]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - tools/perf/util/hist.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[mirror_ubuntu-focal-kernel.git] / tools / perf / util / hist.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "util.h"
3 #include "build-id.h"
4 #include "hist.h"
5 #include "map.h"
6 #include "session.h"
7 #include "namespaces.h"
8 #include "sort.h"
9 #include "evlist.h"
10 #include "evsel.h"
11 #include "annotate.h"
12 #include "srcline.h"
13 #include "thread.h"
14 #include "ui/progress.h"
15 #include <errno.h>
16 #include <math.h>
17 #include <sys/param.h>
18
19 static bool hists__filter_entry_by_dso(struct hists *hists,
20 struct hist_entry *he);
21 static bool hists__filter_entry_by_thread(struct hists *hists,
22 struct hist_entry *he);
23 static bool hists__filter_entry_by_symbol(struct hists *hists,
24 struct hist_entry *he);
25 static bool hists__filter_entry_by_socket(struct hists *hists,
26 struct hist_entry *he);
27
28 u16 hists__col_len(struct hists *hists, enum hist_column col)
29 {
30 return hists->col_len[col];
31 }
32
33 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
34 {
35 hists->col_len[col] = len;
36 }
37
38 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
39 {
40 if (len > hists__col_len(hists, col)) {
41 hists__set_col_len(hists, col, len);
42 return true;
43 }
44 return false;
45 }
46
47 void hists__reset_col_len(struct hists *hists)
48 {
49 enum hist_column col;
50
51 for (col = 0; col < HISTC_NR_COLS; ++col)
52 hists__set_col_len(hists, col, 0);
53 }
54
55 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
56 {
57 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
58
59 if (hists__col_len(hists, dso) < unresolved_col_width &&
60 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
61 !symbol_conf.dso_list)
62 hists__set_col_len(hists, dso, unresolved_col_width);
63 }
64
65 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
66 {
67 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
68 int symlen;
69 u16 len;
70
71 /*
72 * +4 accounts for '[x] ' priv level info
73 * +2 accounts for 0x prefix on raw addresses
74 * +3 accounts for ' y ' symtab origin info
75 */
76 if (h->ms.sym) {
77 symlen = h->ms.sym->namelen + 4;
78 if (verbose > 0)
79 symlen += BITS_PER_LONG / 4 + 2 + 3;
80 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
81 } else {
82 symlen = unresolved_col_width + 4 + 2;
83 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
84 hists__set_unres_dso_col_len(hists, HISTC_DSO);
85 }
86
87 len = thread__comm_len(h->thread);
88 if (hists__new_col_len(hists, HISTC_COMM, len))
89 hists__set_col_len(hists, HISTC_THREAD, len + 8);
90
91 if (h->ms.map) {
92 len = dso__name_len(h->ms.map->dso);
93 hists__new_col_len(hists, HISTC_DSO, len);
94 }
95
96 if (h->parent)
97 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
98
99 if (h->branch_info) {
100 if (h->branch_info->from.sym) {
101 symlen = (int)h->branch_info->from.sym->namelen + 4;
102 if (verbose > 0)
103 symlen += BITS_PER_LONG / 4 + 2 + 3;
104 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
105
106 symlen = dso__name_len(h->branch_info->from.map->dso);
107 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
108 } else {
109 symlen = unresolved_col_width + 4 + 2;
110 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
111 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
112 }
113
114 if (h->branch_info->to.sym) {
115 symlen = (int)h->branch_info->to.sym->namelen + 4;
116 if (verbose > 0)
117 symlen += BITS_PER_LONG / 4 + 2 + 3;
118 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
119
120 symlen = dso__name_len(h->branch_info->to.map->dso);
121 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
122 } else {
123 symlen = unresolved_col_width + 4 + 2;
124 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
125 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
126 }
127
128 if (h->branch_info->srcline_from)
129 hists__new_col_len(hists, HISTC_SRCLINE_FROM,
130 strlen(h->branch_info->srcline_from));
131 if (h->branch_info->srcline_to)
132 hists__new_col_len(hists, HISTC_SRCLINE_TO,
133 strlen(h->branch_info->srcline_to));
134 }
135
136 if (h->mem_info) {
137 if (h->mem_info->daddr.sym) {
138 symlen = (int)h->mem_info->daddr.sym->namelen + 4
139 + unresolved_col_width + 2;
140 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
141 symlen);
142 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
143 symlen + 1);
144 } else {
145 symlen = unresolved_col_width + 4 + 2;
146 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
147 symlen);
148 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
149 symlen);
150 }
151
152 if (h->mem_info->iaddr.sym) {
153 symlen = (int)h->mem_info->iaddr.sym->namelen + 4
154 + unresolved_col_width + 2;
155 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
156 symlen);
157 } else {
158 symlen = unresolved_col_width + 4 + 2;
159 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
160 symlen);
161 }
162
163 if (h->mem_info->daddr.map) {
164 symlen = dso__name_len(h->mem_info->daddr.map->dso);
165 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
166 symlen);
167 } else {
168 symlen = unresolved_col_width + 4 + 2;
169 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
170 }
171
172 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
173 unresolved_col_width + 4 + 2);
174
175 } else {
176 symlen = unresolved_col_width + 4 + 2;
177 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
178 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
179 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
180 }
181
182 hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
183 hists__new_col_len(hists, HISTC_CPU, 3);
184 hists__new_col_len(hists, HISTC_SOCKET, 6);
185 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
186 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
187 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
188 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
189 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
190 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
191
192 if (h->srcline) {
193 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
194 hists__new_col_len(hists, HISTC_SRCLINE, len);
195 }
196
197 if (h->srcfile)
198 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
199
200 if (h->transaction)
201 hists__new_col_len(hists, HISTC_TRANSACTION,
202 hist_entry__transaction_len());
203
204 if (h->trace_output)
205 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
206 }
207
208 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
209 {
210 struct rb_node *next = rb_first(&hists->entries);
211 struct hist_entry *n;
212 int row = 0;
213
214 hists__reset_col_len(hists);
215
216 while (next && row++ < max_rows) {
217 n = rb_entry(next, struct hist_entry, rb_node);
218 if (!n->filtered)
219 hists__calc_col_len(hists, n);
220 next = rb_next(&n->rb_node);
221 }
222 }
223
224 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
225 unsigned int cpumode, u64 period)
226 {
227 switch (cpumode) {
228 case PERF_RECORD_MISC_KERNEL:
229 he_stat->period_sys += period;
230 break;
231 case PERF_RECORD_MISC_USER:
232 he_stat->period_us += period;
233 break;
234 case PERF_RECORD_MISC_GUEST_KERNEL:
235 he_stat->period_guest_sys += period;
236 break;
237 case PERF_RECORD_MISC_GUEST_USER:
238 he_stat->period_guest_us += period;
239 break;
240 default:
241 break;
242 }
243 }
244
245 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
246 u64 weight)
247 {
248
249 he_stat->period += period;
250 he_stat->weight += weight;
251 he_stat->nr_events += 1;
252 }
253
254 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
255 {
256 dest->period += src->period;
257 dest->period_sys += src->period_sys;
258 dest->period_us += src->period_us;
259 dest->period_guest_sys += src->period_guest_sys;
260 dest->period_guest_us += src->period_guest_us;
261 dest->nr_events += src->nr_events;
262 dest->weight += src->weight;
263 }
264
265 static void he_stat__decay(struct he_stat *he_stat)
266 {
267 he_stat->period = (he_stat->period * 7) / 8;
268 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
269 /* XXX need decay for weight too? */
270 }
271
272 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
273
274 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
275 {
276 u64 prev_period = he->stat.period;
277 u64 diff;
278
279 if (prev_period == 0)
280 return true;
281
282 he_stat__decay(&he->stat);
283 if (symbol_conf.cumulate_callchain)
284 he_stat__decay(he->stat_acc);
285 decay_callchain(he->callchain);
286
287 diff = prev_period - he->stat.period;
288
289 if (!he->depth) {
290 hists->stats.total_period -= diff;
291 if (!he->filtered)
292 hists->stats.total_non_filtered_period -= diff;
293 }
294
295 if (!he->leaf) {
296 struct hist_entry *child;
297 struct rb_node *node = rb_first(&he->hroot_out);
298 while (node) {
299 child = rb_entry(node, struct hist_entry, rb_node);
300 node = rb_next(node);
301
302 if (hists__decay_entry(hists, child))
303 hists__delete_entry(hists, child);
304 }
305 }
306
307 return he->stat.period == 0;
308 }
309
310 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
311 {
312 struct rb_root *root_in;
313 struct rb_root *root_out;
314
315 if (he->parent_he) {
316 root_in = &he->parent_he->hroot_in;
317 root_out = &he->parent_he->hroot_out;
318 } else {
319 if (hists__has(hists, need_collapse))
320 root_in = &hists->entries_collapsed;
321 else
322 root_in = hists->entries_in;
323 root_out = &hists->entries;
324 }
325
326 rb_erase(&he->rb_node_in, root_in);
327 rb_erase(&he->rb_node, root_out);
328
329 --hists->nr_entries;
330 if (!he->filtered)
331 --hists->nr_non_filtered_entries;
332
333 hist_entry__delete(he);
334 }
335
336 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
337 {
338 struct rb_node *next = rb_first(&hists->entries);
339 struct hist_entry *n;
340
341 while (next) {
342 n = rb_entry(next, struct hist_entry, rb_node);
343 next = rb_next(&n->rb_node);
344 if (((zap_user && n->level == '.') ||
345 (zap_kernel && n->level != '.') ||
346 hists__decay_entry(hists, n))) {
347 hists__delete_entry(hists, n);
348 }
349 }
350 }
351
352 void hists__delete_entries(struct hists *hists)
353 {
354 struct rb_node *next = rb_first(&hists->entries);
355 struct hist_entry *n;
356
357 while (next) {
358 n = rb_entry(next, struct hist_entry, rb_node);
359 next = rb_next(&n->rb_node);
360
361 hists__delete_entry(hists, n);
362 }
363 }
364
365 /*
366 * histogram, sorted on item, collects periods
367 */
368
369 static int hist_entry__init(struct hist_entry *he,
370 struct hist_entry *template,
371 bool sample_self)
372 {
373 *he = *template;
374
375 if (symbol_conf.cumulate_callchain) {
376 he->stat_acc = malloc(sizeof(he->stat));
377 if (he->stat_acc == NULL)
378 return -ENOMEM;
379 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
380 if (!sample_self)
381 memset(&he->stat, 0, sizeof(he->stat));
382 }
383
384 map__get(he->ms.map);
385
386 if (he->branch_info) {
387 /*
388 * This branch info is (a part of) allocated from
389 * sample__resolve_bstack() and will be freed after
390 * adding new entries. So we need to save a copy.
391 */
392 he->branch_info = malloc(sizeof(*he->branch_info));
393 if (he->branch_info == NULL) {
394 map__zput(he->ms.map);
395 free(he->stat_acc);
396 return -ENOMEM;
397 }
398
399 memcpy(he->branch_info, template->branch_info,
400 sizeof(*he->branch_info));
401
402 map__get(he->branch_info->from.map);
403 map__get(he->branch_info->to.map);
404 }
405
406 if (he->mem_info) {
407 map__get(he->mem_info->iaddr.map);
408 map__get(he->mem_info->daddr.map);
409 }
410
411 if (symbol_conf.use_callchain)
412 callchain_init(he->callchain);
413
414 if (he->raw_data) {
415 he->raw_data = memdup(he->raw_data, he->raw_size);
416
417 if (he->raw_data == NULL) {
418 map__put(he->ms.map);
419 if (he->branch_info) {
420 map__put(he->branch_info->from.map);
421 map__put(he->branch_info->to.map);
422 free(he->branch_info);
423 }
424 if (he->mem_info) {
425 map__put(he->mem_info->iaddr.map);
426 map__put(he->mem_info->daddr.map);
427 }
428 free(he->stat_acc);
429 return -ENOMEM;
430 }
431 }
432 INIT_LIST_HEAD(&he->pairs.node);
433 thread__get(he->thread);
434 he->hroot_in = RB_ROOT;
435 he->hroot_out = RB_ROOT;
436
437 if (!symbol_conf.report_hierarchy)
438 he->leaf = true;
439
440 return 0;
441 }
442
443 static void *hist_entry__zalloc(size_t size)
444 {
445 return zalloc(size + sizeof(struct hist_entry));
446 }
447
448 static void hist_entry__free(void *ptr)
449 {
450 free(ptr);
451 }
452
453 static struct hist_entry_ops default_ops = {
454 .new = hist_entry__zalloc,
455 .free = hist_entry__free,
456 };
457
458 static struct hist_entry *hist_entry__new(struct hist_entry *template,
459 bool sample_self)
460 {
461 struct hist_entry_ops *ops = template->ops;
462 size_t callchain_size = 0;
463 struct hist_entry *he;
464 int err = 0;
465
466 if (!ops)
467 ops = template->ops = &default_ops;
468
469 if (symbol_conf.use_callchain)
470 callchain_size = sizeof(struct callchain_root);
471
472 he = ops->new(callchain_size);
473 if (he) {
474 err = hist_entry__init(he, template, sample_self);
475 if (err) {
476 ops->free(he);
477 he = NULL;
478 }
479 }
480
481 return he;
482 }
483
484 static u8 symbol__parent_filter(const struct symbol *parent)
485 {
486 if (symbol_conf.exclude_other && parent == NULL)
487 return 1 << HIST_FILTER__PARENT;
488 return 0;
489 }
490
491 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
492 {
493 if (!symbol_conf.use_callchain)
494 return;
495
496 he->hists->callchain_period += period;
497 if (!he->filtered)
498 he->hists->callchain_non_filtered_period += period;
499 }
500
501 static struct hist_entry *hists__findnew_entry(struct hists *hists,
502 struct hist_entry *entry,
503 struct addr_location *al,
504 bool sample_self)
505 {
506 struct rb_node **p;
507 struct rb_node *parent = NULL;
508 struct hist_entry *he;
509 int64_t cmp;
510 u64 period = entry->stat.period;
511 u64 weight = entry->stat.weight;
512
513 p = &hists->entries_in->rb_node;
514
515 while (*p != NULL) {
516 parent = *p;
517 he = rb_entry(parent, struct hist_entry, rb_node_in);
518
519 /*
520 * Make sure that it receives arguments in a same order as
521 * hist_entry__collapse() so that we can use an appropriate
522 * function when searching an entry regardless which sort
523 * keys were used.
524 */
525 cmp = hist_entry__cmp(he, entry);
526
527 if (!cmp) {
528 if (sample_self) {
529 he_stat__add_period(&he->stat, period, weight);
530 hist_entry__add_callchain_period(he, period);
531 }
532 if (symbol_conf.cumulate_callchain)
533 he_stat__add_period(he->stat_acc, period, weight);
534
535 /*
536 * This mem info was allocated from sample__resolve_mem
537 * and will not be used anymore.
538 */
539 zfree(&entry->mem_info);
540
541 /* If the map of an existing hist_entry has
542 * become out-of-date due to an exec() or
543 * similar, update it. Otherwise we will
544 * mis-adjust symbol addresses when computing
545 * the history counter to increment.
546 */
547 if (he->ms.map != entry->ms.map) {
548 map__put(he->ms.map);
549 he->ms.map = map__get(entry->ms.map);
550 }
551 goto out;
552 }
553
554 if (cmp < 0)
555 p = &(*p)->rb_left;
556 else
557 p = &(*p)->rb_right;
558 }
559
560 he = hist_entry__new(entry, sample_self);
561 if (!he)
562 return NULL;
563
564 if (sample_self)
565 hist_entry__add_callchain_period(he, period);
566 hists->nr_entries++;
567
568 rb_link_node(&he->rb_node_in, parent, p);
569 rb_insert_color(&he->rb_node_in, hists->entries_in);
570 out:
571 if (sample_self)
572 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
573 if (symbol_conf.cumulate_callchain)
574 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
575 return he;
576 }
577
578 static struct hist_entry*
579 __hists__add_entry(struct hists *hists,
580 struct addr_location *al,
581 struct symbol *sym_parent,
582 struct branch_info *bi,
583 struct mem_info *mi,
584 struct perf_sample *sample,
585 bool sample_self,
586 struct hist_entry_ops *ops)
587 {
588 struct namespaces *ns = thread__namespaces(al->thread);
589 struct hist_entry entry = {
590 .thread = al->thread,
591 .comm = thread__comm(al->thread),
592 .cgroup_id = {
593 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
594 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
595 },
596 .ms = {
597 .map = al->map,
598 .sym = al->sym,
599 },
600 .socket = al->socket,
601 .cpu = al->cpu,
602 .cpumode = al->cpumode,
603 .ip = al->addr,
604 .level = al->level,
605 .stat = {
606 .nr_events = 1,
607 .period = sample->period,
608 .weight = sample->weight,
609 },
610 .parent = sym_parent,
611 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
612 .hists = hists,
613 .branch_info = bi,
614 .mem_info = mi,
615 .transaction = sample->transaction,
616 .raw_data = sample->raw_data,
617 .raw_size = sample->raw_size,
618 .ops = ops,
619 };
620
621 return hists__findnew_entry(hists, &entry, al, sample_self);
622 }
623
624 struct hist_entry *hists__add_entry(struct hists *hists,
625 struct addr_location *al,
626 struct symbol *sym_parent,
627 struct branch_info *bi,
628 struct mem_info *mi,
629 struct perf_sample *sample,
630 bool sample_self)
631 {
632 return __hists__add_entry(hists, al, sym_parent, bi, mi,
633 sample, sample_self, NULL);
634 }
635
636 struct hist_entry *hists__add_entry_ops(struct hists *hists,
637 struct hist_entry_ops *ops,
638 struct addr_location *al,
639 struct symbol *sym_parent,
640 struct branch_info *bi,
641 struct mem_info *mi,
642 struct perf_sample *sample,
643 bool sample_self)
644 {
645 return __hists__add_entry(hists, al, sym_parent, bi, mi,
646 sample, sample_self, ops);
647 }
648
649 static int
650 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
651 struct addr_location *al __maybe_unused)
652 {
653 return 0;
654 }
655
656 static int
657 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
658 struct addr_location *al __maybe_unused)
659 {
660 return 0;
661 }
662
663 static int
664 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
665 {
666 struct perf_sample *sample = iter->sample;
667 struct mem_info *mi;
668
669 mi = sample__resolve_mem(sample, al);
670 if (mi == NULL)
671 return -ENOMEM;
672
673 iter->priv = mi;
674 return 0;
675 }
676
677 static int
678 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
679 {
680 u64 cost;
681 struct mem_info *mi = iter->priv;
682 struct hists *hists = evsel__hists(iter->evsel);
683 struct perf_sample *sample = iter->sample;
684 struct hist_entry *he;
685
686 if (mi == NULL)
687 return -EINVAL;
688
689 cost = sample->weight;
690 if (!cost)
691 cost = 1;
692
693 /*
694 * must pass period=weight in order to get the correct
695 * sorting from hists__collapse_resort() which is solely
696 * based on periods. We want sorting be done on nr_events * weight
697 * and this is indirectly achieved by passing period=weight here
698 * and the he_stat__add_period() function.
699 */
700 sample->period = cost;
701
702 he = hists__add_entry(hists, al, iter->parent, NULL, mi,
703 sample, true);
704 if (!he)
705 return -ENOMEM;
706
707 iter->he = he;
708 return 0;
709 }
710
711 static int
712 iter_finish_mem_entry(struct hist_entry_iter *iter,
713 struct addr_location *al __maybe_unused)
714 {
715 struct perf_evsel *evsel = iter->evsel;
716 struct hists *hists = evsel__hists(evsel);
717 struct hist_entry *he = iter->he;
718 int err = -EINVAL;
719
720 if (he == NULL)
721 goto out;
722
723 hists__inc_nr_samples(hists, he->filtered);
724
725 err = hist_entry__append_callchain(he, iter->sample);
726
727 out:
728 /*
729 * We don't need to free iter->priv (mem_info) here since the mem info
730 * was either already freed in hists__findnew_entry() or passed to a
731 * new hist entry by hist_entry__new().
732 */
733 iter->priv = NULL;
734
735 iter->he = NULL;
736 return err;
737 }
738
739 static int
740 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
741 {
742 struct branch_info *bi;
743 struct perf_sample *sample = iter->sample;
744
745 bi = sample__resolve_bstack(sample, al);
746 if (!bi)
747 return -ENOMEM;
748
749 iter->curr = 0;
750 iter->total = sample->branch_stack->nr;
751
752 iter->priv = bi;
753 return 0;
754 }
755
756 static int
757 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
758 struct addr_location *al __maybe_unused)
759 {
760 return 0;
761 }
762
763 static int
764 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
765 {
766 struct branch_info *bi = iter->priv;
767 int i = iter->curr;
768
769 if (bi == NULL)
770 return 0;
771
772 if (iter->curr >= iter->total)
773 return 0;
774
775 al->map = bi[i].to.map;
776 al->sym = bi[i].to.sym;
777 al->addr = bi[i].to.addr;
778 return 1;
779 }
780
781 static int
782 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
783 {
784 struct branch_info *bi;
785 struct perf_evsel *evsel = iter->evsel;
786 struct hists *hists = evsel__hists(evsel);
787 struct perf_sample *sample = iter->sample;
788 struct hist_entry *he = NULL;
789 int i = iter->curr;
790 int err = 0;
791
792 bi = iter->priv;
793
794 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
795 goto out;
796
797 /*
798 * The report shows the percentage of total branches captured
799 * and not events sampled. Thus we use a pseudo period of 1.
800 */
801 sample->period = 1;
802 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
803
804 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
805 sample, true);
806 if (he == NULL)
807 return -ENOMEM;
808
809 hists__inc_nr_samples(hists, he->filtered);
810
811 out:
812 iter->he = he;
813 iter->curr++;
814 return err;
815 }
816
817 static int
818 iter_finish_branch_entry(struct hist_entry_iter *iter,
819 struct addr_location *al __maybe_unused)
820 {
821 zfree(&iter->priv);
822 iter->he = NULL;
823
824 return iter->curr >= iter->total ? 0 : -1;
825 }
826
827 static int
828 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
829 struct addr_location *al __maybe_unused)
830 {
831 return 0;
832 }
833
834 static int
835 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
836 {
837 struct perf_evsel *evsel = iter->evsel;
838 struct perf_sample *sample = iter->sample;
839 struct hist_entry *he;
840
841 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
842 sample, true);
843 if (he == NULL)
844 return -ENOMEM;
845
846 iter->he = he;
847 return 0;
848 }
849
850 static int
851 iter_finish_normal_entry(struct hist_entry_iter *iter,
852 struct addr_location *al __maybe_unused)
853 {
854 struct hist_entry *he = iter->he;
855 struct perf_evsel *evsel = iter->evsel;
856 struct perf_sample *sample = iter->sample;
857
858 if (he == NULL)
859 return 0;
860
861 iter->he = NULL;
862
863 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
864
865 return hist_entry__append_callchain(he, sample);
866 }
867
868 static int
869 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
870 struct addr_location *al __maybe_unused)
871 {
872 struct hist_entry **he_cache;
873
874 callchain_cursor_commit(&callchain_cursor);
875
876 /*
877 * This is for detecting cycles or recursions so that they're
878 * cumulated only one time to prevent entries more than 100%
879 * overhead.
880 */
881 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
882 if (he_cache == NULL)
883 return -ENOMEM;
884
885 iter->priv = he_cache;
886 iter->curr = 0;
887
888 return 0;
889 }
890
891 static int
892 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
893 struct addr_location *al)
894 {
895 struct perf_evsel *evsel = iter->evsel;
896 struct hists *hists = evsel__hists(evsel);
897 struct perf_sample *sample = iter->sample;
898 struct hist_entry **he_cache = iter->priv;
899 struct hist_entry *he;
900 int err = 0;
901
902 he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
903 sample, true);
904 if (he == NULL)
905 return -ENOMEM;
906
907 iter->he = he;
908 he_cache[iter->curr++] = he;
909
910 hist_entry__append_callchain(he, sample);
911
912 /*
913 * We need to re-initialize the cursor since callchain_append()
914 * advanced the cursor to the end.
915 */
916 callchain_cursor_commit(&callchain_cursor);
917
918 hists__inc_nr_samples(hists, he->filtered);
919
920 return err;
921 }
922
923 static int
924 iter_next_cumulative_entry(struct hist_entry_iter *iter,
925 struct addr_location *al)
926 {
927 struct callchain_cursor_node *node;
928
929 node = callchain_cursor_current(&callchain_cursor);
930 if (node == NULL)
931 return 0;
932
933 return fill_callchain_info(al, node, iter->hide_unresolved);
934 }
935
936 static int
937 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
938 struct addr_location *al)
939 {
940 struct perf_evsel *evsel = iter->evsel;
941 struct perf_sample *sample = iter->sample;
942 struct hist_entry **he_cache = iter->priv;
943 struct hist_entry *he;
944 struct hist_entry he_tmp = {
945 .hists = evsel__hists(evsel),
946 .cpu = al->cpu,
947 .thread = al->thread,
948 .comm = thread__comm(al->thread),
949 .ip = al->addr,
950 .ms = {
951 .map = al->map,
952 .sym = al->sym,
953 },
954 .parent = iter->parent,
955 .raw_data = sample->raw_data,
956 .raw_size = sample->raw_size,
957 };
958 int i;
959 struct callchain_cursor cursor;
960
961 callchain_cursor_snapshot(&cursor, &callchain_cursor);
962
963 callchain_cursor_advance(&callchain_cursor);
964
965 /*
966 * Check if there's duplicate entries in the callchain.
967 * It's possible that it has cycles or recursive calls.
968 */
969 for (i = 0; i < iter->curr; i++) {
970 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
971 /* to avoid calling callback function */
972 iter->he = NULL;
973 return 0;
974 }
975 }
976
977 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
978 sample, false);
979 if (he == NULL)
980 return -ENOMEM;
981
982 iter->he = he;
983 he_cache[iter->curr++] = he;
984
985 if (symbol_conf.use_callchain)
986 callchain_append(he->callchain, &cursor, sample->period);
987 return 0;
988 }
989
990 static int
991 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
992 struct addr_location *al __maybe_unused)
993 {
994 zfree(&iter->priv);
995 iter->he = NULL;
996
997 return 0;
998 }
999
1000 const struct hist_iter_ops hist_iter_mem = {
1001 .prepare_entry = iter_prepare_mem_entry,
1002 .add_single_entry = iter_add_single_mem_entry,
1003 .next_entry = iter_next_nop_entry,
1004 .add_next_entry = iter_add_next_nop_entry,
1005 .finish_entry = iter_finish_mem_entry,
1006 };
1007
1008 const struct hist_iter_ops hist_iter_branch = {
1009 .prepare_entry = iter_prepare_branch_entry,
1010 .add_single_entry = iter_add_single_branch_entry,
1011 .next_entry = iter_next_branch_entry,
1012 .add_next_entry = iter_add_next_branch_entry,
1013 .finish_entry = iter_finish_branch_entry,
1014 };
1015
1016 const struct hist_iter_ops hist_iter_normal = {
1017 .prepare_entry = iter_prepare_normal_entry,
1018 .add_single_entry = iter_add_single_normal_entry,
1019 .next_entry = iter_next_nop_entry,
1020 .add_next_entry = iter_add_next_nop_entry,
1021 .finish_entry = iter_finish_normal_entry,
1022 };
1023
1024 const struct hist_iter_ops hist_iter_cumulative = {
1025 .prepare_entry = iter_prepare_cumulative_entry,
1026 .add_single_entry = iter_add_single_cumulative_entry,
1027 .next_entry = iter_next_cumulative_entry,
1028 .add_next_entry = iter_add_next_cumulative_entry,
1029 .finish_entry = iter_finish_cumulative_entry,
1030 };
1031
1032 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1033 int max_stack_depth, void *arg)
1034 {
1035 int err, err2;
1036 struct map *alm = NULL;
1037
1038 if (al && al->map)
1039 alm = map__get(al->map);
1040
1041 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1042 iter->evsel, al, max_stack_depth);
1043 if (err)
1044 return err;
1045
1046 iter->max_stack = max_stack_depth;
1047
1048 err = iter->ops->prepare_entry(iter, al);
1049 if (err)
1050 goto out;
1051
1052 err = iter->ops->add_single_entry(iter, al);
1053 if (err)
1054 goto out;
1055
1056 if (iter->he && iter->add_entry_cb) {
1057 err = iter->add_entry_cb(iter, al, true, arg);
1058 if (err)
1059 goto out;
1060 }
1061
1062 while (iter->ops->next_entry(iter, al)) {
1063 err = iter->ops->add_next_entry(iter, al);
1064 if (err)
1065 break;
1066
1067 if (iter->he && iter->add_entry_cb) {
1068 err = iter->add_entry_cb(iter, al, false, arg);
1069 if (err)
1070 goto out;
1071 }
1072 }
1073
1074 out:
1075 err2 = iter->ops->finish_entry(iter, al);
1076 if (!err)
1077 err = err2;
1078
1079 map__put(alm);
1080
1081 return err;
1082 }
1083
1084 int64_t
1085 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1086 {
1087 struct hists *hists = left->hists;
1088 struct perf_hpp_fmt *fmt;
1089 int64_t cmp = 0;
1090
1091 hists__for_each_sort_list(hists, fmt) {
1092 if (perf_hpp__is_dynamic_entry(fmt) &&
1093 !perf_hpp__defined_dynamic_entry(fmt, hists))
1094 continue;
1095
1096 cmp = fmt->cmp(fmt, left, right);
1097 if (cmp)
1098 break;
1099 }
1100
1101 return cmp;
1102 }
1103
1104 int64_t
1105 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1106 {
1107 struct hists *hists = left->hists;
1108 struct perf_hpp_fmt *fmt;
1109 int64_t cmp = 0;
1110
1111 hists__for_each_sort_list(hists, fmt) {
1112 if (perf_hpp__is_dynamic_entry(fmt) &&
1113 !perf_hpp__defined_dynamic_entry(fmt, hists))
1114 continue;
1115
1116 cmp = fmt->collapse(fmt, left, right);
1117 if (cmp)
1118 break;
1119 }
1120
1121 return cmp;
1122 }
1123
1124 void hist_entry__delete(struct hist_entry *he)
1125 {
1126 struct hist_entry_ops *ops = he->ops;
1127
1128 thread__zput(he->thread);
1129 map__zput(he->ms.map);
1130
1131 if (he->branch_info) {
1132 map__zput(he->branch_info->from.map);
1133 map__zput(he->branch_info->to.map);
1134 free_srcline(he->branch_info->srcline_from);
1135 free_srcline(he->branch_info->srcline_to);
1136 zfree(&he->branch_info);
1137 }
1138
1139 if (he->mem_info) {
1140 map__zput(he->mem_info->iaddr.map);
1141 map__zput(he->mem_info->daddr.map);
1142 zfree(&he->mem_info);
1143 }
1144
1145 if (he->inline_node) {
1146 inline_node__delete(he->inline_node);
1147 he->inline_node = NULL;
1148 }
1149
1150 zfree(&he->stat_acc);
1151 free_srcline(he->srcline);
1152 if (he->srcfile && he->srcfile[0])
1153 free(he->srcfile);
1154 free_callchain(he->callchain);
1155 free(he->trace_output);
1156 free(he->raw_data);
1157 ops->free(he);
1158 }
1159
1160 /*
1161 * If this is not the last column, then we need to pad it according to the
1162 * pre-calculated max lenght for this column, otherwise don't bother adding
1163 * spaces because that would break viewing this with, for instance, 'less',
1164 * that would show tons of trailing spaces when a long C++ demangled method
1165 * names is sampled.
1166 */
1167 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1168 struct perf_hpp_fmt *fmt, int printed)
1169 {
1170 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1171 const int width = fmt->width(fmt, hpp, he->hists);
1172 if (printed < width) {
1173 advance_hpp(hpp, printed);
1174 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1175 }
1176 }
1177
1178 return printed;
1179 }
1180
1181 /*
1182 * collapse the histogram
1183 */
1184
1185 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1186 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1187 enum hist_filter type);
1188
1189 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1190
1191 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1192 {
1193 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1194 }
1195
1196 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1197 enum hist_filter type,
1198 fmt_chk_fn check)
1199 {
1200 struct perf_hpp_fmt *fmt;
1201 bool type_match = false;
1202 struct hist_entry *parent = he->parent_he;
1203
1204 switch (type) {
1205 case HIST_FILTER__THREAD:
1206 if (symbol_conf.comm_list == NULL &&
1207 symbol_conf.pid_list == NULL &&
1208 symbol_conf.tid_list == NULL)
1209 return;
1210 break;
1211 case HIST_FILTER__DSO:
1212 if (symbol_conf.dso_list == NULL)
1213 return;
1214 break;
1215 case HIST_FILTER__SYMBOL:
1216 if (symbol_conf.sym_list == NULL)
1217 return;
1218 break;
1219 case HIST_FILTER__PARENT:
1220 case HIST_FILTER__GUEST:
1221 case HIST_FILTER__HOST:
1222 case HIST_FILTER__SOCKET:
1223 case HIST_FILTER__C2C:
1224 default:
1225 return;
1226 }
1227
1228 /* if it's filtered by own fmt, it has to have filter bits */
1229 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1230 if (check(fmt)) {
1231 type_match = true;
1232 break;
1233 }
1234 }
1235
1236 if (type_match) {
1237 /*
1238 * If the filter is for current level entry, propagate
1239 * filter marker to parents. The marker bit was
1240 * already set by default so it only needs to clear
1241 * non-filtered entries.
1242 */
1243 if (!(he->filtered & (1 << type))) {
1244 while (parent) {
1245 parent->filtered &= ~(1 << type);
1246 parent = parent->parent_he;
1247 }
1248 }
1249 } else {
1250 /*
1251 * If current entry doesn't have matching formats, set
1252 * filter marker for upper level entries. it will be
1253 * cleared if its lower level entries is not filtered.
1254 *
1255 * For lower-level entries, it inherits parent's
1256 * filter bit so that lower level entries of a
1257 * non-filtered entry won't set the filter marker.
1258 */
1259 if (parent == NULL)
1260 he->filtered |= (1 << type);
1261 else
1262 he->filtered |= (parent->filtered & (1 << type));
1263 }
1264 }
1265
1266 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1267 {
1268 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1269 check_thread_entry);
1270
1271 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1272 perf_hpp__is_dso_entry);
1273
1274 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1275 perf_hpp__is_sym_entry);
1276
1277 hists__apply_filters(he->hists, he);
1278 }
1279
1280 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1281 struct rb_root *root,
1282 struct hist_entry *he,
1283 struct hist_entry *parent_he,
1284 struct perf_hpp_list *hpp_list)
1285 {
1286 struct rb_node **p = &root->rb_node;
1287 struct rb_node *parent = NULL;
1288 struct hist_entry *iter, *new;
1289 struct perf_hpp_fmt *fmt;
1290 int64_t cmp;
1291
1292 while (*p != NULL) {
1293 parent = *p;
1294 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1295
1296 cmp = 0;
1297 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1298 cmp = fmt->collapse(fmt, iter, he);
1299 if (cmp)
1300 break;
1301 }
1302
1303 if (!cmp) {
1304 he_stat__add_stat(&iter->stat, &he->stat);
1305 return iter;
1306 }
1307
1308 if (cmp < 0)
1309 p = &parent->rb_left;
1310 else
1311 p = &parent->rb_right;
1312 }
1313
1314 new = hist_entry__new(he, true);
1315 if (new == NULL)
1316 return NULL;
1317
1318 hists->nr_entries++;
1319
1320 /* save related format list for output */
1321 new->hpp_list = hpp_list;
1322 new->parent_he = parent_he;
1323
1324 hist_entry__apply_hierarchy_filters(new);
1325
1326 /* some fields are now passed to 'new' */
1327 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1328 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1329 he->trace_output = NULL;
1330 else
1331 new->trace_output = NULL;
1332
1333 if (perf_hpp__is_srcline_entry(fmt))
1334 he->srcline = NULL;
1335 else
1336 new->srcline = NULL;
1337
1338 if (perf_hpp__is_srcfile_entry(fmt))
1339 he->srcfile = NULL;
1340 else
1341 new->srcfile = NULL;
1342 }
1343
1344 rb_link_node(&new->rb_node_in, parent, p);
1345 rb_insert_color(&new->rb_node_in, root);
1346 return new;
1347 }
1348
1349 static int hists__hierarchy_insert_entry(struct hists *hists,
1350 struct rb_root *root,
1351 struct hist_entry *he)
1352 {
1353 struct perf_hpp_list_node *node;
1354 struct hist_entry *new_he = NULL;
1355 struct hist_entry *parent = NULL;
1356 int depth = 0;
1357 int ret = 0;
1358
1359 list_for_each_entry(node, &hists->hpp_formats, list) {
1360 /* skip period (overhead) and elided columns */
1361 if (node->level == 0 || node->skip)
1362 continue;
1363
1364 /* insert copy of 'he' for each fmt into the hierarchy */
1365 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1366 if (new_he == NULL) {
1367 ret = -1;
1368 break;
1369 }
1370
1371 root = &new_he->hroot_in;
1372 new_he->depth = depth++;
1373 parent = new_he;
1374 }
1375
1376 if (new_he) {
1377 new_he->leaf = true;
1378
1379 if (symbol_conf.use_callchain) {
1380 callchain_cursor_reset(&callchain_cursor);
1381 if (callchain_merge(&callchain_cursor,
1382 new_he->callchain,
1383 he->callchain) < 0)
1384 ret = -1;
1385 }
1386 }
1387
1388 /* 'he' is no longer used */
1389 hist_entry__delete(he);
1390
1391 /* return 0 (or -1) since it already applied filters */
1392 return ret;
1393 }
1394
1395 static int hists__collapse_insert_entry(struct hists *hists,
1396 struct rb_root *root,
1397 struct hist_entry *he)
1398 {
1399 struct rb_node **p = &root->rb_node;
1400 struct rb_node *parent = NULL;
1401 struct hist_entry *iter;
1402 int64_t cmp;
1403
1404 if (symbol_conf.report_hierarchy)
1405 return hists__hierarchy_insert_entry(hists, root, he);
1406
1407 while (*p != NULL) {
1408 parent = *p;
1409 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1410
1411 cmp = hist_entry__collapse(iter, he);
1412
1413 if (!cmp) {
1414 int ret = 0;
1415
1416 he_stat__add_stat(&iter->stat, &he->stat);
1417 if (symbol_conf.cumulate_callchain)
1418 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1419
1420 if (symbol_conf.use_callchain) {
1421 callchain_cursor_reset(&callchain_cursor);
1422 if (callchain_merge(&callchain_cursor,
1423 iter->callchain,
1424 he->callchain) < 0)
1425 ret = -1;
1426 }
1427 hist_entry__delete(he);
1428 return ret;
1429 }
1430
1431 if (cmp < 0)
1432 p = &(*p)->rb_left;
1433 else
1434 p = &(*p)->rb_right;
1435 }
1436 hists->nr_entries++;
1437
1438 rb_link_node(&he->rb_node_in, parent, p);
1439 rb_insert_color(&he->rb_node_in, root);
1440 return 1;
1441 }
1442
1443 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1444 {
1445 struct rb_root *root;
1446
1447 pthread_mutex_lock(&hists->lock);
1448
1449 root = hists->entries_in;
1450 if (++hists->entries_in > &hists->entries_in_array[1])
1451 hists->entries_in = &hists->entries_in_array[0];
1452
1453 pthread_mutex_unlock(&hists->lock);
1454
1455 return root;
1456 }
1457
1458 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1459 {
1460 hists__filter_entry_by_dso(hists, he);
1461 hists__filter_entry_by_thread(hists, he);
1462 hists__filter_entry_by_symbol(hists, he);
1463 hists__filter_entry_by_socket(hists, he);
1464 }
1465
1466 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1467 {
1468 struct rb_root *root;
1469 struct rb_node *next;
1470 struct hist_entry *n;
1471 int ret;
1472
1473 if (!hists__has(hists, need_collapse))
1474 return 0;
1475
1476 hists->nr_entries = 0;
1477
1478 root = hists__get_rotate_entries_in(hists);
1479
1480 next = rb_first(root);
1481
1482 while (next) {
1483 if (session_done())
1484 break;
1485 n = rb_entry(next, struct hist_entry, rb_node_in);
1486 next = rb_next(&n->rb_node_in);
1487
1488 rb_erase(&n->rb_node_in, root);
1489 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1490 if (ret < 0)
1491 return -1;
1492
1493 if (ret) {
1494 /*
1495 * If it wasn't combined with one of the entries already
1496 * collapsed, we need to apply the filters that may have
1497 * been set by, say, the hist_browser.
1498 */
1499 hists__apply_filters(hists, n);
1500 }
1501 if (prog)
1502 ui_progress__update(prog, 1);
1503 }
1504 return 0;
1505 }
1506
1507 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1508 {
1509 struct hists *hists = a->hists;
1510 struct perf_hpp_fmt *fmt;
1511 int64_t cmp = 0;
1512
1513 hists__for_each_sort_list(hists, fmt) {
1514 if (perf_hpp__should_skip(fmt, a->hists))
1515 continue;
1516
1517 cmp = fmt->sort(fmt, a, b);
1518 if (cmp)
1519 break;
1520 }
1521
1522 return cmp;
1523 }
1524
1525 static void hists__reset_filter_stats(struct hists *hists)
1526 {
1527 hists->nr_non_filtered_entries = 0;
1528 hists->stats.total_non_filtered_period = 0;
1529 }
1530
1531 void hists__reset_stats(struct hists *hists)
1532 {
1533 hists->nr_entries = 0;
1534 hists->stats.total_period = 0;
1535
1536 hists__reset_filter_stats(hists);
1537 }
1538
1539 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1540 {
1541 hists->nr_non_filtered_entries++;
1542 hists->stats.total_non_filtered_period += h->stat.period;
1543 }
1544
1545 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1546 {
1547 if (!h->filtered)
1548 hists__inc_filter_stats(hists, h);
1549
1550 hists->nr_entries++;
1551 hists->stats.total_period += h->stat.period;
1552 }
1553
1554 static void hierarchy_recalc_total_periods(struct hists *hists)
1555 {
1556 struct rb_node *node;
1557 struct hist_entry *he;
1558
1559 node = rb_first(&hists->entries);
1560
1561 hists->stats.total_period = 0;
1562 hists->stats.total_non_filtered_period = 0;
1563
1564 /*
1565 * recalculate total period using top-level entries only
1566 * since lower level entries only see non-filtered entries
1567 * but upper level entries have sum of both entries.
1568 */
1569 while (node) {
1570 he = rb_entry(node, struct hist_entry, rb_node);
1571 node = rb_next(node);
1572
1573 hists->stats.total_period += he->stat.period;
1574 if (!he->filtered)
1575 hists->stats.total_non_filtered_period += he->stat.period;
1576 }
1577 }
1578
1579 static void hierarchy_insert_output_entry(struct rb_root *root,
1580 struct hist_entry *he)
1581 {
1582 struct rb_node **p = &root->rb_node;
1583 struct rb_node *parent = NULL;
1584 struct hist_entry *iter;
1585 struct perf_hpp_fmt *fmt;
1586
1587 while (*p != NULL) {
1588 parent = *p;
1589 iter = rb_entry(parent, struct hist_entry, rb_node);
1590
1591 if (hist_entry__sort(he, iter) > 0)
1592 p = &parent->rb_left;
1593 else
1594 p = &parent->rb_right;
1595 }
1596
1597 rb_link_node(&he->rb_node, parent, p);
1598 rb_insert_color(&he->rb_node, root);
1599
1600 /* update column width of dynamic entry */
1601 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1602 if (perf_hpp__is_dynamic_entry(fmt))
1603 fmt->sort(fmt, he, NULL);
1604 }
1605 }
1606
1607 static void hists__hierarchy_output_resort(struct hists *hists,
1608 struct ui_progress *prog,
1609 struct rb_root *root_in,
1610 struct rb_root *root_out,
1611 u64 min_callchain_hits,
1612 bool use_callchain)
1613 {
1614 struct rb_node *node;
1615 struct hist_entry *he;
1616
1617 *root_out = RB_ROOT;
1618 node = rb_first(root_in);
1619
1620 while (node) {
1621 he = rb_entry(node, struct hist_entry, rb_node_in);
1622 node = rb_next(node);
1623
1624 hierarchy_insert_output_entry(root_out, he);
1625
1626 if (prog)
1627 ui_progress__update(prog, 1);
1628
1629 hists->nr_entries++;
1630 if (!he->filtered) {
1631 hists->nr_non_filtered_entries++;
1632 hists__calc_col_len(hists, he);
1633 }
1634
1635 if (!he->leaf) {
1636 hists__hierarchy_output_resort(hists, prog,
1637 &he->hroot_in,
1638 &he->hroot_out,
1639 min_callchain_hits,
1640 use_callchain);
1641 continue;
1642 }
1643
1644 if (!use_callchain)
1645 continue;
1646
1647 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1648 u64 total = he->stat.period;
1649
1650 if (symbol_conf.cumulate_callchain)
1651 total = he->stat_acc->period;
1652
1653 min_callchain_hits = total * (callchain_param.min_percent / 100);
1654 }
1655
1656 callchain_param.sort(&he->sorted_chain, he->callchain,
1657 min_callchain_hits, &callchain_param);
1658 }
1659 }
1660
1661 static void __hists__insert_output_entry(struct rb_root *entries,
1662 struct hist_entry *he,
1663 u64 min_callchain_hits,
1664 bool use_callchain)
1665 {
1666 struct rb_node **p = &entries->rb_node;
1667 struct rb_node *parent = NULL;
1668 struct hist_entry *iter;
1669 struct perf_hpp_fmt *fmt;
1670
1671 if (use_callchain) {
1672 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1673 u64 total = he->stat.period;
1674
1675 if (symbol_conf.cumulate_callchain)
1676 total = he->stat_acc->period;
1677
1678 min_callchain_hits = total * (callchain_param.min_percent / 100);
1679 }
1680 callchain_param.sort(&he->sorted_chain, he->callchain,
1681 min_callchain_hits, &callchain_param);
1682 }
1683
1684 while (*p != NULL) {
1685 parent = *p;
1686 iter = rb_entry(parent, struct hist_entry, rb_node);
1687
1688 if (hist_entry__sort(he, iter) > 0)
1689 p = &(*p)->rb_left;
1690 else
1691 p = &(*p)->rb_right;
1692 }
1693
1694 rb_link_node(&he->rb_node, parent, p);
1695 rb_insert_color(&he->rb_node, entries);
1696
1697 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1698 if (perf_hpp__is_dynamic_entry(fmt) &&
1699 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1700 fmt->sort(fmt, he, NULL); /* update column width */
1701 }
1702 }
1703
1704 static void output_resort(struct hists *hists, struct ui_progress *prog,
1705 bool use_callchain, hists__resort_cb_t cb)
1706 {
1707 struct rb_root *root;
1708 struct rb_node *next;
1709 struct hist_entry *n;
1710 u64 callchain_total;
1711 u64 min_callchain_hits;
1712
1713 callchain_total = hists->callchain_period;
1714 if (symbol_conf.filter_relative)
1715 callchain_total = hists->callchain_non_filtered_period;
1716
1717 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1718
1719 hists__reset_stats(hists);
1720 hists__reset_col_len(hists);
1721
1722 if (symbol_conf.report_hierarchy) {
1723 hists__hierarchy_output_resort(hists, prog,
1724 &hists->entries_collapsed,
1725 &hists->entries,
1726 min_callchain_hits,
1727 use_callchain);
1728 hierarchy_recalc_total_periods(hists);
1729 return;
1730 }
1731
1732 if (hists__has(hists, need_collapse))
1733 root = &hists->entries_collapsed;
1734 else
1735 root = hists->entries_in;
1736
1737 next = rb_first(root);
1738 hists->entries = RB_ROOT;
1739
1740 while (next) {
1741 n = rb_entry(next, struct hist_entry, rb_node_in);
1742 next = rb_next(&n->rb_node_in);
1743
1744 if (cb && cb(n))
1745 continue;
1746
1747 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1748 hists__inc_stats(hists, n);
1749
1750 if (!n->filtered)
1751 hists__calc_col_len(hists, n);
1752
1753 if (prog)
1754 ui_progress__update(prog, 1);
1755 }
1756 }
1757
1758 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1759 {
1760 bool use_callchain;
1761
1762 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1763 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1764 else
1765 use_callchain = symbol_conf.use_callchain;
1766
1767 use_callchain |= symbol_conf.show_branchflag_count;
1768
1769 output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1770 }
1771
1772 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1773 {
1774 output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1775 }
1776
1777 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1778 hists__resort_cb_t cb)
1779 {
1780 output_resort(hists, prog, symbol_conf.use_callchain, cb);
1781 }
1782
1783 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1784 {
1785 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1786 return false;
1787
1788 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1789 return true;
1790
1791 return false;
1792 }
1793
1794 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1795 {
1796 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1797
1798 while (can_goto_child(he, HMD_NORMAL)) {
1799 node = rb_last(&he->hroot_out);
1800 he = rb_entry(node, struct hist_entry, rb_node);
1801 }
1802 return node;
1803 }
1804
1805 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1806 {
1807 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1808
1809 if (can_goto_child(he, hmd))
1810 node = rb_first(&he->hroot_out);
1811 else
1812 node = rb_next(node);
1813
1814 while (node == NULL) {
1815 he = he->parent_he;
1816 if (he == NULL)
1817 break;
1818
1819 node = rb_next(&he->rb_node);
1820 }
1821 return node;
1822 }
1823
1824 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1825 {
1826 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1827
1828 node = rb_prev(node);
1829 if (node)
1830 return rb_hierarchy_last(node);
1831
1832 he = he->parent_he;
1833 if (he == NULL)
1834 return NULL;
1835
1836 return &he->rb_node;
1837 }
1838
1839 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1840 {
1841 struct rb_node *node;
1842 struct hist_entry *child;
1843 float percent;
1844
1845 if (he->leaf)
1846 return false;
1847
1848 node = rb_first(&he->hroot_out);
1849 child = rb_entry(node, struct hist_entry, rb_node);
1850
1851 while (node && child->filtered) {
1852 node = rb_next(node);
1853 child = rb_entry(node, struct hist_entry, rb_node);
1854 }
1855
1856 if (node)
1857 percent = hist_entry__get_percent_limit(child);
1858 else
1859 percent = 0;
1860
1861 return node && percent >= limit;
1862 }
1863
1864 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1865 enum hist_filter filter)
1866 {
1867 h->filtered &= ~(1 << filter);
1868
1869 if (symbol_conf.report_hierarchy) {
1870 struct hist_entry *parent = h->parent_he;
1871
1872 while (parent) {
1873 he_stat__add_stat(&parent->stat, &h->stat);
1874
1875 parent->filtered &= ~(1 << filter);
1876
1877 if (parent->filtered)
1878 goto next;
1879
1880 /* force fold unfiltered entry for simplicity */
1881 parent->unfolded = false;
1882 parent->has_no_entry = false;
1883 parent->row_offset = 0;
1884 parent->nr_rows = 0;
1885 next:
1886 parent = parent->parent_he;
1887 }
1888 }
1889
1890 if (h->filtered)
1891 return;
1892
1893 /* force fold unfiltered entry for simplicity */
1894 h->unfolded = false;
1895 h->has_no_entry = false;
1896 h->row_offset = 0;
1897 h->nr_rows = 0;
1898
1899 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1900
1901 hists__inc_filter_stats(hists, h);
1902 hists__calc_col_len(hists, h);
1903 }
1904
1905
1906 static bool hists__filter_entry_by_dso(struct hists *hists,
1907 struct hist_entry *he)
1908 {
1909 if (hists->dso_filter != NULL &&
1910 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1911 he->filtered |= (1 << HIST_FILTER__DSO);
1912 return true;
1913 }
1914
1915 return false;
1916 }
1917
1918 static bool hists__filter_entry_by_thread(struct hists *hists,
1919 struct hist_entry *he)
1920 {
1921 if (hists->thread_filter != NULL &&
1922 he->thread != hists->thread_filter) {
1923 he->filtered |= (1 << HIST_FILTER__THREAD);
1924 return true;
1925 }
1926
1927 return false;
1928 }
1929
1930 static bool hists__filter_entry_by_symbol(struct hists *hists,
1931 struct hist_entry *he)
1932 {
1933 if (hists->symbol_filter_str != NULL &&
1934 (!he->ms.sym || strstr(he->ms.sym->name,
1935 hists->symbol_filter_str) == NULL)) {
1936 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1937 return true;
1938 }
1939
1940 return false;
1941 }
1942
1943 static bool hists__filter_entry_by_socket(struct hists *hists,
1944 struct hist_entry *he)
1945 {
1946 if ((hists->socket_filter > -1) &&
1947 (he->socket != hists->socket_filter)) {
1948 he->filtered |= (1 << HIST_FILTER__SOCKET);
1949 return true;
1950 }
1951
1952 return false;
1953 }
1954
1955 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1956
1957 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1958 {
1959 struct rb_node *nd;
1960
1961 hists->stats.nr_non_filtered_samples = 0;
1962
1963 hists__reset_filter_stats(hists);
1964 hists__reset_col_len(hists);
1965
1966 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1967 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1968
1969 if (filter(hists, h))
1970 continue;
1971
1972 hists__remove_entry_filter(hists, h, type);
1973 }
1974 }
1975
1976 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1977 {
1978 struct rb_node **p = &root->rb_node;
1979 struct rb_node *parent = NULL;
1980 struct hist_entry *iter;
1981 struct rb_root new_root = RB_ROOT;
1982 struct rb_node *nd;
1983
1984 while (*p != NULL) {
1985 parent = *p;
1986 iter = rb_entry(parent, struct hist_entry, rb_node);
1987
1988 if (hist_entry__sort(he, iter) > 0)
1989 p = &(*p)->rb_left;
1990 else
1991 p = &(*p)->rb_right;
1992 }
1993
1994 rb_link_node(&he->rb_node, parent, p);
1995 rb_insert_color(&he->rb_node, root);
1996
1997 if (he->leaf || he->filtered)
1998 return;
1999
2000 nd = rb_first(&he->hroot_out);
2001 while (nd) {
2002 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2003
2004 nd = rb_next(nd);
2005 rb_erase(&h->rb_node, &he->hroot_out);
2006
2007 resort_filtered_entry(&new_root, h);
2008 }
2009
2010 he->hroot_out = new_root;
2011 }
2012
2013 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2014 {
2015 struct rb_node *nd;
2016 struct rb_root new_root = RB_ROOT;
2017
2018 hists->stats.nr_non_filtered_samples = 0;
2019
2020 hists__reset_filter_stats(hists);
2021 hists__reset_col_len(hists);
2022
2023 nd = rb_first(&hists->entries);
2024 while (nd) {
2025 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2026 int ret;
2027
2028 ret = hist_entry__filter(h, type, arg);
2029
2030 /*
2031 * case 1. non-matching type
2032 * zero out the period, set filter marker and move to child
2033 */
2034 if (ret < 0) {
2035 memset(&h->stat, 0, sizeof(h->stat));
2036 h->filtered |= (1 << type);
2037
2038 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2039 }
2040 /*
2041 * case 2. matched type (filter out)
2042 * set filter marker and move to next
2043 */
2044 else if (ret == 1) {
2045 h->filtered |= (1 << type);
2046
2047 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2048 }
2049 /*
2050 * case 3. ok (not filtered)
2051 * add period to hists and parents, erase the filter marker
2052 * and move to next sibling
2053 */
2054 else {
2055 hists__remove_entry_filter(hists, h, type);
2056
2057 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2058 }
2059 }
2060
2061 hierarchy_recalc_total_periods(hists);
2062
2063 /*
2064 * resort output after applying a new filter since filter in a lower
2065 * hierarchy can change periods in a upper hierarchy.
2066 */
2067 nd = rb_first(&hists->entries);
2068 while (nd) {
2069 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2070
2071 nd = rb_next(nd);
2072 rb_erase(&h->rb_node, &hists->entries);
2073
2074 resort_filtered_entry(&new_root, h);
2075 }
2076
2077 hists->entries = new_root;
2078 }
2079
2080 void hists__filter_by_thread(struct hists *hists)
2081 {
2082 if (symbol_conf.report_hierarchy)
2083 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2084 hists->thread_filter);
2085 else
2086 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2087 hists__filter_entry_by_thread);
2088 }
2089
2090 void hists__filter_by_dso(struct hists *hists)
2091 {
2092 if (symbol_conf.report_hierarchy)
2093 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2094 hists->dso_filter);
2095 else
2096 hists__filter_by_type(hists, HIST_FILTER__DSO,
2097 hists__filter_entry_by_dso);
2098 }
2099
2100 void hists__filter_by_symbol(struct hists *hists)
2101 {
2102 if (symbol_conf.report_hierarchy)
2103 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2104 hists->symbol_filter_str);
2105 else
2106 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2107 hists__filter_entry_by_symbol);
2108 }
2109
2110 void hists__filter_by_socket(struct hists *hists)
2111 {
2112 if (symbol_conf.report_hierarchy)
2113 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2114 &hists->socket_filter);
2115 else
2116 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2117 hists__filter_entry_by_socket);
2118 }
2119
2120 void events_stats__inc(struct events_stats *stats, u32 type)
2121 {
2122 ++stats->nr_events[0];
2123 ++stats->nr_events[type];
2124 }
2125
2126 void hists__inc_nr_events(struct hists *hists, u32 type)
2127 {
2128 events_stats__inc(&hists->stats, type);
2129 }
2130
2131 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2132 {
2133 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2134 if (!filtered)
2135 hists->stats.nr_non_filtered_samples++;
2136 }
2137
2138 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2139 struct hist_entry *pair)
2140 {
2141 struct rb_root *root;
2142 struct rb_node **p;
2143 struct rb_node *parent = NULL;
2144 struct hist_entry *he;
2145 int64_t cmp;
2146
2147 if (hists__has(hists, need_collapse))
2148 root = &hists->entries_collapsed;
2149 else
2150 root = hists->entries_in;
2151
2152 p = &root->rb_node;
2153
2154 while (*p != NULL) {
2155 parent = *p;
2156 he = rb_entry(parent, struct hist_entry, rb_node_in);
2157
2158 cmp = hist_entry__collapse(he, pair);
2159
2160 if (!cmp)
2161 goto out;
2162
2163 if (cmp < 0)
2164 p = &(*p)->rb_left;
2165 else
2166 p = &(*p)->rb_right;
2167 }
2168
2169 he = hist_entry__new(pair, true);
2170 if (he) {
2171 memset(&he->stat, 0, sizeof(he->stat));
2172 he->hists = hists;
2173 if (symbol_conf.cumulate_callchain)
2174 memset(he->stat_acc, 0, sizeof(he->stat));
2175 rb_link_node(&he->rb_node_in, parent, p);
2176 rb_insert_color(&he->rb_node_in, root);
2177 hists__inc_stats(hists, he);
2178 he->dummy = true;
2179 }
2180 out:
2181 return he;
2182 }
2183
2184 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2185 struct rb_root *root,
2186 struct hist_entry *pair)
2187 {
2188 struct rb_node **p;
2189 struct rb_node *parent = NULL;
2190 struct hist_entry *he;
2191 struct perf_hpp_fmt *fmt;
2192
2193 p = &root->rb_node;
2194 while (*p != NULL) {
2195 int64_t cmp = 0;
2196
2197 parent = *p;
2198 he = rb_entry(parent, struct hist_entry, rb_node_in);
2199
2200 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2201 cmp = fmt->collapse(fmt, he, pair);
2202 if (cmp)
2203 break;
2204 }
2205 if (!cmp)
2206 goto out;
2207
2208 if (cmp < 0)
2209 p = &parent->rb_left;
2210 else
2211 p = &parent->rb_right;
2212 }
2213
2214 he = hist_entry__new(pair, true);
2215 if (he) {
2216 rb_link_node(&he->rb_node_in, parent, p);
2217 rb_insert_color(&he->rb_node_in, root);
2218
2219 he->dummy = true;
2220 he->hists = hists;
2221 memset(&he->stat, 0, sizeof(he->stat));
2222 hists__inc_stats(hists, he);
2223 }
2224 out:
2225 return he;
2226 }
2227
2228 static struct hist_entry *hists__find_entry(struct hists *hists,
2229 struct hist_entry *he)
2230 {
2231 struct rb_node *n;
2232
2233 if (hists__has(hists, need_collapse))
2234 n = hists->entries_collapsed.rb_node;
2235 else
2236 n = hists->entries_in->rb_node;
2237
2238 while (n) {
2239 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2240 int64_t cmp = hist_entry__collapse(iter, he);
2241
2242 if (cmp < 0)
2243 n = n->rb_left;
2244 else if (cmp > 0)
2245 n = n->rb_right;
2246 else
2247 return iter;
2248 }
2249
2250 return NULL;
2251 }
2252
2253 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2254 struct hist_entry *he)
2255 {
2256 struct rb_node *n = root->rb_node;
2257
2258 while (n) {
2259 struct hist_entry *iter;
2260 struct perf_hpp_fmt *fmt;
2261 int64_t cmp = 0;
2262
2263 iter = rb_entry(n, struct hist_entry, rb_node_in);
2264 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2265 cmp = fmt->collapse(fmt, iter, he);
2266 if (cmp)
2267 break;
2268 }
2269
2270 if (cmp < 0)
2271 n = n->rb_left;
2272 else if (cmp > 0)
2273 n = n->rb_right;
2274 else
2275 return iter;
2276 }
2277
2278 return NULL;
2279 }
2280
2281 static void hists__match_hierarchy(struct rb_root *leader_root,
2282 struct rb_root *other_root)
2283 {
2284 struct rb_node *nd;
2285 struct hist_entry *pos, *pair;
2286
2287 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2288 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2289 pair = hists__find_hierarchy_entry(other_root, pos);
2290
2291 if (pair) {
2292 hist_entry__add_pair(pair, pos);
2293 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2294 }
2295 }
2296 }
2297
2298 /*
2299 * Look for pairs to link to the leader buckets (hist_entries):
2300 */
2301 void hists__match(struct hists *leader, struct hists *other)
2302 {
2303 struct rb_root *root;
2304 struct rb_node *nd;
2305 struct hist_entry *pos, *pair;
2306
2307 if (symbol_conf.report_hierarchy) {
2308 /* hierarchy report always collapses entries */
2309 return hists__match_hierarchy(&leader->entries_collapsed,
2310 &other->entries_collapsed);
2311 }
2312
2313 if (hists__has(leader, need_collapse))
2314 root = &leader->entries_collapsed;
2315 else
2316 root = leader->entries_in;
2317
2318 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2319 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2320 pair = hists__find_entry(other, pos);
2321
2322 if (pair)
2323 hist_entry__add_pair(pair, pos);
2324 }
2325 }
2326
2327 static int hists__link_hierarchy(struct hists *leader_hists,
2328 struct hist_entry *parent,
2329 struct rb_root *leader_root,
2330 struct rb_root *other_root)
2331 {
2332 struct rb_node *nd;
2333 struct hist_entry *pos, *leader;
2334
2335 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2336 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2337
2338 if (hist_entry__has_pairs(pos)) {
2339 bool found = false;
2340
2341 list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2342 if (leader->hists == leader_hists) {
2343 found = true;
2344 break;
2345 }
2346 }
2347 if (!found)
2348 return -1;
2349 } else {
2350 leader = add_dummy_hierarchy_entry(leader_hists,
2351 leader_root, pos);
2352 if (leader == NULL)
2353 return -1;
2354
2355 /* do not point parent in the pos */
2356 leader->parent_he = parent;
2357
2358 hist_entry__add_pair(pos, leader);
2359 }
2360
2361 if (!pos->leaf) {
2362 if (hists__link_hierarchy(leader_hists, leader,
2363 &leader->hroot_in,
2364 &pos->hroot_in) < 0)
2365 return -1;
2366 }
2367 }
2368 return 0;
2369 }
2370
2371 /*
2372 * Look for entries in the other hists that are not present in the leader, if
2373 * we find them, just add a dummy entry on the leader hists, with period=0,
2374 * nr_events=0, to serve as the list header.
2375 */
2376 int hists__link(struct hists *leader, struct hists *other)
2377 {
2378 struct rb_root *root;
2379 struct rb_node *nd;
2380 struct hist_entry *pos, *pair;
2381
2382 if (symbol_conf.report_hierarchy) {
2383 /* hierarchy report always collapses entries */
2384 return hists__link_hierarchy(leader, NULL,
2385 &leader->entries_collapsed,
2386 &other->entries_collapsed);
2387 }
2388
2389 if (hists__has(other, need_collapse))
2390 root = &other->entries_collapsed;
2391 else
2392 root = other->entries_in;
2393
2394 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2395 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2396
2397 if (!hist_entry__has_pairs(pos)) {
2398 pair = hists__add_dummy_entry(leader, pos);
2399 if (pair == NULL)
2400 return -1;
2401 hist_entry__add_pair(pos, pair);
2402 }
2403 }
2404
2405 return 0;
2406 }
2407
2408 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2409 struct perf_sample *sample, bool nonany_branch_mode)
2410 {
2411 struct branch_info *bi;
2412
2413 /* If we have branch cycles always annotate them. */
2414 if (bs && bs->nr && bs->entries[0].flags.cycles) {
2415 int i;
2416
2417 bi = sample__resolve_bstack(sample, al);
2418 if (bi) {
2419 struct addr_map_symbol *prev = NULL;
2420
2421 /*
2422 * Ignore errors, still want to process the
2423 * other entries.
2424 *
2425 * For non standard branch modes always
2426 * force no IPC (prev == NULL)
2427 *
2428 * Note that perf stores branches reversed from
2429 * program order!
2430 */
2431 for (i = bs->nr - 1; i >= 0; i--) {
2432 addr_map_symbol__account_cycles(&bi[i].from,
2433 nonany_branch_mode ? NULL : prev,
2434 bi[i].flags.cycles);
2435 prev = &bi[i].to;
2436 }
2437 free(bi);
2438 }
2439 }
2440 }
2441
2442 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2443 {
2444 struct perf_evsel *pos;
2445 size_t ret = 0;
2446
2447 evlist__for_each_entry(evlist, pos) {
2448 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2449 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2450 }
2451
2452 return ret;
2453 }
2454
2455
2456 u64 hists__total_period(struct hists *hists)
2457 {
2458 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2459 hists->stats.total_period;
2460 }
2461
2462 int parse_filter_percentage(const struct option *opt __maybe_unused,
2463 const char *arg, int unset __maybe_unused)
2464 {
2465 if (!strcmp(arg, "relative"))
2466 symbol_conf.filter_relative = true;
2467 else if (!strcmp(arg, "absolute"))
2468 symbol_conf.filter_relative = false;
2469 else {
2470 pr_debug("Invalid percentage: %s\n", arg);
2471 return -1;
2472 }
2473
2474 return 0;
2475 }
2476
2477 int perf_hist_config(const char *var, const char *value)
2478 {
2479 if (!strcmp(var, "hist.percentage"))
2480 return parse_filter_percentage(NULL, value, 0);
2481
2482 return 0;
2483 }
2484
2485 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2486 {
2487 memset(hists, 0, sizeof(*hists));
2488 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2489 hists->entries_in = &hists->entries_in_array[0];
2490 hists->entries_collapsed = RB_ROOT;
2491 hists->entries = RB_ROOT;
2492 pthread_mutex_init(&hists->lock, NULL);
2493 hists->socket_filter = -1;
2494 hists->hpp_list = hpp_list;
2495 INIT_LIST_HEAD(&hists->hpp_formats);
2496 return 0;
2497 }
2498
2499 static void hists__delete_remaining_entries(struct rb_root *root)
2500 {
2501 struct rb_node *node;
2502 struct hist_entry *he;
2503
2504 while (!RB_EMPTY_ROOT(root)) {
2505 node = rb_first(root);
2506 rb_erase(node, root);
2507
2508 he = rb_entry(node, struct hist_entry, rb_node_in);
2509 hist_entry__delete(he);
2510 }
2511 }
2512
2513 static void hists__delete_all_entries(struct hists *hists)
2514 {
2515 hists__delete_entries(hists);
2516 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2517 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2518 hists__delete_remaining_entries(&hists->entries_collapsed);
2519 }
2520
2521 static void hists_evsel__exit(struct perf_evsel *evsel)
2522 {
2523 struct hists *hists = evsel__hists(evsel);
2524 struct perf_hpp_fmt *fmt, *pos;
2525 struct perf_hpp_list_node *node, *tmp;
2526
2527 hists__delete_all_entries(hists);
2528
2529 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2530 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2531 list_del(&fmt->list);
2532 free(fmt);
2533 }
2534 list_del(&node->list);
2535 free(node);
2536 }
2537 }
2538
2539 static int hists_evsel__init(struct perf_evsel *evsel)
2540 {
2541 struct hists *hists = evsel__hists(evsel);
2542
2543 __hists__init(hists, &perf_hpp_list);
2544 return 0;
2545 }
2546
2547 /*
2548 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2549 * stored in the rbtree...
2550 */
2551
2552 int hists__init(void)
2553 {
2554 int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2555 hists_evsel__init,
2556 hists_evsel__exit);
2557 if (err)
2558 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2559
2560 return err;
2561 }
2562
2563 void perf_hpp_list__init(struct perf_hpp_list *list)
2564 {
2565 INIT_LIST_HEAD(&list->fields);
2566 INIT_LIST_HEAD(&list->sorts);
2567 }