->cpu = data->pid = data->tid = -1;
2204 data->stream_id = data->id = data->time = -1ULL;
2205 data->period = evsel->attr.sample_period;
2206 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2207 data->misc = event->header.misc;
2208 data->id = -1ULL;
2209 data->data_src = PERF_MEM_DATA_SRC_NONE;
2210
2211 if (event->header.type != PERF_RECORD_SAMPLE) {
2212 if (!evsel->attr.sample_id_all)
2213 return 0;
2214 return perf_evsel__parse_id_sample(evsel, event, data);
2215 }
2216
2217 array = event->sample.array;
2218
2219 if (perf_event__check_size(event, evsel->sample_size))
2220 return -EFAULT;
2221
2222 if (type & PERF_SAMPLE_IDENTIFIER) {
2223 data->id = *array;
2224 array++;
2225 }
2226
2227 if (type & PERF_SAMPLE_IP) {
2228 data->ip = *array;
2229 array++;
2230 }
2231
2232 if (type & PERF_SAMPLE_TID) {
2233 u.val64 = *array;
2234 if (swapped) {
2235 /* undo swap of u64, then swap on individual u32s */
2236 u.val64 = bswap_64(u.val64);
2237 u.val32[0] = bswap_32(u.val32[0]);
2238 u.val32[1] = bswap_32(u.val32[1]);
2239 }
2240
2241 data->pid = u.val32[0];
2242 data->tid = u.val32[1];
2243 array++;
2244 }
2245
2246 if (type & PERF_SAMPLE_TIME) {
2247 data->time = *array;
2248 array++;
2249 }
2250
2251 if (type & PERF_SAMPLE_ADDR) {
2252 data->addr = *array;
2253 array++;
2254 }
2255
2256 if (type & PERF_SAMPLE_ID) {
2257 data->id = *array;
2258 array++;
2259 }
2260
2261 if (type & PERF_SAMPLE_STREAM_ID) {
2262 data->stream_id = *array;
2263 array++;
2264 }
2265
2266 if (type & PERF_SAMPLE_CPU) {
2267
2268 u.val64 = *array;
2269 if (swapped) {
2270 /* undo swap of u64, then swap on individual u32s */
2271 u.val64 = bswap_64(u.val64);
2272 u.val32[0] = bswap_32(u.val32[0]);
2273 }
2274
2275 data->cpu = u.val32[0];
2276 array++;
2277 }
2278
2279 if (type & PERF_SAMPLE_PERIOD) {
2280 data->period = *array;
2281 array++;
2282 }
2283
2284 if (type & PERF_SAMPLE_READ) {
2285 u64 read_format = evsel->attr.read_format;
2286
2287 OVERFLOW_CHECK_u64(array);
2288 if (read_format & PERF_FORMAT_GROUP)
2289 data->read.group.nr = *array;
2290 else
2291 data->read.one.value = *array;
2292
2293 array++;
2294
2295 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2296 OVERFLOW_CHECK_u64(array);
2297 data->read.time_enabled = *array;
2298 array++;
2299 }
2300
2301 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2302 OVERFLOW_CHECK_u64(array);
2303 data->read.time_running = *array;
2304 array++;
2305 }
2306
2307 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2308 if (read_format & PERF_FORMAT_GROUP) {
2309 const u64 max_group_nr = UINT64_MAX /
2310 sizeof(struct sample_read_value);
2311
2312 if (data->read.group.nr > max_group_nr)
2313 return -EFAULT;
2314 sz = data->read.group.nr *
2315 sizeof(struct sample_read_value);
2316 OVERFLOW_CHECK(array, sz, max_size);
2317 data->read.group.values =
2318 (struct sample_read_value *)array;
2319 array = (void *)array + sz;
2320 } else {
2321 OVERFLOW_CHECK_u64(array);
2322 data->read.one.id = *array;
2323 array++;
2324 }
2325 }
2326
2327 if (evsel__has_callchain(evsel)) {
2328 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
2329
2330 OVERFLOW_CHECK_u64(array);
2331 data->callchain = (struct ip_callchain *)array++;
2332 if (data->callchain->nr > max_callchain_nr)
2333 return -EFAULT;
2334 sz = data->callchain->nr * sizeof(u64);
2335 OVERFLOW_CHECK(array, sz, max_size);
2336 array = (void *)array + sz;
2337 }
2338
2339 if (type & PERF_SAMPLE_RAW) {
2340 OVERFLOW_CHECK_u64(array);
2341 u.val64 = *array;
2342
2343 /*
2344 * Undo swap of u64, then swap on individual u32s,
2345 * get the size of the raw area and undo all of the
2346 * swap. The pevent interface handles endianity by
2347 * itself.
2348 */
2349 if (swapped) {
2350 u.val64 = bswap_64(u.val64);
2351 u.val32[0] = bswap_32(u.val32[0]);
2352 u.val32[1] = bswap_32(u.val32[1]);
2353 }
2354 data->raw_size = u.val32[0];
2355
2356 /*
2357 * The raw data is aligned on 64bits including the
2358 * u32 size, so it's safe to use mem_bswap_64.
2359 */
2360 if (swapped)
2361 mem_bswap_64((void *) array, data->raw_size);
2362
2363 array = (void *)array + sizeof(u32);
2364
2365 OVERFLOW_CHECK(array, data->raw_size, max_size);
2366 data->raw_data = (void *)array;
2367 array = (void *)array + data->raw_size;
2368 }
2369
2370 if (type & PERF_SAMPLE_BRANCH_STACK) {
2371 const u64 max_branch_nr = UINT64_MAX /
2372 sizeof(struct branch_entry);
2373
2374 OVERFLOW_CHECK_u64(array);
2375 data->branch_stack = (struct branch_stack *)array++;
2376
2377 if (data->branch_stack->nr > max_branch_nr)
2378 return -EFAULT;
2379 sz = data->branch_stack->nr * sizeof(struct branch_entry);
2380 OVERFLOW_CHECK(array, sz, max_size);
2381 array = (void *)array + sz;
2382 }
2383
2384 if (type & PERF_SAMPLE_REGS_USER) {
2385 OVERFLOW_CHECK_u64(array);
2386 data->user_regs.abi = *array;
2387 array++;
2388
2389 if (data->user_regs.abi) {
2390 u64 mask = evsel->attr.sample_regs_user;
2391
2392 sz = hweight64(mask) * sizeof(u64);
2393 OVERFLOW_CHECK(array, sz, max_size);
2394 data->user_regs.mask = mask;
2395 data->user_regs.regs = (u64 *)array;
2396 array = (void *)array + sz;
2397 }
2398 }
2399
2400 if (type & PERF_SAMPLE_STACK_USER) {
2401 OVERFLOW_CHECK_u64(array);
2402 sz = *array++;
2403
2404 data->user_stack.offset = ((char *)(array - 1)
2405 - (char *) event);
2406
2407 if (!sz) {
2408 data->user_stack.size = 0;
2409 } else {
2410 OVERFLOW_CHECK(array, sz, max_size);
2411 data->user_stack.data = (char *)array;
2412 array = (void *)array + sz;
2413 OVERFLOW_CHECK_u64(array);
2414 data->user_stack.size = *array++;
2415 if (WARN_ONCE(data->user_stack.size > sz,
2416 "user stack dump failure\n"))
2417 return -EFAULT;
2418 }
2419 }
2420
2421 if (type & PERF_SAMPLE_WEIGHT) {
2422 OVERFLOW_CHECK_u64(array);
2423 data->weight = *array;
2424 array++;
2425 }
2426
2427 if (type & PERF_SAMPLE_DATA_SRC) {
2428 OVERFLOW_CHECK_u64(array);
2429 data->data_src = *array;
2430 array++;
2431 }
2432
2433 if (type & PERF_SAMPLE_TRANSACTION) {
2434 OVERFLOW_CHECK_u64(array);
2435 data->transaction = *array;
2436 array++;
2437 }
2438
2439 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2440 if (type & PERF_SAMPLE_REGS_INTR) {
2441 OVERFLOW_CHECK_u64(array);
2442 data->intr_regs.abi = *array;
2443 array++;
2444
2445 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2446 u64 mask = evsel->attr.sample_regs_intr;
2447
2448 sz = hweight64(mask) * sizeof(u64);
2449 OVERFLOW_CHECK(array, sz, max_size);
2450 data->intr_regs.mask = mask;
2451 data->intr_regs.regs = (u64 *)array;
2452 array = (void *)array + sz;
2453 }
2454 }
2455
2456 data->phys_addr = 0;
2457 if (type & PERF_SAMPLE_PHYS_ADDR) {
2458 data->phys_addr = *array;
2459 array++;
2460 }
2461
2462 return 0;
2463 }
2464
2465 int perf_evsel__parse_sample_timestamp(struct perf_evsel *evsel,
2466 union perf_event *event,
2467 u64 *timestamp)
2468 {
2469 u64 type = evsel->attr.sample_type;
2470 const u64 *array;
2471
2472 if (!(type & PERF_SAMPLE_TIME))
2473 return -1;
2474
2475 if (event->header.type != PERF_RECORD_SAMPLE) {
2476 struct perf_sample data = {
2477 .time = -1ULL,
2478 };
2479
2480 if (!evsel->attr.sample_id_all)
2481 return -1;
2482 if (perf_evsel__parse_id_sample(evsel, event, &data))
2483 return -1;
2484
2485 *timestamp = data.time;
2486 return 0;
2487 }
2488
2489 array = event->sample.array;
2490
2491 if (perf_event__check_size(event, evsel->sample_size))
2492 return -EFAULT;
2493
2494 if (type & PERF_SAMPLE_IDENTIFIER)
2495 array++;
2496
2497 if (type & PERF_SAMPLE_IP)
2498 array++;
2499
2500 if (type & PERF_SAMPLE_TID)
2501 array++;
2502
2503 if (type & PERF_SAMPLE_TIME)
2504 *timestamp = *array;
2505
2506 return 0;
2507 }
2508
2509 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2510 u64 read_format)
2511 {
2512 size_t sz, result = sizeof(struct sample_event);
2513
2514 if (type & PERF_SAMPLE_IDENTIFIER)
2515 result += sizeof(u64);
2516
2517 if (type & PERF_SAMPLE_IP)
2518 result += sizeof(u64);
2519
2520 if (type & PERF_SAMPLE_TID)
2521 result += sizeof(u64);
2522
2523 if (type & PERF_SAMPLE_TIME)
2524 result += sizeof(u64);
2525
2526 if (type & PERF_SAMPLE_ADDR)
2527 result += sizeof(u64);
2528
2529 if (type & PERF_SAMPLE_ID)
2530 result += sizeof(u64);
2531
2532 if (type & PERF_SAMPLE_STREAM_ID)
2533 result += sizeof(u64);
2534
2535 if (type & PERF_SAMPLE_CPU)
2536 result += sizeof(u64);
2537
2538 if (type & PERF_SAMPLE_PERIOD)
2539 result += sizeof(u64);
2540
2541 if (type & PERF_SAMPLE_READ) {
2542 result += sizeof(u64);
2543 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2544 result += sizeof(u64);
2545 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2546 result += sizeof(u64);
2547 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2548 if (read_format & PERF_FORMAT_GROUP) {
2549 sz = sample->read.group.nr *
2550 sizeof(struct sample_read_value);
2551 result += sz;
2552 } else {
2553 result += sizeof(u64);
2554 }
2555 }
2556
2557 if (type & PERF_SAMPLE_CALLCHAIN) {
2558 sz = (sample->callchain->nr + 1) * sizeof(u64);
2559 result += sz;
2560 }
2561
2562 if (type & PERF_SAMPLE_RAW) {
2563 result += sizeof(u32);
2564 result += sample->raw_size;
2565 }
2566
2567 if (type & PERF_SAMPLE_BRANCH_STACK) {
2568 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2569 sz += sizeof(u64);
2570 result += sz;
2571 }
2572
2573 if (type & PERF_SAMPLE_REGS_USER) {
2574 if (sample->user_regs.abi) {
2575 result += sizeof(u64);
2576 sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2577 result += sz;
2578 } else {
2579 result += sizeof(u64);
2580 }
2581 }
2582
2583 if (type & PERF_SAMPLE_STACK_USER) {
2584 sz = sample->user_stack.size;
2585 result += sizeof(u64);
2586 if (sz) {
2587 result += sz;
2588 result += sizeof(u64);
2589 }
2590 }
2591
2592 if (type & PERF_SAMPLE_WEIGHT)
2593 result += sizeof(u64);
2594
2595 if (type & PERF_SAMPLE_DATA_SRC)
2596 result += sizeof(u64);
2597
2598 if (type & PERF_SAMPLE_TRANSACTION)
2599 result += sizeof(u64);
2600
2601 if (type & PERF_SAMPLE_REGS_INTR) {
2602 if (sample->intr_regs.abi) {
2603 result += sizeof(u64);
2604 sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2605 result += sz;
2606 } else {
2607 result += sizeof(u64);
2608 }
2609 }
2610
2611 if (type & PERF_SAMPLE_PHYS_ADDR)
2612 result += sizeof(u64);
2613
2614 return result;
2615 }
2616
2617 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2618 u64 read_format,
2619 const struct perf_sample *sample)
2620 {
2621 u64 *array;
2622 size_t sz;
2623 /*
2624 * used for cross-endian analysis. See git commit 65014ab3
2625 * for why this goofiness is needed.
2626 */
2627 union u64_swap u;
2628
2629 array = event->sample.array;
2630
2631 if (type & PERF_SAMPLE_IDENTIFIER) {
2632 *array = sample->id;
2633 array++;
2634 }
2635
2636 if (type & PERF_SAMPLE_IP) {
2637 *array = sample->ip;
2638 array++;
2639 }
2640
2641 if (type & PERF_SAMPLE_TID) {
2642 u.val32[0] = sample->pid;
2643 u.val32[1] = sample->tid;
2644 *array = u.val64;
2645 array++;
2646 }
2647
2648 if (type & PERF_SAMPLE_TIME) {
2649 *array = sample->time;
2650 array++;
2651 }
2652
2653 if (type & PERF_SAMPLE_ADDR) {
2654 *array = sample->addr;
2655 array++;
2656 }
2657
2658 if (type & PERF_SAMPLE_ID) {
2659 *array = sample->id;
2660 array++;
2661 }
2662
2663 if (type & PERF_SAMPLE_STREAM_ID) {
2664 *array = sample->stream_id;
2665 array++;
2666 }
2667
2668 if (type & PERF_SAMPLE_CPU) {
2669 u.val32[0] = sample->cpu;
2670 u.val32[1] = 0;
2671 *array = u.val64;
2672 array++;
2673 }
2674
2675 if (type & PERF_SAMPLE_PERIOD) {
2676 *array = sample->period;
2677 array++;
2678 }
2679
2680 if (type & PERF_SAMPLE_READ) {
2681 if (read_format & PERF_FORMAT_GROUP)
2682 *array = sample->read.group.nr;
2683 else
2684 *array = sample->read.one.value;
2685 array++;
2686
2687 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2688 *array = sample->read.time_enabled;
2689 array++;
2690 }
2691
2692 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2693 *array = sample->read.time_running;
2694 array++;
2695 }
2696
2697 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2698 if (read_format & PERF_FORMAT_GROUP) {
2699 sz = sample->read.group.nr *
2700 sizeof(struct sample_read_value);
2701 memcpy(array, sample->read.group.values, sz);
2702 array = (void *)array + sz;
2703 } else {
2704 *array = sample->read.one.id;
2705 array++;
2706 }
2707 }
2708
2709 if (type & PERF_SAMPLE_CALLCHAIN) {
2710 sz = (sample->callchain->nr + 1) * sizeof(u64);
2711 memcpy(array, sample->callchain, sz);
2712 array = (void *)array + sz;
2713 }
2714
2715 if (type & PERF_SAMPLE_RAW) {
2716 u.val32[0] = sample->raw_size;
2717 *array = u.val64;
2718 array = (void *)array + sizeof(u32);
2719
2720 memcpy(array, sample->raw_data, sample->raw_size);
2721 array = (void *)array + sample->raw_size;
2722 }
2723
2724 if (type & PERF_SAMPLE_BRANCH_STACK) {
2725 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2726 sz += sizeof(u64);
2727 memcpy(array, sample->branch_stack, sz);
2728 array = (void *)array + sz;
2729 }
2730
2731 if (type & PERF_SAMPLE_REGS_USER) {
2732 if (sample->user_regs.abi) {
2733 *array++ = sample->user_regs.abi;
2734 sz = hweight64(sample->user_regs.mask) * sizeof(u64);
2735 memcpy(array, sample->user_regs.regs, sz);
2736 array = (void *)array + sz;
2737 } else {
2738 *array++ = 0;
2739 }
2740 }
2741
2742 if (type & PERF_SAMPLE_STACK_USER) {
2743 sz = sample->user_stack.size;
2744 *array++ = sz;
2745 if (sz) {
2746 memcpy(array, sample->user_stack.data, sz);
2747 array = (void *)array + sz;
2748 *array++ = sz;
2749 }
2750 }
2751
2752 if (type & PERF_SAMPLE_WEIGHT) {
2753 *array = sample->weight;
2754 array++;
2755 }
2756
2757 if (type & PERF_SAMPLE_DATA_SRC) {
2758 *array = sample->data_src;
2759 array++;
2760 }
2761
2762 if (type & PERF_SAMPLE_TRANSACTION) {
2763 *array = sample->transaction;
2764 array++;
2765 }
2766
2767 if (type & PERF_SAMPLE_REGS_INTR) {
2768 if (sample->intr_regs.abi) {
2769 *array++ = sample->intr_regs.abi;
2770 sz = hweight64(sample->intr_regs.mask) * sizeof(u64);
2771 memcpy(array, sample->intr_regs.regs, sz);
2772 array = (void *)array + sz;
2773 } else {
2774 *array++ = 0;
2775 }
2776 }
2777
2778 if (type & PERF_SAMPLE_PHYS_ADDR) {
2779 *array = sample->phys_addr;
2780 array++;
2781 }
2782
2783 return 0;
2784 }
2785
2786 struct tep_format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2787 {
2788 return tep_find_field(evsel->tp_format, name);
2789 }
2790
2791 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2792 const char *name)
2793 {
2794 struct tep_format_field *field = perf_evsel__field(evsel, name);
2795 int offset;
2796
2797 if (!field)
2798 return NULL;
2799
2800 offset = field->offset;
2801
2802 if (field->flags & TEP_FIELD_IS_DYNAMIC) {
2803 offset = *(int *)(sample->raw_data + field->offset);
2804 offset &= 0xffff;
2805 }
2806
2807 return sample->raw_data + offset;
2808 }
2809
2810 u64 format_field__intval(struct tep_format_field *field, struct perf_sample *sample,
2811 bool needs_swap)
2812 {
2813 u64 value;
2814 void *ptr = sample->raw_data + field->offset;
2815
2816 switch (field->size) {
2817 case 1:
2818 return *(u8 *)ptr;
2819 case 2:
2820 value = *(u16 *)ptr;
2821 break;
2822 case 4:
2823 value = *(u32 *)ptr;
2824 break;
2825 case 8:
2826 memcpy(&value, ptr, sizeof(u64));
2827 break;
2828 default:
2829 return 0;
2830 }
2831
2832 if (!needs_swap)
2833 return value;
2834
2835 switch (field->size) {
2836 case 2:
2837 return bswap_16(value);
2838 case 4:
2839 return bswap_32(value);
2840 case 8:
2841 return bswap_64(value);
2842 default:
2843 return 0;
2844 }
2845
2846 return 0;
2847 }
2848
2849 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2850 const char *name)
2851 {
2852 struct tep_format_field *field = perf_evsel__field(evsel, name);
2853
2854 if (!field)
2855 return 0;
2856
2857 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2858 }
2859
2860 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2861 char *msg, size_t msgsize)
2862 {
2863 int paranoid;
2864
2865 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2866 evsel->attr.type == PERF_TYPE_HARDWARE &&
2867 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2868 /*
2869 * If it's cycles then fall back to hrtimer based
2870 * cpu-clock-tick sw counter, which is always available even if
2871 * no PMU support.
2872 *
2873 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2874 * b0a873e).
2875 */
2876 scnprintf(msg, msgsize, "%s",
2877 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2878
2879 evsel->attr.type = PERF_TYPE_SOFTWARE;
2880 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2881
2882 zfree(&evsel->name);
2883 return true;
2884 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2885 (paranoid = perf_event_paranoid()) > 1) {
2886 const char *name = perf_evsel__name(evsel);
2887 char *new_name;
2888 const char *sep = ":";
2889
2890 /* Is there already the separator in the name. */
2891 if (strchr(name, '/') ||
2892 strchr(name, ':'))
2893 sep = "";
2894
2895 if (asprintf(&new_name, "%s%su", name, sep) < 0)
2896 return false;
2897
2898 if (evsel->name)
2899 free(evsel->name);
2900 evsel->name = new_name;
2901 scnprintf(msg, msgsize,
2902 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2903 evsel->attr.exclude_kernel = 1;
2904
2905 return true;
2906 }
2907
2908 return false;
2909 }
2910
2911 static bool find_process(const char *name)
2912 {
2913 size_t len = strlen(name);
2914 DIR *dir;
2915 struct dirent *d;
2916 int ret = -1;
2917
2918 dir = opendir(procfs__mountpoint());
2919 if (!dir)
2920 return false;
2921
2922 /* Walk through the directory. */
2923 while (ret && (d = readdir(dir)) != NULL) {
2924 char path[PATH_MAX];
2925 char *data;
2926 size_t size;
2927
2928 if ((d->d_type != DT_DIR) ||
2929 !strcmp(".", d->d_name) ||
2930 !strcmp("..", d->d_name))
2931 continue;
2932
2933 scnprintf(path, sizeof(path), "%s/%s/comm",
2934 procfs__mountpoint(), d->d_name);
2935
2936 if (filename__read_str(path, &data, &size))
2937 continue;
2938
2939 ret = strncmp(name, data, len);
2940 free(data);
2941 }
2942
2943 closedir(dir);
2944 return ret ? false : true;
2945 }
2946
2947 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2948 int err, char *msg, size_t size)
2949 {
2950 char sbuf[STRERR_BUFSIZE];
2951 int printed = 0;
2952
2953 switch (err) {
2954 case EPERM:
2955 case EACCES:
2956 if (err == EPERM)
2957 printed = scnprintf(msg, size,
2958 "No permission to enable %s event.\n\n",
2959 perf_evsel__name(evsel));
2960
2961 return scnprintf(msg + printed, size - printed,
2962 "You may not have permission to collect %sstats.\n\n"
2963 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2964 "which controls use of the performance events system by\n"
2965 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2966 "The current value is %d:\n\n"
2967 " -1: Allow use of (almost) all events by all users\n"
2968 " Ignore mlock limit after perf_event_mlock_kb without CAP_IPC_LOCK\n"
2969 ">= 0: Disallow ftrace function tracepoint by users without CAP_SYS_ADMIN\n"
2970 " Disallow raw tracepoint access by users without CAP_SYS_ADMIN\n"
2971 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2972 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN\n\n"
2973 "To make this setting permanent, edit /etc/sysctl.conf too, e.g.:\n\n"
2974 " kernel.perf_event_paranoid = -1\n" ,
2975 target->system_wide ? "system-wide " : "",
2976 perf_event_paranoid());
2977 case ENOENT:
2978 return scnprintf(msg, size, "The %s event is not supported.",
2979 perf_evsel__name(evsel));
2980 case EMFILE:
2981 return scnprintf(msg, size, "%s",
2982 "Too many events are opened.\n"
2983 "Probably the maximum number of open file descriptors has been reached.\n"
2984 "Hint: Try again after reducing the number of events.\n"
2985 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2986 case ENOMEM:
2987 if (evsel__has_callchain(evsel) &&
2988 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2989 return scnprintf(msg, size,
2990 "Not enough memory to setup event with callchain.\n"
2991 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2992 "Hint: Current value: %d", sysctl__max_stack());
2993 break;
2994 case ENODEV:
2995 if (target->cpu_list)
2996 return scnprintf(msg, size, "%s",
2997 "No such device - did you specify an out-of-range profile CPU?");
2998 break;
2999 case EOPNOTSUPP:
3000 if (evsel->attr.sample_period != 0)
3001 return scnprintf(msg, size,
3002 "%s: PMU Hardware doesn't support sampling/overflow-interrupts. Try 'perf stat'",
3003 perf_evsel__name(evsel));
3004 if (evsel->attr.precise_ip)
3005 return scnprintf(msg, size, "%s",
3006 "\'precise\' request may not be supported. Try removing 'p' modifier.");
3007 #if defined(__i386__) || defined(__x86_64__)
3008 if (evsel->attr.type == PERF_TYPE_HARDWARE)
3009 return scnprintf(msg, size, "%s",
3010 "No hardware sampling interrupt available.\n");
3011 #endif
3012 break;
3013 case EBUSY:
3014 if (find_process("oprofiled"))
3015 return scnprintf(msg, size,
3016 "The PMU counters are busy/taken by another profiler.\n"
3017 "We found oprofile daemon running, please stop it and try again.");
3018 break;
3019 case EINVAL:
3020 if (evsel->attr.write_backward && perf_missing_features.write_backward)
3021 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
3022 if (perf_missing_features.clockid)
3023 return scnprintf(msg, size, "clockid feature not supported.");
3024 if (perf_missing_features.clockid_wrong)
3025 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
3026 break;
3027 default:
3028 break;
3029 }
3030
3031 return scnprintf(msg, size,
3032 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
3033 "/bin/dmesg | grep -i perf may provide additional information.\n",
3034 err, str_error_r(err, sbuf, sizeof(sbuf)),
3035 perf_evsel__name(evsel));
3036 }
3037
3038 struct perf_env *perf_evsel__env(struct perf_evsel *evsel)
3039 {
3040 if (evsel && evsel->evlist)
3041 return evsel->evlist->env;
3042 return NULL;
3043 }
3044
3045 static int store_evsel_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3046 {
3047 int cpu, thread;
3048
3049 for (cpu = 0; cpu < xyarray__max_x(evsel->fd); cpu++) {
3050 for (thread = 0; thread < xyarray__max_y(evsel->fd);
3051 thread++) {
3052 int fd = FD(evsel, cpu, thread);
3053
3054 if (perf_evlist__id_add_fd(evlist, evsel,
3055 cpu, thread, fd) < 0)
3056 return -1;
3057 }
3058 }
3059
3060 return 0;
3061 }
3062
3063 int perf_evsel__store_ids(struct perf_evsel *evsel, struct perf_evlist *evlist)
3064 {
3065 struct cpu_map *cpus = evsel->cpus;
3066 struct thread_map *threads = evsel->threads;
3067
3068 if (perf_evsel__alloc_id(evsel, cpus->nr, threads->nr))
3069 return -ENOMEM;
3070
3071 return store_evsel_ids(evsel, evlist);
3072 }