]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - tools/perf/util/hist.c
Input: wm97xx: add new AC97 bus support
[mirror_ubuntu-focal-kernel.git] / tools / perf / util / hist.c
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "map.h"
5 #include "session.h"
6 #include "namespaces.h"
7 #include "sort.h"
8 #include "evlist.h"
9 #include "evsel.h"
10 #include "annotate.h"
11 #include "srcline.h"
12 #include "thread.h"
13 #include "ui/progress.h"
14 #include <errno.h>
15 #include <math.h>
16 #include <sys/param.h>
17
18 static bool hists__filter_entry_by_dso(struct hists *hists,
19 struct hist_entry *he);
20 static bool hists__filter_entry_by_thread(struct hists *hists,
21 struct hist_entry *he);
22 static bool hists__filter_entry_by_symbol(struct hists *hists,
23 struct hist_entry *he);
24 static bool hists__filter_entry_by_socket(struct hists *hists,
25 struct hist_entry *he);
26
27 u16 hists__col_len(struct hists *hists, enum hist_column col)
28 {
29 return hists->col_len[col];
30 }
31
32 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
33 {
34 hists->col_len[col] = len;
35 }
36
37 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
38 {
39 if (len > hists__col_len(hists, col)) {
40 hists__set_col_len(hists, col, len);
41 return true;
42 }
43 return false;
44 }
45
46 void hists__reset_col_len(struct hists *hists)
47 {
48 enum hist_column col;
49
50 for (col = 0; col < HISTC_NR_COLS; ++col)
51 hists__set_col_len(hists, col, 0);
52 }
53
54 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
55 {
56 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
57
58 if (hists__col_len(hists, dso) < unresolved_col_width &&
59 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
60 !symbol_conf.dso_list)
61 hists__set_col_len(hists, dso, unresolved_col_width);
62 }
63
64 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
65 {
66 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
67 int symlen;
68 u16 len;
69
70 /*
71 * +4 accounts for '[x] ' priv level info
72 * +2 accounts for 0x prefix on raw addresses
73 * +3 accounts for ' y ' symtab origin info
74 */
75 if (h->ms.sym) {
76 symlen = h->ms.sym->namelen + 4;
77 if (verbose > 0)
78 symlen += BITS_PER_LONG / 4 + 2 + 3;
79 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
80 } else {
81 symlen = unresolved_col_width + 4 + 2;
82 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83 hists__set_unres_dso_col_len(hists, HISTC_DSO);
84 }
85
86 len = thread__comm_len(h->thread);
87 if (hists__new_col_len(hists, HISTC_COMM, len))
88 hists__set_col_len(hists, HISTC_THREAD, len + 8);
89
90 if (h->ms.map) {
91 len = dso__name_len(h->ms.map->dso);
92 hists__new_col_len(hists, HISTC_DSO, len);
93 }
94
95 if (h->parent)
96 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
97
98 if (h->branch_info) {
99 if (h->branch_info->from.sym) {
100 symlen = (int)h->branch_info->from.sym->namelen + 4;
101 if (verbose > 0)
102 symlen += BITS_PER_LONG / 4 + 2 + 3;
103 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104
105 symlen = dso__name_len(h->branch_info->from.map->dso);
106 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
107 } else {
108 symlen = unresolved_col_width + 4 + 2;
109 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
110 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
111 }
112
113 if (h->branch_info->to.sym) {
114 symlen = (int)h->branch_info->to.sym->namelen + 4;
115 if (verbose > 0)
116 symlen += BITS_PER_LONG / 4 + 2 + 3;
117 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118
119 symlen = dso__name_len(h->branch_info->to.map->dso);
120 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
121 } else {
122 symlen = unresolved_col_width + 4 + 2;
123 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
124 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
125 }
126
127 if (h->branch_info->srcline_from)
128 hists__new_col_len(hists, HISTC_SRCLINE_FROM,
129 strlen(h->branch_info->srcline_from));
130 if (h->branch_info->srcline_to)
131 hists__new_col_len(hists, HISTC_SRCLINE_TO,
132 strlen(h->branch_info->srcline_to));
133 }
134
135 if (h->mem_info) {
136 if (h->mem_info->daddr.sym) {
137 symlen = (int)h->mem_info->daddr.sym->namelen + 4
138 + unresolved_col_width + 2;
139 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
140 symlen);
141 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
142 symlen + 1);
143 } else {
144 symlen = unresolved_col_width + 4 + 2;
145 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
146 symlen);
147 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
148 symlen);
149 }
150
151 if (h->mem_info->iaddr.sym) {
152 symlen = (int)h->mem_info->iaddr.sym->namelen + 4
153 + unresolved_col_width + 2;
154 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
155 symlen);
156 } else {
157 symlen = unresolved_col_width + 4 + 2;
158 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
159 symlen);
160 }
161
162 if (h->mem_info->daddr.map) {
163 symlen = dso__name_len(h->mem_info->daddr.map->dso);
164 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
165 symlen);
166 } else {
167 symlen = unresolved_col_width + 4 + 2;
168 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
169 }
170
171 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
172 unresolved_col_width + 4 + 2);
173
174 } else {
175 symlen = unresolved_col_width + 4 + 2;
176 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
177 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
178 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
179 }
180
181 hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
182 hists__new_col_len(hists, HISTC_CPU, 3);
183 hists__new_col_len(hists, HISTC_SOCKET, 6);
184 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
185 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
186 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
187 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
188 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
189 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
190
191 if (h->srcline) {
192 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
193 hists__new_col_len(hists, HISTC_SRCLINE, len);
194 }
195
196 if (h->srcfile)
197 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
198
199 if (h->transaction)
200 hists__new_col_len(hists, HISTC_TRANSACTION,
201 hist_entry__transaction_len());
202
203 if (h->trace_output)
204 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
205 }
206
207 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
208 {
209 struct rb_node *next = rb_first(&hists->entries);
210 struct hist_entry *n;
211 int row = 0;
212
213 hists__reset_col_len(hists);
214
215 while (next && row++ < max_rows) {
216 n = rb_entry(next, struct hist_entry, rb_node);
217 if (!n->filtered)
218 hists__calc_col_len(hists, n);
219 next = rb_next(&n->rb_node);
220 }
221 }
222
223 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
224 unsigned int cpumode, u64 period)
225 {
226 switch (cpumode) {
227 case PERF_RECORD_MISC_KERNEL:
228 he_stat->period_sys += period;
229 break;
230 case PERF_RECORD_MISC_USER:
231 he_stat->period_us += period;
232 break;
233 case PERF_RECORD_MISC_GUEST_KERNEL:
234 he_stat->period_guest_sys += period;
235 break;
236 case PERF_RECORD_MISC_GUEST_USER:
237 he_stat->period_guest_us += period;
238 break;
239 default:
240 break;
241 }
242 }
243
244 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
245 u64 weight)
246 {
247
248 he_stat->period += period;
249 he_stat->weight += weight;
250 he_stat->nr_events += 1;
251 }
252
253 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
254 {
255 dest->period += src->period;
256 dest->period_sys += src->period_sys;
257 dest->period_us += src->period_us;
258 dest->period_guest_sys += src->period_guest_sys;
259 dest->period_guest_us += src->period_guest_us;
260 dest->nr_events += src->nr_events;
261 dest->weight += src->weight;
262 }
263
264 static void he_stat__decay(struct he_stat *he_stat)
265 {
266 he_stat->period = (he_stat->period * 7) / 8;
267 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
268 /* XXX need decay for weight too? */
269 }
270
271 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
272
273 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
274 {
275 u64 prev_period = he->stat.period;
276 u64 diff;
277
278 if (prev_period == 0)
279 return true;
280
281 he_stat__decay(&he->stat);
282 if (symbol_conf.cumulate_callchain)
283 he_stat__decay(he->stat_acc);
284 decay_callchain(he->callchain);
285
286 diff = prev_period - he->stat.period;
287
288 if (!he->depth) {
289 hists->stats.total_period -= diff;
290 if (!he->filtered)
291 hists->stats.total_non_filtered_period -= diff;
292 }
293
294 if (!he->leaf) {
295 struct hist_entry *child;
296 struct rb_node *node = rb_first(&he->hroot_out);
297 while (node) {
298 child = rb_entry(node, struct hist_entry, rb_node);
299 node = rb_next(node);
300
301 if (hists__decay_entry(hists, child))
302 hists__delete_entry(hists, child);
303 }
304 }
305
306 return he->stat.period == 0;
307 }
308
309 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
310 {
311 struct rb_root *root_in;
312 struct rb_root *root_out;
313
314 if (he->parent_he) {
315 root_in = &he->parent_he->hroot_in;
316 root_out = &he->parent_he->hroot_out;
317 } else {
318 if (hists__has(hists, need_collapse))
319 root_in = &hists->entries_collapsed;
320 else
321 root_in = hists->entries_in;
322 root_out = &hists->entries;
323 }
324
325 rb_erase(&he->rb_node_in, root_in);
326 rb_erase(&he->rb_node, root_out);
327
328 --hists->nr_entries;
329 if (!he->filtered)
330 --hists->nr_non_filtered_entries;
331
332 hist_entry__delete(he);
333 }
334
335 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
336 {
337 struct rb_node *next = rb_first(&hists->entries);
338 struct hist_entry *n;
339
340 while (next) {
341 n = rb_entry(next, struct hist_entry, rb_node);
342 next = rb_next(&n->rb_node);
343 if (((zap_user && n->level == '.') ||
344 (zap_kernel && n->level != '.') ||
345 hists__decay_entry(hists, n))) {
346 hists__delete_entry(hists, n);
347 }
348 }
349 }
350
351 void hists__delete_entries(struct hists *hists)
352 {
353 struct rb_node *next = rb_first(&hists->entries);
354 struct hist_entry *n;
355
356 while (next) {
357 n = rb_entry(next, struct hist_entry, rb_node);
358 next = rb_next(&n->rb_node);
359
360 hists__delete_entry(hists, n);
361 }
362 }
363
364 /*
365 * histogram, sorted on item, collects periods
366 */
367
368 static int hist_entry__init(struct hist_entry *he,
369 struct hist_entry *template,
370 bool sample_self)
371 {
372 *he = *template;
373
374 if (symbol_conf.cumulate_callchain) {
375 he->stat_acc = malloc(sizeof(he->stat));
376 if (he->stat_acc == NULL)
377 return -ENOMEM;
378 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
379 if (!sample_self)
380 memset(&he->stat, 0, sizeof(he->stat));
381 }
382
383 map__get(he->ms.map);
384
385 if (he->branch_info) {
386 /*
387 * This branch info is (a part of) allocated from
388 * sample__resolve_bstack() and will be freed after
389 * adding new entries. So we need to save a copy.
390 */
391 he->branch_info = malloc(sizeof(*he->branch_info));
392 if (he->branch_info == NULL) {
393 map__zput(he->ms.map);
394 free(he->stat_acc);
395 return -ENOMEM;
396 }
397
398 memcpy(he->branch_info, template->branch_info,
399 sizeof(*he->branch_info));
400
401 map__get(he->branch_info->from.map);
402 map__get(he->branch_info->to.map);
403 }
404
405 if (he->mem_info) {
406 map__get(he->mem_info->iaddr.map);
407 map__get(he->mem_info->daddr.map);
408 }
409
410 if (symbol_conf.use_callchain)
411 callchain_init(he->callchain);
412
413 if (he->raw_data) {
414 he->raw_data = memdup(he->raw_data, he->raw_size);
415
416 if (he->raw_data == NULL) {
417 map__put(he->ms.map);
418 if (he->branch_info) {
419 map__put(he->branch_info->from.map);
420 map__put(he->branch_info->to.map);
421 free(he->branch_info);
422 }
423 if (he->mem_info) {
424 map__put(he->mem_info->iaddr.map);
425 map__put(he->mem_info->daddr.map);
426 }
427 free(he->stat_acc);
428 return -ENOMEM;
429 }
430 }
431 INIT_LIST_HEAD(&he->pairs.node);
432 thread__get(he->thread);
433 he->hroot_in = RB_ROOT;
434 he->hroot_out = RB_ROOT;
435
436 if (!symbol_conf.report_hierarchy)
437 he->leaf = true;
438
439 return 0;
440 }
441
442 static void *hist_entry__zalloc(size_t size)
443 {
444 return zalloc(size + sizeof(struct hist_entry));
445 }
446
447 static void hist_entry__free(void *ptr)
448 {
449 free(ptr);
450 }
451
452 static struct hist_entry_ops default_ops = {
453 .new = hist_entry__zalloc,
454 .free = hist_entry__free,
455 };
456
457 static struct hist_entry *hist_entry__new(struct hist_entry *template,
458 bool sample_self)
459 {
460 struct hist_entry_ops *ops = template->ops;
461 size_t callchain_size = 0;
462 struct hist_entry *he;
463 int err = 0;
464
465 if (!ops)
466 ops = template->ops = &default_ops;
467
468 if (symbol_conf.use_callchain)
469 callchain_size = sizeof(struct callchain_root);
470
471 he = ops->new(callchain_size);
472 if (he) {
473 err = hist_entry__init(he, template, sample_self);
474 if (err) {
475 ops->free(he);
476 he = NULL;
477 }
478 }
479
480 return he;
481 }
482
483 static u8 symbol__parent_filter(const struct symbol *parent)
484 {
485 if (symbol_conf.exclude_other && parent == NULL)
486 return 1 << HIST_FILTER__PARENT;
487 return 0;
488 }
489
490 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
491 {
492 if (!symbol_conf.use_callchain)
493 return;
494
495 he->hists->callchain_period += period;
496 if (!he->filtered)
497 he->hists->callchain_non_filtered_period += period;
498 }
499
500 static struct hist_entry *hists__findnew_entry(struct hists *hists,
501 struct hist_entry *entry,
502 struct addr_location *al,
503 bool sample_self)
504 {
505 struct rb_node **p;
506 struct rb_node *parent = NULL;
507 struct hist_entry *he;
508 int64_t cmp;
509 u64 period = entry->stat.period;
510 u64 weight = entry->stat.weight;
511
512 p = &hists->entries_in->rb_node;
513
514 while (*p != NULL) {
515 parent = *p;
516 he = rb_entry(parent, struct hist_entry, rb_node_in);
517
518 /*
519 * Make sure that it receives arguments in a same order as
520 * hist_entry__collapse() so that we can use an appropriate
521 * function when searching an entry regardless which sort
522 * keys were used.
523 */
524 cmp = hist_entry__cmp(he, entry);
525
526 if (!cmp) {
527 if (sample_self) {
528 he_stat__add_period(&he->stat, period, weight);
529 hist_entry__add_callchain_period(he, period);
530 }
531 if (symbol_conf.cumulate_callchain)
532 he_stat__add_period(he->stat_acc, period, weight);
533
534 /*
535 * This mem info was allocated from sample__resolve_mem
536 * and will not be used anymore.
537 */
538 zfree(&entry->mem_info);
539
540 /* If the map of an existing hist_entry has
541 * become out-of-date due to an exec() or
542 * similar, update it. Otherwise we will
543 * mis-adjust symbol addresses when computing
544 * the history counter to increment.
545 */
546 if (he->ms.map != entry->ms.map) {
547 map__put(he->ms.map);
548 he->ms.map = map__get(entry->ms.map);
549 }
550 goto out;
551 }
552
553 if (cmp < 0)
554 p = &(*p)->rb_left;
555 else
556 p = &(*p)->rb_right;
557 }
558
559 he = hist_entry__new(entry, sample_self);
560 if (!he)
561 return NULL;
562
563 if (sample_self)
564 hist_entry__add_callchain_period(he, period);
565 hists->nr_entries++;
566
567 rb_link_node(&he->rb_node_in, parent, p);
568 rb_insert_color(&he->rb_node_in, hists->entries_in);
569 out:
570 if (sample_self)
571 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
572 if (symbol_conf.cumulate_callchain)
573 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
574 return he;
575 }
576
577 static struct hist_entry*
578 __hists__add_entry(struct hists *hists,
579 struct addr_location *al,
580 struct symbol *sym_parent,
581 struct branch_info *bi,
582 struct mem_info *mi,
583 struct perf_sample *sample,
584 bool sample_self,
585 struct hist_entry_ops *ops)
586 {
587 struct namespaces *ns = thread__namespaces(al->thread);
588 struct hist_entry entry = {
589 .thread = al->thread,
590 .comm = thread__comm(al->thread),
591 .cgroup_id = {
592 .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
593 .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
594 },
595 .ms = {
596 .map = al->map,
597 .sym = al->sym,
598 },
599 .socket = al->socket,
600 .cpu = al->cpu,
601 .cpumode = al->cpumode,
602 .ip = al->addr,
603 .level = al->level,
604 .stat = {
605 .nr_events = 1,
606 .period = sample->period,
607 .weight = sample->weight,
608 },
609 .parent = sym_parent,
610 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
611 .hists = hists,
612 .branch_info = bi,
613 .mem_info = mi,
614 .transaction = sample->transaction,
615 .raw_data = sample->raw_data,
616 .raw_size = sample->raw_size,
617 .ops = ops,
618 };
619
620 return hists__findnew_entry(hists, &entry, al, sample_self);
621 }
622
623 struct hist_entry *hists__add_entry(struct hists *hists,
624 struct addr_location *al,
625 struct symbol *sym_parent,
626 struct branch_info *bi,
627 struct mem_info *mi,
628 struct perf_sample *sample,
629 bool sample_self)
630 {
631 return __hists__add_entry(hists, al, sym_parent, bi, mi,
632 sample, sample_self, NULL);
633 }
634
635 struct hist_entry *hists__add_entry_ops(struct hists *hists,
636 struct hist_entry_ops *ops,
637 struct addr_location *al,
638 struct symbol *sym_parent,
639 struct branch_info *bi,
640 struct mem_info *mi,
641 struct perf_sample *sample,
642 bool sample_self)
643 {
644 return __hists__add_entry(hists, al, sym_parent, bi, mi,
645 sample, sample_self, ops);
646 }
647
648 static int
649 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
650 struct addr_location *al __maybe_unused)
651 {
652 return 0;
653 }
654
655 static int
656 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
657 struct addr_location *al __maybe_unused)
658 {
659 return 0;
660 }
661
662 static int
663 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
664 {
665 struct perf_sample *sample = iter->sample;
666 struct mem_info *mi;
667
668 mi = sample__resolve_mem(sample, al);
669 if (mi == NULL)
670 return -ENOMEM;
671
672 iter->priv = mi;
673 return 0;
674 }
675
676 static int
677 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
678 {
679 u64 cost;
680 struct mem_info *mi = iter->priv;
681 struct hists *hists = evsel__hists(iter->evsel);
682 struct perf_sample *sample = iter->sample;
683 struct hist_entry *he;
684
685 if (mi == NULL)
686 return -EINVAL;
687
688 cost = sample->weight;
689 if (!cost)
690 cost = 1;
691
692 /*
693 * must pass period=weight in order to get the correct
694 * sorting from hists__collapse_resort() which is solely
695 * based on periods. We want sorting be done on nr_events * weight
696 * and this is indirectly achieved by passing period=weight here
697 * and the he_stat__add_period() function.
698 */
699 sample->period = cost;
700
701 he = hists__add_entry(hists, al, iter->parent, NULL, mi,
702 sample, true);
703 if (!he)
704 return -ENOMEM;
705
706 iter->he = he;
707 return 0;
708 }
709
710 static int
711 iter_finish_mem_entry(struct hist_entry_iter *iter,
712 struct addr_location *al __maybe_unused)
713 {
714 struct perf_evsel *evsel = iter->evsel;
715 struct hists *hists = evsel__hists(evsel);
716 struct hist_entry *he = iter->he;
717 int err = -EINVAL;
718
719 if (he == NULL)
720 goto out;
721
722 hists__inc_nr_samples(hists, he->filtered);
723
724 err = hist_entry__append_callchain(he, iter->sample);
725
726 out:
727 /*
728 * We don't need to free iter->priv (mem_info) here since the mem info
729 * was either already freed in hists__findnew_entry() or passed to a
730 * new hist entry by hist_entry__new().
731 */
732 iter->priv = NULL;
733
734 iter->he = NULL;
735 return err;
736 }
737
738 static int
739 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
740 {
741 struct branch_info *bi;
742 struct perf_sample *sample = iter->sample;
743
744 bi = sample__resolve_bstack(sample, al);
745 if (!bi)
746 return -ENOMEM;
747
748 iter->curr = 0;
749 iter->total = sample->branch_stack->nr;
750
751 iter->priv = bi;
752 return 0;
753 }
754
755 static int
756 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
757 struct addr_location *al __maybe_unused)
758 {
759 return 0;
760 }
761
762 static int
763 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
764 {
765 struct branch_info *bi = iter->priv;
766 int i = iter->curr;
767
768 if (bi == NULL)
769 return 0;
770
771 if (iter->curr >= iter->total)
772 return 0;
773
774 al->map = bi[i].to.map;
775 al->sym = bi[i].to.sym;
776 al->addr = bi[i].to.addr;
777 return 1;
778 }
779
780 static int
781 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
782 {
783 struct branch_info *bi;
784 struct perf_evsel *evsel = iter->evsel;
785 struct hists *hists = evsel__hists(evsel);
786 struct perf_sample *sample = iter->sample;
787 struct hist_entry *he = NULL;
788 int i = iter->curr;
789 int err = 0;
790
791 bi = iter->priv;
792
793 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
794 goto out;
795
796 /*
797 * The report shows the percentage of total branches captured
798 * and not events sampled. Thus we use a pseudo period of 1.
799 */
800 sample->period = 1;
801 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
802
803 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
804 sample, true);
805 if (he == NULL)
806 return -ENOMEM;
807
808 hists__inc_nr_samples(hists, he->filtered);
809
810 out:
811 iter->he = he;
812 iter->curr++;
813 return err;
814 }
815
816 static int
817 iter_finish_branch_entry(struct hist_entry_iter *iter,
818 struct addr_location *al __maybe_unused)
819 {
820 zfree(&iter->priv);
821 iter->he = NULL;
822
823 return iter->curr >= iter->total ? 0 : -1;
824 }
825
826 static int
827 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
828 struct addr_location *al __maybe_unused)
829 {
830 return 0;
831 }
832
833 static int
834 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
835 {
836 struct perf_evsel *evsel = iter->evsel;
837 struct perf_sample *sample = iter->sample;
838 struct hist_entry *he;
839
840 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
841 sample, true);
842 if (he == NULL)
843 return -ENOMEM;
844
845 iter->he = he;
846 return 0;
847 }
848
849 static int
850 iter_finish_normal_entry(struct hist_entry_iter *iter,
851 struct addr_location *al __maybe_unused)
852 {
853 struct hist_entry *he = iter->he;
854 struct perf_evsel *evsel = iter->evsel;
855 struct perf_sample *sample = iter->sample;
856
857 if (he == NULL)
858 return 0;
859
860 iter->he = NULL;
861
862 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
863
864 return hist_entry__append_callchain(he, sample);
865 }
866
867 static int
868 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
869 struct addr_location *al __maybe_unused)
870 {
871 struct hist_entry **he_cache;
872
873 callchain_cursor_commit(&callchain_cursor);
874
875 /*
876 * This is for detecting cycles or recursions so that they're
877 * cumulated only one time to prevent entries more than 100%
878 * overhead.
879 */
880 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
881 if (he_cache == NULL)
882 return -ENOMEM;
883
884 iter->priv = he_cache;
885 iter->curr = 0;
886
887 return 0;
888 }
889
890 static int
891 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
892 struct addr_location *al)
893 {
894 struct perf_evsel *evsel = iter->evsel;
895 struct hists *hists = evsel__hists(evsel);
896 struct perf_sample *sample = iter->sample;
897 struct hist_entry **he_cache = iter->priv;
898 struct hist_entry *he;
899 int err = 0;
900
901 he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
902 sample, true);
903 if (he == NULL)
904 return -ENOMEM;
905
906 iter->he = he;
907 he_cache[iter->curr++] = he;
908
909 hist_entry__append_callchain(he, sample);
910
911 /*
912 * We need to re-initialize the cursor since callchain_append()
913 * advanced the cursor to the end.
914 */
915 callchain_cursor_commit(&callchain_cursor);
916
917 hists__inc_nr_samples(hists, he->filtered);
918
919 return err;
920 }
921
922 static int
923 iter_next_cumulative_entry(struct hist_entry_iter *iter,
924 struct addr_location *al)
925 {
926 struct callchain_cursor_node *node;
927
928 node = callchain_cursor_current(&callchain_cursor);
929 if (node == NULL)
930 return 0;
931
932 return fill_callchain_info(al, node, iter->hide_unresolved);
933 }
934
935 static int
936 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
937 struct addr_location *al)
938 {
939 struct perf_evsel *evsel = iter->evsel;
940 struct perf_sample *sample = iter->sample;
941 struct hist_entry **he_cache = iter->priv;
942 struct hist_entry *he;
943 struct hist_entry he_tmp = {
944 .hists = evsel__hists(evsel),
945 .cpu = al->cpu,
946 .thread = al->thread,
947 .comm = thread__comm(al->thread),
948 .ip = al->addr,
949 .ms = {
950 .map = al->map,
951 .sym = al->sym,
952 },
953 .parent = iter->parent,
954 .raw_data = sample->raw_data,
955 .raw_size = sample->raw_size,
956 };
957 int i;
958 struct callchain_cursor cursor;
959
960 callchain_cursor_snapshot(&cursor, &callchain_cursor);
961
962 callchain_cursor_advance(&callchain_cursor);
963
964 /*
965 * Check if there's duplicate entries in the callchain.
966 * It's possible that it has cycles or recursive calls.
967 */
968 for (i = 0; i < iter->curr; i++) {
969 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
970 /* to avoid calling callback function */
971 iter->he = NULL;
972 return 0;
973 }
974 }
975
976 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
977 sample, false);
978 if (he == NULL)
979 return -ENOMEM;
980
981 iter->he = he;
982 he_cache[iter->curr++] = he;
983
984 if (symbol_conf.use_callchain)
985 callchain_append(he->callchain, &cursor, sample->period);
986 return 0;
987 }
988
989 static int
990 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
991 struct addr_location *al __maybe_unused)
992 {
993 zfree(&iter->priv);
994 iter->he = NULL;
995
996 return 0;
997 }
998
999 const struct hist_iter_ops hist_iter_mem = {
1000 .prepare_entry = iter_prepare_mem_entry,
1001 .add_single_entry = iter_add_single_mem_entry,
1002 .next_entry = iter_next_nop_entry,
1003 .add_next_entry = iter_add_next_nop_entry,
1004 .finish_entry = iter_finish_mem_entry,
1005 };
1006
1007 const struct hist_iter_ops hist_iter_branch = {
1008 .prepare_entry = iter_prepare_branch_entry,
1009 .add_single_entry = iter_add_single_branch_entry,
1010 .next_entry = iter_next_branch_entry,
1011 .add_next_entry = iter_add_next_branch_entry,
1012 .finish_entry = iter_finish_branch_entry,
1013 };
1014
1015 const struct hist_iter_ops hist_iter_normal = {
1016 .prepare_entry = iter_prepare_normal_entry,
1017 .add_single_entry = iter_add_single_normal_entry,
1018 .next_entry = iter_next_nop_entry,
1019 .add_next_entry = iter_add_next_nop_entry,
1020 .finish_entry = iter_finish_normal_entry,
1021 };
1022
1023 const struct hist_iter_ops hist_iter_cumulative = {
1024 .prepare_entry = iter_prepare_cumulative_entry,
1025 .add_single_entry = iter_add_single_cumulative_entry,
1026 .next_entry = iter_next_cumulative_entry,
1027 .add_next_entry = iter_add_next_cumulative_entry,
1028 .finish_entry = iter_finish_cumulative_entry,
1029 };
1030
1031 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1032 int max_stack_depth, void *arg)
1033 {
1034 int err, err2;
1035 struct map *alm = NULL;
1036
1037 if (al && al->map)
1038 alm = map__get(al->map);
1039
1040 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1041 iter->evsel, al, max_stack_depth);
1042 if (err)
1043 return err;
1044
1045 iter->max_stack = max_stack_depth;
1046
1047 err = iter->ops->prepare_entry(iter, al);
1048 if (err)
1049 goto out;
1050
1051 err = iter->ops->add_single_entry(iter, al);
1052 if (err)
1053 goto out;
1054
1055 if (iter->he && iter->add_entry_cb) {
1056 err = iter->add_entry_cb(iter, al, true, arg);
1057 if (err)
1058 goto out;
1059 }
1060
1061 while (iter->ops->next_entry(iter, al)) {
1062 err = iter->ops->add_next_entry(iter, al);
1063 if (err)
1064 break;
1065
1066 if (iter->he && iter->add_entry_cb) {
1067 err = iter->add_entry_cb(iter, al, false, arg);
1068 if (err)
1069 goto out;
1070 }
1071 }
1072
1073 out:
1074 err2 = iter->ops->finish_entry(iter, al);
1075 if (!err)
1076 err = err2;
1077
1078 map__put(alm);
1079
1080 return err;
1081 }
1082
1083 int64_t
1084 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1085 {
1086 struct hists *hists = left->hists;
1087 struct perf_hpp_fmt *fmt;
1088 int64_t cmp = 0;
1089
1090 hists__for_each_sort_list(hists, fmt) {
1091 if (perf_hpp__is_dynamic_entry(fmt) &&
1092 !perf_hpp__defined_dynamic_entry(fmt, hists))
1093 continue;
1094
1095 cmp = fmt->cmp(fmt, left, right);
1096 if (cmp)
1097 break;
1098 }
1099
1100 return cmp;
1101 }
1102
1103 int64_t
1104 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1105 {
1106 struct hists *hists = left->hists;
1107 struct perf_hpp_fmt *fmt;
1108 int64_t cmp = 0;
1109
1110 hists__for_each_sort_list(hists, fmt) {
1111 if (perf_hpp__is_dynamic_entry(fmt) &&
1112 !perf_hpp__defined_dynamic_entry(fmt, hists))
1113 continue;
1114
1115 cmp = fmt->collapse(fmt, left, right);
1116 if (cmp)
1117 break;
1118 }
1119
1120 return cmp;
1121 }
1122
1123 void hist_entry__delete(struct hist_entry *he)
1124 {
1125 struct hist_entry_ops *ops = he->ops;
1126
1127 thread__zput(he->thread);
1128 map__zput(he->ms.map);
1129
1130 if (he->branch_info) {
1131 map__zput(he->branch_info->from.map);
1132 map__zput(he->branch_info->to.map);
1133 free_srcline(he->branch_info->srcline_from);
1134 free_srcline(he->branch_info->srcline_to);
1135 zfree(&he->branch_info);
1136 }
1137
1138 if (he->mem_info) {
1139 map__zput(he->mem_info->iaddr.map);
1140 map__zput(he->mem_info->daddr.map);
1141 zfree(&he->mem_info);
1142 }
1143
1144 if (he->inline_node) {
1145 inline_node__delete(he->inline_node);
1146 he->inline_node = NULL;
1147 }
1148
1149 zfree(&he->stat_acc);
1150 free_srcline(he->srcline);
1151 if (he->srcfile && he->srcfile[0])
1152 free(he->srcfile);
1153 free_callchain(he->callchain);
1154 free(he->trace_output);
1155 free(he->raw_data);
1156 ops->free(he);
1157 }
1158
1159 /*
1160 * If this is not the last column, then we need to pad it according to the
1161 * pre-calculated max lenght for this column, otherwise don't bother adding
1162 * spaces because that would break viewing this with, for instance, 'less',
1163 * that would show tons of trailing spaces when a long C++ demangled method
1164 * names is sampled.
1165 */
1166 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1167 struct perf_hpp_fmt *fmt, int printed)
1168 {
1169 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1170 const int width = fmt->width(fmt, hpp, he->hists);
1171 if (printed < width) {
1172 advance_hpp(hpp, printed);
1173 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1174 }
1175 }
1176
1177 return printed;
1178 }
1179
1180 /*
1181 * collapse the histogram
1182 */
1183
1184 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1185 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1186 enum hist_filter type);
1187
1188 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1189
1190 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1191 {
1192 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1193 }
1194
1195 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1196 enum hist_filter type,
1197 fmt_chk_fn check)
1198 {
1199 struct perf_hpp_fmt *fmt;
1200 bool type_match = false;
1201 struct hist_entry *parent = he->parent_he;
1202
1203 switch (type) {
1204 case HIST_FILTER__THREAD:
1205 if (symbol_conf.comm_list == NULL &&
1206 symbol_conf.pid_list == NULL &&
1207 symbol_conf.tid_list == NULL)
1208 return;
1209 break;
1210 case HIST_FILTER__DSO:
1211 if (symbol_conf.dso_list == NULL)
1212 return;
1213 break;
1214 case HIST_FILTER__SYMBOL:
1215 if (symbol_conf.sym_list == NULL)
1216 return;
1217 break;
1218 case HIST_FILTER__PARENT:
1219 case HIST_FILTER__GUEST:
1220 case HIST_FILTER__HOST:
1221 case HIST_FILTER__SOCKET:
1222 case HIST_FILTER__C2C:
1223 default:
1224 return;
1225 }
1226
1227 /* if it's filtered by own fmt, it has to have filter bits */
1228 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1229 if (check(fmt)) {
1230 type_match = true;
1231 break;
1232 }
1233 }
1234
1235 if (type_match) {
1236 /*
1237 * If the filter is for current level entry, propagate
1238 * filter marker to parents. The marker bit was
1239 * already set by default so it only needs to clear
1240 * non-filtered entries.
1241 */
1242 if (!(he->filtered & (1 << type))) {
1243 while (parent) {
1244 parent->filtered &= ~(1 << type);
1245 parent = parent->parent_he;
1246 }
1247 }
1248 } else {
1249 /*
1250 * If current entry doesn't have matching formats, set
1251 * filter marker for upper level entries. it will be
1252 * cleared if its lower level entries is not filtered.
1253 *
1254 * For lower-level entries, it inherits parent's
1255 * filter bit so that lower level entries of a
1256 * non-filtered entry won't set the filter marker.
1257 */
1258 if (parent == NULL)
1259 he->filtered |= (1 << type);
1260 else
1261 he->filtered |= (parent->filtered & (1 << type));
1262 }
1263 }
1264
1265 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1266 {
1267 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1268 check_thread_entry);
1269
1270 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1271 perf_hpp__is_dso_entry);
1272
1273 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1274 perf_hpp__is_sym_entry);
1275
1276 hists__apply_filters(he->hists, he);
1277 }
1278
1279 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1280 struct rb_root *root,
1281 struct hist_entry *he,
1282 struct hist_entry *parent_he,
1283 struct perf_hpp_list *hpp_list)
1284 {
1285 struct rb_node **p = &root->rb_node;
1286 struct rb_node *parent = NULL;
1287 struct hist_entry *iter, *new;
1288 struct perf_hpp_fmt *fmt;
1289 int64_t cmp;
1290
1291 while (*p != NULL) {
1292 parent = *p;
1293 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1294
1295 cmp = 0;
1296 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1297 cmp = fmt->collapse(fmt, iter, he);
1298 if (cmp)
1299 break;
1300 }
1301
1302 if (!cmp) {
1303 he_stat__add_stat(&iter->stat, &he->stat);
1304 return iter;
1305 }
1306
1307 if (cmp < 0)
1308 p = &parent->rb_left;
1309 else
1310 p = &parent->rb_right;
1311 }
1312
1313 new = hist_entry__new(he, true);
1314 if (new == NULL)
1315 return NULL;
1316
1317 hists->nr_entries++;
1318
1319 /* save related format list for output */
1320 new->hpp_list = hpp_list;
1321 new->parent_he = parent_he;
1322
1323 hist_entry__apply_hierarchy_filters(new);
1324
1325 /* some fields are now passed to 'new' */
1326 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1327 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1328 he->trace_output = NULL;
1329 else
1330 new->trace_output = NULL;
1331
1332 if (perf_hpp__is_srcline_entry(fmt))
1333 he->srcline = NULL;
1334 else
1335 new->srcline = NULL;
1336
1337 if (perf_hpp__is_srcfile_entry(fmt))
1338 he->srcfile = NULL;
1339 else
1340 new->srcfile = NULL;
1341 }
1342
1343 rb_link_node(&new->rb_node_in, parent, p);
1344 rb_insert_color(&new->rb_node_in, root);
1345 return new;
1346 }
1347
1348 static int hists__hierarchy_insert_entry(struct hists *hists,
1349 struct rb_root *root,
1350 struct hist_entry *he)
1351 {
1352 struct perf_hpp_list_node *node;
1353 struct hist_entry *new_he = NULL;
1354 struct hist_entry *parent = NULL;
1355 int depth = 0;
1356 int ret = 0;
1357
1358 list_for_each_entry(node, &hists->hpp_formats, list) {
1359 /* skip period (overhead) and elided columns */
1360 if (node->level == 0 || node->skip)
1361 continue;
1362
1363 /* insert copy of 'he' for each fmt into the hierarchy */
1364 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1365 if (new_he == NULL) {
1366 ret = -1;
1367 break;
1368 }
1369
1370 root = &new_he->hroot_in;
1371 new_he->depth = depth++;
1372 parent = new_he;
1373 }
1374
1375 if (new_he) {
1376 new_he->leaf = true;
1377
1378 if (symbol_conf.use_callchain) {
1379 callchain_cursor_reset(&callchain_cursor);
1380 if (callchain_merge(&callchain_cursor,
1381 new_he->callchain,
1382 he->callchain) < 0)
1383 ret = -1;
1384 }
1385 }
1386
1387 /* 'he' is no longer used */
1388 hist_entry__delete(he);
1389
1390 /* return 0 (or -1) since it already applied filters */
1391 return ret;
1392 }
1393
1394 static int hists__collapse_insert_entry(struct hists *hists,
1395 struct rb_root *root,
1396 struct hist_entry *he)
1397 {
1398 struct rb_node **p = &root->rb_node;
1399 struct rb_node *parent = NULL;
1400 struct hist_entry *iter;
1401 int64_t cmp;
1402
1403 if (symbol_conf.report_hierarchy)
1404 return hists__hierarchy_insert_entry(hists, root, he);
1405
1406 while (*p != NULL) {
1407 parent = *p;
1408 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1409
1410 cmp = hist_entry__collapse(iter, he);
1411
1412 if (!cmp) {
1413 int ret = 0;
1414
1415 he_stat__add_stat(&iter->stat, &he->stat);
1416 if (symbol_conf.cumulate_callchain)
1417 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1418
1419 if (symbol_conf.use_callchain) {
1420 callchain_cursor_reset(&callchain_cursor);
1421 if (callchain_merge(&callchain_cursor,
1422 iter->callchain,
1423 he->callchain) < 0)
1424 ret = -1;
1425 }
1426 hist_entry__delete(he);
1427 return ret;
1428 }
1429
1430 if (cmp < 0)
1431 p = &(*p)->rb_left;
1432 else
1433 p = &(*p)->rb_right;
1434 }
1435 hists->nr_entries++;
1436
1437 rb_link_node(&he->rb_node_in, parent, p);
1438 rb_insert_color(&he->rb_node_in, root);
1439 return 1;
1440 }
1441
1442 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1443 {
1444 struct rb_root *root;
1445
1446 pthread_mutex_lock(&hists->lock);
1447
1448 root = hists->entries_in;
1449 if (++hists->entries_in > &hists->entries_in_array[1])
1450 hists->entries_in = &hists->entries_in_array[0];
1451
1452 pthread_mutex_unlock(&hists->lock);
1453
1454 return root;
1455 }
1456
1457 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1458 {
1459 hists__filter_entry_by_dso(hists, he);
1460 hists__filter_entry_by_thread(hists, he);
1461 hists__filter_entry_by_symbol(hists, he);
1462 hists__filter_entry_by_socket(hists, he);
1463 }
1464
1465 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1466 {
1467 struct rb_root *root;
1468 struct rb_node *next;
1469 struct hist_entry *n;
1470 int ret;
1471
1472 if (!hists__has(hists, need_collapse))
1473 return 0;
1474
1475 hists->nr_entries = 0;
1476
1477 root = hists__get_rotate_entries_in(hists);
1478
1479 next = rb_first(root);
1480
1481 while (next) {
1482 if (session_done())
1483 break;
1484 n = rb_entry(next, struct hist_entry, rb_node_in);
1485 next = rb_next(&n->rb_node_in);
1486
1487 rb_erase(&n->rb_node_in, root);
1488 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1489 if (ret < 0)
1490 return -1;
1491
1492 if (ret) {
1493 /*
1494 * If it wasn't combined with one of the entries already
1495 * collapsed, we need to apply the filters that may have
1496 * been set by, say, the hist_browser.
1497 */
1498 hists__apply_filters(hists, n);
1499 }
1500 if (prog)
1501 ui_progress__update(prog, 1);
1502 }
1503 return 0;
1504 }
1505
1506 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1507 {
1508 struct hists *hists = a->hists;
1509 struct perf_hpp_fmt *fmt;
1510 int64_t cmp = 0;
1511
1512 hists__for_each_sort_list(hists, fmt) {
1513 if (perf_hpp__should_skip(fmt, a->hists))
1514 continue;
1515
1516 cmp = fmt->sort(fmt, a, b);
1517 if (cmp)
1518 break;
1519 }
1520
1521 return cmp;
1522 }
1523
1524 static void hists__reset_filter_stats(struct hists *hists)
1525 {
1526 hists->nr_non_filtered_entries = 0;
1527 hists->stats.total_non_filtered_period = 0;
1528 }
1529
1530 void hists__reset_stats(struct hists *hists)
1531 {
1532 hists->nr_entries = 0;
1533 hists->stats.total_period = 0;
1534
1535 hists__reset_filter_stats(hists);
1536 }
1537
1538 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1539 {
1540 hists->nr_non_filtered_entries++;
1541 hists->stats.total_non_filtered_period += h->stat.period;
1542 }
1543
1544 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1545 {
1546 if (!h->filtered)
1547 hists__inc_filter_stats(hists, h);
1548
1549 hists->nr_entries++;
1550 hists->stats.total_period += h->stat.period;
1551 }
1552
1553 static void hierarchy_recalc_total_periods(struct hists *hists)
1554 {
1555 struct rb_node *node;
1556 struct hist_entry *he;
1557
1558 node = rb_first(&hists->entries);
1559
1560 hists->stats.total_period = 0;
1561 hists->stats.total_non_filtered_period = 0;
1562
1563 /*
1564 * recalculate total period using top-level entries only
1565 * since lower level entries only see non-filtered entries
1566 * but upper level entries have sum of both entries.
1567 */
1568 while (node) {
1569 he = rb_entry(node, struct hist_entry, rb_node);
1570 node = rb_next(node);
1571
1572 hists->stats.total_period += he->stat.period;
1573 if (!he->filtered)
1574 hists->stats.total_non_filtered_period += he->stat.period;
1575 }
1576 }
1577
1578 static void hierarchy_insert_output_entry(struct rb_root *root,
1579 struct hist_entry *he)
1580 {
1581 struct rb_node **p = &root->rb_node;
1582 struct rb_node *parent = NULL;
1583 struct hist_entry *iter;
1584 struct perf_hpp_fmt *fmt;
1585
1586 while (*p != NULL) {
1587 parent = *p;
1588 iter = rb_entry(parent, struct hist_entry, rb_node);
1589
1590 if (hist_entry__sort(he, iter) > 0)
1591 p = &parent->rb_left;
1592 else
1593 p = &parent->rb_right;
1594 }
1595
1596 rb_link_node(&he->rb_node, parent, p);
1597 rb_insert_color(&he->rb_node, root);
1598
1599 /* update column width of dynamic entry */
1600 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1601 if (perf_hpp__is_dynamic_entry(fmt))
1602 fmt->sort(fmt, he, NULL);
1603 }
1604 }
1605
1606 static void hists__hierarchy_output_resort(struct hists *hists,
1607 struct ui_progress *prog,
1608 struct rb_root *root_in,
1609 struct rb_root *root_out,
1610 u64 min_callchain_hits,
1611 bool use_callchain)
1612 {
1613 struct rb_node *node;
1614 struct hist_entry *he;
1615
1616 *root_out = RB_ROOT;
1617 node = rb_first(root_in);
1618
1619 while (node) {
1620 he = rb_entry(node, struct hist_entry, rb_node_in);
1621 node = rb_next(node);
1622
1623 hierarchy_insert_output_entry(root_out, he);
1624
1625 if (prog)
1626 ui_progress__update(prog, 1);
1627
1628 hists->nr_entries++;
1629 if (!he->filtered) {
1630 hists->nr_non_filtered_entries++;
1631 hists__calc_col_len(hists, he);
1632 }
1633
1634 if (!he->leaf) {
1635 hists__hierarchy_output_resort(hists, prog,
1636 &he->hroot_in,
1637 &he->hroot_out,
1638 min_callchain_hits,
1639 use_callchain);
1640 continue;
1641 }
1642
1643 if (!use_callchain)
1644 continue;
1645
1646 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1647 u64 total = he->stat.period;
1648
1649 if (symbol_conf.cumulate_callchain)
1650 total = he->stat_acc->period;
1651
1652 min_callchain_hits = total * (callchain_param.min_percent / 100);
1653 }
1654
1655 callchain_param.sort(&he->sorted_chain, he->callchain,
1656 min_callchain_hits, &callchain_param);
1657 }
1658 }
1659
1660 static void __hists__insert_output_entry(struct rb_root *entries,
1661 struct hist_entry *he,
1662 u64 min_callchain_hits,
1663 bool use_callchain)
1664 {
1665 struct rb_node **p = &entries->rb_node;
1666 struct rb_node *parent = NULL;
1667 struct hist_entry *iter;
1668 struct perf_hpp_fmt *fmt;
1669
1670 if (use_callchain) {
1671 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1672 u64 total = he->stat.period;
1673
1674 if (symbol_conf.cumulate_callchain)
1675 total = he->stat_acc->period;
1676
1677 min_callchain_hits = total * (callchain_param.min_percent / 100);
1678 }
1679 callchain_param.sort(&he->sorted_chain, he->callchain,
1680 min_callchain_hits, &callchain_param);
1681 }
1682
1683 while (*p != NULL) {
1684 parent = *p;
1685 iter = rb_entry(parent, struct hist_entry, rb_node);
1686
1687 if (hist_entry__sort(he, iter) > 0)
1688 p = &(*p)->rb_left;
1689 else
1690 p = &(*p)->rb_right;
1691 }
1692
1693 rb_link_node(&he->rb_node, parent, p);
1694 rb_insert_color(&he->rb_node, entries);
1695
1696 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1697 if (perf_hpp__is_dynamic_entry(fmt) &&
1698 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1699 fmt->sort(fmt, he, NULL); /* update column width */
1700 }
1701 }
1702
1703 static void output_resort(struct hists *hists, struct ui_progress *prog,
1704 bool use_callchain, hists__resort_cb_t cb)
1705 {
1706 struct rb_root *root;
1707 struct rb_node *next;
1708 struct hist_entry *n;
1709 u64 callchain_total;
1710 u64 min_callchain_hits;
1711
1712 callchain_total = hists->callchain_period;
1713 if (symbol_conf.filter_relative)
1714 callchain_total = hists->callchain_non_filtered_period;
1715
1716 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1717
1718 hists__reset_stats(hists);
1719 hists__reset_col_len(hists);
1720
1721 if (symbol_conf.report_hierarchy) {
1722 hists__hierarchy_output_resort(hists, prog,
1723 &hists->entries_collapsed,
1724 &hists->entries,
1725 min_callchain_hits,
1726 use_callchain);
1727 hierarchy_recalc_total_periods(hists);
1728 return;
1729 }
1730
1731 if (hists__has(hists, need_collapse))
1732 root = &hists->entries_collapsed;
1733 else
1734 root = hists->entries_in;
1735
1736 next = rb_first(root);
1737 hists->entries = RB_ROOT;
1738
1739 while (next) {
1740 n = rb_entry(next, struct hist_entry, rb_node_in);
1741 next = rb_next(&n->rb_node_in);
1742
1743 if (cb && cb(n))
1744 continue;
1745
1746 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1747 hists__inc_stats(hists, n);
1748
1749 if (!n->filtered)
1750 hists__calc_col_len(hists, n);
1751
1752 if (prog)
1753 ui_progress__update(prog, 1);
1754 }
1755 }
1756
1757 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1758 {
1759 bool use_callchain;
1760
1761 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1762 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1763 else
1764 use_callchain = symbol_conf.use_callchain;
1765
1766 use_callchain |= symbol_conf.show_branchflag_count;
1767
1768 output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1769 }
1770
1771 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1772 {
1773 output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1774 }
1775
1776 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1777 hists__resort_cb_t cb)
1778 {
1779 output_resort(hists, prog, symbol_conf.use_callchain, cb);
1780 }
1781
1782 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1783 {
1784 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1785 return false;
1786
1787 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1788 return true;
1789
1790 return false;
1791 }
1792
1793 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1794 {
1795 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1796
1797 while (can_goto_child(he, HMD_NORMAL)) {
1798 node = rb_last(&he->hroot_out);
1799 he = rb_entry(node, struct hist_entry, rb_node);
1800 }
1801 return node;
1802 }
1803
1804 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1805 {
1806 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1807
1808 if (can_goto_child(he, hmd))
1809 node = rb_first(&he->hroot_out);
1810 else
1811 node = rb_next(node);
1812
1813 while (node == NULL) {
1814 he = he->parent_he;
1815 if (he == NULL)
1816 break;
1817
1818 node = rb_next(&he->rb_node);
1819 }
1820 return node;
1821 }
1822
1823 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1824 {
1825 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1826
1827 node = rb_prev(node);
1828 if (node)
1829 return rb_hierarchy_last(node);
1830
1831 he = he->parent_he;
1832 if (he == NULL)
1833 return NULL;
1834
1835 return &he->rb_node;
1836 }
1837
1838 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1839 {
1840 struct rb_node *node;
1841 struct hist_entry *child;
1842 float percent;
1843
1844 if (he->leaf)
1845 return false;
1846
1847 node = rb_first(&he->hroot_out);
1848 child = rb_entry(node, struct hist_entry, rb_node);
1849
1850 while (node && child->filtered) {
1851 node = rb_next(node);
1852 child = rb_entry(node, struct hist_entry, rb_node);
1853 }
1854
1855 if (node)
1856 percent = hist_entry__get_percent_limit(child);
1857 else
1858 percent = 0;
1859
1860 return node && percent >= limit;
1861 }
1862
1863 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1864 enum hist_filter filter)
1865 {
1866 h->filtered &= ~(1 << filter);
1867
1868 if (symbol_conf.report_hierarchy) {
1869 struct hist_entry *parent = h->parent_he;
1870
1871 while (parent) {
1872 he_stat__add_stat(&parent->stat, &h->stat);
1873
1874 parent->filtered &= ~(1 << filter);
1875
1876 if (parent->filtered)
1877 goto next;
1878
1879 /* force fold unfiltered entry for simplicity */
1880 parent->unfolded = false;
1881 parent->has_no_entry = false;
1882 parent->row_offset = 0;
1883 parent->nr_rows = 0;
1884 next:
1885 parent = parent->parent_he;
1886 }
1887 }
1888
1889 if (h->filtered)
1890 return;
1891
1892 /* force fold unfiltered entry for simplicity */
1893 h->unfolded = false;
1894 h->has_no_entry = false;
1895 h->row_offset = 0;
1896 h->nr_rows = 0;
1897
1898 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1899
1900 hists__inc_filter_stats(hists, h);
1901 hists__calc_col_len(hists, h);
1902 }
1903
1904
1905 static bool hists__filter_entry_by_dso(struct hists *hists,
1906 struct hist_entry *he)
1907 {
1908 if (hists->dso_filter != NULL &&
1909 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1910 he->filtered |= (1 << HIST_FILTER__DSO);
1911 return true;
1912 }
1913
1914 return false;
1915 }
1916
1917 static bool hists__filter_entry_by_thread(struct hists *hists,
1918 struct hist_entry *he)
1919 {
1920 if (hists->thread_filter != NULL &&
1921 he->thread != hists->thread_filter) {
1922 he->filtered |= (1 << HIST_FILTER__THREAD);
1923 return true;
1924 }
1925
1926 return false;
1927 }
1928
1929 static bool hists__filter_entry_by_symbol(struct hists *hists,
1930 struct hist_entry *he)
1931 {
1932 if (hists->symbol_filter_str != NULL &&
1933 (!he->ms.sym || strstr(he->ms.sym->name,
1934 hists->symbol_filter_str) == NULL)) {
1935 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1936 return true;
1937 }
1938
1939 return false;
1940 }
1941
1942 static bool hists__filter_entry_by_socket(struct hists *hists,
1943 struct hist_entry *he)
1944 {
1945 if ((hists->socket_filter > -1) &&
1946 (he->socket != hists->socket_filter)) {
1947 he->filtered |= (1 << HIST_FILTER__SOCKET);
1948 return true;
1949 }
1950
1951 return false;
1952 }
1953
1954 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1955
1956 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1957 {
1958 struct rb_node *nd;
1959
1960 hists->stats.nr_non_filtered_samples = 0;
1961
1962 hists__reset_filter_stats(hists);
1963 hists__reset_col_len(hists);
1964
1965 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1966 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1967
1968 if (filter(hists, h))
1969 continue;
1970
1971 hists__remove_entry_filter(hists, h, type);
1972 }
1973 }
1974
1975 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1976 {
1977 struct rb_node **p = &root->rb_node;
1978 struct rb_node *parent = NULL;
1979 struct hist_entry *iter;
1980 struct rb_root new_root = RB_ROOT;
1981 struct rb_node *nd;
1982
1983 while (*p != NULL) {
1984 parent = *p;
1985 iter = rb_entry(parent, struct hist_entry, rb_node);
1986
1987 if (hist_entry__sort(he, iter) > 0)
1988 p = &(*p)->rb_left;
1989 else
1990 p = &(*p)->rb_right;
1991 }
1992
1993 rb_link_node(&he->rb_node, parent, p);
1994 rb_insert_color(&he->rb_node, root);
1995
1996 if (he->leaf || he->filtered)
1997 return;
1998
1999 nd = rb_first(&he->hroot_out);
2000 while (nd) {
2001 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2002
2003 nd = rb_next(nd);
2004 rb_erase(&h->rb_node, &he->hroot_out);
2005
2006 resort_filtered_entry(&new_root, h);
2007 }
2008
2009 he->hroot_out = new_root;
2010 }
2011
2012 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2013 {
2014 struct rb_node *nd;
2015 struct rb_root new_root = RB_ROOT;
2016
2017 hists->stats.nr_non_filtered_samples = 0;
2018
2019 hists__reset_filter_stats(hists);
2020 hists__reset_col_len(hists);
2021
2022 nd = rb_first(&hists->entries);
2023 while (nd) {
2024 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2025 int ret;
2026
2027 ret = hist_entry__filter(h, type, arg);
2028
2029 /*
2030 * case 1. non-matching type
2031 * zero out the period, set filter marker and move to child
2032 */
2033 if (ret < 0) {
2034 memset(&h->stat, 0, sizeof(h->stat));
2035 h->filtered |= (1 << type);
2036
2037 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2038 }
2039 /*
2040 * case 2. matched type (filter out)
2041 * set filter marker and move to next
2042 */
2043 else if (ret == 1) {
2044 h->filtered |= (1 << type);
2045
2046 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2047 }
2048 /*
2049 * case 3. ok (not filtered)
2050 * add period to hists and parents, erase the filter marker
2051 * and move to next sibling
2052 */
2053 else {
2054 hists__remove_entry_filter(hists, h, type);
2055
2056 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2057 }
2058 }
2059
2060 hierarchy_recalc_total_periods(hists);
2061
2062 /*
2063 * resort output after applying a new filter since filter in a lower
2064 * hierarchy can change periods in a upper hierarchy.
2065 */
2066 nd = rb_first(&hists->entries);
2067 while (nd) {
2068 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2069
2070 nd = rb_next(nd);
2071 rb_erase(&h->rb_node, &hists->entries);
2072
2073 resort_filtered_entry(&new_root, h);
2074 }
2075
2076 hists->entries = new_root;
2077 }
2078
2079 void hists__filter_by_thread(struct hists *hists)
2080 {
2081 if (symbol_conf.report_hierarchy)
2082 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2083 hists->thread_filter);
2084 else
2085 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2086 hists__filter_entry_by_thread);
2087 }
2088
2089 void hists__filter_by_dso(struct hists *hists)
2090 {
2091 if (symbol_conf.report_hierarchy)
2092 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2093 hists->dso_filter);
2094 else
2095 hists__filter_by_type(hists, HIST_FILTER__DSO,
2096 hists__filter_entry_by_dso);
2097 }
2098
2099 void hists__filter_by_symbol(struct hists *hists)
2100 {
2101 if (symbol_conf.report_hierarchy)
2102 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2103 hists->symbol_filter_str);
2104 else
2105 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2106 hists__filter_entry_by_symbol);
2107 }
2108
2109 void hists__filter_by_socket(struct hists *hists)
2110 {
2111 if (symbol_conf.report_hierarchy)
2112 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2113 &hists->socket_filter);
2114 else
2115 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2116 hists__filter_entry_by_socket);
2117 }
2118
2119 void events_stats__inc(struct events_stats *stats, u32 type)
2120 {
2121 ++stats->nr_events[0];
2122 ++stats->nr_events[type];
2123 }
2124
2125 void hists__inc_nr_events(struct hists *hists, u32 type)
2126 {
2127 events_stats__inc(&hists->stats, type);
2128 }
2129
2130 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2131 {
2132 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2133 if (!filtered)
2134 hists->stats.nr_non_filtered_samples++;
2135 }
2136
2137 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2138 struct hist_entry *pair)
2139 {
2140 struct rb_root *root;
2141 struct rb_node **p;
2142 struct rb_node *parent = NULL;
2143 struct hist_entry *he;
2144 int64_t cmp;
2145
2146 if (hists__has(hists, need_collapse))
2147 root = &hists->entries_collapsed;
2148 else
2149 root = hists->entries_in;
2150
2151 p = &root->rb_node;
2152
2153 while (*p != NULL) {
2154 parent = *p;
2155 he = rb_entry(parent, struct hist_entry, rb_node_in);
2156
2157 cmp = hist_entry__collapse(he, pair);
2158
2159 if (!cmp)
2160 goto out;
2161
2162 if (cmp < 0)
2163 p = &(*p)->rb_left;
2164 else
2165 p = &(*p)->rb_right;
2166 }
2167
2168 he = hist_entry__new(pair, true);
2169 if (he) {
2170 memset(&he->stat, 0, sizeof(he->stat));
2171 he->hists = hists;
2172 if (symbol_conf.cumulate_callchain)
2173 memset(he->stat_acc, 0, sizeof(he->stat));
2174 rb_link_node(&he->rb_node_in, parent, p);
2175 rb_insert_color(&he->rb_node_in, root);
2176 hists__inc_stats(hists, he);
2177 he->dummy = true;
2178 }
2179 out:
2180 return he;
2181 }
2182
2183 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2184 struct rb_root *root,
2185 struct hist_entry *pair)
2186 {
2187 struct rb_node **p;
2188 struct rb_node *parent = NULL;
2189 struct hist_entry *he;
2190 struct perf_hpp_fmt *fmt;
2191
2192 p = &root->rb_node;
2193 while (*p != NULL) {
2194 int64_t cmp = 0;
2195
2196 parent = *p;
2197 he = rb_entry(parent, struct hist_entry, rb_node_in);
2198
2199 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2200 cmp = fmt->collapse(fmt, he, pair);
2201 if (cmp)
2202 break;
2203 }
2204 if (!cmp)
2205 goto out;
2206
2207 if (cmp < 0)
2208 p = &parent->rb_left;
2209 else
2210 p = &parent->rb_right;
2211 }
2212
2213 he = hist_entry__new(pair, true);
2214 if (he) {
2215 rb_link_node(&he->rb_node_in, parent, p);
2216 rb_insert_color(&he->rb_node_in, root);
2217
2218 he->dummy = true;
2219 he->hists = hists;
2220 memset(&he->stat, 0, sizeof(he->stat));
2221 hists__inc_stats(hists, he);
2222 }
2223 out:
2224 return he;
2225 }
2226
2227 static struct hist_entry *hists__find_entry(struct hists *hists,
2228 struct hist_entry *he)
2229 {
2230 struct rb_node *n;
2231
2232 if (hists__has(hists, need_collapse))
2233 n = hists->entries_collapsed.rb_node;
2234 else
2235 n = hists->entries_in->rb_node;
2236
2237 while (n) {
2238 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2239 int64_t cmp = hist_entry__collapse(iter, he);
2240
2241 if (cmp < 0)
2242 n = n->rb_left;
2243 else if (cmp > 0)
2244 n = n->rb_right;
2245 else
2246 return iter;
2247 }
2248
2249 return NULL;
2250 }
2251
2252 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2253 struct hist_entry *he)
2254 {
2255 struct rb_node *n = root->rb_node;
2256
2257 while (n) {
2258 struct hist_entry *iter;
2259 struct perf_hpp_fmt *fmt;
2260 int64_t cmp = 0;
2261
2262 iter = rb_entry(n, struct hist_entry, rb_node_in);
2263 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2264 cmp = fmt->collapse(fmt, iter, he);
2265 if (cmp)
2266 break;
2267 }
2268
2269 if (cmp < 0)
2270 n = n->rb_left;
2271 else if (cmp > 0)
2272 n = n->rb_right;
2273 else
2274 return iter;
2275 }
2276
2277 return NULL;
2278 }
2279
2280 static void hists__match_hierarchy(struct rb_root *leader_root,
2281 struct rb_root *other_root)
2282 {
2283 struct rb_node *nd;
2284 struct hist_entry *pos, *pair;
2285
2286 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2287 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2288 pair = hists__find_hierarchy_entry(other_root, pos);
2289
2290 if (pair) {
2291 hist_entry__add_pair(pair, pos);
2292 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2293 }
2294 }
2295 }
2296
2297 /*
2298 * Look for pairs to link to the leader buckets (hist_entries):
2299 */
2300 void hists__match(struct hists *leader, struct hists *other)
2301 {
2302 struct rb_root *root;
2303 struct rb_node *nd;
2304 struct hist_entry *pos, *pair;
2305
2306 if (symbol_conf.report_hierarchy) {
2307 /* hierarchy report always collapses entries */
2308 return hists__match_hierarchy(&leader->entries_collapsed,
2309 &other->entries_collapsed);
2310 }
2311
2312 if (hists__has(leader, need_collapse))
2313 root = &leader->entries_collapsed;
2314 else
2315 root = leader->entries_in;
2316
2317 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2318 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2319 pair = hists__find_entry(other, pos);
2320
2321 if (pair)
2322 hist_entry__add_pair(pair, pos);
2323 }
2324 }
2325
2326 static int hists__link_hierarchy(struct hists *leader_hists,
2327 struct hist_entry *parent,
2328 struct rb_root *leader_root,
2329 struct rb_root *other_root)
2330 {
2331 struct rb_node *nd;
2332 struct hist_entry *pos, *leader;
2333
2334 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2335 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2336
2337 if (hist_entry__has_pairs(pos)) {
2338 bool found = false;
2339
2340 list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2341 if (leader->hists == leader_hists) {
2342 found = true;
2343 break;
2344 }
2345 }
2346 if (!found)
2347 return -1;
2348 } else {
2349 leader = add_dummy_hierarchy_entry(leader_hists,
2350 leader_root, pos);
2351 if (leader == NULL)
2352 return -1;
2353
2354 /* do not point parent in the pos */
2355 leader->parent_he = parent;
2356
2357 hist_entry__add_pair(pos, leader);
2358 }
2359
2360 if (!pos->leaf) {
2361 if (hists__link_hierarchy(leader_hists, leader,
2362 &leader->hroot_in,
2363 &pos->hroot_in) < 0)
2364 return -1;
2365 }
2366 }
2367 return 0;
2368 }
2369
2370 /*
2371 * Look for entries in the other hists that are not present in the leader, if
2372 * we find them, just add a dummy entry on the leader hists, with period=0,
2373 * nr_events=0, to serve as the list header.
2374 */
2375 int hists__link(struct hists *leader, struct hists *other)
2376 {
2377 struct rb_root *root;
2378 struct rb_node *nd;
2379 struct hist_entry *pos, *pair;
2380
2381 if (symbol_conf.report_hierarchy) {
2382 /* hierarchy report always collapses entries */
2383 return hists__link_hierarchy(leader, NULL,
2384 &leader->entries_collapsed,
2385 &other->entries_collapsed);
2386 }
2387
2388 if (hists__has(other, need_collapse))
2389 root = &other->entries_collapsed;
2390 else
2391 root = other->entries_in;
2392
2393 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2394 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2395
2396 if (!hist_entry__has_pairs(pos)) {
2397 pair = hists__add_dummy_entry(leader, pos);
2398 if (pair == NULL)
2399 return -1;
2400 hist_entry__add_pair(pos, pair);
2401 }
2402 }
2403
2404 return 0;
2405 }
2406
2407 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2408 struct perf_sample *sample, bool nonany_branch_mode)
2409 {
2410 struct branch_info *bi;
2411
2412 /* If we have branch cycles always annotate them. */
2413 if (bs && bs->nr && bs->entries[0].flags.cycles) {
2414 int i;
2415
2416 bi = sample__resolve_bstack(sample, al);
2417 if (bi) {
2418 struct addr_map_symbol *prev = NULL;
2419
2420 /*
2421 * Ignore errors, still want to process the
2422 * other entries.
2423 *
2424 * For non standard branch modes always
2425 * force no IPC (prev == NULL)
2426 *
2427 * Note that perf stores branches reversed from
2428 * program order!
2429 */
2430 for (i = bs->nr - 1; i >= 0; i--) {
2431 addr_map_symbol__account_cycles(&bi[i].from,
2432 nonany_branch_mode ? NULL : prev,
2433 bi[i].flags.cycles);
2434 prev = &bi[i].to;
2435 }
2436 free(bi);
2437 }
2438 }
2439 }
2440
2441 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2442 {
2443 struct perf_evsel *pos;
2444 size_t ret = 0;
2445
2446 evlist__for_each_entry(evlist, pos) {
2447 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2448 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2449 }
2450
2451 return ret;
2452 }
2453
2454
2455 u64 hists__total_period(struct hists *hists)
2456 {
2457 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2458 hists->stats.total_period;
2459 }
2460
2461 int parse_filter_percentage(const struct option *opt __maybe_unused,
2462 const char *arg, int unset __maybe_unused)
2463 {
2464 if (!strcmp(arg, "relative"))
2465 symbol_conf.filter_relative = true;
2466 else if (!strcmp(arg, "absolute"))
2467 symbol_conf.filter_relative = false;
2468 else {
2469 pr_debug("Invalid percentage: %s\n", arg);
2470 return -1;
2471 }
2472
2473 return 0;
2474 }
2475
2476 int perf_hist_config(const char *var, const char *value)
2477 {
2478 if (!strcmp(var, "hist.percentage"))
2479 return parse_filter_percentage(NULL, value, 0);
2480
2481 return 0;
2482 }
2483
2484 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2485 {
2486 memset(hists, 0, sizeof(*hists));
2487 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2488 hists->entries_in = &hists->entries_in_array[0];
2489 hists->entries_collapsed = RB_ROOT;
2490 hists->entries = RB_ROOT;
2491 pthread_mutex_init(&hists->lock, NULL);
2492 hists->socket_filter = -1;
2493 hists->hpp_list = hpp_list;
2494 INIT_LIST_HEAD(&hists->hpp_formats);
2495 return 0;
2496 }
2497
2498 static void hists__delete_remaining_entries(struct rb_root *root)
2499 {
2500 struct rb_node *node;
2501 struct hist_entry *he;
2502
2503 while (!RB_EMPTY_ROOT(root)) {
2504 node = rb_first(root);
2505 rb_erase(node, root);
2506
2507 he = rb_entry(node, struct hist_entry, rb_node_in);
2508 hist_entry__delete(he);
2509 }
2510 }
2511
2512 static void hists__delete_all_entries(struct hists *hists)
2513 {
2514 hists__delete_entries(hists);
2515 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2516 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2517 hists__delete_remaining_entries(&hists->entries_collapsed);
2518 }
2519
2520 static void hists_evsel__exit(struct perf_evsel *evsel)
2521 {
2522 struct hists *hists = evsel__hists(evsel);
2523 struct perf_hpp_fmt *fmt, *pos;
2524 struct perf_hpp_list_node *node, *tmp;
2525
2526 hists__delete_all_entries(hists);
2527
2528 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2529 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2530 list_del(&fmt->list);
2531 free(fmt);
2532 }
2533 list_del(&node->list);
2534 free(node);
2535 }
2536 }
2537
2538 static int hists_evsel__init(struct perf_evsel *evsel)
2539 {
2540 struct hists *hists = evsel__hists(evsel);
2541
2542 __hists__init(hists, &perf_hpp_list);
2543 return 0;
2544 }
2545
2546 /*
2547 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2548 * stored in the rbtree...
2549 */
2550
2551 int hists__init(void)
2552 {
2553 int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2554 hists_evsel__init,
2555 hists_evsel__exit);
2556 if (err)
2557 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2558
2559 return err;
2560 }
2561
2562 void perf_hpp_list__init(struct perf_hpp_list *list)
2563 {
2564 INIT_LIST_HEAD(&list->fields);
2565 INIT_LIST_HEAD(&list->sorts);
2566 }