]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - tools/perf/util/hist.c
6770a964560954e0b7d028698a50b8bcab0cf891
[mirror_ubuntu-zesty-kernel.git] / tools / perf / util / hist.c
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "session.h"
5 #include "sort.h"
6 #include "evlist.h"
7 #include "evsel.h"
8 #include "annotate.h"
9 #include "ui/progress.h"
10 #include <math.h>
11
12 static bool hists__filter_entry_by_dso(struct hists *hists,
13 struct hist_entry *he);
14 static bool hists__filter_entry_by_thread(struct hists *hists,
15 struct hist_entry *he);
16 static bool hists__filter_entry_by_symbol(struct hists *hists,
17 struct hist_entry *he);
18 static bool hists__filter_entry_by_socket(struct hists *hists,
19 struct hist_entry *he);
20
21 u16 hists__col_len(struct hists *hists, enum hist_column col)
22 {
23 return hists->col_len[col];
24 }
25
26 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
27 {
28 hists->col_len[col] = len;
29 }
30
31 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
32 {
33 if (len > hists__col_len(hists, col)) {
34 hists__set_col_len(hists, col, len);
35 return true;
36 }
37 return false;
38 }
39
40 void hists__reset_col_len(struct hists *hists)
41 {
42 enum hist_column col;
43
44 for (col = 0; col < HISTC_NR_COLS; ++col)
45 hists__set_col_len(hists, col, 0);
46 }
47
48 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
49 {
50 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
51
52 if (hists__col_len(hists, dso) < unresolved_col_width &&
53 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
54 !symbol_conf.dso_list)
55 hists__set_col_len(hists, dso, unresolved_col_width);
56 }
57
58 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
59 {
60 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
61 int symlen;
62 u16 len;
63
64 /*
65 * +4 accounts for '[x] ' priv level info
66 * +2 accounts for 0x prefix on raw addresses
67 * +3 accounts for ' y ' symtab origin info
68 */
69 if (h->ms.sym) {
70 symlen = h->ms.sym->namelen + 4;
71 if (verbose)
72 symlen += BITS_PER_LONG / 4 + 2 + 3;
73 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
74 } else {
75 symlen = unresolved_col_width + 4 + 2;
76 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
77 hists__set_unres_dso_col_len(hists, HISTC_DSO);
78 }
79
80 len = thread__comm_len(h->thread);
81 if (hists__new_col_len(hists, HISTC_COMM, len))
82 hists__set_col_len(hists, HISTC_THREAD, len + 8);
83
84 if (h->ms.map) {
85 len = dso__name_len(h->ms.map->dso);
86 hists__new_col_len(hists, HISTC_DSO, len);
87 }
88
89 if (h->parent)
90 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
91
92 if (h->branch_info) {
93 if (h->branch_info->from.sym) {
94 symlen = (int)h->branch_info->from.sym->namelen + 4;
95 if (verbose)
96 symlen += BITS_PER_LONG / 4 + 2 + 3;
97 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
98
99 symlen = dso__name_len(h->branch_info->from.map->dso);
100 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
101 } else {
102 symlen = unresolved_col_width + 4 + 2;
103 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
105 }
106
107 if (h->branch_info->to.sym) {
108 symlen = (int)h->branch_info->to.sym->namelen + 4;
109 if (verbose)
110 symlen += BITS_PER_LONG / 4 + 2 + 3;
111 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
112
113 symlen = dso__name_len(h->branch_info->to.map->dso);
114 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
115 } else {
116 symlen = unresolved_col_width + 4 + 2;
117 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
119 }
120
121 if (h->branch_info->srcline_from)
122 hists__new_col_len(hists, HISTC_SRCLINE_FROM,
123 strlen(h->branch_info->srcline_from));
124 if (h->branch_info->srcline_to)
125 hists__new_col_len(hists, HISTC_SRCLINE_TO,
126 strlen(h->branch_info->srcline_to));
127 }
128
129 if (h->mem_info) {
130 if (h->mem_info->daddr.sym) {
131 symlen = (int)h->mem_info->daddr.sym->namelen + 4
132 + unresolved_col_width + 2;
133 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
134 symlen);
135 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
136 symlen + 1);
137 } else {
138 symlen = unresolved_col_width + 4 + 2;
139 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
140 symlen);
141 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
142 symlen);
143 }
144
145 if (h->mem_info->iaddr.sym) {
146 symlen = (int)h->mem_info->iaddr.sym->namelen + 4
147 + unresolved_col_width + 2;
148 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
149 symlen);
150 } else {
151 symlen = unresolved_col_width + 4 + 2;
152 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
153 symlen);
154 }
155
156 if (h->mem_info->daddr.map) {
157 symlen = dso__name_len(h->mem_info->daddr.map->dso);
158 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
159 symlen);
160 } else {
161 symlen = unresolved_col_width + 4 + 2;
162 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
163 }
164 } else {
165 symlen = unresolved_col_width + 4 + 2;
166 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
167 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
168 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
169 }
170
171 hists__new_col_len(hists, HISTC_CPU, 3);
172 hists__new_col_len(hists, HISTC_SOCKET, 6);
173 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
174 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
175 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
176 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
177 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
178 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
179
180 if (h->srcline) {
181 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
182 hists__new_col_len(hists, HISTC_SRCLINE, len);
183 }
184
185 if (h->srcfile)
186 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
187
188 if (h->transaction)
189 hists__new_col_len(hists, HISTC_TRANSACTION,
190 hist_entry__transaction_len());
191
192 if (h->trace_output)
193 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
194 }
195
196 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
197 {
198 struct rb_node *next = rb_first(&hists->entries);
199 struct hist_entry *n;
200 int row = 0;
201
202 hists__reset_col_len(hists);
203
204 while (next && row++ < max_rows) {
205 n = rb_entry(next, struct hist_entry, rb_node);
206 if (!n->filtered)
207 hists__calc_col_len(hists, n);
208 next = rb_next(&n->rb_node);
209 }
210 }
211
212 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
213 unsigned int cpumode, u64 period)
214 {
215 switch (cpumode) {
216 case PERF_RECORD_MISC_KERNEL:
217 he_stat->period_sys += period;
218 break;
219 case PERF_RECORD_MISC_USER:
220 he_stat->period_us += period;
221 break;
222 case PERF_RECORD_MISC_GUEST_KERNEL:
223 he_stat->period_guest_sys += period;
224 break;
225 case PERF_RECORD_MISC_GUEST_USER:
226 he_stat->period_guest_us += period;
227 break;
228 default:
229 break;
230 }
231 }
232
233 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
234 u64 weight)
235 {
236
237 he_stat->period += period;
238 he_stat->weight += weight;
239 he_stat->nr_events += 1;
240 }
241
242 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
243 {
244 dest->period += src->period;
245 dest->period_sys += src->period_sys;
246 dest->period_us += src->period_us;
247 dest->period_guest_sys += src->period_guest_sys;
248 dest->period_guest_us += src->period_guest_us;
249 dest->nr_events += src->nr_events;
250 dest->weight += src->weight;
251 }
252
253 static void he_stat__decay(struct he_stat *he_stat)
254 {
255 he_stat->period = (he_stat->period * 7) / 8;
256 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
257 /* XXX need decay for weight too? */
258 }
259
260 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
261
262 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
263 {
264 u64 prev_period = he->stat.period;
265 u64 diff;
266
267 if (prev_period == 0)
268 return true;
269
270 he_stat__decay(&he->stat);
271 if (symbol_conf.cumulate_callchain)
272 he_stat__decay(he->stat_acc);
273 decay_callchain(he->callchain);
274
275 diff = prev_period - he->stat.period;
276
277 if (!he->depth) {
278 hists->stats.total_period -= diff;
279 if (!he->filtered)
280 hists->stats.total_non_filtered_period -= diff;
281 }
282
283 if (!he->leaf) {
284 struct hist_entry *child;
285 struct rb_node *node = rb_first(&he->hroot_out);
286 while (node) {
287 child = rb_entry(node, struct hist_entry, rb_node);
288 node = rb_next(node);
289
290 if (hists__decay_entry(hists, child))
291 hists__delete_entry(hists, child);
292 }
293 }
294
295 return he->stat.period == 0;
296 }
297
298 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
299 {
300 struct rb_root *root_in;
301 struct rb_root *root_out;
302
303 if (he->parent_he) {
304 root_in = &he->parent_he->hroot_in;
305 root_out = &he->parent_he->hroot_out;
306 } else {
307 if (hists__has(hists, need_collapse))
308 root_in = &hists->entries_collapsed;
309 else
310 root_in = hists->entries_in;
311 root_out = &hists->entries;
312 }
313
314 rb_erase(&he->rb_node_in, root_in);
315 rb_erase(&he->rb_node, root_out);
316
317 --hists->nr_entries;
318 if (!he->filtered)
319 --hists->nr_non_filtered_entries;
320
321 hist_entry__delete(he);
322 }
323
324 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
325 {
326 struct rb_node *next = rb_first(&hists->entries);
327 struct hist_entry *n;
328
329 while (next) {
330 n = rb_entry(next, struct hist_entry, rb_node);
331 next = rb_next(&n->rb_node);
332 if (((zap_user && n->level == '.') ||
333 (zap_kernel && n->level != '.') ||
334 hists__decay_entry(hists, n))) {
335 hists__delete_entry(hists, n);
336 }
337 }
338 }
339
340 void hists__delete_entries(struct hists *hists)
341 {
342 struct rb_node *next = rb_first(&hists->entries);
343 struct hist_entry *n;
344
345 while (next) {
346 n = rb_entry(next, struct hist_entry, rb_node);
347 next = rb_next(&n->rb_node);
348
349 hists__delete_entry(hists, n);
350 }
351 }
352
353 /*
354 * histogram, sorted on item, collects periods
355 */
356
357 static int hist_entry__init(struct hist_entry *he,
358 struct hist_entry *template,
359 bool sample_self)
360 {
361 *he = *template;
362
363 if (symbol_conf.cumulate_callchain) {
364 he->stat_acc = malloc(sizeof(he->stat));
365 if (he->stat_acc == NULL)
366 return -ENOMEM;
367 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
368 if (!sample_self)
369 memset(&he->stat, 0, sizeof(he->stat));
370 }
371
372 map__get(he->ms.map);
373
374 if (he->branch_info) {
375 /*
376 * This branch info is (a part of) allocated from
377 * sample__resolve_bstack() and will be freed after
378 * adding new entries. So we need to save a copy.
379 */
380 he->branch_info = malloc(sizeof(*he->branch_info));
381 if (he->branch_info == NULL) {
382 map__zput(he->ms.map);
383 free(he->stat_acc);
384 return -ENOMEM;
385 }
386
387 memcpy(he->branch_info, template->branch_info,
388 sizeof(*he->branch_info));
389
390 map__get(he->branch_info->from.map);
391 map__get(he->branch_info->to.map);
392 }
393
394 if (he->mem_info) {
395 map__get(he->mem_info->iaddr.map);
396 map__get(he->mem_info->daddr.map);
397 }
398
399 if (symbol_conf.use_callchain)
400 callchain_init(he->callchain);
401
402 if (he->raw_data) {
403 he->raw_data = memdup(he->raw_data, he->raw_size);
404
405 if (he->raw_data == NULL) {
406 map__put(he->ms.map);
407 if (he->branch_info) {
408 map__put(he->branch_info->from.map);
409 map__put(he->branch_info->to.map);
410 free(he->branch_info);
411 }
412 if (he->mem_info) {
413 map__put(he->mem_info->iaddr.map);
414 map__put(he->mem_info->daddr.map);
415 }
416 free(he->stat_acc);
417 return -ENOMEM;
418 }
419 }
420 INIT_LIST_HEAD(&he->pairs.node);
421 thread__get(he->thread);
422 he->hroot_in = RB_ROOT;
423 he->hroot_out = RB_ROOT;
424
425 if (!symbol_conf.report_hierarchy)
426 he->leaf = true;
427
428 return 0;
429 }
430
431 static void *hist_entry__zalloc(size_t size)
432 {
433 return zalloc(size + sizeof(struct hist_entry));
434 }
435
436 static void hist_entry__free(void *ptr)
437 {
438 free(ptr);
439 }
440
441 static struct hist_entry_ops default_ops = {
442 .new = hist_entry__zalloc,
443 .free = hist_entry__free,
444 };
445
446 static struct hist_entry *hist_entry__new(struct hist_entry *template,
447 bool sample_self)
448 {
449 struct hist_entry_ops *ops = template->ops;
450 size_t callchain_size = 0;
451 struct hist_entry *he;
452 int err = 0;
453
454 if (!ops)
455 ops = template->ops = &default_ops;
456
457 if (symbol_conf.use_callchain)
458 callchain_size = sizeof(struct callchain_root);
459
460 he = ops->new(callchain_size);
461 if (he) {
462 err = hist_entry__init(he, template, sample_self);
463 if (err) {
464 ops->free(he);
465 he = NULL;
466 }
467 }
468
469 return he;
470 }
471
472 static u8 symbol__parent_filter(const struct symbol *parent)
473 {
474 if (symbol_conf.exclude_other && parent == NULL)
475 return 1 << HIST_FILTER__PARENT;
476 return 0;
477 }
478
479 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
480 {
481 if (!symbol_conf.use_callchain)
482 return;
483
484 he->hists->callchain_period += period;
485 if (!he->filtered)
486 he->hists->callchain_non_filtered_period += period;
487 }
488
489 static struct hist_entry *hists__findnew_entry(struct hists *hists,
490 struct hist_entry *entry,
491 struct addr_location *al,
492 bool sample_self)
493 {
494 struct rb_node **p;
495 struct rb_node *parent = NULL;
496 struct hist_entry *he;
497 int64_t cmp;
498 u64 period = entry->stat.period;
499 u64 weight = entry->stat.weight;
500
501 p = &hists->entries_in->rb_node;
502
503 while (*p != NULL) {
504 parent = *p;
505 he = rb_entry(parent, struct hist_entry, rb_node_in);
506
507 /*
508 * Make sure that it receives arguments in a same order as
509 * hist_entry__collapse() so that we can use an appropriate
510 * function when searching an entry regardless which sort
511 * keys were used.
512 */
513 cmp = hist_entry__cmp(he, entry);
514
515 if (!cmp) {
516 if (sample_self) {
517 he_stat__add_period(&he->stat, period, weight);
518 hist_entry__add_callchain_period(he, period);
519 }
520 if (symbol_conf.cumulate_callchain)
521 he_stat__add_period(he->stat_acc, period, weight);
522
523 /*
524 * This mem info was allocated from sample__resolve_mem
525 * and will not be used anymore.
526 */
527 zfree(&entry->mem_info);
528
529 /* If the map of an existing hist_entry has
530 * become out-of-date due to an exec() or
531 * similar, update it. Otherwise we will
532 * mis-adjust symbol addresses when computing
533 * the history counter to increment.
534 */
535 if (he->ms.map != entry->ms.map) {
536 map__put(he->ms.map);
537 he->ms.map = map__get(entry->ms.map);
538 }
539 goto out;
540 }
541
542 if (cmp < 0)
543 p = &(*p)->rb_left;
544 else
545 p = &(*p)->rb_right;
546 }
547
548 he = hist_entry__new(entry, sample_self);
549 if (!he)
550 return NULL;
551
552 if (sample_self)
553 hist_entry__add_callchain_period(he, period);
554 hists->nr_entries++;
555
556 rb_link_node(&he->rb_node_in, parent, p);
557 rb_insert_color(&he->rb_node_in, hists->entries_in);
558 out:
559 if (sample_self)
560 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
561 if (symbol_conf.cumulate_callchain)
562 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
563 return he;
564 }
565
566 static struct hist_entry*
567 __hists__add_entry(struct hists *hists,
568 struct addr_location *al,
569 struct symbol *sym_parent,
570 struct branch_info *bi,
571 struct mem_info *mi,
572 struct perf_sample *sample,
573 bool sample_self,
574 struct hist_entry_ops *ops)
575 {
576 struct hist_entry entry = {
577 .thread = al->thread,
578 .comm = thread__comm(al->thread),
579 .ms = {
580 .map = al->map,
581 .sym = al->sym,
582 },
583 .socket = al->socket,
584 .cpu = al->cpu,
585 .cpumode = al->cpumode,
586 .ip = al->addr,
587 .level = al->level,
588 .stat = {
589 .nr_events = 1,
590 .period = sample->period,
591 .weight = sample->weight,
592 },
593 .parent = sym_parent,
594 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
595 .hists = hists,
596 .branch_info = bi,
597 .mem_info = mi,
598 .transaction = sample->transaction,
599 .raw_data = sample->raw_data,
600 .raw_size = sample->raw_size,
601 .ops = ops,
602 };
603
604 return hists__findnew_entry(hists, &entry, al, sample_self);
605 }
606
607 struct hist_entry *hists__add_entry(struct hists *hists,
608 struct addr_location *al,
609 struct symbol *sym_parent,
610 struct branch_info *bi,
611 struct mem_info *mi,
612 struct perf_sample *sample,
613 bool sample_self)
614 {
615 return __hists__add_entry(hists, al, sym_parent, bi, mi,
616 sample, sample_self, NULL);
617 }
618
619 struct hist_entry *hists__add_entry_ops(struct hists *hists,
620 struct hist_entry_ops *ops,
621 struct addr_location *al,
622 struct symbol *sym_parent,
623 struct branch_info *bi,
624 struct mem_info *mi,
625 struct perf_sample *sample,
626 bool sample_self)
627 {
628 return __hists__add_entry(hists, al, sym_parent, bi, mi,
629 sample, sample_self, ops);
630 }
631
632 static int
633 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
634 struct addr_location *al __maybe_unused)
635 {
636 return 0;
637 }
638
639 static int
640 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
641 struct addr_location *al __maybe_unused)
642 {
643 return 0;
644 }
645
646 static int
647 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
648 {
649 struct perf_sample *sample = iter->sample;
650 struct mem_info *mi;
651
652 mi = sample__resolve_mem(sample, al);
653 if (mi == NULL)
654 return -ENOMEM;
655
656 iter->priv = mi;
657 return 0;
658 }
659
660 static int
661 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
662 {
663 u64 cost;
664 struct mem_info *mi = iter->priv;
665 struct hists *hists = evsel__hists(iter->evsel);
666 struct perf_sample *sample = iter->sample;
667 struct hist_entry *he;
668
669 if (mi == NULL)
670 return -EINVAL;
671
672 cost = sample->weight;
673 if (!cost)
674 cost = 1;
675
676 /*
677 * must pass period=weight in order to get the correct
678 * sorting from hists__collapse_resort() which is solely
679 * based on periods. We want sorting be done on nr_events * weight
680 * and this is indirectly achieved by passing period=weight here
681 * and the he_stat__add_period() function.
682 */
683 sample->period = cost;
684
685 he = hists__add_entry(hists, al, iter->parent, NULL, mi,
686 sample, true);
687 if (!he)
688 return -ENOMEM;
689
690 iter->he = he;
691 return 0;
692 }
693
694 static int
695 iter_finish_mem_entry(struct hist_entry_iter *iter,
696 struct addr_location *al __maybe_unused)
697 {
698 struct perf_evsel *evsel = iter->evsel;
699 struct hists *hists = evsel__hists(evsel);
700 struct hist_entry *he = iter->he;
701 int err = -EINVAL;
702
703 if (he == NULL)
704 goto out;
705
706 hists__inc_nr_samples(hists, he->filtered);
707
708 err = hist_entry__append_callchain(he, iter->sample);
709
710 out:
711 /*
712 * We don't need to free iter->priv (mem_info) here since the mem info
713 * was either already freed in hists__findnew_entry() or passed to a
714 * new hist entry by hist_entry__new().
715 */
716 iter->priv = NULL;
717
718 iter->he = NULL;
719 return err;
720 }
721
722 static int
723 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
724 {
725 struct branch_info *bi;
726 struct perf_sample *sample = iter->sample;
727
728 bi = sample__resolve_bstack(sample, al);
729 if (!bi)
730 return -ENOMEM;
731
732 iter->curr = 0;
733 iter->total = sample->branch_stack->nr;
734
735 iter->priv = bi;
736 return 0;
737 }
738
739 static int
740 iter_add_single_branch_entry(struct hist_entry_iter *iter,
741 struct addr_location *al __maybe_unused)
742 {
743 /* to avoid calling callback function */
744 iter->he = NULL;
745
746 return 0;
747 }
748
749 static int
750 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
751 {
752 struct branch_info *bi = iter->priv;
753 int i = iter->curr;
754
755 if (bi == NULL)
756 return 0;
757
758 if (iter->curr >= iter->total)
759 return 0;
760
761 al->map = bi[i].to.map;
762 al->sym = bi[i].to.sym;
763 al->addr = bi[i].to.addr;
764 return 1;
765 }
766
767 static int
768 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
769 {
770 struct branch_info *bi;
771 struct perf_evsel *evsel = iter->evsel;
772 struct hists *hists = evsel__hists(evsel);
773 struct perf_sample *sample = iter->sample;
774 struct hist_entry *he = NULL;
775 int i = iter->curr;
776 int err = 0;
777
778 bi = iter->priv;
779
780 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
781 goto out;
782
783 /*
784 * The report shows the percentage of total branches captured
785 * and not events sampled. Thus we use a pseudo period of 1.
786 */
787 sample->period = 1;
788 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
789
790 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
791 sample, true);
792 if (he == NULL)
793 return -ENOMEM;
794
795 hists__inc_nr_samples(hists, he->filtered);
796
797 out:
798 iter->he = he;
799 iter->curr++;
800 return err;
801 }
802
803 static int
804 iter_finish_branch_entry(struct hist_entry_iter *iter,
805 struct addr_location *al __maybe_unused)
806 {
807 zfree(&iter->priv);
808 iter->he = NULL;
809
810 return iter->curr >= iter->total ? 0 : -1;
811 }
812
813 static int
814 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
815 struct addr_location *al __maybe_unused)
816 {
817 return 0;
818 }
819
820 static int
821 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
822 {
823 struct perf_evsel *evsel = iter->evsel;
824 struct perf_sample *sample = iter->sample;
825 struct hist_entry *he;
826
827 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
828 sample, true);
829 if (he == NULL)
830 return -ENOMEM;
831
832 iter->he = he;
833 return 0;
834 }
835
836 static int
837 iter_finish_normal_entry(struct hist_entry_iter *iter,
838 struct addr_location *al __maybe_unused)
839 {
840 struct hist_entry *he = iter->he;
841 struct perf_evsel *evsel = iter->evsel;
842 struct perf_sample *sample = iter->sample;
843
844 if (he == NULL)
845 return 0;
846
847 iter->he = NULL;
848
849 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
850
851 return hist_entry__append_callchain(he, sample);
852 }
853
854 static int
855 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
856 struct addr_location *al __maybe_unused)
857 {
858 struct hist_entry **he_cache;
859
860 callchain_cursor_commit(&callchain_cursor);
861
862 /*
863 * This is for detecting cycles or recursions so that they're
864 * cumulated only one time to prevent entries more than 100%
865 * overhead.
866 */
867 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
868 if (he_cache == NULL)
869 return -ENOMEM;
870
871 iter->priv = he_cache;
872 iter->curr = 0;
873
874 return 0;
875 }
876
877 static int
878 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
879 struct addr_location *al)
880 {
881 struct perf_evsel *evsel = iter->evsel;
882 struct hists *hists = evsel__hists(evsel);
883 struct perf_sample *sample = iter->sample;
884 struct hist_entry **he_cache = iter->priv;
885 struct hist_entry *he;
886 int err = 0;
887
888 he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
889 sample, true);
890 if (he == NULL)
891 return -ENOMEM;
892
893 iter->he = he;
894 he_cache[iter->curr++] = he;
895
896 hist_entry__append_callchain(he, sample);
897
898 /*
899 * We need to re-initialize the cursor since callchain_append()
900 * advanced the cursor to the end.
901 */
902 callchain_cursor_commit(&callchain_cursor);
903
904 hists__inc_nr_samples(hists, he->filtered);
905
906 return err;
907 }
908
909 static int
910 iter_next_cumulative_entry(struct hist_entry_iter *iter,
911 struct addr_location *al)
912 {
913 struct callchain_cursor_node *node;
914
915 node = callchain_cursor_current(&callchain_cursor);
916 if (node == NULL)
917 return 0;
918
919 return fill_callchain_info(al, node, iter->hide_unresolved);
920 }
921
922 static int
923 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
924 struct addr_location *al)
925 {
926 struct perf_evsel *evsel = iter->evsel;
927 struct perf_sample *sample = iter->sample;
928 struct hist_entry **he_cache = iter->priv;
929 struct hist_entry *he;
930 struct hist_entry he_tmp = {
931 .hists = evsel__hists(evsel),
932 .cpu = al->cpu,
933 .thread = al->thread,
934 .comm = thread__comm(al->thread),
935 .ip = al->addr,
936 .ms = {
937 .map = al->map,
938 .sym = al->sym,
939 },
940 .parent = iter->parent,
941 .raw_data = sample->raw_data,
942 .raw_size = sample->raw_size,
943 };
944 int i;
945 struct callchain_cursor cursor;
946
947 callchain_cursor_snapshot(&cursor, &callchain_cursor);
948
949 callchain_cursor_advance(&callchain_cursor);
950
951 /*
952 * Check if there's duplicate entries in the callchain.
953 * It's possible that it has cycles or recursive calls.
954 */
955 for (i = 0; i < iter->curr; i++) {
956 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
957 /* to avoid calling callback function */
958 iter->he = NULL;
959 return 0;
960 }
961 }
962
963 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
964 sample, false);
965 if (he == NULL)
966 return -ENOMEM;
967
968 iter->he = he;
969 he_cache[iter->curr++] = he;
970
971 if (symbol_conf.use_callchain)
972 callchain_append(he->callchain, &cursor, sample->period);
973 return 0;
974 }
975
976 static int
977 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
978 struct addr_location *al __maybe_unused)
979 {
980 zfree(&iter->priv);
981 iter->he = NULL;
982
983 return 0;
984 }
985
986 const struct hist_iter_ops hist_iter_mem = {
987 .prepare_entry = iter_prepare_mem_entry,
988 .add_single_entry = iter_add_single_mem_entry,
989 .next_entry = iter_next_nop_entry,
990 .add_next_entry = iter_add_next_nop_entry,
991 .finish_entry = iter_finish_mem_entry,
992 };
993
994 const struct hist_iter_ops hist_iter_branch = {
995 .prepare_entry = iter_prepare_branch_entry,
996 .add_single_entry = iter_add_single_branch_entry,
997 .next_entry = iter_next_branch_entry,
998 .add_next_entry = iter_add_next_branch_entry,
999 .finish_entry = iter_finish_branch_entry,
1000 };
1001
1002 const struct hist_iter_ops hist_iter_normal = {
1003 .prepare_entry = iter_prepare_normal_entry,
1004 .add_single_entry = iter_add_single_normal_entry,
1005 .next_entry = iter_next_nop_entry,
1006 .add_next_entry = iter_add_next_nop_entry,
1007 .finish_entry = iter_finish_normal_entry,
1008 };
1009
1010 const struct hist_iter_ops hist_iter_cumulative = {
1011 .prepare_entry = iter_prepare_cumulative_entry,
1012 .add_single_entry = iter_add_single_cumulative_entry,
1013 .next_entry = iter_next_cumulative_entry,
1014 .add_next_entry = iter_add_next_cumulative_entry,
1015 .finish_entry = iter_finish_cumulative_entry,
1016 };
1017
1018 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1019 int max_stack_depth, void *arg)
1020 {
1021 int err, err2;
1022
1023 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1024 iter->evsel, al, max_stack_depth);
1025 if (err)
1026 return err;
1027
1028 iter->max_stack = max_stack_depth;
1029
1030 err = iter->ops->prepare_entry(iter, al);
1031 if (err)
1032 goto out;
1033
1034 err = iter->ops->add_single_entry(iter, al);
1035 if (err)
1036 goto out;
1037
1038 if (iter->he && iter->add_entry_cb) {
1039 err = iter->add_entry_cb(iter, al, true, arg);
1040 if (err)
1041 goto out;
1042 }
1043
1044 while (iter->ops->next_entry(iter, al)) {
1045 err = iter->ops->add_next_entry(iter, al);
1046 if (err)
1047 break;
1048
1049 if (iter->he && iter->add_entry_cb) {
1050 err = iter->add_entry_cb(iter, al, false, arg);
1051 if (err)
1052 goto out;
1053 }
1054 }
1055
1056 out:
1057 err2 = iter->ops->finish_entry(iter, al);
1058 if (!err)
1059 err = err2;
1060
1061 return err;
1062 }
1063
1064 int64_t
1065 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1066 {
1067 struct hists *hists = left->hists;
1068 struct perf_hpp_fmt *fmt;
1069 int64_t cmp = 0;
1070
1071 hists__for_each_sort_list(hists, fmt) {
1072 if (perf_hpp__is_dynamic_entry(fmt) &&
1073 !perf_hpp__defined_dynamic_entry(fmt, hists))
1074 continue;
1075
1076 cmp = fmt->cmp(fmt, left, right);
1077 if (cmp)
1078 break;
1079 }
1080
1081 return cmp;
1082 }
1083
1084 int64_t
1085 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1086 {
1087 struct hists *hists = left->hists;
1088 struct perf_hpp_fmt *fmt;
1089 int64_t cmp = 0;
1090
1091 hists__for_each_sort_list(hists, fmt) {
1092 if (perf_hpp__is_dynamic_entry(fmt) &&
1093 !perf_hpp__defined_dynamic_entry(fmt, hists))
1094 continue;
1095
1096 cmp = fmt->collapse(fmt, left, right);
1097 if (cmp)
1098 break;
1099 }
1100
1101 return cmp;
1102 }
1103
1104 void hist_entry__delete(struct hist_entry *he)
1105 {
1106 struct hist_entry_ops *ops = he->ops;
1107
1108 thread__zput(he->thread);
1109 map__zput(he->ms.map);
1110
1111 if (he->branch_info) {
1112 map__zput(he->branch_info->from.map);
1113 map__zput(he->branch_info->to.map);
1114 free_srcline(he->branch_info->srcline_from);
1115 free_srcline(he->branch_info->srcline_to);
1116 zfree(&he->branch_info);
1117 }
1118
1119 if (he->mem_info) {
1120 map__zput(he->mem_info->iaddr.map);
1121 map__zput(he->mem_info->daddr.map);
1122 zfree(&he->mem_info);
1123 }
1124
1125 zfree(&he->stat_acc);
1126 free_srcline(he->srcline);
1127 if (he->srcfile && he->srcfile[0])
1128 free(he->srcfile);
1129 free_callchain(he->callchain);
1130 free(he->trace_output);
1131 free(he->raw_data);
1132 ops->free(he);
1133 }
1134
1135 /*
1136 * If this is not the last column, then we need to pad it according to the
1137 * pre-calculated max lenght for this column, otherwise don't bother adding
1138 * spaces because that would break viewing this with, for instance, 'less',
1139 * that would show tons of trailing spaces when a long C++ demangled method
1140 * names is sampled.
1141 */
1142 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1143 struct perf_hpp_fmt *fmt, int printed)
1144 {
1145 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1146 const int width = fmt->width(fmt, hpp, he->hists);
1147 if (printed < width) {
1148 advance_hpp(hpp, printed);
1149 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1150 }
1151 }
1152
1153 return printed;
1154 }
1155
1156 /*
1157 * collapse the histogram
1158 */
1159
1160 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1161 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1162 enum hist_filter type);
1163
1164 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1165
1166 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1167 {
1168 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1169 }
1170
1171 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1172 enum hist_filter type,
1173 fmt_chk_fn check)
1174 {
1175 struct perf_hpp_fmt *fmt;
1176 bool type_match = false;
1177 struct hist_entry *parent = he->parent_he;
1178
1179 switch (type) {
1180 case HIST_FILTER__THREAD:
1181 if (symbol_conf.comm_list == NULL &&
1182 symbol_conf.pid_list == NULL &&
1183 symbol_conf.tid_list == NULL)
1184 return;
1185 break;
1186 case HIST_FILTER__DSO:
1187 if (symbol_conf.dso_list == NULL)
1188 return;
1189 break;
1190 case HIST_FILTER__SYMBOL:
1191 if (symbol_conf.sym_list == NULL)
1192 return;
1193 break;
1194 case HIST_FILTER__PARENT:
1195 case HIST_FILTER__GUEST:
1196 case HIST_FILTER__HOST:
1197 case HIST_FILTER__SOCKET:
1198 case HIST_FILTER__C2C:
1199 default:
1200 return;
1201 }
1202
1203 /* if it's filtered by own fmt, it has to have filter bits */
1204 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1205 if (check(fmt)) {
1206 type_match = true;
1207 break;
1208 }
1209 }
1210
1211 if (type_match) {
1212 /*
1213 * If the filter is for current level entry, propagate
1214 * filter marker to parents. The marker bit was
1215 * already set by default so it only needs to clear
1216 * non-filtered entries.
1217 */
1218 if (!(he->filtered & (1 << type))) {
1219 while (parent) {
1220 parent->filtered &= ~(1 << type);
1221 parent = parent->parent_he;
1222 }
1223 }
1224 } else {
1225 /*
1226 * If current entry doesn't have matching formats, set
1227 * filter marker for upper level entries. it will be
1228 * cleared if its lower level entries is not filtered.
1229 *
1230 * For lower-level entries, it inherits parent's
1231 * filter bit so that lower level entries of a
1232 * non-filtered entry won't set the filter marker.
1233 */
1234 if (parent == NULL)
1235 he->filtered |= (1 << type);
1236 else
1237 he->filtered |= (parent->filtered & (1 << type));
1238 }
1239 }
1240
1241 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1242 {
1243 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1244 check_thread_entry);
1245
1246 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1247 perf_hpp__is_dso_entry);
1248
1249 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1250 perf_hpp__is_sym_entry);
1251
1252 hists__apply_filters(he->hists, he);
1253 }
1254
1255 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1256 struct rb_root *root,
1257 struct hist_entry *he,
1258 struct hist_entry *parent_he,
1259 struct perf_hpp_list *hpp_list)
1260 {
1261 struct rb_node **p = &root->rb_node;
1262 struct rb_node *parent = NULL;
1263 struct hist_entry *iter, *new;
1264 struct perf_hpp_fmt *fmt;
1265 int64_t cmp;
1266
1267 while (*p != NULL) {
1268 parent = *p;
1269 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1270
1271 cmp = 0;
1272 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1273 cmp = fmt->collapse(fmt, iter, he);
1274 if (cmp)
1275 break;
1276 }
1277
1278 if (!cmp) {
1279 he_stat__add_stat(&iter->stat, &he->stat);
1280 return iter;
1281 }
1282
1283 if (cmp < 0)
1284 p = &parent->rb_left;
1285 else
1286 p = &parent->rb_right;
1287 }
1288
1289 new = hist_entry__new(he, true);
1290 if (new == NULL)
1291 return NULL;
1292
1293 hists->nr_entries++;
1294
1295 /* save related format list for output */
1296 new->hpp_list = hpp_list;
1297 new->parent_he = parent_he;
1298
1299 hist_entry__apply_hierarchy_filters(new);
1300
1301 /* some fields are now passed to 'new' */
1302 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1303 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1304 he->trace_output = NULL;
1305 else
1306 new->trace_output = NULL;
1307
1308 if (perf_hpp__is_srcline_entry(fmt))
1309 he->srcline = NULL;
1310 else
1311 new->srcline = NULL;
1312
1313 if (perf_hpp__is_srcfile_entry(fmt))
1314 he->srcfile = NULL;
1315 else
1316 new->srcfile = NULL;
1317 }
1318
1319 rb_link_node(&new->rb_node_in, parent, p);
1320 rb_insert_color(&new->rb_node_in, root);
1321 return new;
1322 }
1323
1324 static int hists__hierarchy_insert_entry(struct hists *hists,
1325 struct rb_root *root,
1326 struct hist_entry *he)
1327 {
1328 struct perf_hpp_list_node *node;
1329 struct hist_entry *new_he = NULL;
1330 struct hist_entry *parent = NULL;
1331 int depth = 0;
1332 int ret = 0;
1333
1334 list_for_each_entry(node, &hists->hpp_formats, list) {
1335 /* skip period (overhead) and elided columns */
1336 if (node->level == 0 || node->skip)
1337 continue;
1338
1339 /* insert copy of 'he' for each fmt into the hierarchy */
1340 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1341 if (new_he == NULL) {
1342 ret = -1;
1343 break;
1344 }
1345
1346 root = &new_he->hroot_in;
1347 new_he->depth = depth++;
1348 parent = new_he;
1349 }
1350
1351 if (new_he) {
1352 new_he->leaf = true;
1353
1354 if (symbol_conf.use_callchain) {
1355 callchain_cursor_reset(&callchain_cursor);
1356 if (callchain_merge(&callchain_cursor,
1357 new_he->callchain,
1358 he->callchain) < 0)
1359 ret = -1;
1360 }
1361 }
1362
1363 /* 'he' is no longer used */
1364 hist_entry__delete(he);
1365
1366 /* return 0 (or -1) since it already applied filters */
1367 return ret;
1368 }
1369
1370 static int hists__collapse_insert_entry(struct hists *hists,
1371 struct rb_root *root,
1372 struct hist_entry *he)
1373 {
1374 struct rb_node **p = &root->rb_node;
1375 struct rb_node *parent = NULL;
1376 struct hist_entry *iter;
1377 int64_t cmp;
1378
1379 if (symbol_conf.report_hierarchy)
1380 return hists__hierarchy_insert_entry(hists, root, he);
1381
1382 while (*p != NULL) {
1383 parent = *p;
1384 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1385
1386 cmp = hist_entry__collapse(iter, he);
1387
1388 if (!cmp) {
1389 int ret = 0;
1390
1391 he_stat__add_stat(&iter->stat, &he->stat);
1392 if (symbol_conf.cumulate_callchain)
1393 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1394
1395 if (symbol_conf.use_callchain) {
1396 callchain_cursor_reset(&callchain_cursor);
1397 if (callchain_merge(&callchain_cursor,
1398 iter->callchain,
1399 he->callchain) < 0)
1400 ret = -1;
1401 }
1402 hist_entry__delete(he);
1403 return ret;
1404 }
1405
1406 if (cmp < 0)
1407 p = &(*p)->rb_left;
1408 else
1409 p = &(*p)->rb_right;
1410 }
1411 hists->nr_entries++;
1412
1413 rb_link_node(&he->rb_node_in, parent, p);
1414 rb_insert_color(&he->rb_node_in, root);
1415 return 1;
1416 }
1417
1418 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1419 {
1420 struct rb_root *root;
1421
1422 pthread_mutex_lock(&hists->lock);
1423
1424 root = hists->entries_in;
1425 if (++hists->entries_in > &hists->entries_in_array[1])
1426 hists->entries_in = &hists->entries_in_array[0];
1427
1428 pthread_mutex_unlock(&hists->lock);
1429
1430 return root;
1431 }
1432
1433 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1434 {
1435 hists__filter_entry_by_dso(hists, he);
1436 hists__filter_entry_by_thread(hists, he);
1437 hists__filter_entry_by_symbol(hists, he);
1438 hists__filter_entry_by_socket(hists, he);
1439 }
1440
1441 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1442 {
1443 struct rb_root *root;
1444 struct rb_node *next;
1445 struct hist_entry *n;
1446 int ret;
1447
1448 if (!hists__has(hists, need_collapse))
1449 return 0;
1450
1451 hists->nr_entries = 0;
1452
1453 root = hists__get_rotate_entries_in(hists);
1454
1455 next = rb_first(root);
1456
1457 while (next) {
1458 if (session_done())
1459 break;
1460 n = rb_entry(next, struct hist_entry, rb_node_in);
1461 next = rb_next(&n->rb_node_in);
1462
1463 rb_erase(&n->rb_node_in, root);
1464 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1465 if (ret < 0)
1466 return -1;
1467
1468 if (ret) {
1469 /*
1470 * If it wasn't combined with one of the entries already
1471 * collapsed, we need to apply the filters that may have
1472 * been set by, say, the hist_browser.
1473 */
1474 hists__apply_filters(hists, n);
1475 }
1476 if (prog)
1477 ui_progress__update(prog, 1);
1478 }
1479 return 0;
1480 }
1481
1482 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1483 {
1484 struct hists *hists = a->hists;
1485 struct perf_hpp_fmt *fmt;
1486 int64_t cmp = 0;
1487
1488 hists__for_each_sort_list(hists, fmt) {
1489 if (perf_hpp__should_skip(fmt, a->hists))
1490 continue;
1491
1492 cmp = fmt->sort(fmt, a, b);
1493 if (cmp)
1494 break;
1495 }
1496
1497 return cmp;
1498 }
1499
1500 static void hists__reset_filter_stats(struct hists *hists)
1501 {
1502 hists->nr_non_filtered_entries = 0;
1503 hists->stats.total_non_filtered_period = 0;
1504 }
1505
1506 void hists__reset_stats(struct hists *hists)
1507 {
1508 hists->nr_entries = 0;
1509 hists->stats.total_period = 0;
1510
1511 hists__reset_filter_stats(hists);
1512 }
1513
1514 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1515 {
1516 hists->nr_non_filtered_entries++;
1517 hists->stats.total_non_filtered_period += h->stat.period;
1518 }
1519
1520 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1521 {
1522 if (!h->filtered)
1523 hists__inc_filter_stats(hists, h);
1524
1525 hists->nr_entries++;
1526 hists->stats.total_period += h->stat.period;
1527 }
1528
1529 static void hierarchy_recalc_total_periods(struct hists *hists)
1530 {
1531 struct rb_node *node;
1532 struct hist_entry *he;
1533
1534 node = rb_first(&hists->entries);
1535
1536 hists->stats.total_period = 0;
1537 hists->stats.total_non_filtered_period = 0;
1538
1539 /*
1540 * recalculate total period using top-level entries only
1541 * since lower level entries only see non-filtered entries
1542 * but upper level entries have sum of both entries.
1543 */
1544 while (node) {
1545 he = rb_entry(node, struct hist_entry, rb_node);
1546 node = rb_next(node);
1547
1548 hists->stats.total_period += he->stat.period;
1549 if (!he->filtered)
1550 hists->stats.total_non_filtered_period += he->stat.period;
1551 }
1552 }
1553
1554 static void hierarchy_insert_output_entry(struct rb_root *root,
1555 struct hist_entry *he)
1556 {
1557 struct rb_node **p = &root->rb_node;
1558 struct rb_node *parent = NULL;
1559 struct hist_entry *iter;
1560 struct perf_hpp_fmt *fmt;
1561
1562 while (*p != NULL) {
1563 parent = *p;
1564 iter = rb_entry(parent, struct hist_entry, rb_node);
1565
1566 if (hist_entry__sort(he, iter) > 0)
1567 p = &parent->rb_left;
1568 else
1569 p = &parent->rb_right;
1570 }
1571
1572 rb_link_node(&he->rb_node, parent, p);
1573 rb_insert_color(&he->rb_node, root);
1574
1575 /* update column width of dynamic entry */
1576 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1577 if (perf_hpp__is_dynamic_entry(fmt))
1578 fmt->sort(fmt, he, NULL);
1579 }
1580 }
1581
1582 static void hists__hierarchy_output_resort(struct hists *hists,
1583 struct ui_progress *prog,
1584 struct rb_root *root_in,
1585 struct rb_root *root_out,
1586 u64 min_callchain_hits,
1587 bool use_callchain)
1588 {
1589 struct rb_node *node;
1590 struct hist_entry *he;
1591
1592 *root_out = RB_ROOT;
1593 node = rb_first(root_in);
1594
1595 while (node) {
1596 he = rb_entry(node, struct hist_entry, rb_node_in);
1597 node = rb_next(node);
1598
1599 hierarchy_insert_output_entry(root_out, he);
1600
1601 if (prog)
1602 ui_progress__update(prog, 1);
1603
1604 hists->nr_entries++;
1605 if (!he->filtered) {
1606 hists->nr_non_filtered_entries++;
1607 hists__calc_col_len(hists, he);
1608 }
1609
1610 if (!he->leaf) {
1611 hists__hierarchy_output_resort(hists, prog,
1612 &he->hroot_in,
1613 &he->hroot_out,
1614 min_callchain_hits,
1615 use_callchain);
1616 continue;
1617 }
1618
1619 if (!use_callchain)
1620 continue;
1621
1622 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1623 u64 total = he->stat.period;
1624
1625 if (symbol_conf.cumulate_callchain)
1626 total = he->stat_acc->period;
1627
1628 min_callchain_hits = total * (callchain_param.min_percent / 100);
1629 }
1630
1631 callchain_param.sort(&he->sorted_chain, he->callchain,
1632 min_callchain_hits, &callchain_param);
1633 }
1634 }
1635
1636 static void __hists__insert_output_entry(struct rb_root *entries,
1637 struct hist_entry *he,
1638 u64 min_callchain_hits,
1639 bool use_callchain)
1640 {
1641 struct rb_node **p = &entries->rb_node;
1642 struct rb_node *parent = NULL;
1643 struct hist_entry *iter;
1644 struct perf_hpp_fmt *fmt;
1645
1646 if (use_callchain) {
1647 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1648 u64 total = he->stat.period;
1649
1650 if (symbol_conf.cumulate_callchain)
1651 total = he->stat_acc->period;
1652
1653 min_callchain_hits = total * (callchain_param.min_percent / 100);
1654 }
1655 callchain_param.sort(&he->sorted_chain, he->callchain,
1656 min_callchain_hits, &callchain_param);
1657 }
1658
1659 while (*p != NULL) {
1660 parent = *p;
1661 iter = rb_entry(parent, struct hist_entry, rb_node);
1662
1663 if (hist_entry__sort(he, iter) > 0)
1664 p = &(*p)->rb_left;
1665 else
1666 p = &(*p)->rb_right;
1667 }
1668
1669 rb_link_node(&he->rb_node, parent, p);
1670 rb_insert_color(&he->rb_node, entries);
1671
1672 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1673 if (perf_hpp__is_dynamic_entry(fmt) &&
1674 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1675 fmt->sort(fmt, he, NULL); /* update column width */
1676 }
1677 }
1678
1679 static void output_resort(struct hists *hists, struct ui_progress *prog,
1680 bool use_callchain, hists__resort_cb_t cb)
1681 {
1682 struct rb_root *root;
1683 struct rb_node *next;
1684 struct hist_entry *n;
1685 u64 callchain_total;
1686 u64 min_callchain_hits;
1687
1688 callchain_total = hists->callchain_period;
1689 if (symbol_conf.filter_relative)
1690 callchain_total = hists->callchain_non_filtered_period;
1691
1692 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1693
1694 hists__reset_stats(hists);
1695 hists__reset_col_len(hists);
1696
1697 if (symbol_conf.report_hierarchy) {
1698 hists__hierarchy_output_resort(hists, prog,
1699 &hists->entries_collapsed,
1700 &hists->entries,
1701 min_callchain_hits,
1702 use_callchain);
1703 hierarchy_recalc_total_periods(hists);
1704 return;
1705 }
1706
1707 if (hists__has(hists, need_collapse))
1708 root = &hists->entries_collapsed;
1709 else
1710 root = hists->entries_in;
1711
1712 next = rb_first(root);
1713 hists->entries = RB_ROOT;
1714
1715 while (next) {
1716 n = rb_entry(next, struct hist_entry, rb_node_in);
1717 next = rb_next(&n->rb_node_in);
1718
1719 if (cb && cb(n))
1720 continue;
1721
1722 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1723 hists__inc_stats(hists, n);
1724
1725 if (!n->filtered)
1726 hists__calc_col_len(hists, n);
1727
1728 if (prog)
1729 ui_progress__update(prog, 1);
1730 }
1731 }
1732
1733 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1734 {
1735 bool use_callchain;
1736
1737 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1738 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1739 else
1740 use_callchain = symbol_conf.use_callchain;
1741
1742 output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1743 }
1744
1745 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1746 {
1747 output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1748 }
1749
1750 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1751 hists__resort_cb_t cb)
1752 {
1753 output_resort(hists, prog, symbol_conf.use_callchain, cb);
1754 }
1755
1756 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1757 {
1758 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1759 return false;
1760
1761 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1762 return true;
1763
1764 return false;
1765 }
1766
1767 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1768 {
1769 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1770
1771 while (can_goto_child(he, HMD_NORMAL)) {
1772 node = rb_last(&he->hroot_out);
1773 he = rb_entry(node, struct hist_entry, rb_node);
1774 }
1775 return node;
1776 }
1777
1778 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1779 {
1780 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1781
1782 if (can_goto_child(he, hmd))
1783 node = rb_first(&he->hroot_out);
1784 else
1785 node = rb_next(node);
1786
1787 while (node == NULL) {
1788 he = he->parent_he;
1789 if (he == NULL)
1790 break;
1791
1792 node = rb_next(&he->rb_node);
1793 }
1794 return node;
1795 }
1796
1797 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1798 {
1799 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1800
1801 node = rb_prev(node);
1802 if (node)
1803 return rb_hierarchy_last(node);
1804
1805 he = he->parent_he;
1806 if (he == NULL)
1807 return NULL;
1808
1809 return &he->rb_node;
1810 }
1811
1812 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1813 {
1814 struct rb_node *node;
1815 struct hist_entry *child;
1816 float percent;
1817
1818 if (he->leaf)
1819 return false;
1820
1821 node = rb_first(&he->hroot_out);
1822 child = rb_entry(node, struct hist_entry, rb_node);
1823
1824 while (node && child->filtered) {
1825 node = rb_next(node);
1826 child = rb_entry(node, struct hist_entry, rb_node);
1827 }
1828
1829 if (node)
1830 percent = hist_entry__get_percent_limit(child);
1831 else
1832 percent = 0;
1833
1834 return node && percent >= limit;
1835 }
1836
1837 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1838 enum hist_filter filter)
1839 {
1840 h->filtered &= ~(1 << filter);
1841
1842 if (symbol_conf.report_hierarchy) {
1843 struct hist_entry *parent = h->parent_he;
1844
1845 while (parent) {
1846 he_stat__add_stat(&parent->stat, &h->stat);
1847
1848 parent->filtered &= ~(1 << filter);
1849
1850 if (parent->filtered)
1851 goto next;
1852
1853 /* force fold unfiltered entry for simplicity */
1854 parent->unfolded = false;
1855 parent->has_no_entry = false;
1856 parent->row_offset = 0;
1857 parent->nr_rows = 0;
1858 next:
1859 parent = parent->parent_he;
1860 }
1861 }
1862
1863 if (h->filtered)
1864 return;
1865
1866 /* force fold unfiltered entry for simplicity */
1867 h->unfolded = false;
1868 h->has_no_entry = false;
1869 h->row_offset = 0;
1870 h->nr_rows = 0;
1871
1872 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1873
1874 hists__inc_filter_stats(hists, h);
1875 hists__calc_col_len(hists, h);
1876 }
1877
1878
1879 static bool hists__filter_entry_by_dso(struct hists *hists,
1880 struct hist_entry *he)
1881 {
1882 if (hists->dso_filter != NULL &&
1883 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1884 he->filtered |= (1 << HIST_FILTER__DSO);
1885 return true;
1886 }
1887
1888 return false;
1889 }
1890
1891 static bool hists__filter_entry_by_thread(struct hists *hists,
1892 struct hist_entry *he)
1893 {
1894 if (hists->thread_filter != NULL &&
1895 he->thread != hists->thread_filter) {
1896 he->filtered |= (1 << HIST_FILTER__THREAD);
1897 return true;
1898 }
1899
1900 return false;
1901 }
1902
1903 static bool hists__filter_entry_by_symbol(struct hists *hists,
1904 struct hist_entry *he)
1905 {
1906 if (hists->symbol_filter_str != NULL &&
1907 (!he->ms.sym || strstr(he->ms.sym->name,
1908 hists->symbol_filter_str) == NULL)) {
1909 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1910 return true;
1911 }
1912
1913 return false;
1914 }
1915
1916 static bool hists__filter_entry_by_socket(struct hists *hists,
1917 struct hist_entry *he)
1918 {
1919 if ((hists->socket_filter > -1) &&
1920 (he->socket != hists->socket_filter)) {
1921 he->filtered |= (1 << HIST_FILTER__SOCKET);
1922 return true;
1923 }
1924
1925 return false;
1926 }
1927
1928 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1929
1930 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1931 {
1932 struct rb_node *nd;
1933
1934 hists->stats.nr_non_filtered_samples = 0;
1935
1936 hists__reset_filter_stats(hists);
1937 hists__reset_col_len(hists);
1938
1939 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1940 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1941
1942 if (filter(hists, h))
1943 continue;
1944
1945 hists__remove_entry_filter(hists, h, type);
1946 }
1947 }
1948
1949 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1950 {
1951 struct rb_node **p = &root->rb_node;
1952 struct rb_node *parent = NULL;
1953 struct hist_entry *iter;
1954 struct rb_root new_root = RB_ROOT;
1955 struct rb_node *nd;
1956
1957 while (*p != NULL) {
1958 parent = *p;
1959 iter = rb_entry(parent, struct hist_entry, rb_node);
1960
1961 if (hist_entry__sort(he, iter) > 0)
1962 p = &(*p)->rb_left;
1963 else
1964 p = &(*p)->rb_right;
1965 }
1966
1967 rb_link_node(&he->rb_node, parent, p);
1968 rb_insert_color(&he->rb_node, root);
1969
1970 if (he->leaf || he->filtered)
1971 return;
1972
1973 nd = rb_first(&he->hroot_out);
1974 while (nd) {
1975 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1976
1977 nd = rb_next(nd);
1978 rb_erase(&h->rb_node, &he->hroot_out);
1979
1980 resort_filtered_entry(&new_root, h);
1981 }
1982
1983 he->hroot_out = new_root;
1984 }
1985
1986 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1987 {
1988 struct rb_node *nd;
1989 struct rb_root new_root = RB_ROOT;
1990
1991 hists->stats.nr_non_filtered_samples = 0;
1992
1993 hists__reset_filter_stats(hists);
1994 hists__reset_col_len(hists);
1995
1996 nd = rb_first(&hists->entries);
1997 while (nd) {
1998 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1999 int ret;
2000
2001 ret = hist_entry__filter(h, type, arg);
2002
2003 /*
2004 * case 1. non-matching type
2005 * zero out the period, set filter marker and move to child
2006 */
2007 if (ret < 0) {
2008 memset(&h->stat, 0, sizeof(h->stat));
2009 h->filtered |= (1 << type);
2010
2011 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2012 }
2013 /*
2014 * case 2. matched type (filter out)
2015 * set filter marker and move to next
2016 */
2017 else if (ret == 1) {
2018 h->filtered |= (1 << type);
2019
2020 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2021 }
2022 /*
2023 * case 3. ok (not filtered)
2024 * add period to hists and parents, erase the filter marker
2025 * and move to next sibling
2026 */
2027 else {
2028 hists__remove_entry_filter(hists, h, type);
2029
2030 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2031 }
2032 }
2033
2034 hierarchy_recalc_total_periods(hists);
2035
2036 /*
2037 * resort output after applying a new filter since filter in a lower
2038 * hierarchy can change periods in a upper hierarchy.
2039 */
2040 nd = rb_first(&hists->entries);
2041 while (nd) {
2042 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2043
2044 nd = rb_next(nd);
2045 rb_erase(&h->rb_node, &hists->entries);
2046
2047 resort_filtered_entry(&new_root, h);
2048 }
2049
2050 hists->entries = new_root;
2051 }
2052
2053 void hists__filter_by_thread(struct hists *hists)
2054 {
2055 if (symbol_conf.report_hierarchy)
2056 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2057 hists->thread_filter);
2058 else
2059 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2060 hists__filter_entry_by_thread);
2061 }
2062
2063 void hists__filter_by_dso(struct hists *hists)
2064 {
2065 if (symbol_conf.report_hierarchy)
2066 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2067 hists->dso_filter);
2068 else
2069 hists__filter_by_type(hists, HIST_FILTER__DSO,
2070 hists__filter_entry_by_dso);
2071 }
2072
2073 void hists__filter_by_symbol(struct hists *hists)
2074 {
2075 if (symbol_conf.report_hierarchy)
2076 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2077 hists->symbol_filter_str);
2078 else
2079 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2080 hists__filter_entry_by_symbol);
2081 }
2082
2083 void hists__filter_by_socket(struct hists *hists)
2084 {
2085 if (symbol_conf.report_hierarchy)
2086 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2087 &hists->socket_filter);
2088 else
2089 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2090 hists__filter_entry_by_socket);
2091 }
2092
2093 void events_stats__inc(struct events_stats *stats, u32 type)
2094 {
2095 ++stats->nr_events[0];
2096 ++stats->nr_events[type];
2097 }
2098
2099 void hists__inc_nr_events(struct hists *hists, u32 type)
2100 {
2101 events_stats__inc(&hists->stats, type);
2102 }
2103
2104 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2105 {
2106 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2107 if (!filtered)
2108 hists->stats.nr_non_filtered_samples++;
2109 }
2110
2111 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2112 struct hist_entry *pair)
2113 {
2114 struct rb_root *root;
2115 struct rb_node **p;
2116 struct rb_node *parent = NULL;
2117 struct hist_entry *he;
2118 int64_t cmp;
2119
2120 if (hists__has(hists, need_collapse))
2121 root = &hists->entries_collapsed;
2122 else
2123 root = hists->entries_in;
2124
2125 p = &root->rb_node;
2126
2127 while (*p != NULL) {
2128 parent = *p;
2129 he = rb_entry(parent, struct hist_entry, rb_node_in);
2130
2131 cmp = hist_entry__collapse(he, pair);
2132
2133 if (!cmp)
2134 goto out;
2135
2136 if (cmp < 0)
2137 p = &(*p)->rb_left;
2138 else
2139 p = &(*p)->rb_right;
2140 }
2141
2142 he = hist_entry__new(pair, true);
2143 if (he) {
2144 memset(&he->stat, 0, sizeof(he->stat));
2145 he->hists = hists;
2146 if (symbol_conf.cumulate_callchain)
2147 memset(he->stat_acc, 0, sizeof(he->stat));
2148 rb_link_node(&he->rb_node_in, parent, p);
2149 rb_insert_color(&he->rb_node_in, root);
2150 hists__inc_stats(hists, he);
2151 he->dummy = true;
2152 }
2153 out:
2154 return he;
2155 }
2156
2157 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2158 struct rb_root *root,
2159 struct hist_entry *pair)
2160 {
2161 struct rb_node **p;
2162 struct rb_node *parent = NULL;
2163 struct hist_entry *he;
2164 struct perf_hpp_fmt *fmt;
2165
2166 p = &root->rb_node;
2167 while (*p != NULL) {
2168 int64_t cmp = 0;
2169
2170 parent = *p;
2171 he = rb_entry(parent, struct hist_entry, rb_node_in);
2172
2173 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2174 cmp = fmt->collapse(fmt, he, pair);
2175 if (cmp)
2176 break;
2177 }
2178 if (!cmp)
2179 goto out;
2180
2181 if (cmp < 0)
2182 p = &parent->rb_left;
2183 else
2184 p = &parent->rb_right;
2185 }
2186
2187 he = hist_entry__new(pair, true);
2188 if (he) {
2189 rb_link_node(&he->rb_node_in, parent, p);
2190 rb_insert_color(&he->rb_node_in, root);
2191
2192 he->dummy = true;
2193 he->hists = hists;
2194 memset(&he->stat, 0, sizeof(he->stat));
2195 hists__inc_stats(hists, he);
2196 }
2197 out:
2198 return he;
2199 }
2200
2201 static struct hist_entry *hists__find_entry(struct hists *hists,
2202 struct hist_entry *he)
2203 {
2204 struct rb_node *n;
2205
2206 if (hists__has(hists, need_collapse))
2207 n = hists->entries_collapsed.rb_node;
2208 else
2209 n = hists->entries_in->rb_node;
2210
2211 while (n) {
2212 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2213 int64_t cmp = hist_entry__collapse(iter, he);
2214
2215 if (cmp < 0)
2216 n = n->rb_left;
2217 else if (cmp > 0)
2218 n = n->rb_right;
2219 else
2220 return iter;
2221 }
2222
2223 return NULL;
2224 }
2225
2226 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2227 struct hist_entry *he)
2228 {
2229 struct rb_node *n = root->rb_node;
2230
2231 while (n) {
2232 struct hist_entry *iter;
2233 struct perf_hpp_fmt *fmt;
2234 int64_t cmp = 0;
2235
2236 iter = rb_entry(n, struct hist_entry, rb_node_in);
2237 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2238 cmp = fmt->collapse(fmt, iter, he);
2239 if (cmp)
2240 break;
2241 }
2242
2243 if (cmp < 0)
2244 n = n->rb_left;
2245 else if (cmp > 0)
2246 n = n->rb_right;
2247 else
2248 return iter;
2249 }
2250
2251 return NULL;
2252 }
2253
2254 static void hists__match_hierarchy(struct rb_root *leader_root,
2255 struct rb_root *other_root)
2256 {
2257 struct rb_node *nd;
2258 struct hist_entry *pos, *pair;
2259
2260 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2261 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2262 pair = hists__find_hierarchy_entry(other_root, pos);
2263
2264 if (pair) {
2265 hist_entry__add_pair(pair, pos);
2266 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2267 }
2268 }
2269 }
2270
2271 /*
2272 * Look for pairs to link to the leader buckets (hist_entries):
2273 */
2274 void hists__match(struct hists *leader, struct hists *other)
2275 {
2276 struct rb_root *root;
2277 struct rb_node *nd;
2278 struct hist_entry *pos, *pair;
2279
2280 if (symbol_conf.report_hierarchy) {
2281 /* hierarchy report always collapses entries */
2282 return hists__match_hierarchy(&leader->entries_collapsed,
2283 &other->entries_collapsed);
2284 }
2285
2286 if (hists__has(leader, need_collapse))
2287 root = &leader->entries_collapsed;
2288 else
2289 root = leader->entries_in;
2290
2291 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2292 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2293 pair = hists__find_entry(other, pos);
2294
2295 if (pair)
2296 hist_entry__add_pair(pair, pos);
2297 }
2298 }
2299
2300 static int hists__link_hierarchy(struct hists *leader_hists,
2301 struct hist_entry *parent,
2302 struct rb_root *leader_root,
2303 struct rb_root *other_root)
2304 {
2305 struct rb_node *nd;
2306 struct hist_entry *pos, *leader;
2307
2308 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2309 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2310
2311 if (hist_entry__has_pairs(pos)) {
2312 bool found = false;
2313
2314 list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2315 if (leader->hists == leader_hists) {
2316 found = true;
2317 break;
2318 }
2319 }
2320 if (!found)
2321 return -1;
2322 } else {
2323 leader = add_dummy_hierarchy_entry(leader_hists,
2324 leader_root, pos);
2325 if (leader == NULL)
2326 return -1;
2327
2328 /* do not point parent in the pos */
2329 leader->parent_he = parent;
2330
2331 hist_entry__add_pair(pos, leader);
2332 }
2333
2334 if (!pos->leaf) {
2335 if (hists__link_hierarchy(leader_hists, leader,
2336 &leader->hroot_in,
2337 &pos->hroot_in) < 0)
2338 return -1;
2339 }
2340 }
2341 return 0;
2342 }
2343
2344 /*
2345 * Look for entries in the other hists that are not present in the leader, if
2346 * we find them, just add a dummy entry on the leader hists, with period=0,
2347 * nr_events=0, to serve as the list header.
2348 */
2349 int hists__link(struct hists *leader, struct hists *other)
2350 {
2351 struct rb_root *root;
2352 struct rb_node *nd;
2353 struct hist_entry *pos, *pair;
2354
2355 if (symbol_conf.report_hierarchy) {
2356 /* hierarchy report always collapses entries */
2357 return hists__link_hierarchy(leader, NULL,
2358 &leader->entries_collapsed,
2359 &other->entries_collapsed);
2360 }
2361
2362 if (hists__has(other, need_collapse))
2363 root = &other->entries_collapsed;
2364 else
2365 root = other->entries_in;
2366
2367 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2368 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2369
2370 if (!hist_entry__has_pairs(pos)) {
2371 pair = hists__add_dummy_entry(leader, pos);
2372 if (pair == NULL)
2373 return -1;
2374 hist_entry__add_pair(pos, pair);
2375 }
2376 }
2377
2378 return 0;
2379 }
2380
2381 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2382 struct perf_sample *sample, bool nonany_branch_mode)
2383 {
2384 struct branch_info *bi;
2385
2386 /* If we have branch cycles always annotate them. */
2387 if (bs && bs->nr && bs->entries[0].flags.cycles) {
2388 int i;
2389
2390 bi = sample__resolve_bstack(sample, al);
2391 if (bi) {
2392 struct addr_map_symbol *prev = NULL;
2393
2394 /*
2395 * Ignore errors, still want to process the
2396 * other entries.
2397 *
2398 * For non standard branch modes always
2399 * force no IPC (prev == NULL)
2400 *
2401 * Note that perf stores branches reversed from
2402 * program order!
2403 */
2404 for (i = bs->nr - 1; i >= 0; i--) {
2405 addr_map_symbol__account_cycles(&bi[i].from,
2406 nonany_branch_mode ? NULL : prev,
2407 bi[i].flags.cycles);
2408 prev = &bi[i].to;
2409 }
2410 free(bi);
2411 }
2412 }
2413 }
2414
2415 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2416 {
2417 struct perf_evsel *pos;
2418 size_t ret = 0;
2419
2420 evlist__for_each_entry(evlist, pos) {
2421 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2422 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2423 }
2424
2425 return ret;
2426 }
2427
2428
2429 u64 hists__total_period(struct hists *hists)
2430 {
2431 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2432 hists->stats.total_period;
2433 }
2434
2435 int parse_filter_percentage(const struct option *opt __maybe_unused,
2436 const char *arg, int unset __maybe_unused)
2437 {
2438 if (!strcmp(arg, "relative"))
2439 symbol_conf.filter_relative = true;
2440 else if (!strcmp(arg, "absolute"))
2441 symbol_conf.filter_relative = false;
2442 else
2443 return -1;
2444
2445 return 0;
2446 }
2447
2448 int perf_hist_config(const char *var, const char *value)
2449 {
2450 if (!strcmp(var, "hist.percentage"))
2451 return parse_filter_percentage(NULL, value, 0);
2452
2453 return 0;
2454 }
2455
2456 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2457 {
2458 memset(hists, 0, sizeof(*hists));
2459 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2460 hists->entries_in = &hists->entries_in_array[0];
2461 hists->entries_collapsed = RB_ROOT;
2462 hists->entries = RB_ROOT;
2463 pthread_mutex_init(&hists->lock, NULL);
2464 hists->socket_filter = -1;
2465 hists->hpp_list = hpp_list;
2466 INIT_LIST_HEAD(&hists->hpp_formats);
2467 return 0;
2468 }
2469
2470 static void hists__delete_remaining_entries(struct rb_root *root)
2471 {
2472 struct rb_node *node;
2473 struct hist_entry *he;
2474
2475 while (!RB_EMPTY_ROOT(root)) {
2476 node = rb_first(root);
2477 rb_erase(node, root);
2478
2479 he = rb_entry(node, struct hist_entry, rb_node_in);
2480 hist_entry__delete(he);
2481 }
2482 }
2483
2484 static void hists__delete_all_entries(struct hists *hists)
2485 {
2486 hists__delete_entries(hists);
2487 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2488 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2489 hists__delete_remaining_entries(&hists->entries_collapsed);
2490 }
2491
2492 static void hists_evsel__exit(struct perf_evsel *evsel)
2493 {
2494 struct hists *hists = evsel__hists(evsel);
2495 struct perf_hpp_fmt *fmt, *pos;
2496 struct perf_hpp_list_node *node, *tmp;
2497
2498 hists__delete_all_entries(hists);
2499
2500 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2501 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2502 list_del(&fmt->list);
2503 free(fmt);
2504 }
2505 list_del(&node->list);
2506 free(node);
2507 }
2508 }
2509
2510 static int hists_evsel__init(struct perf_evsel *evsel)
2511 {
2512 struct hists *hists = evsel__hists(evsel);
2513
2514 __hists__init(hists, &perf_hpp_list);
2515 return 0;
2516 }
2517
2518 /*
2519 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2520 * stored in the rbtree...
2521 */
2522
2523 int hists__init(void)
2524 {
2525 int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2526 hists_evsel__init,
2527 hists_evsel__exit);
2528 if (err)
2529 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2530
2531 return err;
2532 }
2533
2534 void perf_hpp_list__init(struct perf_hpp_list *list)
2535 {
2536 INIT_LIST_HEAD(&list->fields);
2537 INIT_LIST_HEAD(&list->sorts);
2538 }