]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - tools/perf/util/hist.c
8aad8330e392839aa8e3f621a62613b2f78febe9
[mirror_ubuntu-eoan-kernel.git] / tools / perf / util / hist.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "util.h"
3 #include "build-id.h"
4 #include "hist.h"
5 #include "map.h"
6 #include "session.h"
7 #include "namespaces.h"
8 #include "sort.h"
9 #include "units.h"
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "annotate.h"
13 #include "srcline.h"
14 #include "thread.h"
15 #include "ui/progress.h"
16 #include <errno.h>
17 #include <math.h>
18 #include <inttypes.h>
19 #include <sys/param.h>
20
21 static bool hists__filter_entry_by_dso(struct hists *hists,
22 struct hist_entry *he);
23 static bool hists__filter_entry_by_thread(struct hists *hists,
24 struct hist_entry *he);
25 static bool hists__filter_entry_by_symbol(struct hists *hists,
26 struct hist_entry *he);
27 static bool hists__filter_entry_by_socket(struct hists *hists,
28 struct hist_entry *he);
29
30 u16 hists__col_len(struct hists *hists, enum hist_column col)
31 {
32 return hists->col_len[col];
33 }
34
35 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
36 {
37 hists->col_len[col] = len;
38 }
39
40 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
41 {
42 if (len > hists__col_len(hists, col)) {
43 hists__set_col_len(hists, col, len);
44 return true;
45 }
46 return false;
47 }
48
49 void hists__reset_col_len(struct hists *hists)
50 {
51 enum hist_column col;
52
53 for (col = 0; col < HISTC_NR_COLS; ++col)
54 hists__set_col_len(hists, col, 0);
55 }
56
57 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
58 {
59 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
60
61 if (hists__col_len(hists, dso) < unresolved_col_width &&
62 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
63 !symbol_conf.dso_list)
64 hists__set_col_len(hists, dso, unresolved_col_width);
65 }
66
67 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
68 {
69 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
70 int symlen;
71 u16 len;
72
73 /*
74 * +4 accounts for '[x] ' priv level info
75 * +2 accounts for 0x prefix on raw addresses
76 * +3 accounts for ' y ' symtab origin info
77 */
78 if (h->ms.sym) {
79 symlen = h->ms.sym->namelen + 4;
80 if (verbose > 0)
81 symlen += BITS_PER_LONG / 4 + 2 + 3;
82 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83 } else {
84 symlen = unresolved_col_width + 4 + 2;
85 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
86 hists__set_unres_dso_col_len(hists, HISTC_DSO);
87 }
88
89 len = thread__comm_len(h->thread);
90 if (hists__new_col_len(hists, HISTC_COMM, len))
91 hists__set_col_len(hists, HISTC_THREAD, len + 8);
92
93 if (h->ms.map) {
94 len = dso__name_len(h->ms.map->dso);
95 hists__new_col_len(hists, HISTC_DSO, len);
96 }
97
98 if (h->parent)
99 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
100
101 if (h->branch_info) {
102 if (h->branch_info->from.sym) {
103 symlen = (int)h->branch_info->from.sym->namelen + 4;
104 if (verbose > 0)
105 symlen += BITS_PER_LONG / 4 + 2 + 3;
106 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
107
108 symlen = dso__name_len(h->branch_info->from.map->dso);
109 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
110 } else {
111 symlen = unresolved_col_width + 4 + 2;
112 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
113 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
114 }
115
116 if (h->branch_info->to.sym) {
117 symlen = (int)h->branch_info->to.sym->namelen + 4;
118 if (verbose > 0)
119 symlen += BITS_PER_LONG / 4 + 2 + 3;
120 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
121
122 symlen = dso__name_len(h->branch_info->to.map->dso);
123 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
124 } else {
125 symlen = unresolved_col_width + 4 + 2;
126 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
127 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
128 }
129
130 if (h->branch_info->srcline_from)
131 hists__new_col_len(hists, HISTC_SRCLINE_FROM,
132 strlen(h->branch_info->srcline_from));
133 if (h->branch_info->srcline_to)
134 hists__new_col_len(hists, HISTC_SRCLINE_TO,
135 strlen(h->branch_info->srcline_to));
136 }
137
138 if (h->mem_info) {
139 if (h->mem_info->daddr.sym) {
140 symlen = (int)h->mem_info->daddr.sym->namelen + 4
141 + unresolved_col_width + 2;
142 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
143 symlen);
144 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
145 symlen + 1);
146 } else {
147 symlen = unresolved_col_width + 4 + 2;
148 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
149 symlen);
150 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
151 symlen);
152 }
153
154 if (h->mem_info->iaddr.sym) {
155 symlen = (int)h->mem_info->iaddr.sym->namelen + 4
156 + unresolved_col_width + 2;
157 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
158 symlen);
159 } else {
160 symlen = unresolved_col_width + 4 + 2;
161 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
162 symlen);
163 }
164
165 if (h->mem_info->daddr.map) {
166 symlen = dso__name_len(h->mem_info->daddr.map->dso);
167 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
168 symlen);
169 } else {
170 symlen = unresolved_col_width + 4 + 2;
171 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
172 }
173
174 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
175 unresolved_col_width + 4 + 2);
176
177 } else {
178 symlen = unresolved_col_width + 4 + 2;
179 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
180 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
181 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
182 }
183
184 hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
185 hists__new_col_len(hists, HISTC_CPU, 3);
186 hists__new_col_len(hists, HISTC_SOCKET, 6);
187 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
188 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
189 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
190 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
191 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
192 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
193
194 if (h->srcline) {
195 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
196 hists__new_col_len(hists, HISTC_SRCLINE, len);
197 }
198
199 if (h->srcfile)
200 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
201
202 if (h->transaction)
203 hists__new_col_len(hists, HISTC_TRANSACTION,
204 hist_entry__transaction_len());
205
206 if (h->trace_output)
207 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
208 }
209
210 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
211 {
212 struct rb_node *next = rb_first(&hists->entries);
213 struct hist_entry *n;
214 int row = 0;
215
216 hists__reset_col_len(hists);
217
218 while (next && row++ < max_rows) {
219 n = rb_entry(next, struct hist_entry, rb_node);
220 if (!n->filtered)
221 hists__calc_col_len(hists, n);
222 next = rb_next(&n->rb_node);
223 }
224 }
225
226 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
227 unsigned int cpumode, u64 period)
228 {
229 switch (cpumode) {
230 case PERF_RECORD_MISC_KERNEL:
231 he_stat->period_sys += period;
232 break;
233 case PERF_RECORD_MISC_USER:
234 he_stat->period_us += period;
235 break;
236 case PERF_RECORD_MISC_GUEST_KERNEL:
237 he_stat->period_guest_sys += period;
238 break;
239 case PERF_RECORD_MISC_GUEST_USER:
240 he_stat->period_guest_us += period;
241 break;
242 default:
243 break;
244 }
245 }
246
247 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
248 u64 weight)
249 {
250
251 he_stat->period += period;
252 he_stat->weight += weight;
253 he_stat->nr_events += 1;
254 }
255
256 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
257 {
258 dest->period += src->period;
259 dest->period_sys += src->period_sys;
260 dest->period_us += src->period_us;
261 dest->period_guest_sys += src->period_guest_sys;
262 dest->period_guest_us += src->period_guest_us;
263 dest->nr_events += src->nr_events;
264 dest->weight += src->weight;
265 }
266
267 static void he_stat__decay(struct he_stat *he_stat)
268 {
269 he_stat->period = (he_stat->period * 7) / 8;
270 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
271 /* XXX need decay for weight too? */
272 }
273
274 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
275
276 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
277 {
278 u64 prev_period = he->stat.period;
279 u64 diff;
280
281 if (prev_period == 0)
282 return true;
283
284 he_stat__decay(&he->stat);
285 if (symbol_conf.cumulate_callchain)
286 he_stat__decay(he->stat_acc);
287 decay_callchain(he->callchain);
288
289 diff = prev_period - he->stat.period;
290
291 if (!he->depth) {
292 hists->stats.total_period -= diff;
293 if (!he->filtered)
294 hists->stats.total_non_filtered_period -= diff;
295 }
296
297 if (!he->leaf) {
298 struct hist_entry *child;
299 struct rb_node *node = rb_first(&he->hroot_out);
300 while (node) {
301 child = rb_entry(node, struct hist_entry, rb_node);
302 node = rb_next(node);
303
304 if (hists__decay_entry(hists, child))
305 hists__delete_entry(hists, child);
306 }
307 }
308
309 return he->stat.period == 0;
310 }
311
312 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
313 {
314 struct rb_root *root_in;
315 struct rb_root *root_out;
316
317 if (he->parent_he) {
318 root_in = &he->parent_he->hroot_in;
319 root_out = &he->parent_he->hroot_out;
320 } else {
321 if (hists__has(hists, need_collapse))
322 root_in = &hists->entries_collapsed;
323 else
324 root_in = hists->entries_in;
325 root_out = &hists->entries;
326 }
327
328 rb_erase(&he->rb_node_in, root_in);
329 rb_erase(&he->rb_node, root_out);
330
331 --hists->nr_entries;
332 if (!he->filtered)
333 --hists->nr_non_filtered_entries;
334
335 hist_entry__delete(he);
336 }
337
338 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
339 {
340 struct rb_node *next = rb_first(&hists->entries);
341 struct hist_entry *n;
342
343 while (next) {
344 n = rb_entry(next, struct hist_entry, rb_node);
345 next = rb_next(&n->rb_node);
346 if (((zap_user && n->level == '.') ||
347 (zap_kernel && n->level != '.') ||
348 hists__decay_entry(hists, n))) {
349 hists__delete_entry(hists, n);
350 }
351 }
352 }
353
354 void hists__delete_entries(struct hists *hists)
355 {
356 struct rb_node *next = rb_first(&hists->entries);
357 struct hist_entry *n;
358
359 while (next) {
360 n = rb_entry(next, struct hist_entry, rb_node);
361 next = rb_next(&n->rb_node);
362
363 hists__delete_entry(hists, n);
364 }
365 }
366
367 /*
368 * histogram, sorted on item, collects periods
369 */
370
371 static int hist_entry__init(struct hist_entry *he,
372 struct hist_entry *template,
373 bool sample_self,
374 size_t callchain_size)
375 {
376 *he = *template;
377 he->callchain_size = callchain_size;
378
379 if (symbol_conf.cumulate_callchain) {
380 he->stat_acc = malloc(sizeof(he->stat));
381 if (he->stat_acc == NULL)
382 return -ENOMEM;
383 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
384 if (!sample_self)
385 memset(&he->stat, 0, sizeof(he->stat));
386 }
387
388 map__get(he->ms.map);
389
390 if (he->branch_info) {
391 /*
392 * This branch info is (a part of) allocated from
393 * sample__resolve_bstack() and will be freed after
394 * adding new entries. So we need to save a copy.
395 */
396 he->branch_info = malloc(sizeof(*he->branch_info));
397 if (he->branch_info == NULL) {
398 map__zput(he->ms.map);
399 free(he->stat_acc);
400 return -ENOMEM;
401 }
402
403 memcpy(he->branch_info, template->branch_info,
404 sizeof(*he->branch_info));
405
406 map__get(he->branch_info->from.map);
407 map__get(he->branch_info->to.map);
408 }
409
410 if (he->mem_info) {
411 map__get(he->mem_info->iaddr.map);
412 map__get(he->mem_info->daddr.map);
413 }
414
415 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
416 callchain_init(he->callchain);
417
418 if (he->raw_data) {
419 he->raw_data = memdup(he->raw_data, he->raw_size);
420
421 if (he->raw_data == NULL) {
422 map__put(he->ms.map);
423 if (he->branch_info) {
424 map__put(he->branch_info->from.map);
425 map__put(he->branch_info->to.map);
426 free(he->branch_info);
427 }
428 if (he->mem_info) {
429 map__put(he->mem_info->iaddr.map);
430 map__put(he->mem_info->daddr.map);
431 }
432 free(he->stat_acc);
433 return -ENOMEM;
434 }
435 }
436 INIT_LIST_HEAD(&he->pairs.node);
437 thread__get(he->thread);
438 he->hroot_in = RB_ROOT;
439 he->hroot_out = RB_ROOT;
440
441 if (!symbol_conf.report_hierarchy)
442 he->leaf = true;
443
444 return 0;
445 }
446
447 static void *hist_entry__zalloc(size_t size)
448 {
449 return zalloc(size + sizeof(struct hist_entry));
450 }
451
452 static void hist_entry__free(void *ptr)
453 {
454 free(ptr);
455 }
456
457 static struct hist_entry_ops default_ops = {
458 .new = hist_entry__zalloc,
459 .free = hist_entry__free,
460 };
461
462 static struct hist_entry *hist_entry__new(struct hist_entry *template,
463 bool sample_self)
464 {
465 struct hist_entry_ops *ops = template->ops;
466 size_t callchain_size = 0;
467 struct hist_entry *he;
468 int err = 0;
469
470 if (!ops)
471 ops = template->ops = &default_ops;
472
473 if (symbol_conf.use_callchain)
474 callchain_size = sizeof(struct callchain_root);
475
476 he = ops->new(callchain_size);
477 if (he) {
478 err = hist_entry__init(he, template, sample_self, callchain_size);
479 if (err) {
480 ops->free(he);
481 he = NULL;
482 }
483 }
484
485 return he;
486 }
487
488 static u8 symbol__parent_filter(const struct symbol *parent)
489 {
490 if (symbol_conf.exclude_other && parent == NULL)
491 return 1 << HIST_FILTER__PARENT;
492 return 0;
493 }
494
495 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
496 {
497 if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
498 return;
499
500 he->hists->callchain_period += period;
501 if (!he->filtered)
502 he->hists->callchain_non_filtered_period += period;
503 }
504
505 static struct hist_entry *hists__findnew_entry(struct hists *hists,
506 struct hist_entry *entry,
507 struct addr_location *al,
508 bool sample_self)
509 {
510 struct rb_node **p;
511 struct rb_node *parent = NULL;
512 struct hist_entry *he;
513 int64_t cmp;
514 u64 period = entry->stat.period;
515 u64 weight = entry->stat.weight;
516
517 p = &hists->entries_in->rb_node;
518
519 while (*p != NULL) {
520 parent = *p;
521 he = rb_entry(parent, struct hist_entry, rb_node_in);
522
523 /*
524 * Make sure that it receives arguments in a same order as
525 * hist_entry__collapse() so that we can use an appropriate
526 * function when searching an entry regardless which sort
527 * keys were used.
528 */
529 cmp = hist_entry__cmp(he, entry);
530
531 if (!cmp) {
532 if (sample_self) {
533 he_stat__add_period(&he->stat, period, weight);
534 hist_entry__add_callchain_period(he, period);
535 }
536 if (symbol_conf.cumulate_callchain)
537 he_stat__add_period(he->stat_acc, period, weight);
538
539 /*
540 * This mem info was allocated from sample__resolve_mem
541 * and will not be used anymore.
542 */
543 mem_info__zput(entry->mem_info);
544
545 /* If the map of an existing hist_entry has
546 * become out-of-date due to an exec() or
547 * similar, update it. Otherwise we will
548 * mis-adjust symbol addresses when computing
549 * the history counter to increment.
550 */
551 if (he->ms.map != entry->ms.map) {
552 map__put(he->ms.map);
553 he->ms.map = map__get(entry->ms.map);
554 }
555 goto out;
556 }
557
558 if (cmp < 0)
559 p = &(*p)->rb_left;
560 else
561 p = &(*p)->rb_right;
562 }
563
564 he = hist_entry__new(entry, sample_self);
565 if (!he)
566 return NULL;
567
568 if (sample_self)
569 hist_entry__add_callchain_period(he, period);
570 hists->nr_entries++;
571
572 rb_link_node(&he->rb_node_in, parent, p);
573 rb_insert_color(&he->rb_node_in, hists->entries_in);
574 out:
575 if (sample_self)
576 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
577 if (symbol_conf.cumulate_callchain)
578 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
579 return he;
580 }
581
582 static struct hist_entry*
583 __hists__add_entry(struct hists *hists,
584 struct addr_location *al,
585 struct symbol *sym_parent,
586 struct branch_info *bi,
587 struct mem_info *mi,
588 struct perf_sample *sample,
589 bool sample_self,
590 struct hist_entry_ops *ops)
591 {
592 struct namespaces *ns = thread__namespaces(al->thread);
593 struct hist_entry entry = {
594 .thread = al->thread,
595 .comm = thread__comm(al->thread),
596 .cgroup_id = {
597 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
598 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
599 },
600 .ms = {
601 .map = al->map,
602 .sym = al->sym,
603 },
604 .srcline = al->srcline ? strdup(al->srcline) : NULL,
605 .socket = al->socket,
606 .cpu = al->cpu,
607 .cpumode = al->cpumode,
608 .ip = al->addr,
609 .level = al->level,
610 .stat = {
611 .nr_events = 1,
612 .period = sample->period,
613 .weight = sample->weight,
614 },
615 .parent = sym_parent,
616 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
617 .hists = hists,
618 .branch_info = bi,
619 .mem_info = mi,
620 .transaction = sample->transaction,
621 .raw_data = sample->raw_data,
622 .raw_size = sample->raw_size,
623 .ops = ops,
624 }, *he = hists__findnew_entry(hists, &entry, al, sample_self);
625
626 if (!hists->has_callchains && he && he->callchain_size != 0)
627 hists->has_callchains = true;
628 return he;
629 }
630
631 struct hist_entry *hists__add_entry(struct hists *hists,
632 struct addr_location *al,
633 struct symbol *sym_parent,
634 struct branch_info *bi,
635 struct mem_info *mi,
636 struct perf_sample *sample,
637 bool sample_self)
638 {
639 return __hists__add_entry(hists, al, sym_parent, bi, mi,
640 sample, sample_self, NULL);
641 }
642
643 struct hist_entry *hists__add_entry_ops(struct hists *hists,
644 struct hist_entry_ops *ops,
645 struct addr_location *al,
646 struct symbol *sym_parent,
647 struct branch_info *bi,
648 struct mem_info *mi,
649 struct perf_sample *sample,
650 bool sample_self)
651 {
652 return __hists__add_entry(hists, al, sym_parent, bi, mi,
653 sample, sample_self, ops);
654 }
655
656 static int
657 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
658 struct addr_location *al __maybe_unused)
659 {
660 return 0;
661 }
662
663 static int
664 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
665 struct addr_location *al __maybe_unused)
666 {
667 return 0;
668 }
669
670 static int
671 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
672 {
673 struct perf_sample *sample = iter->sample;
674 struct mem_info *mi;
675
676 mi = sample__resolve_mem(sample, al);
677 if (mi == NULL)
678 return -ENOMEM;
679
680 iter->priv = mi;
681 return 0;
682 }
683
684 static int
685 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
686 {
687 u64 cost;
688 struct mem_info *mi = iter->priv;
689 struct hists *hists = evsel__hists(iter->evsel);
690 struct perf_sample *sample = iter->sample;
691 struct hist_entry *he;
692
693 if (mi == NULL)
694 return -EINVAL;
695
696 cost = sample->weight;
697 if (!cost)
698 cost = 1;
699
700 /*
701 * must pass period=weight in order to get the correct
702 * sorting from hists__collapse_resort() which is solely
703 * based on periods. We want sorting be done on nr_events * weight
704 * and this is indirectly achieved by passing period=weight here
705 * and the he_stat__add_period() function.
706 */
707 sample->period = cost;
708
709 he = hists__add_entry(hists, al, iter->parent, NULL, mi,
710 sample, true);
711 if (!he)
712 return -ENOMEM;
713
714 iter->he = he;
715 return 0;
716 }
717
718 static int
719 iter_finish_mem_entry(struct hist_entry_iter *iter,
720 struct addr_location *al __maybe_unused)
721 {
722 struct perf_evsel *evsel = iter->evsel;
723 struct hists *hists = evsel__hists(evsel);
724 struct hist_entry *he = iter->he;
725 int err = -EINVAL;
726
727 if (he == NULL)
728 goto out;
729
730 hists__inc_nr_samples(hists, he->filtered);
731
732 err = hist_entry__append_callchain(he, iter->sample);
733
734 out:
735 /*
736 * We don't need to free iter->priv (mem_info) here since the mem info
737 * was either already freed in hists__findnew_entry() or passed to a
738 * new hist entry by hist_entry__new().
739 */
740 iter->priv = NULL;
741
742 iter->he = NULL;
743 return err;
744 }
745
746 static int
747 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
748 {
749 struct branch_info *bi;
750 struct perf_sample *sample = iter->sample;
751
752 bi = sample__resolve_bstack(sample, al);
753 if (!bi)
754 return -ENOMEM;
755
756 iter->curr = 0;
757 iter->total = sample->branch_stack->nr;
758
759 iter->priv = bi;
760 return 0;
761 }
762
763 static int
764 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
765 struct addr_location *al __maybe_unused)
766 {
767 return 0;
768 }
769
770 static int
771 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
772 {
773 struct branch_info *bi = iter->priv;
774 int i = iter->curr;
775
776 if (bi == NULL)
777 return 0;
778
779 if (iter->curr >= iter->total)
780 return 0;
781
782 al->map = bi[i].to.map;
783 al->sym = bi[i].to.sym;
784 al->addr = bi[i].to.addr;
785 return 1;
786 }
787
788 static int
789 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
790 {
791 struct branch_info *bi;
792 struct perf_evsel *evsel = iter->evsel;
793 struct hists *hists = evsel__hists(evsel);
794 struct perf_sample *sample = iter->sample;
795 struct hist_entry *he = NULL;
796 int i = iter->curr;
797 int err = 0;
798
799 bi = iter->priv;
800
801 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
802 goto out;
803
804 /*
805 * The report shows the percentage of total branches captured
806 * and not events sampled. Thus we use a pseudo period of 1.
807 */
808 sample->period = 1;
809 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
810
811 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
812 sample, true);
813 if (he == NULL)
814 return -ENOMEM;
815
816 hists__inc_nr_samples(hists, he->filtered);
817
818 out:
819 iter->he = he;
820 iter->curr++;
821 return err;
822 }
823
824 static int
825 iter_finish_branch_entry(struct hist_entry_iter *iter,
826 struct addr_location *al __maybe_unused)
827 {
828 zfree(&iter->priv);
829 iter->he = NULL;
830
831 return iter->curr >= iter->total ? 0 : -1;
832 }
833
834 static int
835 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
836 struct addr_location *al __maybe_unused)
837 {
838 return 0;
839 }
840
841 static int
842 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
843 {
844 struct perf_evsel *evsel = iter->evsel;
845 struct perf_sample *sample = iter->sample;
846 struct hist_entry *he;
847
848 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
849 sample, true);
850 if (he == NULL)
851 return -ENOMEM;
852
853 iter->he = he;
854 return 0;
855 }
856
857 static int
858 iter_finish_normal_entry(struct hist_entry_iter *iter,
859 struct addr_location *al __maybe_unused)
860 {
861 struct hist_entry *he = iter->he;
862 struct perf_evsel *evsel = iter->evsel;
863 struct perf_sample *sample = iter->sample;
864
865 if (he == NULL)
866 return 0;
867
868 iter->he = NULL;
869
870 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
871
872 return hist_entry__append_callchain(he, sample);
873 }
874
875 static int
876 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
877 struct addr_location *al __maybe_unused)
878 {
879 struct hist_entry **he_cache;
880
881 callchain_cursor_commit(&callchain_cursor);
882
883 /*
884 * This is for detecting cycles or recursions so that they're
885 * cumulated only one time to prevent entries more than 100%
886 * overhead.
887 */
888 he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
889 if (he_cache == NULL)
890 return -ENOMEM;
891
892 iter->priv = he_cache;
893 iter->curr = 0;
894
895 return 0;
896 }
897
898 static int
899 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
900 struct addr_location *al)
901 {
902 struct perf_evsel *evsel = iter->evsel;
903 struct hists *hists = evsel__hists(evsel);
904 struct perf_sample *sample = iter->sample;
905 struct hist_entry **he_cache = iter->priv;
906 struct hist_entry *he;
907 int err = 0;
908
909 he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
910 sample, true);
911 if (he == NULL)
912 return -ENOMEM;
913
914 iter->he = he;
915 he_cache[iter->curr++] = he;
916
917 hist_entry__append_callchain(he, sample);
918
919 /*
920 * We need to re-initialize the cursor since callchain_append()
921 * advanced the cursor to the end.
922 */
923 callchain_cursor_commit(&callchain_cursor);
924
925 hists__inc_nr_samples(hists, he->filtered);
926
927 return err;
928 }
929
930 static int
931 iter_next_cumulative_entry(struct hist_entry_iter *iter,
932 struct addr_location *al)
933 {
934 struct callchain_cursor_node *node;
935
936 node = callchain_cursor_current(&callchain_cursor);
937 if (node == NULL)
938 return 0;
939
940 return fill_callchain_info(al, node, iter->hide_unresolved);
941 }
942
943 static int
944 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
945 struct addr_location *al)
946 {
947 struct perf_evsel *evsel = iter->evsel;
948 struct perf_sample *sample = iter->sample;
949 struct hist_entry **he_cache = iter->priv;
950 struct hist_entry *he;
951 struct hist_entry he_tmp = {
952 .hists = evsel__hists(evsel),
953 .cpu = al->cpu,
954 .thread = al->thread,
955 .comm = thread__comm(al->thread),
956 .ip = al->addr,
957 .ms = {
958 .map = al->map,
959 .sym = al->sym,
960 },
961 .srcline = al->srcline ? strdup(al->srcline) : NULL,
962 .parent = iter->parent,
963 .raw_data = sample->raw_data,
964 .raw_size = sample->raw_size,
965 };
966 int i;
967 struct callchain_cursor cursor;
968
969 callchain_cursor_snapshot(&cursor, &callchain_cursor);
970
971 callchain_cursor_advance(&callchain_cursor);
972
973 /*
974 * Check if there's duplicate entries in the callchain.
975 * It's possible that it has cycles or recursive calls.
976 */
977 for (i = 0; i < iter->curr; i++) {
978 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
979 /* to avoid calling callback function */
980 iter->he = NULL;
981 return 0;
982 }
983 }
984
985 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
986 sample, false);
987 if (he == NULL)
988 return -ENOMEM;
989
990 iter->he = he;
991 he_cache[iter->curr++] = he;
992
993 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
994 callchain_append(he->callchain, &cursor, sample->period);
995 return 0;
996 }
997
998 static int
999 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
1000 struct addr_location *al __maybe_unused)
1001 {
1002 zfree(&iter->priv);
1003 iter->he = NULL;
1004
1005 return 0;
1006 }
1007
1008 const struct hist_iter_ops hist_iter_mem = {
1009 .prepare_entry = iter_prepare_mem_entry,
1010 .add_single_entry = iter_add_single_mem_entry,
1011 .next_entry = iter_next_nop_entry,
1012 .add_next_entry = iter_add_next_nop_entry,
1013 .finish_entry = iter_finish_mem_entry,
1014 };
1015
1016 const struct hist_iter_ops hist_iter_branch = {
1017 .prepare_entry = iter_prepare_branch_entry,
1018 .add_single_entry = iter_add_single_branch_entry,
1019 .next_entry = iter_next_branch_entry,
1020 .add_next_entry = iter_add_next_branch_entry,
1021 .finish_entry = iter_finish_branch_entry,
1022 };
1023
1024 const struct hist_iter_ops hist_iter_normal = {
1025 .prepare_entry = iter_prepare_normal_entry,
1026 .add_single_entry = iter_add_single_normal_entry,
1027 .next_entry = iter_next_nop_entry,
1028 .add_next_entry = iter_add_next_nop_entry,
1029 .finish_entry = iter_finish_normal_entry,
1030 };
1031
1032 const struct hist_iter_ops hist_iter_cumulative = {
1033 .prepare_entry = iter_prepare_cumulative_entry,
1034 .add_single_entry = iter_add_single_cumulative_entry,
1035 .next_entry = iter_next_cumulative_entry,
1036 .add_next_entry = iter_add_next_cumulative_entry,
1037 .finish_entry = iter_finish_cumulative_entry,
1038 };
1039
1040 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1041 int max_stack_depth, void *arg)
1042 {
1043 int err, err2;
1044 struct map *alm = NULL;
1045
1046 if (al)
1047 alm = map__get(al->map);
1048
1049 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1050 iter->evsel, al, max_stack_depth);
1051 if (err)
1052 return err;
1053
1054 err = iter->ops->prepare_entry(iter, al);
1055 if (err)
1056 goto out;
1057
1058 err = iter->ops->add_single_entry(iter, al);
1059 if (err)
1060 goto out;
1061
1062 if (iter->he && iter->add_entry_cb) {
1063 err = iter->add_entry_cb(iter, al, true, arg);
1064 if (err)
1065 goto out;
1066 }
1067
1068 while (iter->ops->next_entry(iter, al)) {
1069 err = iter->ops->add_next_entry(iter, al);
1070 if (err)
1071 break;
1072
1073 if (iter->he && iter->add_entry_cb) {
1074 err = iter->add_entry_cb(iter, al, false, arg);
1075 if (err)
1076 goto out;
1077 }
1078 }
1079
1080 out:
1081 err2 = iter->ops->finish_entry(iter, al);
1082 if (!err)
1083 err = err2;
1084
1085 map__put(alm);
1086
1087 return err;
1088 }
1089
1090 int64_t
1091 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1092 {
1093 struct hists *hists = left->hists;
1094 struct perf_hpp_fmt *fmt;
1095 int64_t cmp = 0;
1096
1097 hists__for_each_sort_list(hists, fmt) {
1098 if (perf_hpp__is_dynamic_entry(fmt) &&
1099 !perf_hpp__defined_dynamic_entry(fmt, hists))
1100 continue;
1101
1102 cmp = fmt->cmp(fmt, left, right);
1103 if (cmp)
1104 break;
1105 }
1106
1107 return cmp;
1108 }
1109
1110 int64_t
1111 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1112 {
1113 struct hists *hists = left->hists;
1114 struct perf_hpp_fmt *fmt;
1115 int64_t cmp = 0;
1116
1117 hists__for_each_sort_list(hists, fmt) {
1118 if (perf_hpp__is_dynamic_entry(fmt) &&
1119 !perf_hpp__defined_dynamic_entry(fmt, hists))
1120 continue;
1121
1122 cmp = fmt->collapse(fmt, left, right);
1123 if (cmp)
1124 break;
1125 }
1126
1127 return cmp;
1128 }
1129
1130 void hist_entry__delete(struct hist_entry *he)
1131 {
1132 struct hist_entry_ops *ops = he->ops;
1133
1134 thread__zput(he->thread);
1135 map__zput(he->ms.map);
1136
1137 if (he->branch_info) {
1138 map__zput(he->branch_info->from.map);
1139 map__zput(he->branch_info->to.map);
1140 free_srcline(he->branch_info->srcline_from);
1141 free_srcline(he->branch_info->srcline_to);
1142 zfree(&he->branch_info);
1143 }
1144
1145 if (he->mem_info) {
1146 map__zput(he->mem_info->iaddr.map);
1147 map__zput(he->mem_info->daddr.map);
1148 mem_info__zput(he->mem_info);
1149 }
1150
1151 zfree(&he->stat_acc);
1152 free_srcline(he->srcline);
1153 if (he->srcfile && he->srcfile[0])
1154 free(he->srcfile);
1155 free_callchain(he->callchain);
1156 free(he->trace_output);
1157 free(he->raw_data);
1158 ops->free(he);
1159 }
1160
1161 /*
1162 * If this is not the last column, then we need to pad it according to the
1163 * pre-calculated max length for this column, otherwise don't bother adding
1164 * spaces because that would break viewing this with, for instance, 'less',
1165 * that would show tons of trailing spaces when a long C++ demangled method
1166 * names is sampled.
1167 */
1168 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1169 struct perf_hpp_fmt *fmt, int printed)
1170 {
1171 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1172 const int width = fmt->width(fmt, hpp, he->hists);
1173 if (printed < width) {
1174 advance_hpp(hpp, printed);
1175 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1176 }
1177 }
1178
1179 return printed;
1180 }
1181
1182 /*
1183 * collapse the histogram
1184 */
1185
1186 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1187 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1188 enum hist_filter type);
1189
1190 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1191
1192 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1193 {
1194 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1195 }
1196
1197 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1198 enum hist_filter type,
1199 fmt_chk_fn check)
1200 {
1201 struct perf_hpp_fmt *fmt;
1202 bool type_match = false;
1203 struct hist_entry *parent = he->parent_he;
1204
1205 switch (type) {
1206 case HIST_FILTER__THREAD:
1207 if (symbol_conf.comm_list == NULL &&
1208 symbol_conf.pid_list == NULL &&
1209 symbol_conf.tid_list == NULL)
1210 return;
1211 break;
1212 case HIST_FILTER__DSO:
1213 if (symbol_conf.dso_list == NULL)
1214 return;
1215 break;
1216 case HIST_FILTER__SYMBOL:
1217 if (symbol_conf.sym_list == NULL)
1218 return;
1219 break;
1220 case HIST_FILTER__PARENT:
1221 case HIST_FILTER__GUEST:
1222 case HIST_FILTER__HOST:
1223 case HIST_FILTER__SOCKET:
1224 case HIST_FILTER__C2C:
1225 default:
1226 return;
1227 }
1228
1229 /* if it's filtered by own fmt, it has to have filter bits */
1230 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1231 if (check(fmt)) {
1232 type_match = true;
1233 break;
1234 }
1235 }
1236
1237 if (type_match) {
1238 /*
1239 * If the filter is for current level entry, propagate
1240 * filter marker to parents. The marker bit was
1241 * already set by default so it only needs to clear
1242 * non-filtered entries.
1243 */
1244 if (!(he->filtered & (1 << type))) {
1245 while (parent) {
1246 parent->filtered &= ~(1 << type);
1247 parent = parent->parent_he;
1248 }
1249 }
1250 } else {
1251 /*
1252 * If current entry doesn't have matching formats, set
1253 * filter marker for upper level entries. it will be
1254 * cleared if its lower level entries is not filtered.
1255 *
1256 * For lower-level entries, it inherits parent's
1257 * filter bit so that lower level entries of a
1258 * non-filtered entry won't set the filter marker.
1259 */
1260 if (parent == NULL)
1261 he->filtered |= (1 << type);
1262 else
1263 he->filtered |= (parent->filtered & (1 << type));
1264 }
1265 }
1266
1267 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1268 {
1269 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1270 check_thread_entry);
1271
1272 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1273 perf_hpp__is_dso_entry);
1274
1275 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1276 perf_hpp__is_sym_entry);
1277
1278 hists__apply_filters(he->hists, he);
1279 }
1280
1281 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1282 struct rb_root *root,
1283 struct hist_entry *he,
1284 struct hist_entry *parent_he,
1285 struct perf_hpp_list *hpp_list)
1286 {
1287 struct rb_node **p = &root->rb_node;
1288 struct rb_node *parent = NULL;
1289 struct hist_entry *iter, *new;
1290 struct perf_hpp_fmt *fmt;
1291 int64_t cmp;
1292
1293 while (*p != NULL) {
1294 parent = *p;
1295 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1296
1297 cmp = 0;
1298 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1299 cmp = fmt->collapse(fmt, iter, he);
1300 if (cmp)
1301 break;
1302 }
1303
1304 if (!cmp) {
1305 he_stat__add_stat(&iter->stat, &he->stat);
1306 return iter;
1307 }
1308
1309 if (cmp < 0)
1310 p = &parent->rb_left;
1311 else
1312 p = &parent->rb_right;
1313 }
1314
1315 new = hist_entry__new(he, true);
1316 if (new == NULL)
1317 return NULL;
1318
1319 hists->nr_entries++;
1320
1321 /* save related format list for output */
1322 new->hpp_list = hpp_list;
1323 new->parent_he = parent_he;
1324
1325 hist_entry__apply_hierarchy_filters(new);
1326
1327 /* some fields are now passed to 'new' */
1328 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1329 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1330 he->trace_output = NULL;
1331 else
1332 new->trace_output = NULL;
1333
1334 if (perf_hpp__is_srcline_entry(fmt))
1335 he->srcline = NULL;
1336 else
1337 new->srcline = NULL;
1338
1339 if (perf_hpp__is_srcfile_entry(fmt))
1340 he->srcfile = NULL;
1341 else
1342 new->srcfile = NULL;
1343 }
1344
1345 rb_link_node(&new->rb_node_in, parent, p);
1346 rb_insert_color(&new->rb_node_in, root);
1347 return new;
1348 }
1349
1350 static int hists__hierarchy_insert_entry(struct hists *hists,
1351 struct rb_root *root,
1352 struct hist_entry *he)
1353 {
1354 struct perf_hpp_list_node *node;
1355 struct hist_entry *new_he = NULL;
1356 struct hist_entry *parent = NULL;
1357 int depth = 0;
1358 int ret = 0;
1359
1360 list_for_each_entry(node, &hists->hpp_formats, list) {
1361 /* skip period (overhead) and elided columns */
1362 if (node->level == 0 || node->skip)
1363 continue;
1364
1365 /* insert copy of 'he' for each fmt into the hierarchy */
1366 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1367 if (new_he == NULL) {
1368 ret = -1;
1369 break;
1370 }
1371
1372 root = &new_he->hroot_in;
1373 new_he->depth = depth++;
1374 parent = new_he;
1375 }
1376
1377 if (new_he) {
1378 new_he->leaf = true;
1379
1380 if (hist_entry__has_callchains(new_he) &&
1381 symbol_conf.use_callchain) {
1382 callchain_cursor_reset(&callchain_cursor);
1383 if (callchain_merge(&callchain_cursor,
1384 new_he->callchain,
1385 he->callchain) < 0)
1386 ret = -1;
1387 }
1388 }
1389
1390 /* 'he' is no longer used */
1391 hist_entry__delete(he);
1392
1393 /* return 0 (or -1) since it already applied filters */
1394 return ret;
1395 }
1396
1397 static int hists__collapse_insert_entry(struct hists *hists,
1398 struct rb_root *root,
1399 struct hist_entry *he)
1400 {
1401 struct rb_node **p = &root->rb_node;
1402 struct rb_node *parent = NULL;
1403 struct hist_entry *iter;
1404 int64_t cmp;
1405
1406 if (symbol_conf.report_hierarchy)
1407 return hists__hierarchy_insert_entry(hists, root, he);
1408
1409 while (*p != NULL) {
1410 parent = *p;
1411 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1412
1413 cmp = hist_entry__collapse(iter, he);
1414
1415 if (!cmp) {
1416 int ret = 0;
1417
1418 he_stat__add_stat(&iter->stat, &he->stat);
1419 if (symbol_conf.cumulate_callchain)
1420 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1421
1422 if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1423 callchain_cursor_reset(&callchain_cursor);
1424 if (callchain_merge(&callchain_cursor,
1425 iter->callchain,
1426 he->callchain) < 0)
1427 ret = -1;
1428 }
1429 hist_entry__delete(he);
1430 return ret;
1431 }
1432
1433 if (cmp < 0)
1434 p = &(*p)->rb_left;
1435 else
1436 p = &(*p)->rb_right;
1437 }
1438 hists->nr_entries++;
1439
1440 rb_link_node(&he->rb_node_in, parent, p);
1441 rb_insert_color(&he->rb_node_in, root);
1442 return 1;
1443 }
1444
1445 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1446 {
1447 struct rb_root *root;
1448
1449 pthread_mutex_lock(&hists->lock);
1450
1451 root = hists->entries_in;
1452 if (++hists->entries_in > &hists->entries_in_array[1])
1453 hists->entries_in = &hists->entries_in_array[0];
1454
1455 pthread_mutex_unlock(&hists->lock);
1456
1457 return root;
1458 }
1459
1460 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1461 {
1462 hists__filter_entry_by_dso(hists, he);
1463 hists__filter_entry_by_thread(hists, he);
1464 hists__filter_entry_by_symbol(hists, he);
1465 hists__filter_entry_by_socket(hists, he);
1466 }
1467
1468 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1469 {
1470 struct rb_root *root;
1471 struct rb_node *next;
1472 struct hist_entry *n;
1473 int ret;
1474
1475 if (!hists__has(hists, need_collapse))
1476 return 0;
1477
1478 hists->nr_entries = 0;
1479
1480 root = hists__get_rotate_entries_in(hists);
1481
1482 next = rb_first(root);
1483
1484 while (next) {
1485 if (session_done())
1486 break;
1487 n = rb_entry(next, struct hist_entry, rb_node_in);
1488 next = rb_next(&n->rb_node_in);
1489
1490 rb_erase(&n->rb_node_in, root);
1491 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1492 if (ret < 0)
1493 return -1;
1494
1495 if (ret) {
1496 /*
1497 * If it wasn't combined with one of the entries already
1498 * collapsed, we need to apply the filters that may have
1499 * been set by, say, the hist_browser.
1500 */
1501 hists__apply_filters(hists, n);
1502 }
1503 if (prog)
1504 ui_progress__update(prog, 1);
1505 }
1506 return 0;
1507 }
1508
1509 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1510 {
1511 struct hists *hists = a->hists;
1512 struct perf_hpp_fmt *fmt;
1513 int64_t cmp = 0;
1514
1515 hists__for_each_sort_list(hists, fmt) {
1516 if (perf_hpp__should_skip(fmt, a->hists))
1517 continue;
1518
1519 cmp = fmt->sort(fmt, a, b);
1520 if (cmp)
1521 break;
1522 }
1523
1524 return cmp;
1525 }
1526
1527 static void hists__reset_filter_stats(struct hists *hists)
1528 {
1529 hists->nr_non_filtered_entries = 0;
1530 hists->stats.total_non_filtered_period = 0;
1531 }
1532
1533 void hists__reset_stats(struct hists *hists)
1534 {
1535 hists->nr_entries = 0;
1536 hists->stats.total_period = 0;
1537
1538 hists__reset_filter_stats(hists);
1539 }
1540
1541 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1542 {
1543 hists->nr_non_filtered_entries++;
1544 hists->stats.total_non_filtered_period += h->stat.period;
1545 }
1546
1547 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1548 {
1549 if (!h->filtered)
1550 hists__inc_filter_stats(hists, h);
1551
1552 hists->nr_entries++;
1553 hists->stats.total_period += h->stat.period;
1554 }
1555
1556 static void hierarchy_recalc_total_periods(struct hists *hists)
1557 {
1558 struct rb_node *node;
1559 struct hist_entry *he;
1560
1561 node = rb_first(&hists->entries);
1562
1563 hists->stats.total_period = 0;
1564 hists->stats.total_non_filtered_period = 0;
1565
1566 /*
1567 * recalculate total period using top-level entries only
1568 * since lower level entries only see non-filtered entries
1569 * but upper level entries have sum of both entries.
1570 */
1571 while (node) {
1572 he = rb_entry(node, struct hist_entry, rb_node);
1573 node = rb_next(node);
1574
1575 hists->stats.total_period += he->stat.period;
1576 if (!he->filtered)
1577 hists->stats.total_non_filtered_period += he->stat.period;
1578 }
1579 }
1580
1581 static void hierarchy_insert_output_entry(struct rb_root *root,
1582 struct hist_entry *he)
1583 {
1584 struct rb_node **p = &root->rb_node;
1585 struct rb_node *parent = NULL;
1586 struct hist_entry *iter;
1587 struct perf_hpp_fmt *fmt;
1588
1589 while (*p != NULL) {
1590 parent = *p;
1591 iter = rb_entry(parent, struct hist_entry, rb_node);
1592
1593 if (hist_entry__sort(he, iter) > 0)
1594 p = &parent->rb_left;
1595 else
1596 p = &parent->rb_right;
1597 }
1598
1599 rb_link_node(&he->rb_node, parent, p);
1600 rb_insert_color(&he->rb_node, root);
1601
1602 /* update column width of dynamic entry */
1603 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1604 if (perf_hpp__is_dynamic_entry(fmt))
1605 fmt->sort(fmt, he, NULL);
1606 }
1607 }
1608
1609 static void hists__hierarchy_output_resort(struct hists *hists,
1610 struct ui_progress *prog,
1611 struct rb_root *root_in,
1612 struct rb_root *root_out,
1613 u64 min_callchain_hits,
1614 bool use_callchain)
1615 {
1616 struct rb_node *node;
1617 struct hist_entry *he;
1618
1619 *root_out = RB_ROOT;
1620 node = rb_first(root_in);
1621
1622 while (node) {
1623 he = rb_entry(node, struct hist_entry, rb_node_in);
1624 node = rb_next(node);
1625
1626 hierarchy_insert_output_entry(root_out, he);
1627
1628 if (prog)
1629 ui_progress__update(prog, 1);
1630
1631 hists->nr_entries++;
1632 if (!he->filtered) {
1633 hists->nr_non_filtered_entries++;
1634 hists__calc_col_len(hists, he);
1635 }
1636
1637 if (!he->leaf) {
1638 hists__hierarchy_output_resort(hists, prog,
1639 &he->hroot_in,
1640 &he->hroot_out,
1641 min_callchain_hits,
1642 use_callchain);
1643 continue;
1644 }
1645
1646 if (!use_callchain)
1647 continue;
1648
1649 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1650 u64 total = he->stat.period;
1651
1652 if (symbol_conf.cumulate_callchain)
1653 total = he->stat_acc->period;
1654
1655 min_callchain_hits = total * (callchain_param.min_percent / 100);
1656 }
1657
1658 callchain_param.sort(&he->sorted_chain, he->callchain,
1659 min_callchain_hits, &callchain_param);
1660 }
1661 }
1662
1663 static void __hists__insert_output_entry(struct rb_root *entries,
1664 struct hist_entry *he,
1665 u64 min_callchain_hits,
1666 bool use_callchain)
1667 {
1668 struct rb_node **p = &entries->rb_node;
1669 struct rb_node *parent = NULL;
1670 struct hist_entry *iter;
1671 struct perf_hpp_fmt *fmt;
1672
1673 if (use_callchain) {
1674 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1675 u64 total = he->stat.period;
1676
1677 if (symbol_conf.cumulate_callchain)
1678 total = he->stat_acc->period;
1679
1680 min_callchain_hits = total * (callchain_param.min_percent / 100);
1681 }
1682 callchain_param.sort(&he->sorted_chain, he->callchain,
1683 min_callchain_hits, &callchain_param);
1684 }
1685
1686 while (*p != NULL) {
1687 parent = *p;
1688 iter = rb_entry(parent, struct hist_entry, rb_node);
1689
1690 if (hist_entry__sort(he, iter) > 0)
1691 p = &(*p)->rb_left;
1692 else
1693 p = &(*p)->rb_right;
1694 }
1695
1696 rb_link_node(&he->rb_node, parent, p);
1697 rb_insert_color(&he->rb_node, entries);
1698
1699 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1700 if (perf_hpp__is_dynamic_entry(fmt) &&
1701 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1702 fmt->sort(fmt, he, NULL); /* update column width */
1703 }
1704 }
1705
1706 static void output_resort(struct hists *hists, struct ui_progress *prog,
1707 bool use_callchain, hists__resort_cb_t cb)
1708 {
1709 struct rb_root *root;
1710 struct rb_node *next;
1711 struct hist_entry *n;
1712 u64 callchain_total;
1713 u64 min_callchain_hits;
1714
1715 callchain_total = hists->callchain_period;
1716 if (symbol_conf.filter_relative)
1717 callchain_total = hists->callchain_non_filtered_period;
1718
1719 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1720
1721 hists__reset_stats(hists);
1722 hists__reset_col_len(hists);
1723
1724 if (symbol_conf.report_hierarchy) {
1725 hists__hierarchy_output_resort(hists, prog,
1726 &hists->entries_collapsed,
1727 &hists->entries,
1728 min_callchain_hits,
1729 use_callchain);
1730 hierarchy_recalc_total_periods(hists);
1731 return;
1732 }
1733
1734 if (hists__has(hists, need_collapse))
1735 root = &hists->entries_collapsed;
1736 else
1737 root = hists->entries_in;
1738
1739 next = rb_first(root);
1740 hists->entries = RB_ROOT;
1741
1742 while (next) {
1743 n = rb_entry(next, struct hist_entry, rb_node_in);
1744 next = rb_next(&n->rb_node_in);
1745
1746 if (cb && cb(n))
1747 continue;
1748
1749 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1750 hists__inc_stats(hists, n);
1751
1752 if (!n->filtered)
1753 hists__calc_col_len(hists, n);
1754
1755 if (prog)
1756 ui_progress__update(prog, 1);
1757 }
1758 }
1759
1760 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1761 {
1762 bool use_callchain;
1763
1764 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1765 use_callchain = evsel__has_callchain(evsel);
1766 else
1767 use_callchain = symbol_conf.use_callchain;
1768
1769 use_callchain |= symbol_conf.show_branchflag_count;
1770
1771 output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1772 }
1773
1774 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1775 {
1776 output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1777 }
1778
1779 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1780 hists__resort_cb_t cb)
1781 {
1782 output_resort(hists, prog, symbol_conf.use_callchain, cb);
1783 }
1784
1785 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1786 {
1787 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1788 return false;
1789
1790 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1791 return true;
1792
1793 return false;
1794 }
1795
1796 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1797 {
1798 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1799
1800 while (can_goto_child(he, HMD_NORMAL)) {
1801 node = rb_last(&he->hroot_out);
1802 he = rb_entry(node, struct hist_entry, rb_node);
1803 }
1804 return node;
1805 }
1806
1807 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1808 {
1809 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1810
1811 if (can_goto_child(he, hmd))
1812 node = rb_first(&he->hroot_out);
1813 else
1814 node = rb_next(node);
1815
1816 while (node == NULL) {
1817 he = he->parent_he;
1818 if (he == NULL)
1819 break;
1820
1821 node = rb_next(&he->rb_node);
1822 }
1823 return node;
1824 }
1825
1826 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1827 {
1828 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1829
1830 node = rb_prev(node);
1831 if (node)
1832 return rb_hierarchy_last(node);
1833
1834 he = he->parent_he;
1835 if (he == NULL)
1836 return NULL;
1837
1838 return &he->rb_node;
1839 }
1840
1841 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1842 {
1843 struct rb_node *node;
1844 struct hist_entry *child;
1845 float percent;
1846
1847 if (he->leaf)
1848 return false;
1849
1850 node = rb_first(&he->hroot_out);
1851 child = rb_entry(node, struct hist_entry, rb_node);
1852
1853 while (node && child->filtered) {
1854 node = rb_next(node);
1855 child = rb_entry(node, struct hist_entry, rb_node);
1856 }
1857
1858 if (node)
1859 percent = hist_entry__get_percent_limit(child);
1860 else
1861 percent = 0;
1862
1863 return node && percent >= limit;
1864 }
1865
1866 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1867 enum hist_filter filter)
1868 {
1869 h->filtered &= ~(1 << filter);
1870
1871 if (symbol_conf.report_hierarchy) {
1872 struct hist_entry *parent = h->parent_he;
1873
1874 while (parent) {
1875 he_stat__add_stat(&parent->stat, &h->stat);
1876
1877 parent->filtered &= ~(1 << filter);
1878
1879 if (parent->filtered)
1880 goto next;
1881
1882 /* force fold unfiltered entry for simplicity */
1883 parent->unfolded = false;
1884 parent->has_no_entry = false;
1885 parent->row_offset = 0;
1886 parent->nr_rows = 0;
1887 next:
1888 parent = parent->parent_he;
1889 }
1890 }
1891
1892 if (h->filtered)
1893 return;
1894
1895 /* force fold unfiltered entry for simplicity */
1896 h->unfolded = false;
1897 h->has_no_entry = false;
1898 h->row_offset = 0;
1899 h->nr_rows = 0;
1900
1901 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1902
1903 hists__inc_filter_stats(hists, h);
1904 hists__calc_col_len(hists, h);
1905 }
1906
1907
1908 static bool hists__filter_entry_by_dso(struct hists *hists,
1909 struct hist_entry *he)
1910 {
1911 if (hists->dso_filter != NULL &&
1912 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1913 he->filtered |= (1 << HIST_FILTER__DSO);
1914 return true;
1915 }
1916
1917 return false;
1918 }
1919
1920 static bool hists__filter_entry_by_thread(struct hists *hists,
1921 struct hist_entry *he)
1922 {
1923 if (hists->thread_filter != NULL &&
1924 he->thread != hists->thread_filter) {
1925 he->filtered |= (1 << HIST_FILTER__THREAD);
1926 return true;
1927 }
1928
1929 return false;
1930 }
1931
1932 static bool hists__filter_entry_by_symbol(struct hists *hists,
1933 struct hist_entry *he)
1934 {
1935 if (hists->symbol_filter_str != NULL &&
1936 (!he->ms.sym || strstr(he->ms.sym->name,
1937 hists->symbol_filter_str) == NULL)) {
1938 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1939 return true;
1940 }
1941
1942 return false;
1943 }
1944
1945 static bool hists__filter_entry_by_socket(struct hists *hists,
1946 struct hist_entry *he)
1947 {
1948 if ((hists->socket_filter > -1) &&
1949 (he->socket != hists->socket_filter)) {
1950 he->filtered |= (1 << HIST_FILTER__SOCKET);
1951 return true;
1952 }
1953
1954 return false;
1955 }
1956
1957 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1958
1959 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1960 {
1961 struct rb_node *nd;
1962
1963 hists->stats.nr_non_filtered_samples = 0;
1964
1965 hists__reset_filter_stats(hists);
1966 hists__reset_col_len(hists);
1967
1968 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1969 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1970
1971 if (filter(hists, h))
1972 continue;
1973
1974 hists__remove_entry_filter(hists, h, type);
1975 }
1976 }
1977
1978 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1979 {
1980 struct rb_node **p = &root->rb_node;
1981 struct rb_node *parent = NULL;
1982 struct hist_entry *iter;
1983 struct rb_root new_root = RB_ROOT;
1984 struct rb_node *nd;
1985
1986 while (*p != NULL) {
1987 parent = *p;
1988 iter = rb_entry(parent, struct hist_entry, rb_node);
1989
1990 if (hist_entry__sort(he, iter) > 0)
1991 p = &(*p)->rb_left;
1992 else
1993 p = &(*p)->rb_right;
1994 }
1995
1996 rb_link_node(&he->rb_node, parent, p);
1997 rb_insert_color(&he->rb_node, root);
1998
1999 if (he->leaf || he->filtered)
2000 return;
2001
2002 nd = rb_first(&he->hroot_out);
2003 while (nd) {
2004 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2005
2006 nd = rb_next(nd);
2007 rb_erase(&h->rb_node, &he->hroot_out);
2008
2009 resort_filtered_entry(&new_root, h);
2010 }
2011
2012 he->hroot_out = new_root;
2013 }
2014
2015 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2016 {
2017 struct rb_node *nd;
2018 struct rb_root new_root = RB_ROOT;
2019
2020 hists->stats.nr_non_filtered_samples = 0;
2021
2022 hists__reset_filter_stats(hists);
2023 hists__reset_col_len(hists);
2024
2025 nd = rb_first(&hists->entries);
2026 while (nd) {
2027 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2028 int ret;
2029
2030 ret = hist_entry__filter(h, type, arg);
2031
2032 /*
2033 * case 1. non-matching type
2034 * zero out the period, set filter marker and move to child
2035 */
2036 if (ret < 0) {
2037 memset(&h->stat, 0, sizeof(h->stat));
2038 h->filtered |= (1 << type);
2039
2040 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2041 }
2042 /*
2043 * case 2. matched type (filter out)
2044 * set filter marker and move to next
2045 */
2046 else if (ret == 1) {
2047 h->filtered |= (1 << type);
2048
2049 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2050 }
2051 /*
2052 * case 3. ok (not filtered)
2053 * add period to hists and parents, erase the filter marker
2054 * and move to next sibling
2055 */
2056 else {
2057 hists__remove_entry_filter(hists, h, type);
2058
2059 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2060 }
2061 }
2062
2063 hierarchy_recalc_total_periods(hists);
2064
2065 /*
2066 * resort output after applying a new filter since filter in a lower
2067 * hierarchy can change periods in a upper hierarchy.
2068 */
2069 nd = rb_first(&hists->entries);
2070 while (nd) {
2071 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2072
2073 nd = rb_next(nd);
2074 rb_erase(&h->rb_node, &hists->entries);
2075
2076 resort_filtered_entry(&new_root, h);
2077 }
2078
2079 hists->entries = new_root;
2080 }
2081
2082 void hists__filter_by_thread(struct hists *hists)
2083 {
2084 if (symbol_conf.report_hierarchy)
2085 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2086 hists->thread_filter);
2087 else
2088 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2089 hists__filter_entry_by_thread);
2090 }
2091
2092 void hists__filter_by_dso(struct hists *hists)
2093 {
2094 if (symbol_conf.report_hierarchy)
2095 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2096 hists->dso_filter);
2097 else
2098 hists__filter_by_type(hists, HIST_FILTER__DSO,
2099 hists__filter_entry_by_dso);
2100 }
2101
2102 void hists__filter_by_symbol(struct hists *hists)
2103 {
2104 if (symbol_conf.report_hierarchy)
2105 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2106 hists->symbol_filter_str);
2107 else
2108 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2109 hists__filter_entry_by_symbol);
2110 }
2111
2112 void hists__filter_by_socket(struct hists *hists)
2113 {
2114 if (symbol_conf.report_hierarchy)
2115 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2116 &hists->socket_filter);
2117 else
2118 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2119 hists__filter_entry_by_socket);
2120 }
2121
2122 void events_stats__inc(struct events_stats *stats, u32 type)
2123 {
2124 ++stats->nr_events[0];
2125 ++stats->nr_events[type];
2126 }
2127
2128 void hists__inc_nr_events(struct hists *hists, u32 type)
2129 {
2130 events_stats__inc(&hists->stats, type);
2131 }
2132
2133 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2134 {
2135 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2136 if (!filtered)
2137 hists->stats.nr_non_filtered_samples++;
2138 }
2139
2140 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2141 struct hist_entry *pair)
2142 {
2143 struct rb_root *root;
2144 struct rb_node **p;
2145 struct rb_node *parent = NULL;
2146 struct hist_entry *he;
2147 int64_t cmp;
2148
2149 if (hists__has(hists, need_collapse))
2150 root = &hists->entries_collapsed;
2151 else
2152 root = hists->entries_in;
2153
2154 p = &root->rb_node;
2155
2156 while (*p != NULL) {
2157 parent = *p;
2158 he = rb_entry(parent, struct hist_entry, rb_node_in);
2159
2160 cmp = hist_entry__collapse(he, pair);
2161
2162 if (!cmp)
2163 goto out;
2164
2165 if (cmp < 0)
2166 p = &(*p)->rb_left;
2167 else
2168 p = &(*p)->rb_right;
2169 }
2170
2171 he = hist_entry__new(pair, true);
2172 if (he) {
2173 memset(&he->stat, 0, sizeof(he->stat));
2174 he->hists = hists;
2175 if (symbol_conf.cumulate_callchain)
2176 memset(he->stat_acc, 0, sizeof(he->stat));
2177 rb_link_node(&he->rb_node_in, parent, p);
2178 rb_insert_color(&he->rb_node_in, root);
2179 hists__inc_stats(hists, he);
2180 he->dummy = true;
2181 }
2182 out:
2183 return he;
2184 }
2185
2186 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2187 struct rb_root *root,
2188 struct hist_entry *pair)
2189 {
2190 struct rb_node **p;
2191 struct rb_node *parent = NULL;
2192 struct hist_entry *he;
2193 struct perf_hpp_fmt *fmt;
2194
2195 p = &root->rb_node;
2196 while (*p != NULL) {
2197 int64_t cmp = 0;
2198
2199 parent = *p;
2200 he = rb_entry(parent, struct hist_entry, rb_node_in);
2201
2202 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2203 cmp = fmt->collapse(fmt, he, pair);
2204 if (cmp)
2205 break;
2206 }
2207 if (!cmp)
2208 goto out;
2209
2210 if (cmp < 0)
2211 p = &parent->rb_left;
2212 else
2213 p = &parent->rb_right;
2214 }
2215
2216 he = hist_entry__new(pair, true);
2217 if (he) {
2218 rb_link_node(&he->rb_node_in, parent, p);
2219 rb_insert_color(&he->rb_node_in, root);
2220
2221 he->dummy = true;
2222 he->hists = hists;
2223 memset(&he->stat, 0, sizeof(he->stat));
2224 hists__inc_stats(hists, he);
2225 }
2226 out:
2227 return he;
2228 }
2229
2230 static struct hist_entry *hists__find_entry(struct hists *hists,
2231 struct hist_entry *he)
2232 {
2233 struct rb_node *n;
2234
2235 if (hists__has(hists, need_collapse))
2236 n = hists->entries_collapsed.rb_node;
2237 else
2238 n = hists->entries_in->rb_node;
2239
2240 while (n) {
2241 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2242 int64_t cmp = hist_entry__collapse(iter, he);
2243
2244 if (cmp < 0)
2245 n = n->rb_left;
2246 else if (cmp > 0)
2247 n = n->rb_right;
2248 else
2249 return iter;
2250 }
2251
2252 return NULL;
2253 }
2254
2255 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2256 struct hist_entry *he)
2257 {
2258 struct rb_node *n = root->rb_node;
2259
2260 while (n) {
2261 struct hist_entry *iter;
2262 struct perf_hpp_fmt *fmt;
2263 int64_t cmp = 0;
2264
2265 iter = rb_entry(n, struct hist_entry, rb_node_in);
2266 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2267 cmp = fmt->collapse(fmt, iter, he);
2268 if (cmp)
2269 break;
2270 }
2271
2272 if (cmp < 0)
2273 n = n->rb_left;
2274 else if (cmp > 0)
2275 n = n->rb_right;
2276 else
2277 return iter;
2278 }
2279
2280 return NULL;
2281 }
2282
2283 static void hists__match_hierarchy(struct rb_root *leader_root,
2284 struct rb_root *other_root)
2285 {
2286 struct rb_node *nd;
2287 struct hist_entry *pos, *pair;
2288
2289 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2290 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2291 pair = hists__find_hierarchy_entry(other_root, pos);
2292
2293 if (pair) {
2294 hist_entry__add_pair(pair, pos);
2295 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2296 }
2297 }
2298 }
2299
2300 /*
2301 * Look for pairs to link to the leader buckets (hist_entries):
2302 */
2303 void hists__match(struct hists *leader, struct hists *other)
2304 {
2305 struct rb_root *root;
2306 struct rb_node *nd;
2307 struct hist_entry *pos, *pair;
2308
2309 if (symbol_conf.report_hierarchy) {
2310 /* hierarchy report always collapses entries */
2311 return hists__match_hierarchy(&leader->entries_collapsed,
2312 &other->entries_collapsed);
2313 }
2314
2315 if (hists__has(leader, need_collapse))
2316 root = &leader->entries_collapsed;
2317 else
2318 root = leader->entries_in;
2319
2320 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2321 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2322 pair = hists__find_entry(other, pos);
2323
2324 if (pair)
2325 hist_entry__add_pair(pair, pos);
2326 }
2327 }
2328
2329 static int hists__link_hierarchy(struct hists *leader_hists,
2330 struct hist_entry *parent,
2331 struct rb_root *leader_root,
2332 struct rb_root *other_root)
2333 {
2334 struct rb_node *nd;
2335 struct hist_entry *pos, *leader;
2336
2337 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2338 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2339
2340 if (hist_entry__has_pairs(pos)) {
2341 bool found = false;
2342
2343 list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2344 if (leader->hists == leader_hists) {
2345 found = true;
2346 break;
2347 }
2348 }
2349 if (!found)
2350 return -1;
2351 } else {
2352 leader = add_dummy_hierarchy_entry(leader_hists,
2353 leader_root, pos);
2354 if (leader == NULL)
2355 return -1;
2356
2357 /* do not point parent in the pos */
2358 leader->parent_he = parent;
2359
2360 hist_entry__add_pair(pos, leader);
2361 }
2362
2363 if (!pos->leaf) {
2364 if (hists__link_hierarchy(leader_hists, leader,
2365 &leader->hroot_in,
2366 &pos->hroot_in) < 0)
2367 return -1;
2368 }
2369 }
2370 return 0;
2371 }
2372
2373 /*
2374 * Look for entries in the other hists that are not present in the leader, if
2375 * we find them, just add a dummy entry on the leader hists, with period=0,
2376 * nr_events=0, to serve as the list header.
2377 */
2378 int hists__link(struct hists *leader, struct hists *other)
2379 {
2380 struct rb_root *root;
2381 struct rb_node *nd;
2382 struct hist_entry *pos, *pair;
2383
2384 if (symbol_conf.report_hierarchy) {
2385 /* hierarchy report always collapses entries */
2386 return hists__link_hierarchy(leader, NULL,
2387 &leader->entries_collapsed,
2388 &other->entries_collapsed);
2389 }
2390
2391 if (hists__has(other, need_collapse))
2392 root = &other->entries_collapsed;
2393 else
2394 root = other->entries_in;
2395
2396 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2397 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2398
2399 if (!hist_entry__has_pairs(pos)) {
2400 pair = hists__add_dummy_entry(leader, pos);
2401 if (pair == NULL)
2402 return -1;
2403 hist_entry__add_pair(pos, pair);
2404 }
2405 }
2406
2407 return 0;
2408 }
2409
2410 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2411 struct perf_sample *sample, bool nonany_branch_mode)
2412 {
2413 struct branch_info *bi;
2414
2415 /* If we have branch cycles always annotate them. */
2416 if (bs && bs->nr && bs->entries[0].flags.cycles) {
2417 int i;
2418
2419 bi = sample__resolve_bstack(sample, al);
2420 if (bi) {
2421 struct addr_map_symbol *prev = NULL;
2422
2423 /*
2424 * Ignore errors, still want to process the
2425 * other entries.
2426 *
2427 * For non standard branch modes always
2428 * force no IPC (prev == NULL)
2429 *
2430 * Note that perf stores branches reversed from
2431 * program order!
2432 */
2433 for (i = bs->nr - 1; i >= 0; i--) {
2434 addr_map_symbol__account_cycles(&bi[i].from,
2435 nonany_branch_mode ? NULL : prev,
2436 bi[i].flags.cycles);
2437 prev = &bi[i].to;
2438 }
2439 free(bi);
2440 }
2441 }
2442 }
2443
2444 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2445 {
2446 struct perf_evsel *pos;
2447 size_t ret = 0;
2448
2449 evlist__for_each_entry(evlist, pos) {
2450 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2451 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2452 }
2453
2454 return ret;
2455 }
2456
2457
2458 u64 hists__total_period(struct hists *hists)
2459 {
2460 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2461 hists->stats.total_period;
2462 }
2463
2464 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2465 {
2466 char unit;
2467 int printed;
2468 const struct dso *dso = hists->dso_filter;
2469 const struct thread *thread = hists->thread_filter;
2470 int socket_id = hists->socket_filter;
2471 unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2472 u64 nr_events = hists->stats.total_period;
2473 struct perf_evsel *evsel = hists_to_evsel(hists);
2474 const char *ev_name = perf_evsel__name(evsel);
2475 char buf[512], sample_freq_str[64] = "";
2476 size_t buflen = sizeof(buf);
2477 char ref[30] = " show reference callgraph, ";
2478 bool enable_ref = false;
2479
2480 if (symbol_conf.filter_relative) {
2481 nr_samples = hists->stats.nr_non_filtered_samples;
2482 nr_events = hists->stats.total_non_filtered_period;
2483 }
2484
2485 if (perf_evsel__is_group_event(evsel)) {
2486 struct perf_evsel *pos;
2487
2488 perf_evsel__group_desc(evsel, buf, buflen);
2489 ev_name = buf;
2490
2491 for_each_group_member(pos, evsel) {
2492 struct hists *pos_hists = evsel__hists(pos);
2493
2494 if (symbol_conf.filter_relative) {
2495 nr_samples += pos_hists->stats.nr_non_filtered_samples;
2496 nr_events += pos_hists->stats.total_non_filtered_period;
2497 } else {
2498 nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2499 nr_events += pos_hists->stats.total_period;
2500 }
2501 }
2502 }
2503
2504 if (symbol_conf.show_ref_callgraph &&
2505 strstr(ev_name, "call-graph=no"))
2506 enable_ref = true;
2507
2508 if (show_freq)
2509 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->attr.sample_freq);
2510
2511 nr_samples = convert_unit(nr_samples, &unit);
2512 printed = scnprintf(bf, size,
2513 "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2514 nr_samples, unit, evsel->nr_members > 1 ? "s" : "",
2515 ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2516
2517
2518 if (hists->uid_filter_str)
2519 printed += snprintf(bf + printed, size - printed,
2520 ", UID: %s", hists->uid_filter_str);
2521 if (thread) {
2522 if (hists__has(hists, thread)) {
2523 printed += scnprintf(bf + printed, size - printed,
2524 ", Thread: %s(%d)",
2525 (thread->comm_set ? thread__comm_str(thread) : ""),
2526 thread->tid);
2527 } else {
2528 printed += scnprintf(bf + printed, size - printed,
2529 ", Thread: %s",
2530 (thread->comm_set ? thread__comm_str(thread) : ""));
2531 }
2532 }
2533 if (dso)
2534 printed += scnprintf(bf + printed, size - printed,
2535 ", DSO: %s", dso->short_name);
2536 if (socket_id > -1)
2537 printed += scnprintf(bf + printed, size - printed,
2538 ", Processor Socket: %d", socket_id);
2539
2540 return printed;
2541 }
2542
2543 int parse_filter_percentage(const struct option *opt __maybe_unused,
2544 const char *arg, int unset __maybe_unused)
2545 {
2546 if (!strcmp(arg, "relative"))
2547 symbol_conf.filter_relative = true;
2548 else if (!strcmp(arg, "absolute"))
2549 symbol_conf.filter_relative = false;
2550 else {
2551 pr_debug("Invalid percentage: %s\n", arg);
2552 return -1;
2553 }
2554
2555 return 0;
2556 }
2557
2558 int perf_hist_config(const char *var, const char *value)
2559 {
2560 if (!strcmp(var, "hist.percentage"))
2561 return parse_filter_percentage(NULL, value, 0);
2562
2563 return 0;
2564 }
2565
2566 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2567 {
2568 memset(hists, 0, sizeof(*hists));
2569 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2570 hists->entries_in = &hists->entries_in_array[0];
2571 hists->entries_collapsed = RB_ROOT;
2572 hists->entries = RB_ROOT;
2573 pthread_mutex_init(&hists->lock, NULL);
2574 hists->socket_filter = -1;
2575 hists->hpp_list = hpp_list;
2576 INIT_LIST_HEAD(&hists->hpp_formats);
2577 return 0;
2578 }
2579
2580 static void hists__delete_remaining_entries(struct rb_root *root)
2581 {
2582 struct rb_node *node;
2583 struct hist_entry *he;
2584
2585 while (!RB_EMPTY_ROOT(root)) {
2586 node = rb_first(root);
2587 rb_erase(node, root);
2588
2589 he = rb_entry(node, struct hist_entry, rb_node_in);
2590 hist_entry__delete(he);
2591 }
2592 }
2593
2594 static void hists__delete_all_entries(struct hists *hists)
2595 {
2596 hists__delete_entries(hists);
2597 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2598 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2599 hists__delete_remaining_entries(&hists->entries_collapsed);
2600 }
2601
2602 static void hists_evsel__exit(struct perf_evsel *evsel)
2603 {
2604 struct hists *hists = evsel__hists(evsel);
2605 struct perf_hpp_fmt *fmt, *pos;
2606 struct perf_hpp_list_node *node, *tmp;
2607
2608 hists__delete_all_entries(hists);
2609
2610 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2611 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2612 list_del(&fmt->list);
2613 free(fmt);
2614 }
2615 list_del(&node->list);
2616 free(node);
2617 }
2618 }
2619
2620 static int hists_evsel__init(struct perf_evsel *evsel)
2621 {
2622 struct hists *hists = evsel__hists(evsel);
2623
2624 __hists__init(hists, &perf_hpp_list);
2625 return 0;
2626 }
2627
2628 /*
2629 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2630 * stored in the rbtree...
2631 */
2632
2633 int hists__init(void)
2634 {
2635 int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2636 hists_evsel__init,
2637 hists_evsel__exit);
2638 if (err)
2639 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2640
2641 return err;
2642 }
2643
2644 void perf_hpp_list__init(struct perf_hpp_list *list)
2645 {
2646 INIT_LIST_HEAD(&list->fields);
2647 INIT_LIST_HEAD(&list->sorts);
2648 }