]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - tools/perf/util/hist.c
Merge tag 'iommu-updates-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[mirror_ubuntu-artful-kernel.git] / tools / perf / util / hist.c
1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "session.h"
5 #include "sort.h"
6 #include "evlist.h"
7 #include "evsel.h"
8 #include "annotate.h"
9 #include "ui/progress.h"
10 #include <math.h>
11
12 static bool hists__filter_entry_by_dso(struct hists *hists,
13 struct hist_entry *he);
14 static bool hists__filter_entry_by_thread(struct hists *hists,
15 struct hist_entry *he);
16 static bool hists__filter_entry_by_symbol(struct hists *hists,
17 struct hist_entry *he);
18 static bool hists__filter_entry_by_socket(struct hists *hists,
19 struct hist_entry *he);
20
21 u16 hists__col_len(struct hists *hists, enum hist_column col)
22 {
23 return hists->col_len[col];
24 }
25
26 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
27 {
28 hists->col_len[col] = len;
29 }
30
31 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
32 {
33 if (len > hists__col_len(hists, col)) {
34 hists__set_col_len(hists, col, len);
35 return true;
36 }
37 return false;
38 }
39
40 void hists__reset_col_len(struct hists *hists)
41 {
42 enum hist_column col;
43
44 for (col = 0; col < HISTC_NR_COLS; ++col)
45 hists__set_col_len(hists, col, 0);
46 }
47
48 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
49 {
50 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
51
52 if (hists__col_len(hists, dso) < unresolved_col_width &&
53 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
54 !symbol_conf.dso_list)
55 hists__set_col_len(hists, dso, unresolved_col_width);
56 }
57
58 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
59 {
60 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
61 int symlen;
62 u16 len;
63
64 /*
65 * +4 accounts for '[x] ' priv level info
66 * +2 accounts for 0x prefix on raw addresses
67 * +3 accounts for ' y ' symtab origin info
68 */
69 if (h->ms.sym) {
70 symlen = h->ms.sym->namelen + 4;
71 if (verbose)
72 symlen += BITS_PER_LONG / 4 + 2 + 3;
73 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
74 } else {
75 symlen = unresolved_col_width + 4 + 2;
76 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
77 hists__set_unres_dso_col_len(hists, HISTC_DSO);
78 }
79
80 len = thread__comm_len(h->thread);
81 if (hists__new_col_len(hists, HISTC_COMM, len))
82 hists__set_col_len(hists, HISTC_THREAD, len + 8);
83
84 if (h->ms.map) {
85 len = dso__name_len(h->ms.map->dso);
86 hists__new_col_len(hists, HISTC_DSO, len);
87 }
88
89 if (h->parent)
90 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
91
92 if (h->branch_info) {
93 if (h->branch_info->from.sym) {
94 symlen = (int)h->branch_info->from.sym->namelen + 4;
95 if (verbose)
96 symlen += BITS_PER_LONG / 4 + 2 + 3;
97 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
98
99 symlen = dso__name_len(h->branch_info->from.map->dso);
100 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
101 } else {
102 symlen = unresolved_col_width + 4 + 2;
103 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
104 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
105 }
106
107 if (h->branch_info->to.sym) {
108 symlen = (int)h->branch_info->to.sym->namelen + 4;
109 if (verbose)
110 symlen += BITS_PER_LONG / 4 + 2 + 3;
111 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
112
113 symlen = dso__name_len(h->branch_info->to.map->dso);
114 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
115 } else {
116 symlen = unresolved_col_width + 4 + 2;
117 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
118 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
119 }
120
121 if (h->branch_info->srcline_from)
122 hists__new_col_len(hists, HISTC_SRCLINE_FROM,
123 strlen(h->branch_info->srcline_from));
124 if (h->branch_info->srcline_to)
125 hists__new_col_len(hists, HISTC_SRCLINE_TO,
126 strlen(h->branch_info->srcline_to));
127 }
128
129 if (h->mem_info) {
130 if (h->mem_info->daddr.sym) {
131 symlen = (int)h->mem_info->daddr.sym->namelen + 4
132 + unresolved_col_width + 2;
133 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
134 symlen);
135 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
136 symlen + 1);
137 } else {
138 symlen = unresolved_col_width + 4 + 2;
139 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
140 symlen);
141 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
142 symlen);
143 }
144
145 if (h->mem_info->iaddr.sym) {
146 symlen = (int)h->mem_info->iaddr.sym->namelen + 4
147 + unresolved_col_width + 2;
148 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
149 symlen);
150 } else {
151 symlen = unresolved_col_width + 4 + 2;
152 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
153 symlen);
154 }
155
156 if (h->mem_info->daddr.map) {
157 symlen = dso__name_len(h->mem_info->daddr.map->dso);
158 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
159 symlen);
160 } else {
161 symlen = unresolved_col_width + 4 + 2;
162 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
163 }
164 } else {
165 symlen = unresolved_col_width + 4 + 2;
166 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
167 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
168 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
169 }
170
171 hists__new_col_len(hists, HISTC_CPU, 3);
172 hists__new_col_len(hists, HISTC_SOCKET, 6);
173 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
174 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
175 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
176 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
177 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
178 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
179
180 if (h->srcline)
181 hists__new_col_len(hists, HISTC_SRCLINE, strlen(h->srcline));
182
183 if (h->srcfile)
184 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
185
186 if (h->transaction)
187 hists__new_col_len(hists, HISTC_TRANSACTION,
188 hist_entry__transaction_len());
189
190 if (h->trace_output)
191 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
192 }
193
194 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
195 {
196 struct rb_node *next = rb_first(&hists->entries);
197 struct hist_entry *n;
198 int row = 0;
199
200 hists__reset_col_len(hists);
201
202 while (next && row++ < max_rows) {
203 n = rb_entry(next, struct hist_entry, rb_node);
204 if (!n->filtered)
205 hists__calc_col_len(hists, n);
206 next = rb_next(&n->rb_node);
207 }
208 }
209
210 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
211 unsigned int cpumode, u64 period)
212 {
213 switch (cpumode) {
214 case PERF_RECORD_MISC_KERNEL:
215 he_stat->period_sys += period;
216 break;
217 case PERF_RECORD_MISC_USER:
218 he_stat->period_us += period;
219 break;
220 case PERF_RECORD_MISC_GUEST_KERNEL:
221 he_stat->period_guest_sys += period;
222 break;
223 case PERF_RECORD_MISC_GUEST_USER:
224 he_stat->period_guest_us += period;
225 break;
226 default:
227 break;
228 }
229 }
230
231 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
232 u64 weight)
233 {
234
235 he_stat->period += period;
236 he_stat->weight += weight;
237 he_stat->nr_events += 1;
238 }
239
240 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
241 {
242 dest->period += src->period;
243 dest->period_sys += src->period_sys;
244 dest->period_us += src->period_us;
245 dest->period_guest_sys += src->period_guest_sys;
246 dest->period_guest_us += src->period_guest_us;
247 dest->nr_events += src->nr_events;
248 dest->weight += src->weight;
249 }
250
251 static void he_stat__decay(struct he_stat *he_stat)
252 {
253 he_stat->period = (he_stat->period * 7) / 8;
254 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
255 /* XXX need decay for weight too? */
256 }
257
258 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
259
260 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
261 {
262 u64 prev_period = he->stat.period;
263 u64 diff;
264
265 if (prev_period == 0)
266 return true;
267
268 he_stat__decay(&he->stat);
269 if (symbol_conf.cumulate_callchain)
270 he_stat__decay(he->stat_acc);
271 decay_callchain(he->callchain);
272
273 diff = prev_period - he->stat.period;
274
275 if (!he->depth) {
276 hists->stats.total_period -= diff;
277 if (!he->filtered)
278 hists->stats.total_non_filtered_period -= diff;
279 }
280
281 if (!he->leaf) {
282 struct hist_entry *child;
283 struct rb_node *node = rb_first(&he->hroot_out);
284 while (node) {
285 child = rb_entry(node, struct hist_entry, rb_node);
286 node = rb_next(node);
287
288 if (hists__decay_entry(hists, child))
289 hists__delete_entry(hists, child);
290 }
291 }
292
293 return he->stat.period == 0;
294 }
295
296 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
297 {
298 struct rb_root *root_in;
299 struct rb_root *root_out;
300
301 if (he->parent_he) {
302 root_in = &he->parent_he->hroot_in;
303 root_out = &he->parent_he->hroot_out;
304 } else {
305 if (hists__has(hists, need_collapse))
306 root_in = &hists->entries_collapsed;
307 else
308 root_in = hists->entries_in;
309 root_out = &hists->entries;
310 }
311
312 rb_erase(&he->rb_node_in, root_in);
313 rb_erase(&he->rb_node, root_out);
314
315 --hists->nr_entries;
316 if (!he->filtered)
317 --hists->nr_non_filtered_entries;
318
319 hist_entry__delete(he);
320 }
321
322 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
323 {
324 struct rb_node *next = rb_first(&hists->entries);
325 struct hist_entry *n;
326
327 while (next) {
328 n = rb_entry(next, struct hist_entry, rb_node);
329 next = rb_next(&n->rb_node);
330 if (((zap_user && n->level == '.') ||
331 (zap_kernel && n->level != '.') ||
332 hists__decay_entry(hists, n))) {
333 hists__delete_entry(hists, n);
334 }
335 }
336 }
337
338 void hists__delete_entries(struct hists *hists)
339 {
340 struct rb_node *next = rb_first(&hists->entries);
341 struct hist_entry *n;
342
343 while (next) {
344 n = rb_entry(next, struct hist_entry, rb_node);
345 next = rb_next(&n->rb_node);
346
347 hists__delete_entry(hists, n);
348 }
349 }
350
351 /*
352 * histogram, sorted on item, collects periods
353 */
354
355 static int hist_entry__init(struct hist_entry *he,
356 struct hist_entry *template,
357 bool sample_self)
358 {
359 *he = *template;
360
361 if (symbol_conf.cumulate_callchain) {
362 he->stat_acc = malloc(sizeof(he->stat));
363 if (he->stat_acc == NULL)
364 return -ENOMEM;
365 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
366 if (!sample_self)
367 memset(&he->stat, 0, sizeof(he->stat));
368 }
369
370 map__get(he->ms.map);
371
372 if (he->branch_info) {
373 /*
374 * This branch info is (a part of) allocated from
375 * sample__resolve_bstack() and will be freed after
376 * adding new entries. So we need to save a copy.
377 */
378 he->branch_info = malloc(sizeof(*he->branch_info));
379 if (he->branch_info == NULL) {
380 map__zput(he->ms.map);
381 free(he->stat_acc);
382 return -ENOMEM;
383 }
384
385 memcpy(he->branch_info, template->branch_info,
386 sizeof(*he->branch_info));
387
388 map__get(he->branch_info->from.map);
389 map__get(he->branch_info->to.map);
390 }
391
392 if (he->mem_info) {
393 map__get(he->mem_info->iaddr.map);
394 map__get(he->mem_info->daddr.map);
395 }
396
397 if (symbol_conf.use_callchain)
398 callchain_init(he->callchain);
399
400 if (he->raw_data) {
401 he->raw_data = memdup(he->raw_data, he->raw_size);
402
403 if (he->raw_data == NULL) {
404 map__put(he->ms.map);
405 if (he->branch_info) {
406 map__put(he->branch_info->from.map);
407 map__put(he->branch_info->to.map);
408 free(he->branch_info);
409 }
410 if (he->mem_info) {
411 map__put(he->mem_info->iaddr.map);
412 map__put(he->mem_info->daddr.map);
413 }
414 free(he->stat_acc);
415 return -ENOMEM;
416 }
417 }
418 INIT_LIST_HEAD(&he->pairs.node);
419 thread__get(he->thread);
420
421 if (!symbol_conf.report_hierarchy)
422 he->leaf = true;
423
424 return 0;
425 }
426
427 static void *hist_entry__zalloc(size_t size)
428 {
429 return zalloc(size + sizeof(struct hist_entry));
430 }
431
432 static void hist_entry__free(void *ptr)
433 {
434 free(ptr);
435 }
436
437 static struct hist_entry_ops default_ops = {
438 .new = hist_entry__zalloc,
439 .free = hist_entry__free,
440 };
441
442 static struct hist_entry *hist_entry__new(struct hist_entry *template,
443 bool sample_self)
444 {
445 struct hist_entry_ops *ops = template->ops;
446 size_t callchain_size = 0;
447 struct hist_entry *he;
448 int err = 0;
449
450 if (!ops)
451 ops = template->ops = &default_ops;
452
453 if (symbol_conf.use_callchain)
454 callchain_size = sizeof(struct callchain_root);
455
456 he = ops->new(callchain_size);
457 if (he) {
458 err = hist_entry__init(he, template, sample_self);
459 if (err) {
460 ops->free(he);
461 he = NULL;
462 }
463 }
464
465 return he;
466 }
467
468 static u8 symbol__parent_filter(const struct symbol *parent)
469 {
470 if (symbol_conf.exclude_other && parent == NULL)
471 return 1 << HIST_FILTER__PARENT;
472 return 0;
473 }
474
475 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
476 {
477 if (!symbol_conf.use_callchain)
478 return;
479
480 he->hists->callchain_period += period;
481 if (!he->filtered)
482 he->hists->callchain_non_filtered_period += period;
483 }
484
485 static struct hist_entry *hists__findnew_entry(struct hists *hists,
486 struct hist_entry *entry,
487 struct addr_location *al,
488 bool sample_self)
489 {
490 struct rb_node **p;
491 struct rb_node *parent = NULL;
492 struct hist_entry *he;
493 int64_t cmp;
494 u64 period = entry->stat.period;
495 u64 weight = entry->stat.weight;
496
497 p = &hists->entries_in->rb_node;
498
499 while (*p != NULL) {
500 parent = *p;
501 he = rb_entry(parent, struct hist_entry, rb_node_in);
502
503 /*
504 * Make sure that it receives arguments in a same order as
505 * hist_entry__collapse() so that we can use an appropriate
506 * function when searching an entry regardless which sort
507 * keys were used.
508 */
509 cmp = hist_entry__cmp(he, entry);
510
511 if (!cmp) {
512 if (sample_self) {
513 he_stat__add_period(&he->stat, period, weight);
514 hist_entry__add_callchain_period(he, period);
515 }
516 if (symbol_conf.cumulate_callchain)
517 he_stat__add_period(he->stat_acc, period, weight);
518
519 /*
520 * This mem info was allocated from sample__resolve_mem
521 * and will not be used anymore.
522 */
523 zfree(&entry->mem_info);
524
525 /* If the map of an existing hist_entry has
526 * become out-of-date due to an exec() or
527 * similar, update it. Otherwise we will
528 * mis-adjust symbol addresses when computing
529 * the history counter to increment.
530 */
531 if (he->ms.map != entry->ms.map) {
532 map__put(he->ms.map);
533 he->ms.map = map__get(entry->ms.map);
534 }
535 goto out;
536 }
537
538 if (cmp < 0)
539 p = &(*p)->rb_left;
540 else
541 p = &(*p)->rb_right;
542 }
543
544 he = hist_entry__new(entry, sample_self);
545 if (!he)
546 return NULL;
547
548 if (sample_self)
549 hist_entry__add_callchain_period(he, period);
550 hists->nr_entries++;
551
552 rb_link_node(&he->rb_node_in, parent, p);
553 rb_insert_color(&he->rb_node_in, hists->entries_in);
554 out:
555 if (sample_self)
556 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
557 if (symbol_conf.cumulate_callchain)
558 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
559 return he;
560 }
561
562 static struct hist_entry*
563 __hists__add_entry(struct hists *hists,
564 struct addr_location *al,
565 struct symbol *sym_parent,
566 struct branch_info *bi,
567 struct mem_info *mi,
568 struct perf_sample *sample,
569 bool sample_self,
570 struct hist_entry_ops *ops)
571 {
572 struct hist_entry entry = {
573 .thread = al->thread,
574 .comm = thread__comm(al->thread),
575 .ms = {
576 .map = al->map,
577 .sym = al->sym,
578 },
579 .socket = al->socket,
580 .cpu = al->cpu,
581 .cpumode = al->cpumode,
582 .ip = al->addr,
583 .level = al->level,
584 .stat = {
585 .nr_events = 1,
586 .period = sample->period,
587 .weight = sample->weight,
588 },
589 .parent = sym_parent,
590 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
591 .hists = hists,
592 .branch_info = bi,
593 .mem_info = mi,
594 .transaction = sample->transaction,
595 .raw_data = sample->raw_data,
596 .raw_size = sample->raw_size,
597 .ops = ops,
598 };
599
600 return hists__findnew_entry(hists, &entry, al, sample_self);
601 }
602
603 struct hist_entry *hists__add_entry(struct hists *hists,
604 struct addr_location *al,
605 struct symbol *sym_parent,
606 struct branch_info *bi,
607 struct mem_info *mi,
608 struct perf_sample *sample,
609 bool sample_self)
610 {
611 return __hists__add_entry(hists, al, sym_parent, bi, mi,
612 sample, sample_self, NULL);
613 }
614
615 struct hist_entry *hists__add_entry_ops(struct hists *hists,
616 struct hist_entry_ops *ops,
617 struct addr_location *al,
618 struct symbol *sym_parent,
619 struct branch_info *bi,
620 struct mem_info *mi,
621 struct perf_sample *sample,
622 bool sample_self)
623 {
624 return __hists__add_entry(hists, al, sym_parent, bi, mi,
625 sample, sample_self, ops);
626 }
627
628 static int
629 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
630 struct addr_location *al __maybe_unused)
631 {
632 return 0;
633 }
634
635 static int
636 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
637 struct addr_location *al __maybe_unused)
638 {
639 return 0;
640 }
641
642 static int
643 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
644 {
645 struct perf_sample *sample = iter->sample;
646 struct mem_info *mi;
647
648 mi = sample__resolve_mem(sample, al);
649 if (mi == NULL)
650 return -ENOMEM;
651
652 iter->priv = mi;
653 return 0;
654 }
655
656 static int
657 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
658 {
659 u64 cost;
660 struct mem_info *mi = iter->priv;
661 struct hists *hists = evsel__hists(iter->evsel);
662 struct perf_sample *sample = iter->sample;
663 struct hist_entry *he;
664
665 if (mi == NULL)
666 return -EINVAL;
667
668 cost = sample->weight;
669 if (!cost)
670 cost = 1;
671
672 /*
673 * must pass period=weight in order to get the correct
674 * sorting from hists__collapse_resort() which is solely
675 * based on periods. We want sorting be done on nr_events * weight
676 * and this is indirectly achieved by passing period=weight here
677 * and the he_stat__add_period() function.
678 */
679 sample->period = cost;
680
681 he = hists__add_entry(hists, al, iter->parent, NULL, mi,
682 sample, true);
683 if (!he)
684 return -ENOMEM;
685
686 iter->he = he;
687 return 0;
688 }
689
690 static int
691 iter_finish_mem_entry(struct hist_entry_iter *iter,
692 struct addr_location *al __maybe_unused)
693 {
694 struct perf_evsel *evsel = iter->evsel;
695 struct hists *hists = evsel__hists(evsel);
696 struct hist_entry *he = iter->he;
697 int err = -EINVAL;
698
699 if (he == NULL)
700 goto out;
701
702 hists__inc_nr_samples(hists, he->filtered);
703
704 err = hist_entry__append_callchain(he, iter->sample);
705
706 out:
707 /*
708 * We don't need to free iter->priv (mem_info) here since the mem info
709 * was either already freed in hists__findnew_entry() or passed to a
710 * new hist entry by hist_entry__new().
711 */
712 iter->priv = NULL;
713
714 iter->he = NULL;
715 return err;
716 }
717
718 static int
719 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
720 {
721 struct branch_info *bi;
722 struct perf_sample *sample = iter->sample;
723
724 bi = sample__resolve_bstack(sample, al);
725 if (!bi)
726 return -ENOMEM;
727
728 iter->curr = 0;
729 iter->total = sample->branch_stack->nr;
730
731 iter->priv = bi;
732 return 0;
733 }
734
735 static int
736 iter_add_single_branch_entry(struct hist_entry_iter *iter,
737 struct addr_location *al __maybe_unused)
738 {
739 /* to avoid calling callback function */
740 iter->he = NULL;
741
742 return 0;
743 }
744
745 static int
746 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
747 {
748 struct branch_info *bi = iter->priv;
749 int i = iter->curr;
750
751 if (bi == NULL)
752 return 0;
753
754 if (iter->curr >= iter->total)
755 return 0;
756
757 al->map = bi[i].to.map;
758 al->sym = bi[i].to.sym;
759 al->addr = bi[i].to.addr;
760 return 1;
761 }
762
763 static int
764 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
765 {
766 struct branch_info *bi;
767 struct perf_evsel *evsel = iter->evsel;
768 struct hists *hists = evsel__hists(evsel);
769 struct perf_sample *sample = iter->sample;
770 struct hist_entry *he = NULL;
771 int i = iter->curr;
772 int err = 0;
773
774 bi = iter->priv;
775
776 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
777 goto out;
778
779 /*
780 * The report shows the percentage of total branches captured
781 * and not events sampled. Thus we use a pseudo period of 1.
782 */
783 sample->period = 1;
784 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
785
786 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
787 sample, true);
788 if (he == NULL)
789 return -ENOMEM;
790
791 hists__inc_nr_samples(hists, he->filtered);
792
793 out:
794 iter->he = he;
795 iter->curr++;
796 return err;
797 }
798
799 static int
800 iter_finish_branch_entry(struct hist_entry_iter *iter,
801 struct addr_location *al __maybe_unused)
802 {
803 zfree(&iter->priv);
804 iter->he = NULL;
805
806 return iter->curr >= iter->total ? 0 : -1;
807 }
808
809 static int
810 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
811 struct addr_location *al __maybe_unused)
812 {
813 return 0;
814 }
815
816 static int
817 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
818 {
819 struct perf_evsel *evsel = iter->evsel;
820 struct perf_sample *sample = iter->sample;
821 struct hist_entry *he;
822
823 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
824 sample, true);
825 if (he == NULL)
826 return -ENOMEM;
827
828 iter->he = he;
829 return 0;
830 }
831
832 static int
833 iter_finish_normal_entry(struct hist_entry_iter *iter,
834 struct addr_location *al __maybe_unused)
835 {
836 struct hist_entry *he = iter->he;
837 struct perf_evsel *evsel = iter->evsel;
838 struct perf_sample *sample = iter->sample;
839
840 if (he == NULL)
841 return 0;
842
843 iter->he = NULL;
844
845 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
846
847 return hist_entry__append_callchain(he, sample);
848 }
849
850 static int
851 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
852 struct addr_location *al __maybe_unused)
853 {
854 struct hist_entry **he_cache;
855
856 callchain_cursor_commit(&callchain_cursor);
857
858 /*
859 * This is for detecting cycles or recursions so that they're
860 * cumulated only one time to prevent entries more than 100%
861 * overhead.
862 */
863 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
864 if (he_cache == NULL)
865 return -ENOMEM;
866
867 iter->priv = he_cache;
868 iter->curr = 0;
869
870 return 0;
871 }
872
873 static int
874 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
875 struct addr_location *al)
876 {
877 struct perf_evsel *evsel = iter->evsel;
878 struct hists *hists = evsel__hists(evsel);
879 struct perf_sample *sample = iter->sample;
880 struct hist_entry **he_cache = iter->priv;
881 struct hist_entry *he;
882 int err = 0;
883
884 he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
885 sample, true);
886 if (he == NULL)
887 return -ENOMEM;
888
889 iter->he = he;
890 he_cache[iter->curr++] = he;
891
892 hist_entry__append_callchain(he, sample);
893
894 /*
895 * We need to re-initialize the cursor since callchain_append()
896 * advanced the cursor to the end.
897 */
898 callchain_cursor_commit(&callchain_cursor);
899
900 hists__inc_nr_samples(hists, he->filtered);
901
902 return err;
903 }
904
905 static int
906 iter_next_cumulative_entry(struct hist_entry_iter *iter,
907 struct addr_location *al)
908 {
909 struct callchain_cursor_node *node;
910
911 node = callchain_cursor_current(&callchain_cursor);
912 if (node == NULL)
913 return 0;
914
915 return fill_callchain_info(al, node, iter->hide_unresolved);
916 }
917
918 static int
919 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
920 struct addr_location *al)
921 {
922 struct perf_evsel *evsel = iter->evsel;
923 struct perf_sample *sample = iter->sample;
924 struct hist_entry **he_cache = iter->priv;
925 struct hist_entry *he;
926 struct hist_entry he_tmp = {
927 .hists = evsel__hists(evsel),
928 .cpu = al->cpu,
929 .thread = al->thread,
930 .comm = thread__comm(al->thread),
931 .ip = al->addr,
932 .ms = {
933 .map = al->map,
934 .sym = al->sym,
935 },
936 .parent = iter->parent,
937 .raw_data = sample->raw_data,
938 .raw_size = sample->raw_size,
939 };
940 int i;
941 struct callchain_cursor cursor;
942
943 callchain_cursor_snapshot(&cursor, &callchain_cursor);
944
945 callchain_cursor_advance(&callchain_cursor);
946
947 /*
948 * Check if there's duplicate entries in the callchain.
949 * It's possible that it has cycles or recursive calls.
950 */
951 for (i = 0; i < iter->curr; i++) {
952 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
953 /* to avoid calling callback function */
954 iter->he = NULL;
955 return 0;
956 }
957 }
958
959 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
960 sample, false);
961 if (he == NULL)
962 return -ENOMEM;
963
964 iter->he = he;
965 he_cache[iter->curr++] = he;
966
967 if (symbol_conf.use_callchain)
968 callchain_append(he->callchain, &cursor, sample->period);
969 return 0;
970 }
971
972 static int
973 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
974 struct addr_location *al __maybe_unused)
975 {
976 zfree(&iter->priv);
977 iter->he = NULL;
978
979 return 0;
980 }
981
982 const struct hist_iter_ops hist_iter_mem = {
983 .prepare_entry = iter_prepare_mem_entry,
984 .add_single_entry = iter_add_single_mem_entry,
985 .next_entry = iter_next_nop_entry,
986 .add_next_entry = iter_add_next_nop_entry,
987 .finish_entry = iter_finish_mem_entry,
988 };
989
990 const struct hist_iter_ops hist_iter_branch = {
991 .prepare_entry = iter_prepare_branch_entry,
992 .add_single_entry = iter_add_single_branch_entry,
993 .next_entry = iter_next_branch_entry,
994 .add_next_entry = iter_add_next_branch_entry,
995 .finish_entry = iter_finish_branch_entry,
996 };
997
998 const struct hist_iter_ops hist_iter_normal = {
999 .prepare_entry = iter_prepare_normal_entry,
1000 .add_single_entry = iter_add_single_normal_entry,
1001 .next_entry = iter_next_nop_entry,
1002 .add_next_entry = iter_add_next_nop_entry,
1003 .finish_entry = iter_finish_normal_entry,
1004 };
1005
1006 const struct hist_iter_ops hist_iter_cumulative = {
1007 .prepare_entry = iter_prepare_cumulative_entry,
1008 .add_single_entry = iter_add_single_cumulative_entry,
1009 .next_entry = iter_next_cumulative_entry,
1010 .add_next_entry = iter_add_next_cumulative_entry,
1011 .finish_entry = iter_finish_cumulative_entry,
1012 };
1013
1014 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1015 int max_stack_depth, void *arg)
1016 {
1017 int err, err2;
1018
1019 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1020 iter->evsel, al, max_stack_depth);
1021 if (err)
1022 return err;
1023
1024 iter->max_stack = max_stack_depth;
1025
1026 err = iter->ops->prepare_entry(iter, al);
1027 if (err)
1028 goto out;
1029
1030 err = iter->ops->add_single_entry(iter, al);
1031 if (err)
1032 goto out;
1033
1034 if (iter->he && iter->add_entry_cb) {
1035 err = iter->add_entry_cb(iter, al, true, arg);
1036 if (err)
1037 goto out;
1038 }
1039
1040 while (iter->ops->next_entry(iter, al)) {
1041 err = iter->ops->add_next_entry(iter, al);
1042 if (err)
1043 break;
1044
1045 if (iter->he && iter->add_entry_cb) {
1046 err = iter->add_entry_cb(iter, al, false, arg);
1047 if (err)
1048 goto out;
1049 }
1050 }
1051
1052 out:
1053 err2 = iter->ops->finish_entry(iter, al);
1054 if (!err)
1055 err = err2;
1056
1057 return err;
1058 }
1059
1060 int64_t
1061 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1062 {
1063 struct hists *hists = left->hists;
1064 struct perf_hpp_fmt *fmt;
1065 int64_t cmp = 0;
1066
1067 hists__for_each_sort_list(hists, fmt) {
1068 if (perf_hpp__is_dynamic_entry(fmt) &&
1069 !perf_hpp__defined_dynamic_entry(fmt, hists))
1070 continue;
1071
1072 cmp = fmt->cmp(fmt, left, right);
1073 if (cmp)
1074 break;
1075 }
1076
1077 return cmp;
1078 }
1079
1080 int64_t
1081 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1082 {
1083 struct hists *hists = left->hists;
1084 struct perf_hpp_fmt *fmt;
1085 int64_t cmp = 0;
1086
1087 hists__for_each_sort_list(hists, fmt) {
1088 if (perf_hpp__is_dynamic_entry(fmt) &&
1089 !perf_hpp__defined_dynamic_entry(fmt, hists))
1090 continue;
1091
1092 cmp = fmt->collapse(fmt, left, right);
1093 if (cmp)
1094 break;
1095 }
1096
1097 return cmp;
1098 }
1099
1100 void hist_entry__delete(struct hist_entry *he)
1101 {
1102 struct hist_entry_ops *ops = he->ops;
1103
1104 thread__zput(he->thread);
1105 map__zput(he->ms.map);
1106
1107 if (he->branch_info) {
1108 map__zput(he->branch_info->from.map);
1109 map__zput(he->branch_info->to.map);
1110 free_srcline(he->branch_info->srcline_from);
1111 free_srcline(he->branch_info->srcline_to);
1112 zfree(&he->branch_info);
1113 }
1114
1115 if (he->mem_info) {
1116 map__zput(he->mem_info->iaddr.map);
1117 map__zput(he->mem_info->daddr.map);
1118 zfree(&he->mem_info);
1119 }
1120
1121 zfree(&he->stat_acc);
1122 free_srcline(he->srcline);
1123 if (he->srcfile && he->srcfile[0])
1124 free(he->srcfile);
1125 free_callchain(he->callchain);
1126 free(he->trace_output);
1127 free(he->raw_data);
1128 ops->free(he);
1129 }
1130
1131 /*
1132 * If this is not the last column, then we need to pad it according to the
1133 * pre-calculated max lenght for this column, otherwise don't bother adding
1134 * spaces because that would break viewing this with, for instance, 'less',
1135 * that would show tons of trailing spaces when a long C++ demangled method
1136 * names is sampled.
1137 */
1138 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1139 struct perf_hpp_fmt *fmt, int printed)
1140 {
1141 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1142 const int width = fmt->width(fmt, hpp, he->hists);
1143 if (printed < width) {
1144 advance_hpp(hpp, printed);
1145 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1146 }
1147 }
1148
1149 return printed;
1150 }
1151
1152 /*
1153 * collapse the histogram
1154 */
1155
1156 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1157 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1158 enum hist_filter type);
1159
1160 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1161
1162 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1163 {
1164 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1165 }
1166
1167 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1168 enum hist_filter type,
1169 fmt_chk_fn check)
1170 {
1171 struct perf_hpp_fmt *fmt;
1172 bool type_match = false;
1173 struct hist_entry *parent = he->parent_he;
1174
1175 switch (type) {
1176 case HIST_FILTER__THREAD:
1177 if (symbol_conf.comm_list == NULL &&
1178 symbol_conf.pid_list == NULL &&
1179 symbol_conf.tid_list == NULL)
1180 return;
1181 break;
1182 case HIST_FILTER__DSO:
1183 if (symbol_conf.dso_list == NULL)
1184 return;
1185 break;
1186 case HIST_FILTER__SYMBOL:
1187 if (symbol_conf.sym_list == NULL)
1188 return;
1189 break;
1190 case HIST_FILTER__PARENT:
1191 case HIST_FILTER__GUEST:
1192 case HIST_FILTER__HOST:
1193 case HIST_FILTER__SOCKET:
1194 default:
1195 return;
1196 }
1197
1198 /* if it's filtered by own fmt, it has to have filter bits */
1199 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1200 if (check(fmt)) {
1201 type_match = true;
1202 break;
1203 }
1204 }
1205
1206 if (type_match) {
1207 /*
1208 * If the filter is for current level entry, propagate
1209 * filter marker to parents. The marker bit was
1210 * already set by default so it only needs to clear
1211 * non-filtered entries.
1212 */
1213 if (!(he->filtered & (1 << type))) {
1214 while (parent) {
1215 parent->filtered &= ~(1 << type);
1216 parent = parent->parent_he;
1217 }
1218 }
1219 } else {
1220 /*
1221 * If current entry doesn't have matching formats, set
1222 * filter marker for upper level entries. it will be
1223 * cleared if its lower level entries is not filtered.
1224 *
1225 * For lower-level entries, it inherits parent's
1226 * filter bit so that lower level entries of a
1227 * non-filtered entry won't set the filter marker.
1228 */
1229 if (parent == NULL)
1230 he->filtered |= (1 << type);
1231 else
1232 he->filtered |= (parent->filtered & (1 << type));
1233 }
1234 }
1235
1236 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1237 {
1238 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1239 check_thread_entry);
1240
1241 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1242 perf_hpp__is_dso_entry);
1243
1244 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1245 perf_hpp__is_sym_entry);
1246
1247 hists__apply_filters(he->hists, he);
1248 }
1249
1250 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1251 struct rb_root *root,
1252 struct hist_entry *he,
1253 struct hist_entry *parent_he,
1254 struct perf_hpp_list *hpp_list)
1255 {
1256 struct rb_node **p = &root->rb_node;
1257 struct rb_node *parent = NULL;
1258 struct hist_entry *iter, *new;
1259 struct perf_hpp_fmt *fmt;
1260 int64_t cmp;
1261
1262 while (*p != NULL) {
1263 parent = *p;
1264 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1265
1266 cmp = 0;
1267 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1268 cmp = fmt->collapse(fmt, iter, he);
1269 if (cmp)
1270 break;
1271 }
1272
1273 if (!cmp) {
1274 he_stat__add_stat(&iter->stat, &he->stat);
1275 return iter;
1276 }
1277
1278 if (cmp < 0)
1279 p = &parent->rb_left;
1280 else
1281 p = &parent->rb_right;
1282 }
1283
1284 new = hist_entry__new(he, true);
1285 if (new == NULL)
1286 return NULL;
1287
1288 hists->nr_entries++;
1289
1290 /* save related format list for output */
1291 new->hpp_list = hpp_list;
1292 new->parent_he = parent_he;
1293
1294 hist_entry__apply_hierarchy_filters(new);
1295
1296 /* some fields are now passed to 'new' */
1297 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1298 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1299 he->trace_output = NULL;
1300 else
1301 new->trace_output = NULL;
1302
1303 if (perf_hpp__is_srcline_entry(fmt))
1304 he->srcline = NULL;
1305 else
1306 new->srcline = NULL;
1307
1308 if (perf_hpp__is_srcfile_entry(fmt))
1309 he->srcfile = NULL;
1310 else
1311 new->srcfile = NULL;
1312 }
1313
1314 rb_link_node(&new->rb_node_in, parent, p);
1315 rb_insert_color(&new->rb_node_in, root);
1316 return new;
1317 }
1318
1319 static int hists__hierarchy_insert_entry(struct hists *hists,
1320 struct rb_root *root,
1321 struct hist_entry *he)
1322 {
1323 struct perf_hpp_list_node *node;
1324 struct hist_entry *new_he = NULL;
1325 struct hist_entry *parent = NULL;
1326 int depth = 0;
1327 int ret = 0;
1328
1329 list_for_each_entry(node, &hists->hpp_formats, list) {
1330 /* skip period (overhead) and elided columns */
1331 if (node->level == 0 || node->skip)
1332 continue;
1333
1334 /* insert copy of 'he' for each fmt into the hierarchy */
1335 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1336 if (new_he == NULL) {
1337 ret = -1;
1338 break;
1339 }
1340
1341 root = &new_he->hroot_in;
1342 new_he->depth = depth++;
1343 parent = new_he;
1344 }
1345
1346 if (new_he) {
1347 new_he->leaf = true;
1348
1349 if (symbol_conf.use_callchain) {
1350 callchain_cursor_reset(&callchain_cursor);
1351 if (callchain_merge(&callchain_cursor,
1352 new_he->callchain,
1353 he->callchain) < 0)
1354 ret = -1;
1355 }
1356 }
1357
1358 /* 'he' is no longer used */
1359 hist_entry__delete(he);
1360
1361 /* return 0 (or -1) since it already applied filters */
1362 return ret;
1363 }
1364
1365 static int hists__collapse_insert_entry(struct hists *hists,
1366 struct rb_root *root,
1367 struct hist_entry *he)
1368 {
1369 struct rb_node **p = &root->rb_node;
1370 struct rb_node *parent = NULL;
1371 struct hist_entry *iter;
1372 int64_t cmp;
1373
1374 if (symbol_conf.report_hierarchy)
1375 return hists__hierarchy_insert_entry(hists, root, he);
1376
1377 while (*p != NULL) {
1378 parent = *p;
1379 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1380
1381 cmp = hist_entry__collapse(iter, he);
1382
1383 if (!cmp) {
1384 int ret = 0;
1385
1386 he_stat__add_stat(&iter->stat, &he->stat);
1387 if (symbol_conf.cumulate_callchain)
1388 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1389
1390 if (symbol_conf.use_callchain) {
1391 callchain_cursor_reset(&callchain_cursor);
1392 if (callchain_merge(&callchain_cursor,
1393 iter->callchain,
1394 he->callchain) < 0)
1395 ret = -1;
1396 }
1397 hist_entry__delete(he);
1398 return ret;
1399 }
1400
1401 if (cmp < 0)
1402 p = &(*p)->rb_left;
1403 else
1404 p = &(*p)->rb_right;
1405 }
1406 hists->nr_entries++;
1407
1408 rb_link_node(&he->rb_node_in, parent, p);
1409 rb_insert_color(&he->rb_node_in, root);
1410 return 1;
1411 }
1412
1413 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1414 {
1415 struct rb_root *root;
1416
1417 pthread_mutex_lock(&hists->lock);
1418
1419 root = hists->entries_in;
1420 if (++hists->entries_in > &hists->entries_in_array[1])
1421 hists->entries_in = &hists->entries_in_array[0];
1422
1423 pthread_mutex_unlock(&hists->lock);
1424
1425 return root;
1426 }
1427
1428 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1429 {
1430 hists__filter_entry_by_dso(hists, he);
1431 hists__filter_entry_by_thread(hists, he);
1432 hists__filter_entry_by_symbol(hists, he);
1433 hists__filter_entry_by_socket(hists, he);
1434 }
1435
1436 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1437 {
1438 struct rb_root *root;
1439 struct rb_node *next;
1440 struct hist_entry *n;
1441 int ret;
1442
1443 if (!hists__has(hists, need_collapse))
1444 return 0;
1445
1446 hists->nr_entries = 0;
1447
1448 root = hists__get_rotate_entries_in(hists);
1449
1450 next = rb_first(root);
1451
1452 while (next) {
1453 if (session_done())
1454 break;
1455 n = rb_entry(next, struct hist_entry, rb_node_in);
1456 next = rb_next(&n->rb_node_in);
1457
1458 rb_erase(&n->rb_node_in, root);
1459 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1460 if (ret < 0)
1461 return -1;
1462
1463 if (ret) {
1464 /*
1465 * If it wasn't combined with one of the entries already
1466 * collapsed, we need to apply the filters that may have
1467 * been set by, say, the hist_browser.
1468 */
1469 hists__apply_filters(hists, n);
1470 }
1471 if (prog)
1472 ui_progress__update(prog, 1);
1473 }
1474 return 0;
1475 }
1476
1477 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1478 {
1479 struct hists *hists = a->hists;
1480 struct perf_hpp_fmt *fmt;
1481 int64_t cmp = 0;
1482
1483 hists__for_each_sort_list(hists, fmt) {
1484 if (perf_hpp__should_skip(fmt, a->hists))
1485 continue;
1486
1487 cmp = fmt->sort(fmt, a, b);
1488 if (cmp)
1489 break;
1490 }
1491
1492 return cmp;
1493 }
1494
1495 static void hists__reset_filter_stats(struct hists *hists)
1496 {
1497 hists->nr_non_filtered_entries = 0;
1498 hists->stats.total_non_filtered_period = 0;
1499 }
1500
1501 void hists__reset_stats(struct hists *hists)
1502 {
1503 hists->nr_entries = 0;
1504 hists->stats.total_period = 0;
1505
1506 hists__reset_filter_stats(hists);
1507 }
1508
1509 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1510 {
1511 hists->nr_non_filtered_entries++;
1512 hists->stats.total_non_filtered_period += h->stat.period;
1513 }
1514
1515 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1516 {
1517 if (!h->filtered)
1518 hists__inc_filter_stats(hists, h);
1519
1520 hists->nr_entries++;
1521 hists->stats.total_period += h->stat.period;
1522 }
1523
1524 static void hierarchy_recalc_total_periods(struct hists *hists)
1525 {
1526 struct rb_node *node;
1527 struct hist_entry *he;
1528
1529 node = rb_first(&hists->entries);
1530
1531 hists->stats.total_period = 0;
1532 hists->stats.total_non_filtered_period = 0;
1533
1534 /*
1535 * recalculate total period using top-level entries only
1536 * since lower level entries only see non-filtered entries
1537 * but upper level entries have sum of both entries.
1538 */
1539 while (node) {
1540 he = rb_entry(node, struct hist_entry, rb_node);
1541 node = rb_next(node);
1542
1543 hists->stats.total_period += he->stat.period;
1544 if (!he->filtered)
1545 hists->stats.total_non_filtered_period += he->stat.period;
1546 }
1547 }
1548
1549 static void hierarchy_insert_output_entry(struct rb_root *root,
1550 struct hist_entry *he)
1551 {
1552 struct rb_node **p = &root->rb_node;
1553 struct rb_node *parent = NULL;
1554 struct hist_entry *iter;
1555 struct perf_hpp_fmt *fmt;
1556
1557 while (*p != NULL) {
1558 parent = *p;
1559 iter = rb_entry(parent, struct hist_entry, rb_node);
1560
1561 if (hist_entry__sort(he, iter) > 0)
1562 p = &parent->rb_left;
1563 else
1564 p = &parent->rb_right;
1565 }
1566
1567 rb_link_node(&he->rb_node, parent, p);
1568 rb_insert_color(&he->rb_node, root);
1569
1570 /* update column width of dynamic entry */
1571 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1572 if (perf_hpp__is_dynamic_entry(fmt))
1573 fmt->sort(fmt, he, NULL);
1574 }
1575 }
1576
1577 static void hists__hierarchy_output_resort(struct hists *hists,
1578 struct ui_progress *prog,
1579 struct rb_root *root_in,
1580 struct rb_root *root_out,
1581 u64 min_callchain_hits,
1582 bool use_callchain)
1583 {
1584 struct rb_node *node;
1585 struct hist_entry *he;
1586
1587 *root_out = RB_ROOT;
1588 node = rb_first(root_in);
1589
1590 while (node) {
1591 he = rb_entry(node, struct hist_entry, rb_node_in);
1592 node = rb_next(node);
1593
1594 hierarchy_insert_output_entry(root_out, he);
1595
1596 if (prog)
1597 ui_progress__update(prog, 1);
1598
1599 if (!he->leaf) {
1600 hists__hierarchy_output_resort(hists, prog,
1601 &he->hroot_in,
1602 &he->hroot_out,
1603 min_callchain_hits,
1604 use_callchain);
1605 hists->nr_entries++;
1606 if (!he->filtered) {
1607 hists->nr_non_filtered_entries++;
1608 hists__calc_col_len(hists, he);
1609 }
1610
1611 continue;
1612 }
1613
1614 if (!use_callchain)
1615 continue;
1616
1617 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1618 u64 total = he->stat.period;
1619
1620 if (symbol_conf.cumulate_callchain)
1621 total = he->stat_acc->period;
1622
1623 min_callchain_hits = total * (callchain_param.min_percent / 100);
1624 }
1625
1626 callchain_param.sort(&he->sorted_chain, he->callchain,
1627 min_callchain_hits, &callchain_param);
1628 }
1629 }
1630
1631 static void __hists__insert_output_entry(struct rb_root *entries,
1632 struct hist_entry *he,
1633 u64 min_callchain_hits,
1634 bool use_callchain)
1635 {
1636 struct rb_node **p = &entries->rb_node;
1637 struct rb_node *parent = NULL;
1638 struct hist_entry *iter;
1639 struct perf_hpp_fmt *fmt;
1640
1641 if (use_callchain) {
1642 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1643 u64 total = he->stat.period;
1644
1645 if (symbol_conf.cumulate_callchain)
1646 total = he->stat_acc->period;
1647
1648 min_callchain_hits = total * (callchain_param.min_percent / 100);
1649 }
1650 callchain_param.sort(&he->sorted_chain, he->callchain,
1651 min_callchain_hits, &callchain_param);
1652 }
1653
1654 while (*p != NULL) {
1655 parent = *p;
1656 iter = rb_entry(parent, struct hist_entry, rb_node);
1657
1658 if (hist_entry__sort(he, iter) > 0)
1659 p = &(*p)->rb_left;
1660 else
1661 p = &(*p)->rb_right;
1662 }
1663
1664 rb_link_node(&he->rb_node, parent, p);
1665 rb_insert_color(&he->rb_node, entries);
1666
1667 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1668 if (perf_hpp__is_dynamic_entry(fmt) &&
1669 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1670 fmt->sort(fmt, he, NULL); /* update column width */
1671 }
1672 }
1673
1674 static void output_resort(struct hists *hists, struct ui_progress *prog,
1675 bool use_callchain)
1676 {
1677 struct rb_root *root;
1678 struct rb_node *next;
1679 struct hist_entry *n;
1680 u64 callchain_total;
1681 u64 min_callchain_hits;
1682
1683 callchain_total = hists->callchain_period;
1684 if (symbol_conf.filter_relative)
1685 callchain_total = hists->callchain_non_filtered_period;
1686
1687 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1688
1689 hists__reset_stats(hists);
1690 hists__reset_col_len(hists);
1691
1692 if (symbol_conf.report_hierarchy) {
1693 hists__hierarchy_output_resort(hists, prog,
1694 &hists->entries_collapsed,
1695 &hists->entries,
1696 min_callchain_hits,
1697 use_callchain);
1698 hierarchy_recalc_total_periods(hists);
1699 return;
1700 }
1701
1702 if (hists__has(hists, need_collapse))
1703 root = &hists->entries_collapsed;
1704 else
1705 root = hists->entries_in;
1706
1707 next = rb_first(root);
1708 hists->entries = RB_ROOT;
1709
1710 while (next) {
1711 n = rb_entry(next, struct hist_entry, rb_node_in);
1712 next = rb_next(&n->rb_node_in);
1713
1714 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1715 hists__inc_stats(hists, n);
1716
1717 if (!n->filtered)
1718 hists__calc_col_len(hists, n);
1719
1720 if (prog)
1721 ui_progress__update(prog, 1);
1722 }
1723 }
1724
1725 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1726 {
1727 bool use_callchain;
1728
1729 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1730 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1731 else
1732 use_callchain = symbol_conf.use_callchain;
1733
1734 output_resort(evsel__hists(evsel), prog, use_callchain);
1735 }
1736
1737 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1738 {
1739 output_resort(hists, prog, symbol_conf.use_callchain);
1740 }
1741
1742 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1743 {
1744 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1745 return false;
1746
1747 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1748 return true;
1749
1750 return false;
1751 }
1752
1753 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1754 {
1755 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1756
1757 while (can_goto_child(he, HMD_NORMAL)) {
1758 node = rb_last(&he->hroot_out);
1759 he = rb_entry(node, struct hist_entry, rb_node);
1760 }
1761 return node;
1762 }
1763
1764 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1765 {
1766 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1767
1768 if (can_goto_child(he, hmd))
1769 node = rb_first(&he->hroot_out);
1770 else
1771 node = rb_next(node);
1772
1773 while (node == NULL) {
1774 he = he->parent_he;
1775 if (he == NULL)
1776 break;
1777
1778 node = rb_next(&he->rb_node);
1779 }
1780 return node;
1781 }
1782
1783 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1784 {
1785 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1786
1787 node = rb_prev(node);
1788 if (node)
1789 return rb_hierarchy_last(node);
1790
1791 he = he->parent_he;
1792 if (he == NULL)
1793 return NULL;
1794
1795 return &he->rb_node;
1796 }
1797
1798 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1799 {
1800 struct rb_node *node;
1801 struct hist_entry *child;
1802 float percent;
1803
1804 if (he->leaf)
1805 return false;
1806
1807 node = rb_first(&he->hroot_out);
1808 child = rb_entry(node, struct hist_entry, rb_node);
1809
1810 while (node && child->filtered) {
1811 node = rb_next(node);
1812 child = rb_entry(node, struct hist_entry, rb_node);
1813 }
1814
1815 if (node)
1816 percent = hist_entry__get_percent_limit(child);
1817 else
1818 percent = 0;
1819
1820 return node && percent >= limit;
1821 }
1822
1823 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1824 enum hist_filter filter)
1825 {
1826 h->filtered &= ~(1 << filter);
1827
1828 if (symbol_conf.report_hierarchy) {
1829 struct hist_entry *parent = h->parent_he;
1830
1831 while (parent) {
1832 he_stat__add_stat(&parent->stat, &h->stat);
1833
1834 parent->filtered &= ~(1 << filter);
1835
1836 if (parent->filtered)
1837 goto next;
1838
1839 /* force fold unfiltered entry for simplicity */
1840 parent->unfolded = false;
1841 parent->has_no_entry = false;
1842 parent->row_offset = 0;
1843 parent->nr_rows = 0;
1844 next:
1845 parent = parent->parent_he;
1846 }
1847 }
1848
1849 if (h->filtered)
1850 return;
1851
1852 /* force fold unfiltered entry for simplicity */
1853 h->unfolded = false;
1854 h->has_no_entry = false;
1855 h->row_offset = 0;
1856 h->nr_rows = 0;
1857
1858 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1859
1860 hists__inc_filter_stats(hists, h);
1861 hists__calc_col_len(hists, h);
1862 }
1863
1864
1865 static bool hists__filter_entry_by_dso(struct hists *hists,
1866 struct hist_entry *he)
1867 {
1868 if (hists->dso_filter != NULL &&
1869 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1870 he->filtered |= (1 << HIST_FILTER__DSO);
1871 return true;
1872 }
1873
1874 return false;
1875 }
1876
1877 static bool hists__filter_entry_by_thread(struct hists *hists,
1878 struct hist_entry *he)
1879 {
1880 if (hists->thread_filter != NULL &&
1881 he->thread != hists->thread_filter) {
1882 he->filtered |= (1 << HIST_FILTER__THREAD);
1883 return true;
1884 }
1885
1886 return false;
1887 }
1888
1889 static bool hists__filter_entry_by_symbol(struct hists *hists,
1890 struct hist_entry *he)
1891 {
1892 if (hists->symbol_filter_str != NULL &&
1893 (!he->ms.sym || strstr(he->ms.sym->name,
1894 hists->symbol_filter_str) == NULL)) {
1895 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1896 return true;
1897 }
1898
1899 return false;
1900 }
1901
1902 static bool hists__filter_entry_by_socket(struct hists *hists,
1903 struct hist_entry *he)
1904 {
1905 if ((hists->socket_filter > -1) &&
1906 (he->socket != hists->socket_filter)) {
1907 he->filtered |= (1 << HIST_FILTER__SOCKET);
1908 return true;
1909 }
1910
1911 return false;
1912 }
1913
1914 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1915
1916 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1917 {
1918 struct rb_node *nd;
1919
1920 hists->stats.nr_non_filtered_samples = 0;
1921
1922 hists__reset_filter_stats(hists);
1923 hists__reset_col_len(hists);
1924
1925 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1926 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1927
1928 if (filter(hists, h))
1929 continue;
1930
1931 hists__remove_entry_filter(hists, h, type);
1932 }
1933 }
1934
1935 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1936 {
1937 struct rb_node **p = &root->rb_node;
1938 struct rb_node *parent = NULL;
1939 struct hist_entry *iter;
1940 struct rb_root new_root = RB_ROOT;
1941 struct rb_node *nd;
1942
1943 while (*p != NULL) {
1944 parent = *p;
1945 iter = rb_entry(parent, struct hist_entry, rb_node);
1946
1947 if (hist_entry__sort(he, iter) > 0)
1948 p = &(*p)->rb_left;
1949 else
1950 p = &(*p)->rb_right;
1951 }
1952
1953 rb_link_node(&he->rb_node, parent, p);
1954 rb_insert_color(&he->rb_node, root);
1955
1956 if (he->leaf || he->filtered)
1957 return;
1958
1959 nd = rb_first(&he->hroot_out);
1960 while (nd) {
1961 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1962
1963 nd = rb_next(nd);
1964 rb_erase(&h->rb_node, &he->hroot_out);
1965
1966 resort_filtered_entry(&new_root, h);
1967 }
1968
1969 he->hroot_out = new_root;
1970 }
1971
1972 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1973 {
1974 struct rb_node *nd;
1975 struct rb_root new_root = RB_ROOT;
1976
1977 hists->stats.nr_non_filtered_samples = 0;
1978
1979 hists__reset_filter_stats(hists);
1980 hists__reset_col_len(hists);
1981
1982 nd = rb_first(&hists->entries);
1983 while (nd) {
1984 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1985 int ret;
1986
1987 ret = hist_entry__filter(h, type, arg);
1988
1989 /*
1990 * case 1. non-matching type
1991 * zero out the period, set filter marker and move to child
1992 */
1993 if (ret < 0) {
1994 memset(&h->stat, 0, sizeof(h->stat));
1995 h->filtered |= (1 << type);
1996
1997 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
1998 }
1999 /*
2000 * case 2. matched type (filter out)
2001 * set filter marker and move to next
2002 */
2003 else if (ret == 1) {
2004 h->filtered |= (1 << type);
2005
2006 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2007 }
2008 /*
2009 * case 3. ok (not filtered)
2010 * add period to hists and parents, erase the filter marker
2011 * and move to next sibling
2012 */
2013 else {
2014 hists__remove_entry_filter(hists, h, type);
2015
2016 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2017 }
2018 }
2019
2020 hierarchy_recalc_total_periods(hists);
2021
2022 /*
2023 * resort output after applying a new filter since filter in a lower
2024 * hierarchy can change periods in a upper hierarchy.
2025 */
2026 nd = rb_first(&hists->entries);
2027 while (nd) {
2028 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2029
2030 nd = rb_next(nd);
2031 rb_erase(&h->rb_node, &hists->entries);
2032
2033 resort_filtered_entry(&new_root, h);
2034 }
2035
2036 hists->entries = new_root;
2037 }
2038
2039 void hists__filter_by_thread(struct hists *hists)
2040 {
2041 if (symbol_conf.report_hierarchy)
2042 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2043 hists->thread_filter);
2044 else
2045 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2046 hists__filter_entry_by_thread);
2047 }
2048
2049 void hists__filter_by_dso(struct hists *hists)
2050 {
2051 if (symbol_conf.report_hierarchy)
2052 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2053 hists->dso_filter);
2054 else
2055 hists__filter_by_type(hists, HIST_FILTER__DSO,
2056 hists__filter_entry_by_dso);
2057 }
2058
2059 void hists__filter_by_symbol(struct hists *hists)
2060 {
2061 if (symbol_conf.report_hierarchy)
2062 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2063 hists->symbol_filter_str);
2064 else
2065 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2066 hists__filter_entry_by_symbol);
2067 }
2068
2069 void hists__filter_by_socket(struct hists *hists)
2070 {
2071 if (symbol_conf.report_hierarchy)
2072 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2073 &hists->socket_filter);
2074 else
2075 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2076 hists__filter_entry_by_socket);
2077 }
2078
2079 void events_stats__inc(struct events_stats *stats, u32 type)
2080 {
2081 ++stats->nr_events[0];
2082 ++stats->nr_events[type];
2083 }
2084
2085 void hists__inc_nr_events(struct hists *hists, u32 type)
2086 {
2087 events_stats__inc(&hists->stats, type);
2088 }
2089
2090 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2091 {
2092 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2093 if (!filtered)
2094 hists->stats.nr_non_filtered_samples++;
2095 }
2096
2097 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2098 struct hist_entry *pair)
2099 {
2100 struct rb_root *root;
2101 struct rb_node **p;
2102 struct rb_node *parent = NULL;
2103 struct hist_entry *he;
2104 int64_t cmp;
2105
2106 if (hists__has(hists, need_collapse))
2107 root = &hists->entries_collapsed;
2108 else
2109 root = hists->entries_in;
2110
2111 p = &root->rb_node;
2112
2113 while (*p != NULL) {
2114 parent = *p;
2115 he = rb_entry(parent, struct hist_entry, rb_node_in);
2116
2117 cmp = hist_entry__collapse(he, pair);
2118
2119 if (!cmp)
2120 goto out;
2121
2122 if (cmp < 0)
2123 p = &(*p)->rb_left;
2124 else
2125 p = &(*p)->rb_right;
2126 }
2127
2128 he = hist_entry__new(pair, true);
2129 if (he) {
2130 memset(&he->stat, 0, sizeof(he->stat));
2131 he->hists = hists;
2132 if (symbol_conf.cumulate_callchain)
2133 memset(he->stat_acc, 0, sizeof(he->stat));
2134 rb_link_node(&he->rb_node_in, parent, p);
2135 rb_insert_color(&he->rb_node_in, root);
2136 hists__inc_stats(hists, he);
2137 he->dummy = true;
2138 }
2139 out:
2140 return he;
2141 }
2142
2143 static struct hist_entry *hists__find_entry(struct hists *hists,
2144 struct hist_entry *he)
2145 {
2146 struct rb_node *n;
2147
2148 if (hists__has(hists, need_collapse))
2149 n = hists->entries_collapsed.rb_node;
2150 else
2151 n = hists->entries_in->rb_node;
2152
2153 while (n) {
2154 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2155 int64_t cmp = hist_entry__collapse(iter, he);
2156
2157 if (cmp < 0)
2158 n = n->rb_left;
2159 else if (cmp > 0)
2160 n = n->rb_right;
2161 else
2162 return iter;
2163 }
2164
2165 return NULL;
2166 }
2167
2168 /*
2169 * Look for pairs to link to the leader buckets (hist_entries):
2170 */
2171 void hists__match(struct hists *leader, struct hists *other)
2172 {
2173 struct rb_root *root;
2174 struct rb_node *nd;
2175 struct hist_entry *pos, *pair;
2176
2177 if (hists__has(leader, need_collapse))
2178 root = &leader->entries_collapsed;
2179 else
2180 root = leader->entries_in;
2181
2182 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2183 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2184 pair = hists__find_entry(other, pos);
2185
2186 if (pair)
2187 hist_entry__add_pair(pair, pos);
2188 }
2189 }
2190
2191 /*
2192 * Look for entries in the other hists that are not present in the leader, if
2193 * we find them, just add a dummy entry on the leader hists, with period=0,
2194 * nr_events=0, to serve as the list header.
2195 */
2196 int hists__link(struct hists *leader, struct hists *other)
2197 {
2198 struct rb_root *root;
2199 struct rb_node *nd;
2200 struct hist_entry *pos, *pair;
2201
2202 if (hists__has(other, need_collapse))
2203 root = &other->entries_collapsed;
2204 else
2205 root = other->entries_in;
2206
2207 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2208 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2209
2210 if (!hist_entry__has_pairs(pos)) {
2211 pair = hists__add_dummy_entry(leader, pos);
2212 if (pair == NULL)
2213 return -1;
2214 hist_entry__add_pair(pos, pair);
2215 }
2216 }
2217
2218 return 0;
2219 }
2220
2221 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2222 struct perf_sample *sample, bool nonany_branch_mode)
2223 {
2224 struct branch_info *bi;
2225
2226 /* If we have branch cycles always annotate them. */
2227 if (bs && bs->nr && bs->entries[0].flags.cycles) {
2228 int i;
2229
2230 bi = sample__resolve_bstack(sample, al);
2231 if (bi) {
2232 struct addr_map_symbol *prev = NULL;
2233
2234 /*
2235 * Ignore errors, still want to process the
2236 * other entries.
2237 *
2238 * For non standard branch modes always
2239 * force no IPC (prev == NULL)
2240 *
2241 * Note that perf stores branches reversed from
2242 * program order!
2243 */
2244 for (i = bs->nr - 1; i >= 0; i--) {
2245 addr_map_symbol__account_cycles(&bi[i].from,
2246 nonany_branch_mode ? NULL : prev,
2247 bi[i].flags.cycles);
2248 prev = &bi[i].to;
2249 }
2250 free(bi);
2251 }
2252 }
2253 }
2254
2255 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2256 {
2257 struct perf_evsel *pos;
2258 size_t ret = 0;
2259
2260 evlist__for_each_entry(evlist, pos) {
2261 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2262 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2263 }
2264
2265 return ret;
2266 }
2267
2268
2269 u64 hists__total_period(struct hists *hists)
2270 {
2271 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2272 hists->stats.total_period;
2273 }
2274
2275 int parse_filter_percentage(const struct option *opt __maybe_unused,
2276 const char *arg, int unset __maybe_unused)
2277 {
2278 if (!strcmp(arg, "relative"))
2279 symbol_conf.filter_relative = true;
2280 else if (!strcmp(arg, "absolute"))
2281 symbol_conf.filter_relative = false;
2282 else
2283 return -1;
2284
2285 return 0;
2286 }
2287
2288 int perf_hist_config(const char *var, const char *value)
2289 {
2290 if (!strcmp(var, "hist.percentage"))
2291 return parse_filter_percentage(NULL, value, 0);
2292
2293 return 0;
2294 }
2295
2296 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2297 {
2298 memset(hists, 0, sizeof(*hists));
2299 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2300 hists->entries_in = &hists->entries_in_array[0];
2301 hists->entries_collapsed = RB_ROOT;
2302 hists->entries = RB_ROOT;
2303 pthread_mutex_init(&hists->lock, NULL);
2304 hists->socket_filter = -1;
2305 hists->hpp_list = hpp_list;
2306 INIT_LIST_HEAD(&hists->hpp_formats);
2307 return 0;
2308 }
2309
2310 static void hists__delete_remaining_entries(struct rb_root *root)
2311 {
2312 struct rb_node *node;
2313 struct hist_entry *he;
2314
2315 while (!RB_EMPTY_ROOT(root)) {
2316 node = rb_first(root);
2317 rb_erase(node, root);
2318
2319 he = rb_entry(node, struct hist_entry, rb_node_in);
2320 hist_entry__delete(he);
2321 }
2322 }
2323
2324 static void hists__delete_all_entries(struct hists *hists)
2325 {
2326 hists__delete_entries(hists);
2327 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2328 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2329 hists__delete_remaining_entries(&hists->entries_collapsed);
2330 }
2331
2332 static void hists_evsel__exit(struct perf_evsel *evsel)
2333 {
2334 struct hists *hists = evsel__hists(evsel);
2335 struct perf_hpp_fmt *fmt, *pos;
2336 struct perf_hpp_list_node *node, *tmp;
2337
2338 hists__delete_all_entries(hists);
2339
2340 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2341 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2342 list_del(&fmt->list);
2343 free(fmt);
2344 }
2345 list_del(&node->list);
2346 free(node);
2347 }
2348 }
2349
2350 static int hists_evsel__init(struct perf_evsel *evsel)
2351 {
2352 struct hists *hists = evsel__hists(evsel);
2353
2354 __hists__init(hists, &perf_hpp_list);
2355 return 0;
2356 }
2357
2358 /*
2359 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2360 * stored in the rbtree...
2361 */
2362
2363 int hists__init(void)
2364 {
2365 int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2366 hists_evsel__init,
2367 hists_evsel__exit);
2368 if (err)
2369 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2370
2371 return err;
2372 }
2373
2374 void perf_hpp_list__init(struct perf_hpp_list *list)
2375 {
2376 INIT_LIST_HEAD(&list->fields);
2377 INIT_LIST_HEAD(&list->sorts);
2378 }