]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - tools/perf/util/machine.c
Merge remote-tracking branches 'asoc/topic/tas6424', 'asoc/topic/tfa9879', 'asoc...
[mirror_ubuntu-focal-kernel.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29
30 static void dsos__init(struct dsos *dsos)
31 {
32 INIT_LIST_HEAD(&dsos->head);
33 dsos->root = RB_ROOT;
34 init_rwsem(&dsos->lock);
35 }
36
37 static void machine__threads_init(struct machine *machine)
38 {
39 int i;
40
41 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
42 struct threads *threads = &machine->threads[i];
43 threads->entries = RB_ROOT;
44 init_rwsem(&threads->lock);
45 threads->nr = 0;
46 INIT_LIST_HEAD(&threads->dead);
47 threads->last_match = NULL;
48 }
49 }
50
51 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
52 {
53 memset(machine, 0, sizeof(*machine));
54 map_groups__init(&machine->kmaps, machine);
55 RB_CLEAR_NODE(&machine->rb_node);
56 dsos__init(&machine->dsos);
57
58 machine__threads_init(machine);
59
60 machine->vdso_info = NULL;
61 machine->env = NULL;
62
63 machine->pid = pid;
64
65 machine->id_hdr_size = 0;
66 machine->kptr_restrict_warned = false;
67 machine->comm_exec = false;
68 machine->kernel_start = 0;
69
70 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
71
72 machine->root_dir = strdup(root_dir);
73 if (machine->root_dir == NULL)
74 return -ENOMEM;
75
76 if (pid != HOST_KERNEL_ID) {
77 struct thread *thread = machine__findnew_thread(machine, -1,
78 pid);
79 char comm[64];
80
81 if (thread == NULL)
82 return -ENOMEM;
83
84 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
85 thread__set_comm(thread, comm, 0);
86 thread__put(thread);
87 }
88
89 machine->current_tid = NULL;
90
91 return 0;
92 }
93
94 struct machine *machine__new_host(void)
95 {
96 struct machine *machine = malloc(sizeof(*machine));
97
98 if (machine != NULL) {
99 machine__init(machine, "", HOST_KERNEL_ID);
100
101 if (machine__create_kernel_maps(machine) < 0)
102 goto out_delete;
103 }
104
105 return machine;
106 out_delete:
107 free(machine);
108 return NULL;
109 }
110
111 struct machine *machine__new_kallsyms(void)
112 {
113 struct machine *machine = machine__new_host();
114 /*
115 * FIXME:
116 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
117 * functions and data objects.
118 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
119 * ask for not using the kcore parsing code, once this one is fixed
120 * to create a map per module.
121 */
122 if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
123 machine__delete(machine);
124 machine = NULL;
125 }
126
127 return machine;
128 }
129
130 static void dsos__purge(struct dsos *dsos)
131 {
132 struct dso *pos, *n;
133
134 down_write(&dsos->lock);
135
136 list_for_each_entry_safe(pos, n, &dsos->head, node) {
137 RB_CLEAR_NODE(&pos->rb_node);
138 pos->root = NULL;
139 list_del_init(&pos->node);
140 dso__put(pos);
141 }
142
143 up_write(&dsos->lock);
144 }
145
146 static void dsos__exit(struct dsos *dsos)
147 {
148 dsos__purge(dsos);
149 exit_rwsem(&dsos->lock);
150 }
151
152 void machine__delete_threads(struct machine *machine)
153 {
154 struct rb_node *nd;
155 int i;
156
157 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
158 struct threads *threads = &machine->threads[i];
159 down_write(&threads->lock);
160 nd = rb_first(&threads->entries);
161 while (nd) {
162 struct thread *t = rb_entry(nd, struct thread, rb_node);
163
164 nd = rb_next(nd);
165 __machine__remove_thread(machine, t, false);
166 }
167 up_write(&threads->lock);
168 }
169 }
170
171 void machine__exit(struct machine *machine)
172 {
173 int i;
174
175 if (machine == NULL)
176 return;
177
178 machine__destroy_kernel_maps(machine);
179 map_groups__exit(&machine->kmaps);
180 dsos__exit(&machine->dsos);
181 machine__exit_vdso(machine);
182 zfree(&machine->root_dir);
183 zfree(&machine->current_tid);
184
185 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
186 struct threads *threads = &machine->threads[i];
187 exit_rwsem(&threads->lock);
188 }
189 }
190
191 void machine__delete(struct machine *machine)
192 {
193 if (machine) {
194 machine__exit(machine);
195 free(machine);
196 }
197 }
198
199 void machines__init(struct machines *machines)
200 {
201 machine__init(&machines->host, "", HOST_KERNEL_ID);
202 machines->guests = RB_ROOT;
203 }
204
205 void machines__exit(struct machines *machines)
206 {
207 machine__exit(&machines->host);
208 /* XXX exit guest */
209 }
210
211 struct machine *machines__add(struct machines *machines, pid_t pid,
212 const char *root_dir)
213 {
214 struct rb_node **p = &machines->guests.rb_node;
215 struct rb_node *parent = NULL;
216 struct machine *pos, *machine = malloc(sizeof(*machine));
217
218 if (machine == NULL)
219 return NULL;
220
221 if (machine__init(machine, root_dir, pid) != 0) {
222 free(machine);
223 return NULL;
224 }
225
226 while (*p != NULL) {
227 parent = *p;
228 pos = rb_entry(parent, struct machine, rb_node);
229 if (pid < pos->pid)
230 p = &(*p)->rb_left;
231 else
232 p = &(*p)->rb_right;
233 }
234
235 rb_link_node(&machine->rb_node, parent, p);
236 rb_insert_color(&machine->rb_node, &machines->guests);
237
238 return machine;
239 }
240
241 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
242 {
243 struct rb_node *nd;
244
245 machines->host.comm_exec = comm_exec;
246
247 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
248 struct machine *machine = rb_entry(nd, struct machine, rb_node);
249
250 machine->comm_exec = comm_exec;
251 }
252 }
253
254 struct machine *machines__find(struct machines *machines, pid_t pid)
255 {
256 struct rb_node **p = &machines->guests.rb_node;
257 struct rb_node *parent = NULL;
258 struct machine *machine;
259 struct machine *default_machine = NULL;
260
261 if (pid == HOST_KERNEL_ID)
262 return &machines->host;
263
264 while (*p != NULL) {
265 parent = *p;
266 machine = rb_entry(parent, struct machine, rb_node);
267 if (pid < machine->pid)
268 p = &(*p)->rb_left;
269 else if (pid > machine->pid)
270 p = &(*p)->rb_right;
271 else
272 return machine;
273 if (!machine->pid)
274 default_machine = machine;
275 }
276
277 return default_machine;
278 }
279
280 struct machine *machines__findnew(struct machines *machines, pid_t pid)
281 {
282 char path[PATH_MAX];
283 const char *root_dir = "";
284 struct machine *machine = machines__find(machines, pid);
285
286 if (machine && (machine->pid == pid))
287 goto out;
288
289 if ((pid != HOST_KERNEL_ID) &&
290 (pid != DEFAULT_GUEST_KERNEL_ID) &&
291 (symbol_conf.guestmount)) {
292 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
293 if (access(path, R_OK)) {
294 static struct strlist *seen;
295
296 if (!seen)
297 seen = strlist__new(NULL, NULL);
298
299 if (!strlist__has_entry(seen, path)) {
300 pr_err("Can't access file %s\n", path);
301 strlist__add(seen, path);
302 }
303 machine = NULL;
304 goto out;
305 }
306 root_dir = path;
307 }
308
309 machine = machines__add(machines, pid, root_dir);
310 out:
311 return machine;
312 }
313
314 void machines__process_guests(struct machines *machines,
315 machine__process_t process, void *data)
316 {
317 struct rb_node *nd;
318
319 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
320 struct machine *pos = rb_entry(nd, struct machine, rb_node);
321 process(pos, data);
322 }
323 }
324
325 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
326 {
327 if (machine__is_host(machine))
328 snprintf(bf, size, "[%s]", "kernel.kallsyms");
329 else if (machine__is_default_guest(machine))
330 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
331 else {
332 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
333 machine->pid);
334 }
335
336 return bf;
337 }
338
339 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
340 {
341 struct rb_node *node;
342 struct machine *machine;
343
344 machines->host.id_hdr_size = id_hdr_size;
345
346 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
347 machine = rb_entry(node, struct machine, rb_node);
348 machine->id_hdr_size = id_hdr_size;
349 }
350
351 return;
352 }
353
354 static void machine__update_thread_pid(struct machine *machine,
355 struct thread *th, pid_t pid)
356 {
357 struct thread *leader;
358
359 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
360 return;
361
362 th->pid_ = pid;
363
364 if (th->pid_ == th->tid)
365 return;
366
367 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
368 if (!leader)
369 goto out_err;
370
371 if (!leader->mg)
372 leader->mg = map_groups__new(machine);
373
374 if (!leader->mg)
375 goto out_err;
376
377 if (th->mg == leader->mg)
378 return;
379
380 if (th->mg) {
381 /*
382 * Maps are created from MMAP events which provide the pid and
383 * tid. Consequently there never should be any maps on a thread
384 * with an unknown pid. Just print an error if there are.
385 */
386 if (!map_groups__empty(th->mg))
387 pr_err("Discarding thread maps for %d:%d\n",
388 th->pid_, th->tid);
389 map_groups__put(th->mg);
390 }
391
392 th->mg = map_groups__get(leader->mg);
393 out_put:
394 thread__put(leader);
395 return;
396 out_err:
397 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
398 goto out_put;
399 }
400
401 /*
402 * Caller must eventually drop thread->refcnt returned with a successful
403 * lookup/new thread inserted.
404 */
405 static struct thread *____machine__findnew_thread(struct machine *machine,
406 struct threads *threads,
407 pid_t pid, pid_t tid,
408 bool create)
409 {
410 struct rb_node **p = &threads->entries.rb_node;
411 struct rb_node *parent = NULL;
412 struct thread *th;
413
414 /*
415 * Front-end cache - TID lookups come in blocks,
416 * so most of the time we dont have to look up
417 * the full rbtree:
418 */
419 th = threads->last_match;
420 if (th != NULL) {
421 if (th->tid == tid) {
422 machine__update_thread_pid(machine, th, pid);
423 return thread__get(th);
424 }
425
426 threads->last_match = NULL;
427 }
428
429 while (*p != NULL) {
430 parent = *p;
431 th = rb_entry(parent, struct thread, rb_node);
432
433 if (th->tid == tid) {
434 threads->last_match = th;
435 machine__update_thread_pid(machine, th, pid);
436 return thread__get(th);
437 }
438
439 if (tid < th->tid)
440 p = &(*p)->rb_left;
441 else
442 p = &(*p)->rb_right;
443 }
444
445 if (!create)
446 return NULL;
447
448 th = thread__new(pid, tid);
449 if (th != NULL) {
450 rb_link_node(&th->rb_node, parent, p);
451 rb_insert_color(&th->rb_node, &threads->entries);
452
453 /*
454 * We have to initialize map_groups separately
455 * after rb tree is updated.
456 *
457 * The reason is that we call machine__findnew_thread
458 * within thread__init_map_groups to find the thread
459 * leader and that would screwed the rb tree.
460 */
461 if (thread__init_map_groups(th, machine)) {
462 rb_erase_init(&th->rb_node, &threads->entries);
463 RB_CLEAR_NODE(&th->rb_node);
464 thread__put(th);
465 return NULL;
466 }
467 /*
468 * It is now in the rbtree, get a ref
469 */
470 thread__get(th);
471 threads->last_match = th;
472 ++threads->nr;
473 }
474
475 return th;
476 }
477
478 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
479 {
480 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
481 }
482
483 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
484 pid_t tid)
485 {
486 struct threads *threads = machine__threads(machine, tid);
487 struct thread *th;
488
489 down_write(&threads->lock);
490 th = __machine__findnew_thread(machine, pid, tid);
491 up_write(&threads->lock);
492 return th;
493 }
494
495 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
496 pid_t tid)
497 {
498 struct threads *threads = machine__threads(machine, tid);
499 struct thread *th;
500
501 down_read(&threads->lock);
502 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
503 up_read(&threads->lock);
504 return th;
505 }
506
507 struct comm *machine__thread_exec_comm(struct machine *machine,
508 struct thread *thread)
509 {
510 if (machine->comm_exec)
511 return thread__exec_comm(thread);
512 else
513 return thread__comm(thread);
514 }
515
516 int machine__process_comm_event(struct machine *machine, union perf_event *event,
517 struct perf_sample *sample)
518 {
519 struct thread *thread = machine__findnew_thread(machine,
520 event->comm.pid,
521 event->comm.tid);
522 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
523 int err = 0;
524
525 if (exec)
526 machine->comm_exec = true;
527
528 if (dump_trace)
529 perf_event__fprintf_comm(event, stdout);
530
531 if (thread == NULL ||
532 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
533 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
534 err = -1;
535 }
536
537 thread__put(thread);
538
539 return err;
540 }
541
542 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
543 union perf_event *event,
544 struct perf_sample *sample __maybe_unused)
545 {
546 struct thread *thread = machine__findnew_thread(machine,
547 event->namespaces.pid,
548 event->namespaces.tid);
549 int err = 0;
550
551 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
552 "\nWARNING: kernel seems to support more namespaces than perf"
553 " tool.\nTry updating the perf tool..\n\n");
554
555 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
556 "\nWARNING: perf tool seems to support more namespaces than"
557 " the kernel.\nTry updating the kernel..\n\n");
558
559 if (dump_trace)
560 perf_event__fprintf_namespaces(event, stdout);
561
562 if (thread == NULL ||
563 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
564 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
565 err = -1;
566 }
567
568 thread__put(thread);
569
570 return err;
571 }
572
573 int machine__process_lost_event(struct machine *machine __maybe_unused,
574 union perf_event *event, struct perf_sample *sample __maybe_unused)
575 {
576 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
577 event->lost.id, event->lost.lost);
578 return 0;
579 }
580
581 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
582 union perf_event *event, struct perf_sample *sample)
583 {
584 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
585 sample->id, event->lost_samples.lost);
586 return 0;
587 }
588
589 static struct dso *machine__findnew_module_dso(struct machine *machine,
590 struct kmod_path *m,
591 const char *filename)
592 {
593 struct dso *dso;
594
595 down_write(&machine->dsos.lock);
596
597 dso = __dsos__find(&machine->dsos, m->name, true);
598 if (!dso) {
599 dso = __dsos__addnew(&machine->dsos, m->name);
600 if (dso == NULL)
601 goto out_unlock;
602
603 dso__set_module_info(dso, m, machine);
604 dso__set_long_name(dso, strdup(filename), true);
605 }
606
607 dso__get(dso);
608 out_unlock:
609 up_write(&machine->dsos.lock);
610 return dso;
611 }
612
613 int machine__process_aux_event(struct machine *machine __maybe_unused,
614 union perf_event *event)
615 {
616 if (dump_trace)
617 perf_event__fprintf_aux(event, stdout);
618 return 0;
619 }
620
621 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
622 union perf_event *event)
623 {
624 if (dump_trace)
625 perf_event__fprintf_itrace_start(event, stdout);
626 return 0;
627 }
628
629 int machine__process_switch_event(struct machine *machine __maybe_unused,
630 union perf_event *event)
631 {
632 if (dump_trace)
633 perf_event__fprintf_switch(event, stdout);
634 return 0;
635 }
636
637 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
638 {
639 const char *dup_filename;
640
641 if (!filename || !dso || !dso->long_name)
642 return;
643 if (dso->long_name[0] != '[')
644 return;
645 if (!strchr(filename, '/'))
646 return;
647
648 dup_filename = strdup(filename);
649 if (!dup_filename)
650 return;
651
652 dso__set_long_name(dso, dup_filename, true);
653 }
654
655 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
656 const char *filename)
657 {
658 struct map *map = NULL;
659 struct dso *dso = NULL;
660 struct kmod_path m;
661
662 if (kmod_path__parse_name(&m, filename))
663 return NULL;
664
665 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
666 m.name);
667 if (map) {
668 /*
669 * If the map's dso is an offline module, give dso__load()
670 * a chance to find the file path of that module by fixing
671 * long_name.
672 */
673 dso__adjust_kmod_long_name(map->dso, filename);
674 goto out;
675 }
676
677 dso = machine__findnew_module_dso(machine, &m, filename);
678 if (dso == NULL)
679 goto out;
680
681 map = map__new2(start, dso, MAP__FUNCTION);
682 if (map == NULL)
683 goto out;
684
685 map_groups__insert(&machine->kmaps, map);
686
687 /* Put the map here because map_groups__insert alread got it */
688 map__put(map);
689 out:
690 /* put the dso here, corresponding to machine__findnew_module_dso */
691 dso__put(dso);
692 free(m.name);
693 return map;
694 }
695
696 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
697 {
698 struct rb_node *nd;
699 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
700
701 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
702 struct machine *pos = rb_entry(nd, struct machine, rb_node);
703 ret += __dsos__fprintf(&pos->dsos.head, fp);
704 }
705
706 return ret;
707 }
708
709 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
710 bool (skip)(struct dso *dso, int parm), int parm)
711 {
712 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
713 }
714
715 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
716 bool (skip)(struct dso *dso, int parm), int parm)
717 {
718 struct rb_node *nd;
719 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
720
721 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
722 struct machine *pos = rb_entry(nd, struct machine, rb_node);
723 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
724 }
725 return ret;
726 }
727
728 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
729 {
730 int i;
731 size_t printed = 0;
732 struct dso *kdso = machine__kernel_map(machine)->dso;
733
734 if (kdso->has_build_id) {
735 char filename[PATH_MAX];
736 if (dso__build_id_filename(kdso, filename, sizeof(filename),
737 false))
738 printed += fprintf(fp, "[0] %s\n", filename);
739 }
740
741 for (i = 0; i < vmlinux_path__nr_entries; ++i)
742 printed += fprintf(fp, "[%d] %s\n",
743 i + kdso->has_build_id, vmlinux_path[i]);
744
745 return printed;
746 }
747
748 size_t machine__fprintf(struct machine *machine, FILE *fp)
749 {
750 struct rb_node *nd;
751 size_t ret;
752 int i;
753
754 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
755 struct threads *threads = &machine->threads[i];
756
757 down_read(&threads->lock);
758
759 ret = fprintf(fp, "Threads: %u\n", threads->nr);
760
761 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
762 struct thread *pos = rb_entry(nd, struct thread, rb_node);
763
764 ret += thread__fprintf(pos, fp);
765 }
766
767 up_read(&threads->lock);
768 }
769 return ret;
770 }
771
772 static struct dso *machine__get_kernel(struct machine *machine)
773 {
774 const char *vmlinux_name = NULL;
775 struct dso *kernel;
776
777 if (machine__is_host(machine)) {
778 vmlinux_name = symbol_conf.vmlinux_name;
779 if (!vmlinux_name)
780 vmlinux_name = DSO__NAME_KALLSYMS;
781
782 kernel = machine__findnew_kernel(machine, vmlinux_name,
783 "[kernel]", DSO_TYPE_KERNEL);
784 } else {
785 char bf[PATH_MAX];
786
787 if (machine__is_default_guest(machine))
788 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
789 if (!vmlinux_name)
790 vmlinux_name = machine__mmap_name(machine, bf,
791 sizeof(bf));
792
793 kernel = machine__findnew_kernel(machine, vmlinux_name,
794 "[guest.kernel]",
795 DSO_TYPE_GUEST_KERNEL);
796 }
797
798 if (kernel != NULL && (!kernel->has_build_id))
799 dso__read_running_kernel_build_id(kernel, machine);
800
801 return kernel;
802 }
803
804 struct process_args {
805 u64 start;
806 };
807
808 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
809 size_t bufsz)
810 {
811 if (machine__is_default_guest(machine))
812 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
813 else
814 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
815 }
816
817 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
818
819 /* Figure out the start address of kernel map from /proc/kallsyms.
820 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
821 * symbol_name if it's not that important.
822 */
823 static int machine__get_running_kernel_start(struct machine *machine,
824 const char **symbol_name, u64 *start)
825 {
826 char filename[PATH_MAX];
827 int i, err = -1;
828 const char *name;
829 u64 addr = 0;
830
831 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
832
833 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
834 return 0;
835
836 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
837 err = kallsyms__get_function_start(filename, name, &addr);
838 if (!err)
839 break;
840 }
841
842 if (err)
843 return -1;
844
845 if (symbol_name)
846 *symbol_name = name;
847
848 *start = addr;
849 return 0;
850 }
851
852 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
853 {
854 int type;
855 u64 start = 0;
856
857 if (machine__get_running_kernel_start(machine, NULL, &start))
858 return -1;
859
860 /* In case of renewal the kernel map, destroy previous one */
861 machine__destroy_kernel_maps(machine);
862
863 for (type = 0; type < MAP__NR_TYPES; ++type) {
864 struct kmap *kmap;
865 struct map *map;
866
867 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
868 if (machine->vmlinux_maps[type] == NULL)
869 return -1;
870
871 machine->vmlinux_maps[type]->map_ip =
872 machine->vmlinux_maps[type]->unmap_ip =
873 identity__map_ip;
874 map = __machine__kernel_map(machine, type);
875 kmap = map__kmap(map);
876 if (!kmap)
877 return -1;
878
879 kmap->kmaps = &machine->kmaps;
880 map_groups__insert(&machine->kmaps, map);
881 }
882
883 return 0;
884 }
885
886 void machine__destroy_kernel_maps(struct machine *machine)
887 {
888 int type;
889
890 for (type = 0; type < MAP__NR_TYPES; ++type) {
891 struct kmap *kmap;
892 struct map *map = __machine__kernel_map(machine, type);
893
894 if (map == NULL)
895 continue;
896
897 kmap = map__kmap(map);
898 map_groups__remove(&machine->kmaps, map);
899 if (kmap && kmap->ref_reloc_sym) {
900 /*
901 * ref_reloc_sym is shared among all maps, so free just
902 * on one of them.
903 */
904 if (type == MAP__FUNCTION) {
905 zfree((char **)&kmap->ref_reloc_sym->name);
906 zfree(&kmap->ref_reloc_sym);
907 } else
908 kmap->ref_reloc_sym = NULL;
909 }
910
911 map__put(machine->vmlinux_maps[type]);
912 machine->vmlinux_maps[type] = NULL;
913 }
914 }
915
916 int machines__create_guest_kernel_maps(struct machines *machines)
917 {
918 int ret = 0;
919 struct dirent **namelist = NULL;
920 int i, items = 0;
921 char path[PATH_MAX];
922 pid_t pid;
923 char *endp;
924
925 if (symbol_conf.default_guest_vmlinux_name ||
926 symbol_conf.default_guest_modules ||
927 symbol_conf.default_guest_kallsyms) {
928 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
929 }
930
931 if (symbol_conf.guestmount) {
932 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
933 if (items <= 0)
934 return -ENOENT;
935 for (i = 0; i < items; i++) {
936 if (!isdigit(namelist[i]->d_name[0])) {
937 /* Filter out . and .. */
938 continue;
939 }
940 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
941 if ((*endp != '\0') ||
942 (endp == namelist[i]->d_name) ||
943 (errno == ERANGE)) {
944 pr_debug("invalid directory (%s). Skipping.\n",
945 namelist[i]->d_name);
946 continue;
947 }
948 sprintf(path, "%s/%s/proc/kallsyms",
949 symbol_conf.guestmount,
950 namelist[i]->d_name);
951 ret = access(path, R_OK);
952 if (ret) {
953 pr_debug("Can't access file %s\n", path);
954 goto failure;
955 }
956 machines__create_kernel_maps(machines, pid);
957 }
958 failure:
959 free(namelist);
960 }
961
962 return ret;
963 }
964
965 void machines__destroy_kernel_maps(struct machines *machines)
966 {
967 struct rb_node *next = rb_first(&machines->guests);
968
969 machine__destroy_kernel_maps(&machines->host);
970
971 while (next) {
972 struct machine *pos = rb_entry(next, struct machine, rb_node);
973
974 next = rb_next(&pos->rb_node);
975 rb_erase(&pos->rb_node, &machines->guests);
976 machine__delete(pos);
977 }
978 }
979
980 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
981 {
982 struct machine *machine = machines__findnew(machines, pid);
983
984 if (machine == NULL)
985 return -1;
986
987 return machine__create_kernel_maps(machine);
988 }
989
990 int __machine__load_kallsyms(struct machine *machine, const char *filename,
991 enum map_type type, bool no_kcore)
992 {
993 struct map *map = machine__kernel_map(machine);
994 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
995
996 if (ret > 0) {
997 dso__set_loaded(map->dso, type);
998 /*
999 * Since /proc/kallsyms will have multiple sessions for the
1000 * kernel, with modules between them, fixup the end of all
1001 * sections.
1002 */
1003 __map_groups__fixup_end(&machine->kmaps, type);
1004 }
1005
1006 return ret;
1007 }
1008
1009 int machine__load_kallsyms(struct machine *machine, const char *filename,
1010 enum map_type type)
1011 {
1012 return __machine__load_kallsyms(machine, filename, type, false);
1013 }
1014
1015 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1016 {
1017 struct map *map = machine__kernel_map(machine);
1018 int ret = dso__load_vmlinux_path(map->dso, map);
1019
1020 if (ret > 0)
1021 dso__set_loaded(map->dso, type);
1022
1023 return ret;
1024 }
1025
1026 static void map_groups__fixup_end(struct map_groups *mg)
1027 {
1028 int i;
1029 for (i = 0; i < MAP__NR_TYPES; ++i)
1030 __map_groups__fixup_end(mg, i);
1031 }
1032
1033 static char *get_kernel_version(const char *root_dir)
1034 {
1035 char version[PATH_MAX];
1036 FILE *file;
1037 char *name, *tmp;
1038 const char *prefix = "Linux version ";
1039
1040 sprintf(version, "%s/proc/version", root_dir);
1041 file = fopen(version, "r");
1042 if (!file)
1043 return NULL;
1044
1045 version[0] = '\0';
1046 tmp = fgets(version, sizeof(version), file);
1047 fclose(file);
1048
1049 name = strstr(version, prefix);
1050 if (!name)
1051 return NULL;
1052 name += strlen(prefix);
1053 tmp = strchr(name, ' ');
1054 if (tmp)
1055 *tmp = '\0';
1056
1057 return strdup(name);
1058 }
1059
1060 static bool is_kmod_dso(struct dso *dso)
1061 {
1062 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1063 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1064 }
1065
1066 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1067 struct kmod_path *m)
1068 {
1069 struct map *map;
1070 char *long_name;
1071
1072 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1073 if (map == NULL)
1074 return 0;
1075
1076 long_name = strdup(path);
1077 if (long_name == NULL)
1078 return -ENOMEM;
1079
1080 dso__set_long_name(map->dso, long_name, true);
1081 dso__kernel_module_get_build_id(map->dso, "");
1082
1083 /*
1084 * Full name could reveal us kmod compression, so
1085 * we need to update the symtab_type if needed.
1086 */
1087 if (m->comp && is_kmod_dso(map->dso))
1088 map->dso->symtab_type++;
1089
1090 return 0;
1091 }
1092
1093 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1094 const char *dir_name, int depth)
1095 {
1096 struct dirent *dent;
1097 DIR *dir = opendir(dir_name);
1098 int ret = 0;
1099
1100 if (!dir) {
1101 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1102 return -1;
1103 }
1104
1105 while ((dent = readdir(dir)) != NULL) {
1106 char path[PATH_MAX];
1107 struct stat st;
1108
1109 /*sshfs might return bad dent->d_type, so we have to stat*/
1110 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1111 if (stat(path, &st))
1112 continue;
1113
1114 if (S_ISDIR(st.st_mode)) {
1115 if (!strcmp(dent->d_name, ".") ||
1116 !strcmp(dent->d_name, ".."))
1117 continue;
1118
1119 /* Do not follow top-level source and build symlinks */
1120 if (depth == 0) {
1121 if (!strcmp(dent->d_name, "source") ||
1122 !strcmp(dent->d_name, "build"))
1123 continue;
1124 }
1125
1126 ret = map_groups__set_modules_path_dir(mg, path,
1127 depth + 1);
1128 if (ret < 0)
1129 goto out;
1130 } else {
1131 struct kmod_path m;
1132
1133 ret = kmod_path__parse_name(&m, dent->d_name);
1134 if (ret)
1135 goto out;
1136
1137 if (m.kmod)
1138 ret = map_groups__set_module_path(mg, path, &m);
1139
1140 free(m.name);
1141
1142 if (ret)
1143 goto out;
1144 }
1145 }
1146
1147 out:
1148 closedir(dir);
1149 return ret;
1150 }
1151
1152 static int machine__set_modules_path(struct machine *machine)
1153 {
1154 char *version;
1155 char modules_path[PATH_MAX];
1156
1157 version = get_kernel_version(machine->root_dir);
1158 if (!version)
1159 return -1;
1160
1161 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1162 machine->root_dir, version);
1163 free(version);
1164
1165 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1166 }
1167 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1168 const char *name __maybe_unused)
1169 {
1170 return 0;
1171 }
1172
1173 static int machine__create_module(void *arg, const char *name, u64 start,
1174 u64 size)
1175 {
1176 struct machine *machine = arg;
1177 struct map *map;
1178
1179 if (arch__fix_module_text_start(&start, name) < 0)
1180 return -1;
1181
1182 map = machine__findnew_module_map(machine, start, name);
1183 if (map == NULL)
1184 return -1;
1185 map->end = start + size;
1186
1187 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1188
1189 return 0;
1190 }
1191
1192 static int machine__create_modules(struct machine *machine)
1193 {
1194 const char *modules;
1195 char path[PATH_MAX];
1196
1197 if (machine__is_default_guest(machine)) {
1198 modules = symbol_conf.default_guest_modules;
1199 } else {
1200 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1201 modules = path;
1202 }
1203
1204 if (symbol__restricted_filename(modules, "/proc/modules"))
1205 return -1;
1206
1207 if (modules__parse(modules, machine, machine__create_module))
1208 return -1;
1209
1210 if (!machine__set_modules_path(machine))
1211 return 0;
1212
1213 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1214
1215 return 0;
1216 }
1217
1218 int machine__create_kernel_maps(struct machine *machine)
1219 {
1220 struct dso *kernel = machine__get_kernel(machine);
1221 const char *name = NULL;
1222 u64 addr = 0;
1223 int ret;
1224
1225 if (kernel == NULL)
1226 return -1;
1227
1228 ret = __machine__create_kernel_maps(machine, kernel);
1229 dso__put(kernel);
1230 if (ret < 0)
1231 return -1;
1232
1233 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1234 if (machine__is_host(machine))
1235 pr_debug("Problems creating module maps, "
1236 "continuing anyway...\n");
1237 else
1238 pr_debug("Problems creating module maps for guest %d, "
1239 "continuing anyway...\n", machine->pid);
1240 }
1241
1242 /*
1243 * Now that we have all the maps created, just set the ->end of them:
1244 */
1245 map_groups__fixup_end(&machine->kmaps);
1246
1247 if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1248 if (name &&
1249 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1250 machine__destroy_kernel_maps(machine);
1251 return -1;
1252 }
1253 }
1254
1255 return 0;
1256 }
1257
1258 static void machine__set_kernel_mmap_len(struct machine *machine,
1259 union perf_event *event)
1260 {
1261 int i;
1262
1263 for (i = 0; i < MAP__NR_TYPES; i++) {
1264 machine->vmlinux_maps[i]->start = event->mmap.start;
1265 machine->vmlinux_maps[i]->end = (event->mmap.start +
1266 event->mmap.len);
1267 /*
1268 * Be a bit paranoid here, some perf.data file came with
1269 * a zero sized synthesized MMAP event for the kernel.
1270 */
1271 if (machine->vmlinux_maps[i]->end == 0)
1272 machine->vmlinux_maps[i]->end = ~0ULL;
1273 }
1274 }
1275
1276 static bool machine__uses_kcore(struct machine *machine)
1277 {
1278 struct dso *dso;
1279
1280 list_for_each_entry(dso, &machine->dsos.head, node) {
1281 if (dso__is_kcore(dso))
1282 return true;
1283 }
1284
1285 return false;
1286 }
1287
1288 static int machine__process_kernel_mmap_event(struct machine *machine,
1289 union perf_event *event)
1290 {
1291 struct map *map;
1292 char kmmap_prefix[PATH_MAX];
1293 enum dso_kernel_type kernel_type;
1294 bool is_kernel_mmap;
1295
1296 /* If we have maps from kcore then we do not need or want any others */
1297 if (machine__uses_kcore(machine))
1298 return 0;
1299
1300 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1301 if (machine__is_host(machine))
1302 kernel_type = DSO_TYPE_KERNEL;
1303 else
1304 kernel_type = DSO_TYPE_GUEST_KERNEL;
1305
1306 is_kernel_mmap = memcmp(event->mmap.filename,
1307 kmmap_prefix,
1308 strlen(kmmap_prefix) - 1) == 0;
1309 if (event->mmap.filename[0] == '/' ||
1310 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1311 map = machine__findnew_module_map(machine, event->mmap.start,
1312 event->mmap.filename);
1313 if (map == NULL)
1314 goto out_problem;
1315
1316 map->end = map->start + event->mmap.len;
1317 } else if (is_kernel_mmap) {
1318 const char *symbol_name = (event->mmap.filename +
1319 strlen(kmmap_prefix));
1320 /*
1321 * Should be there already, from the build-id table in
1322 * the header.
1323 */
1324 struct dso *kernel = NULL;
1325 struct dso *dso;
1326
1327 down_read(&machine->dsos.lock);
1328
1329 list_for_each_entry(dso, &machine->dsos.head, node) {
1330
1331 /*
1332 * The cpumode passed to is_kernel_module is not the
1333 * cpumode of *this* event. If we insist on passing
1334 * correct cpumode to is_kernel_module, we should
1335 * record the cpumode when we adding this dso to the
1336 * linked list.
1337 *
1338 * However we don't really need passing correct
1339 * cpumode. We know the correct cpumode must be kernel
1340 * mode (if not, we should not link it onto kernel_dsos
1341 * list).
1342 *
1343 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1344 * is_kernel_module() treats it as a kernel cpumode.
1345 */
1346
1347 if (!dso->kernel ||
1348 is_kernel_module(dso->long_name,
1349 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1350 continue;
1351
1352
1353 kernel = dso;
1354 break;
1355 }
1356
1357 up_read(&machine->dsos.lock);
1358
1359 if (kernel == NULL)
1360 kernel = machine__findnew_dso(machine, kmmap_prefix);
1361 if (kernel == NULL)
1362 goto out_problem;
1363
1364 kernel->kernel = kernel_type;
1365 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1366 dso__put(kernel);
1367 goto out_problem;
1368 }
1369
1370 if (strstr(kernel->long_name, "vmlinux"))
1371 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1372
1373 machine__set_kernel_mmap_len(machine, event);
1374
1375 /*
1376 * Avoid using a zero address (kptr_restrict) for the ref reloc
1377 * symbol. Effectively having zero here means that at record
1378 * time /proc/sys/kernel/kptr_restrict was non zero.
1379 */
1380 if (event->mmap.pgoff != 0) {
1381 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1382 symbol_name,
1383 event->mmap.pgoff);
1384 }
1385
1386 if (machine__is_default_guest(machine)) {
1387 /*
1388 * preload dso of guest kernel and modules
1389 */
1390 dso__load(kernel, machine__kernel_map(machine));
1391 }
1392 }
1393 return 0;
1394 out_problem:
1395 return -1;
1396 }
1397
1398 int machine__process_mmap2_event(struct machine *machine,
1399 union perf_event *event,
1400 struct perf_sample *sample)
1401 {
1402 struct thread *thread;
1403 struct map *map;
1404 enum map_type type;
1405 int ret = 0;
1406
1407 if (dump_trace)
1408 perf_event__fprintf_mmap2(event, stdout);
1409
1410 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1411 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1412 ret = machine__process_kernel_mmap_event(machine, event);
1413 if (ret < 0)
1414 goto out_problem;
1415 return 0;
1416 }
1417
1418 thread = machine__findnew_thread(machine, event->mmap2.pid,
1419 event->mmap2.tid);
1420 if (thread == NULL)
1421 goto out_problem;
1422
1423 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1424 type = MAP__VARIABLE;
1425 else
1426 type = MAP__FUNCTION;
1427
1428 map = map__new(machine, event->mmap2.start,
1429 event->mmap2.len, event->mmap2.pgoff,
1430 event->mmap2.maj,
1431 event->mmap2.min, event->mmap2.ino,
1432 event->mmap2.ino_generation,
1433 event->mmap2.prot,
1434 event->mmap2.flags,
1435 event->mmap2.filename, type, thread);
1436
1437 if (map == NULL)
1438 goto out_problem_map;
1439
1440 ret = thread__insert_map(thread, map);
1441 if (ret)
1442 goto out_problem_insert;
1443
1444 thread__put(thread);
1445 map__put(map);
1446 return 0;
1447
1448 out_problem_insert:
1449 map__put(map);
1450 out_problem_map:
1451 thread__put(thread);
1452 out_problem:
1453 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1454 return 0;
1455 }
1456
1457 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1458 struct perf_sample *sample)
1459 {
1460 struct thread *thread;
1461 struct map *map;
1462 enum map_type type;
1463 int ret = 0;
1464
1465 if (dump_trace)
1466 perf_event__fprintf_mmap(event, stdout);
1467
1468 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1469 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1470 ret = machine__process_kernel_mmap_event(machine, event);
1471 if (ret < 0)
1472 goto out_problem;
1473 return 0;
1474 }
1475
1476 thread = machine__findnew_thread(machine, event->mmap.pid,
1477 event->mmap.tid);
1478 if (thread == NULL)
1479 goto out_problem;
1480
1481 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1482 type = MAP__VARIABLE;
1483 else
1484 type = MAP__FUNCTION;
1485
1486 map = map__new(machine, event->mmap.start,
1487 event->mmap.len, event->mmap.pgoff,
1488 0, 0, 0, 0, 0, 0,
1489 event->mmap.filename,
1490 type, thread);
1491
1492 if (map == NULL)
1493 goto out_problem_map;
1494
1495 ret = thread__insert_map(thread, map);
1496 if (ret)
1497 goto out_problem_insert;
1498
1499 thread__put(thread);
1500 map__put(map);
1501 return 0;
1502
1503 out_problem_insert:
1504 map__put(map);
1505 out_problem_map:
1506 thread__put(thread);
1507 out_problem:
1508 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1509 return 0;
1510 }
1511
1512 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1513 {
1514 struct threads *threads = machine__threads(machine, th->tid);
1515
1516 if (threads->last_match == th)
1517 threads->last_match = NULL;
1518
1519 BUG_ON(refcount_read(&th->refcnt) == 0);
1520 if (lock)
1521 down_write(&threads->lock);
1522 rb_erase_init(&th->rb_node, &threads->entries);
1523 RB_CLEAR_NODE(&th->rb_node);
1524 --threads->nr;
1525 /*
1526 * Move it first to the dead_threads list, then drop the reference,
1527 * if this is the last reference, then the thread__delete destructor
1528 * will be called and we will remove it from the dead_threads list.
1529 */
1530 list_add_tail(&th->node, &threads->dead);
1531 if (lock)
1532 up_write(&threads->lock);
1533 thread__put(th);
1534 }
1535
1536 void machine__remove_thread(struct machine *machine, struct thread *th)
1537 {
1538 return __machine__remove_thread(machine, th, true);
1539 }
1540
1541 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1542 struct perf_sample *sample)
1543 {
1544 struct thread *thread = machine__find_thread(machine,
1545 event->fork.pid,
1546 event->fork.tid);
1547 struct thread *parent = machine__findnew_thread(machine,
1548 event->fork.ppid,
1549 event->fork.ptid);
1550 int err = 0;
1551
1552 if (dump_trace)
1553 perf_event__fprintf_task(event, stdout);
1554
1555 /*
1556 * There may be an existing thread that is not actually the parent,
1557 * either because we are processing events out of order, or because the
1558 * (fork) event that would have removed the thread was lost. Assume the
1559 * latter case and continue on as best we can.
1560 */
1561 if (parent->pid_ != (pid_t)event->fork.ppid) {
1562 dump_printf("removing erroneous parent thread %d/%d\n",
1563 parent->pid_, parent->tid);
1564 machine__remove_thread(machine, parent);
1565 thread__put(parent);
1566 parent = machine__findnew_thread(machine, event->fork.ppid,
1567 event->fork.ptid);
1568 }
1569
1570 /* if a thread currently exists for the thread id remove it */
1571 if (thread != NULL) {
1572 machine__remove_thread(machine, thread);
1573 thread__put(thread);
1574 }
1575
1576 thread = machine__findnew_thread(machine, event->fork.pid,
1577 event->fork.tid);
1578
1579 if (thread == NULL || parent == NULL ||
1580 thread__fork(thread, parent, sample->time) < 0) {
1581 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1582 err = -1;
1583 }
1584 thread__put(thread);
1585 thread__put(parent);
1586
1587 return err;
1588 }
1589
1590 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1591 struct perf_sample *sample __maybe_unused)
1592 {
1593 struct thread *thread = machine__find_thread(machine,
1594 event->fork.pid,
1595 event->fork.tid);
1596
1597 if (dump_trace)
1598 perf_event__fprintf_task(event, stdout);
1599
1600 if (thread != NULL) {
1601 thread__exited(thread);
1602 thread__put(thread);
1603 }
1604
1605 return 0;
1606 }
1607
1608 int machine__process_event(struct machine *machine, union perf_event *event,
1609 struct perf_sample *sample)
1610 {
1611 int ret;
1612
1613 switch (event->header.type) {
1614 case PERF_RECORD_COMM:
1615 ret = machine__process_comm_event(machine, event, sample); break;
1616 case PERF_RECORD_MMAP:
1617 ret = machine__process_mmap_event(machine, event, sample); break;
1618 case PERF_RECORD_NAMESPACES:
1619 ret = machine__process_namespaces_event(machine, event, sample); break;
1620 case PERF_RECORD_MMAP2:
1621 ret = machine__process_mmap2_event(machine, event, sample); break;
1622 case PERF_RECORD_FORK:
1623 ret = machine__process_fork_event(machine, event, sample); break;
1624 case PERF_RECORD_EXIT:
1625 ret = machine__process_exit_event(machine, event, sample); break;
1626 case PERF_RECORD_LOST:
1627 ret = machine__process_lost_event(machine, event, sample); break;
1628 case PERF_RECORD_AUX:
1629 ret = machine__process_aux_event(machine, event); break;
1630 case PERF_RECORD_ITRACE_START:
1631 ret = machine__process_itrace_start_event(machine, event); break;
1632 case PERF_RECORD_LOST_SAMPLES:
1633 ret = machine__process_lost_samples_event(machine, event, sample); break;
1634 case PERF_RECORD_SWITCH:
1635 case PERF_RECORD_SWITCH_CPU_WIDE:
1636 ret = machine__process_switch_event(machine, event); break;
1637 default:
1638 ret = -1;
1639 break;
1640 }
1641
1642 return ret;
1643 }
1644
1645 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1646 {
1647 if (!regexec(regex, sym->name, 0, NULL, 0))
1648 return 1;
1649 return 0;
1650 }
1651
1652 static void ip__resolve_ams(struct thread *thread,
1653 struct addr_map_symbol *ams,
1654 u64 ip)
1655 {
1656 struct addr_location al;
1657
1658 memset(&al, 0, sizeof(al));
1659 /*
1660 * We cannot use the header.misc hint to determine whether a
1661 * branch stack address is user, kernel, guest, hypervisor.
1662 * Branches may straddle the kernel/user/hypervisor boundaries.
1663 * Thus, we have to try consecutively until we find a match
1664 * or else, the symbol is unknown
1665 */
1666 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1667
1668 ams->addr = ip;
1669 ams->al_addr = al.addr;
1670 ams->sym = al.sym;
1671 ams->map = al.map;
1672 ams->phys_addr = 0;
1673 }
1674
1675 static void ip__resolve_data(struct thread *thread,
1676 u8 m, struct addr_map_symbol *ams,
1677 u64 addr, u64 phys_addr)
1678 {
1679 struct addr_location al;
1680
1681 memset(&al, 0, sizeof(al));
1682
1683 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1684 if (al.map == NULL) {
1685 /*
1686 * some shared data regions have execute bit set which puts
1687 * their mapping in the MAP__FUNCTION type array.
1688 * Check there as a fallback option before dropping the sample.
1689 */
1690 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1691 }
1692
1693 ams->addr = addr;
1694 ams->al_addr = al.addr;
1695 ams->sym = al.sym;
1696 ams->map = al.map;
1697 ams->phys_addr = phys_addr;
1698 }
1699
1700 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1701 struct addr_location *al)
1702 {
1703 struct mem_info *mi = zalloc(sizeof(*mi));
1704
1705 if (!mi)
1706 return NULL;
1707
1708 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1709 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1710 sample->addr, sample->phys_addr);
1711 mi->data_src.val = sample->data_src;
1712
1713 return mi;
1714 }
1715
1716 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1717 {
1718 char *srcline = NULL;
1719
1720 if (!map || callchain_param.key == CCKEY_FUNCTION)
1721 return srcline;
1722
1723 srcline = srcline__tree_find(&map->dso->srclines, ip);
1724 if (!srcline) {
1725 bool show_sym = false;
1726 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1727
1728 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1729 sym, show_sym, show_addr);
1730 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1731 }
1732
1733 return srcline;
1734 }
1735
1736 struct iterations {
1737 int nr_loop_iter;
1738 u64 cycles;
1739 };
1740
1741 static int add_callchain_ip(struct thread *thread,
1742 struct callchain_cursor *cursor,
1743 struct symbol **parent,
1744 struct addr_location *root_al,
1745 u8 *cpumode,
1746 u64 ip,
1747 bool branch,
1748 struct branch_flags *flags,
1749 struct iterations *iter,
1750 u64 branch_from)
1751 {
1752 struct addr_location al;
1753 int nr_loop_iter = 0;
1754 u64 iter_cycles = 0;
1755 const char *srcline = NULL;
1756
1757 al.filtered = 0;
1758 al.sym = NULL;
1759 if (!cpumode) {
1760 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1761 ip, &al);
1762 } else {
1763 if (ip >= PERF_CONTEXT_MAX) {
1764 switch (ip) {
1765 case PERF_CONTEXT_HV:
1766 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1767 break;
1768 case PERF_CONTEXT_KERNEL:
1769 *cpumode = PERF_RECORD_MISC_KERNEL;
1770 break;
1771 case PERF_CONTEXT_USER:
1772 *cpumode = PERF_RECORD_MISC_USER;
1773 break;
1774 default:
1775 pr_debug("invalid callchain context: "
1776 "%"PRId64"\n", (s64) ip);
1777 /*
1778 * It seems the callchain is corrupted.
1779 * Discard all.
1780 */
1781 callchain_cursor_reset(cursor);
1782 return 1;
1783 }
1784 return 0;
1785 }
1786 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1787 ip, &al);
1788 }
1789
1790 if (al.sym != NULL) {
1791 if (perf_hpp_list.parent && !*parent &&
1792 symbol__match_regex(al.sym, &parent_regex))
1793 *parent = al.sym;
1794 else if (have_ignore_callees && root_al &&
1795 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1796 /* Treat this symbol as the root,
1797 forgetting its callees. */
1798 *root_al = al;
1799 callchain_cursor_reset(cursor);
1800 }
1801 }
1802
1803 if (symbol_conf.hide_unresolved && al.sym == NULL)
1804 return 0;
1805
1806 if (iter) {
1807 nr_loop_iter = iter->nr_loop_iter;
1808 iter_cycles = iter->cycles;
1809 }
1810
1811 srcline = callchain_srcline(al.map, al.sym, al.addr);
1812 return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1813 branch, flags, nr_loop_iter,
1814 iter_cycles, branch_from, srcline);
1815 }
1816
1817 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1818 struct addr_location *al)
1819 {
1820 unsigned int i;
1821 const struct branch_stack *bs = sample->branch_stack;
1822 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1823
1824 if (!bi)
1825 return NULL;
1826
1827 for (i = 0; i < bs->nr; i++) {
1828 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1829 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1830 bi[i].flags = bs->entries[i].flags;
1831 }
1832 return bi;
1833 }
1834
1835 static void save_iterations(struct iterations *iter,
1836 struct branch_entry *be, int nr)
1837 {
1838 int i;
1839
1840 iter->nr_loop_iter = nr;
1841 iter->cycles = 0;
1842
1843 for (i = 0; i < nr; i++)
1844 iter->cycles += be[i].flags.cycles;
1845 }
1846
1847 #define CHASHSZ 127
1848 #define CHASHBITS 7
1849 #define NO_ENTRY 0xff
1850
1851 #define PERF_MAX_BRANCH_DEPTH 127
1852
1853 /* Remove loops. */
1854 static int remove_loops(struct branch_entry *l, int nr,
1855 struct iterations *iter)
1856 {
1857 int i, j, off;
1858 unsigned char chash[CHASHSZ];
1859
1860 memset(chash, NO_ENTRY, sizeof(chash));
1861
1862 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1863
1864 for (i = 0; i < nr; i++) {
1865 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1866
1867 /* no collision handling for now */
1868 if (chash[h] == NO_ENTRY) {
1869 chash[h] = i;
1870 } else if (l[chash[h]].from == l[i].from) {
1871 bool is_loop = true;
1872 /* check if it is a real loop */
1873 off = 0;
1874 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1875 if (l[j].from != l[i + off].from) {
1876 is_loop = false;
1877 break;
1878 }
1879 if (is_loop) {
1880 j = nr - (i + off);
1881 if (j > 0) {
1882 save_iterations(iter + i + off,
1883 l + i, off);
1884
1885 memmove(iter + i, iter + i + off,
1886 j * sizeof(*iter));
1887
1888 memmove(l + i, l + i + off,
1889 j * sizeof(*l));
1890 }
1891
1892 nr -= off;
1893 }
1894 }
1895 }
1896 return nr;
1897 }
1898
1899 /*
1900 * Recolve LBR callstack chain sample
1901 * Return:
1902 * 1 on success get LBR callchain information
1903 * 0 no available LBR callchain information, should try fp
1904 * negative error code on other errors.
1905 */
1906 static int resolve_lbr_callchain_sample(struct thread *thread,
1907 struct callchain_cursor *cursor,
1908 struct perf_sample *sample,
1909 struct symbol **parent,
1910 struct addr_location *root_al,
1911 int max_stack)
1912 {
1913 struct ip_callchain *chain = sample->callchain;
1914 int chain_nr = min(max_stack, (int)chain->nr), i;
1915 u8 cpumode = PERF_RECORD_MISC_USER;
1916 u64 ip, branch_from = 0;
1917
1918 for (i = 0; i < chain_nr; i++) {
1919 if (chain->ips[i] == PERF_CONTEXT_USER)
1920 break;
1921 }
1922
1923 /* LBR only affects the user callchain */
1924 if (i != chain_nr) {
1925 struct branch_stack *lbr_stack = sample->branch_stack;
1926 int lbr_nr = lbr_stack->nr, j, k;
1927 bool branch;
1928 struct branch_flags *flags;
1929 /*
1930 * LBR callstack can only get user call chain.
1931 * The mix_chain_nr is kernel call chain
1932 * number plus LBR user call chain number.
1933 * i is kernel call chain number,
1934 * 1 is PERF_CONTEXT_USER,
1935 * lbr_nr + 1 is the user call chain number.
1936 * For details, please refer to the comments
1937 * in callchain__printf
1938 */
1939 int mix_chain_nr = i + 1 + lbr_nr + 1;
1940
1941 for (j = 0; j < mix_chain_nr; j++) {
1942 int err;
1943 branch = false;
1944 flags = NULL;
1945
1946 if (callchain_param.order == ORDER_CALLEE) {
1947 if (j < i + 1)
1948 ip = chain->ips[j];
1949 else if (j > i + 1) {
1950 k = j - i - 2;
1951 ip = lbr_stack->entries[k].from;
1952 branch = true;
1953 flags = &lbr_stack->entries[k].flags;
1954 } else {
1955 ip = lbr_stack->entries[0].to;
1956 branch = true;
1957 flags = &lbr_stack->entries[0].flags;
1958 branch_from =
1959 lbr_stack->entries[0].from;
1960 }
1961 } else {
1962 if (j < lbr_nr) {
1963 k = lbr_nr - j - 1;
1964 ip = lbr_stack->entries[k].from;
1965 branch = true;
1966 flags = &lbr_stack->entries[k].flags;
1967 }
1968 else if (j > lbr_nr)
1969 ip = chain->ips[i + 1 - (j - lbr_nr)];
1970 else {
1971 ip = lbr_stack->entries[0].to;
1972 branch = true;
1973 flags = &lbr_stack->entries[0].flags;
1974 branch_from =
1975 lbr_stack->entries[0].from;
1976 }
1977 }
1978
1979 err = add_callchain_ip(thread, cursor, parent,
1980 root_al, &cpumode, ip,
1981 branch, flags, NULL,
1982 branch_from);
1983 if (err)
1984 return (err < 0) ? err : 0;
1985 }
1986 return 1;
1987 }
1988
1989 return 0;
1990 }
1991
1992 static int thread__resolve_callchain_sample(struct thread *thread,
1993 struct callchain_cursor *cursor,
1994 struct perf_evsel *evsel,
1995 struct perf_sample *sample,
1996 struct symbol **parent,
1997 struct addr_location *root_al,
1998 int max_stack)
1999 {
2000 struct branch_stack *branch = sample->branch_stack;
2001 struct ip_callchain *chain = sample->callchain;
2002 int chain_nr = 0;
2003 u8 cpumode = PERF_RECORD_MISC_USER;
2004 int i, j, err, nr_entries;
2005 int skip_idx = -1;
2006 int first_call = 0;
2007
2008 if (chain)
2009 chain_nr = chain->nr;
2010
2011 if (perf_evsel__has_branch_callstack(evsel)) {
2012 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2013 root_al, max_stack);
2014 if (err)
2015 return (err < 0) ? err : 0;
2016 }
2017
2018 /*
2019 * Based on DWARF debug information, some architectures skip
2020 * a callchain entry saved by the kernel.
2021 */
2022 skip_idx = arch_skip_callchain_idx(thread, chain);
2023
2024 /*
2025 * Add branches to call stack for easier browsing. This gives
2026 * more context for a sample than just the callers.
2027 *
2028 * This uses individual histograms of paths compared to the
2029 * aggregated histograms the normal LBR mode uses.
2030 *
2031 * Limitations for now:
2032 * - No extra filters
2033 * - No annotations (should annotate somehow)
2034 */
2035
2036 if (branch && callchain_param.branch_callstack) {
2037 int nr = min(max_stack, (int)branch->nr);
2038 struct branch_entry be[nr];
2039 struct iterations iter[nr];
2040
2041 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2042 pr_warning("corrupted branch chain. skipping...\n");
2043 goto check_calls;
2044 }
2045
2046 for (i = 0; i < nr; i++) {
2047 if (callchain_param.order == ORDER_CALLEE) {
2048 be[i] = branch->entries[i];
2049
2050 if (chain == NULL)
2051 continue;
2052
2053 /*
2054 * Check for overlap into the callchain.
2055 * The return address is one off compared to
2056 * the branch entry. To adjust for this
2057 * assume the calling instruction is not longer
2058 * than 8 bytes.
2059 */
2060 if (i == skip_idx ||
2061 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2062 first_call++;
2063 else if (be[i].from < chain->ips[first_call] &&
2064 be[i].from >= chain->ips[first_call] - 8)
2065 first_call++;
2066 } else
2067 be[i] = branch->entries[branch->nr - i - 1];
2068 }
2069
2070 memset(iter, 0, sizeof(struct iterations) * nr);
2071 nr = remove_loops(be, nr, iter);
2072
2073 for (i = 0; i < nr; i++) {
2074 err = add_callchain_ip(thread, cursor, parent,
2075 root_al,
2076 NULL, be[i].to,
2077 true, &be[i].flags,
2078 NULL, be[i].from);
2079
2080 if (!err)
2081 err = add_callchain_ip(thread, cursor, parent, root_al,
2082 NULL, be[i].from,
2083 true, &be[i].flags,
2084 &iter[i], 0);
2085 if (err == -EINVAL)
2086 break;
2087 if (err)
2088 return err;
2089 }
2090
2091 if (chain_nr == 0)
2092 return 0;
2093
2094 chain_nr -= nr;
2095 }
2096
2097 check_calls:
2098 for (i = first_call, nr_entries = 0;
2099 i < chain_nr && nr_entries < max_stack; i++) {
2100 u64 ip;
2101
2102 if (callchain_param.order == ORDER_CALLEE)
2103 j = i;
2104 else
2105 j = chain->nr - i - 1;
2106
2107 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2108 if (j == skip_idx)
2109 continue;
2110 #endif
2111 ip = chain->ips[j];
2112
2113 if (ip < PERF_CONTEXT_MAX)
2114 ++nr_entries;
2115
2116 err = add_callchain_ip(thread, cursor, parent,
2117 root_al, &cpumode, ip,
2118 false, NULL, NULL, 0);
2119
2120 if (err)
2121 return (err < 0) ? err : 0;
2122 }
2123
2124 return 0;
2125 }
2126
2127 static int append_inlines(struct callchain_cursor *cursor,
2128 struct map *map, struct symbol *sym, u64 ip)
2129 {
2130 struct inline_node *inline_node;
2131 struct inline_list *ilist;
2132 u64 addr;
2133 int ret = 1;
2134
2135 if (!symbol_conf.inline_name || !map || !sym)
2136 return ret;
2137
2138 addr = map__rip_2objdump(map, ip);
2139
2140 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2141 if (!inline_node) {
2142 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2143 if (!inline_node)
2144 return ret;
2145 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2146 }
2147
2148 list_for_each_entry(ilist, &inline_node->val, list) {
2149 ret = callchain_cursor_append(cursor, ip, map,
2150 ilist->symbol, false,
2151 NULL, 0, 0, 0, ilist->srcline);
2152
2153 if (ret != 0)
2154 return ret;
2155 }
2156
2157 return ret;
2158 }
2159
2160 static int unwind_entry(struct unwind_entry *entry, void *arg)
2161 {
2162 struct callchain_cursor *cursor = arg;
2163 const char *srcline = NULL;
2164
2165 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2166 return 0;
2167
2168 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2169 return 0;
2170
2171 srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2172 return callchain_cursor_append(cursor, entry->ip,
2173 entry->map, entry->sym,
2174 false, NULL, 0, 0, 0, srcline);
2175 }
2176
2177 static int thread__resolve_callchain_unwind(struct thread *thread,
2178 struct callchain_cursor *cursor,
2179 struct perf_evsel *evsel,
2180 struct perf_sample *sample,
2181 int max_stack)
2182 {
2183 /* Can we do dwarf post unwind? */
2184 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2185 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2186 return 0;
2187
2188 /* Bail out if nothing was captured. */
2189 if ((!sample->user_regs.regs) ||
2190 (!sample->user_stack.size))
2191 return 0;
2192
2193 return unwind__get_entries(unwind_entry, cursor,
2194 thread, sample, max_stack);
2195 }
2196
2197 int thread__resolve_callchain(struct thread *thread,
2198 struct callchain_cursor *cursor,
2199 struct perf_evsel *evsel,
2200 struct perf_sample *sample,
2201 struct symbol **parent,
2202 struct addr_location *root_al,
2203 int max_stack)
2204 {
2205 int ret = 0;
2206
2207 callchain_cursor_reset(&callchain_cursor);
2208
2209 if (callchain_param.order == ORDER_CALLEE) {
2210 ret = thread__resolve_callchain_sample(thread, cursor,
2211 evsel, sample,
2212 parent, root_al,
2213 max_stack);
2214 if (ret)
2215 return ret;
2216 ret = thread__resolve_callchain_unwind(thread, cursor,
2217 evsel, sample,
2218 max_stack);
2219 } else {
2220 ret = thread__resolve_callchain_unwind(thread, cursor,
2221 evsel, sample,
2222 max_stack);
2223 if (ret)
2224 return ret;
2225 ret = thread__resolve_callchain_sample(thread, cursor,
2226 evsel, sample,
2227 parent, root_al,
2228 max_stack);
2229 }
2230
2231 return ret;
2232 }
2233
2234 int machine__for_each_thread(struct machine *machine,
2235 int (*fn)(struct thread *thread, void *p),
2236 void *priv)
2237 {
2238 struct threads *threads;
2239 struct rb_node *nd;
2240 struct thread *thread;
2241 int rc = 0;
2242 int i;
2243
2244 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2245 threads = &machine->threads[i];
2246 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2247 thread = rb_entry(nd, struct thread, rb_node);
2248 rc = fn(thread, priv);
2249 if (rc != 0)
2250 return rc;
2251 }
2252
2253 list_for_each_entry(thread, &threads->dead, node) {
2254 rc = fn(thread, priv);
2255 if (rc != 0)
2256 return rc;
2257 }
2258 }
2259 return rc;
2260 }
2261
2262 int machines__for_each_thread(struct machines *machines,
2263 int (*fn)(struct thread *thread, void *p),
2264 void *priv)
2265 {
2266 struct rb_node *nd;
2267 int rc = 0;
2268
2269 rc = machine__for_each_thread(&machines->host, fn, priv);
2270 if (rc != 0)
2271 return rc;
2272
2273 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2274 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2275
2276 rc = machine__for_each_thread(machine, fn, priv);
2277 if (rc != 0)
2278 return rc;
2279 }
2280 return rc;
2281 }
2282
2283 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2284 struct target *target, struct thread_map *threads,
2285 perf_event__handler_t process, bool data_mmap,
2286 unsigned int proc_map_timeout,
2287 unsigned int nr_threads_synthesize)
2288 {
2289 if (target__has_task(target))
2290 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2291 else if (target__has_cpu(target))
2292 return perf_event__synthesize_threads(tool, process,
2293 machine, data_mmap,
2294 proc_map_timeout,
2295 nr_threads_synthesize);
2296 /* command specified */
2297 return 0;
2298 }
2299
2300 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2301 {
2302 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2303 return -1;
2304
2305 return machine->current_tid[cpu];
2306 }
2307
2308 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2309 pid_t tid)
2310 {
2311 struct thread *thread;
2312
2313 if (cpu < 0)
2314 return -EINVAL;
2315
2316 if (!machine->current_tid) {
2317 int i;
2318
2319 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2320 if (!machine->current_tid)
2321 return -ENOMEM;
2322 for (i = 0; i < MAX_NR_CPUS; i++)
2323 machine->current_tid[i] = -1;
2324 }
2325
2326 if (cpu >= MAX_NR_CPUS) {
2327 pr_err("Requested CPU %d too large. ", cpu);
2328 pr_err("Consider raising MAX_NR_CPUS\n");
2329 return -EINVAL;
2330 }
2331
2332 machine->current_tid[cpu] = tid;
2333
2334 thread = machine__findnew_thread(machine, pid, tid);
2335 if (!thread)
2336 return -ENOMEM;
2337
2338 thread->cpu = cpu;
2339 thread__put(thread);
2340
2341 return 0;
2342 }
2343
2344 int machine__get_kernel_start(struct machine *machine)
2345 {
2346 struct map *map = machine__kernel_map(machine);
2347 int err = 0;
2348
2349 /*
2350 * The only addresses above 2^63 are kernel addresses of a 64-bit
2351 * kernel. Note that addresses are unsigned so that on a 32-bit system
2352 * all addresses including kernel addresses are less than 2^32. In
2353 * that case (32-bit system), if the kernel mapping is unknown, all
2354 * addresses will be assumed to be in user space - see
2355 * machine__kernel_ip().
2356 */
2357 machine->kernel_start = 1ULL << 63;
2358 if (map) {
2359 err = map__load(map);
2360 if (!err)
2361 machine->kernel_start = map->start;
2362 }
2363 return err;
2364 }
2365
2366 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2367 {
2368 return dsos__findnew(&machine->dsos, filename);
2369 }
2370
2371 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2372 {
2373 struct machine *machine = vmachine;
2374 struct map *map;
2375 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2376
2377 if (sym == NULL)
2378 return NULL;
2379
2380 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2381 *addrp = map->unmap_ip(map, sym->start);
2382 return sym->name;
2383 }