]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - tools/perf/util/machine.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "symbol.h"
14 #include "sort.h"
15 #include "strlist.h"
16 #include "thread.h"
17 #include "vdso.h"
18 #include <stdbool.h>
19 #include <sys/types.h>
20 #include <sys/stat.h>
21 #include <unistd.h>
22 #include "unwind.h"
23 #include "linux/hash.h"
24 #include "asm/bug.h"
25 #include "bpf-event.h"
26
27 #include "sane_ctype.h"
28 #include <symbol/kallsyms.h>
29 #include <linux/mman.h>
30
31 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
32
33 static void dsos__init(struct dsos *dsos)
34 {
35 INIT_LIST_HEAD(&dsos->head);
36 dsos->root = RB_ROOT;
37 init_rwsem(&dsos->lock);
38 }
39
40 static void machine__threads_init(struct machine *machine)
41 {
42 int i;
43
44 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
45 struct threads *threads = &machine->threads[i];
46 threads->entries = RB_ROOT_CACHED;
47 init_rwsem(&threads->lock);
48 threads->nr = 0;
49 INIT_LIST_HEAD(&threads->dead);
50 threads->last_match = NULL;
51 }
52 }
53
54 static int machine__set_mmap_name(struct machine *machine)
55 {
56 if (machine__is_host(machine))
57 machine->mmap_name = strdup("[kernel.kallsyms]");
58 else if (machine__is_default_guest(machine))
59 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
60 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
61 machine->pid) < 0)
62 machine->mmap_name = NULL;
63
64 return machine->mmap_name ? 0 : -ENOMEM;
65 }
66
67 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
68 {
69 int err = -ENOMEM;
70
71 memset(machine, 0, sizeof(*machine));
72 map_groups__init(&machine->kmaps, machine);
73 RB_CLEAR_NODE(&machine->rb_node);
74 dsos__init(&machine->dsos);
75
76 machine__threads_init(machine);
77
78 machine->vdso_info = NULL;
79 machine->env = NULL;
80
81 machine->pid = pid;
82
83 machine->id_hdr_size = 0;
84 machine->kptr_restrict_warned = false;
85 machine->comm_exec = false;
86 machine->kernel_start = 0;
87 machine->vmlinux_map = NULL;
88
89 machine->root_dir = strdup(root_dir);
90 if (machine->root_dir == NULL)
91 return -ENOMEM;
92
93 if (machine__set_mmap_name(machine))
94 goto out;
95
96 if (pid != HOST_KERNEL_ID) {
97 struct thread *thread = machine__findnew_thread(machine, -1,
98 pid);
99 char comm[64];
100
101 if (thread == NULL)
102 goto out;
103
104 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
105 thread__set_comm(thread, comm, 0);
106 thread__put(thread);
107 }
108
109 machine->current_tid = NULL;
110 err = 0;
111
112 out:
113 if (err) {
114 zfree(&machine->root_dir);
115 zfree(&machine->mmap_name);
116 }
117 return 0;
118 }
119
120 struct machine *machine__new_host(void)
121 {
122 struct machine *machine = malloc(sizeof(*machine));
123
124 if (machine != NULL) {
125 machine__init(machine, "", HOST_KERNEL_ID);
126
127 if (machine__create_kernel_maps(machine) < 0)
128 goto out_delete;
129 }
130
131 return machine;
132 out_delete:
133 free(machine);
134 return NULL;
135 }
136
137 struct machine *machine__new_kallsyms(void)
138 {
139 struct machine *machine = machine__new_host();
140 /*
141 * FIXME:
142 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
143 * ask for not using the kcore parsing code, once this one is fixed
144 * to create a map per module.
145 */
146 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
147 machine__delete(machine);
148 machine = NULL;
149 }
150
151 return machine;
152 }
153
154 static void dsos__purge(struct dsos *dsos)
155 {
156 struct dso *pos, *n;
157
158 down_write(&dsos->lock);
159
160 list_for_each_entry_safe(pos, n, &dsos->head, node) {
161 RB_CLEAR_NODE(&pos->rb_node);
162 pos->root = NULL;
163 list_del_init(&pos->node);
164 dso__put(pos);
165 }
166
167 up_write(&dsos->lock);
168 }
169
170 static void dsos__exit(struct dsos *dsos)
171 {
172 dsos__purge(dsos);
173 exit_rwsem(&dsos->lock);
174 }
175
176 void machine__delete_threads(struct machine *machine)
177 {
178 struct rb_node *nd;
179 int i;
180
181 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
182 struct threads *threads = &machine->threads[i];
183 down_write(&threads->lock);
184 nd = rb_first_cached(&threads->entries);
185 while (nd) {
186 struct thread *t = rb_entry(nd, struct thread, rb_node);
187
188 nd = rb_next(nd);
189 __machine__remove_thread(machine, t, false);
190 }
191 up_write(&threads->lock);
192 }
193 }
194
195 void machine__exit(struct machine *machine)
196 {
197 int i;
198
199 if (machine == NULL)
200 return;
201
202 machine__destroy_kernel_maps(machine);
203 map_groups__exit(&machine->kmaps);
204 dsos__exit(&machine->dsos);
205 machine__exit_vdso(machine);
206 zfree(&machine->root_dir);
207 zfree(&machine->mmap_name);
208 zfree(&machine->current_tid);
209
210 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
211 struct threads *threads = &machine->threads[i];
212 exit_rwsem(&threads->lock);
213 }
214 }
215
216 void machine__delete(struct machine *machine)
217 {
218 if (machine) {
219 machine__exit(machine);
220 free(machine);
221 }
222 }
223
224 void machines__init(struct machines *machines)
225 {
226 machine__init(&machines->host, "", HOST_KERNEL_ID);
227 machines->guests = RB_ROOT_CACHED;
228 }
229
230 void machines__exit(struct machines *machines)
231 {
232 machine__exit(&machines->host);
233 /* XXX exit guest */
234 }
235
236 struct machine *machines__add(struct machines *machines, pid_t pid,
237 const char *root_dir)
238 {
239 struct rb_node **p = &machines->guests.rb_root.rb_node;
240 struct rb_node *parent = NULL;
241 struct machine *pos, *machine = malloc(sizeof(*machine));
242 bool leftmost = true;
243
244 if (machine == NULL)
245 return NULL;
246
247 if (machine__init(machine, root_dir, pid) != 0) {
248 free(machine);
249 return NULL;
250 }
251
252 while (*p != NULL) {
253 parent = *p;
254 pos = rb_entry(parent, struct machine, rb_node);
255 if (pid < pos->pid)
256 p = &(*p)->rb_left;
257 else {
258 p = &(*p)->rb_right;
259 leftmost = false;
260 }
261 }
262
263 rb_link_node(&machine->rb_node, parent, p);
264 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
265
266 return machine;
267 }
268
269 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
270 {
271 struct rb_node *nd;
272
273 machines->host.comm_exec = comm_exec;
274
275 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
276 struct machine *machine = rb_entry(nd, struct machine, rb_node);
277
278 machine->comm_exec = comm_exec;
279 }
280 }
281
282 struct machine *machines__find(struct machines *machines, pid_t pid)
283 {
284 struct rb_node **p = &machines->guests.rb_root.rb_node;
285 struct rb_node *parent = NULL;
286 struct machine *machine;
287 struct machine *default_machine = NULL;
288
289 if (pid == HOST_KERNEL_ID)
290 return &machines->host;
291
292 while (*p != NULL) {
293 parent = *p;
294 machine = rb_entry(parent, struct machine, rb_node);
295 if (pid < machine->pid)
296 p = &(*p)->rb_left;
297 else if (pid > machine->pid)
298 p = &(*p)->rb_right;
299 else
300 return machine;
301 if (!machine->pid)
302 default_machine = machine;
303 }
304
305 return default_machine;
306 }
307
308 struct machine *machines__findnew(struct machines *machines, pid_t pid)
309 {
310 char path[PATH_MAX];
311 const char *root_dir = "";
312 struct machine *machine = machines__find(machines, pid);
313
314 if (machine && (machine->pid == pid))
315 goto out;
316
317 if ((pid != HOST_KERNEL_ID) &&
318 (pid != DEFAULT_GUEST_KERNEL_ID) &&
319 (symbol_conf.guestmount)) {
320 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
321 if (access(path, R_OK)) {
322 static struct strlist *seen;
323
324 if (!seen)
325 seen = strlist__new(NULL, NULL);
326
327 if (!strlist__has_entry(seen, path)) {
328 pr_err("Can't access file %s\n", path);
329 strlist__add(seen, path);
330 }
331 machine = NULL;
332 goto out;
333 }
334 root_dir = path;
335 }
336
337 machine = machines__add(machines, pid, root_dir);
338 out:
339 return machine;
340 }
341
342 void machines__process_guests(struct machines *machines,
343 machine__process_t process, void *data)
344 {
345 struct rb_node *nd;
346
347 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
348 struct machine *pos = rb_entry(nd, struct machine, rb_node);
349 process(pos, data);
350 }
351 }
352
353 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
354 {
355 struct rb_node *node;
356 struct machine *machine;
357
358 machines->host.id_hdr_size = id_hdr_size;
359
360 for (node = rb_first_cached(&machines->guests); node;
361 node = rb_next(node)) {
362 machine = rb_entry(node, struct machine, rb_node);
363 machine->id_hdr_size = id_hdr_size;
364 }
365
366 return;
367 }
368
369 static void machine__update_thread_pid(struct machine *machine,
370 struct thread *th, pid_t pid)
371 {
372 struct thread *leader;
373
374 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
375 return;
376
377 th->pid_ = pid;
378
379 if (th->pid_ == th->tid)
380 return;
381
382 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
383 if (!leader)
384 goto out_err;
385
386 if (!leader->mg)
387 leader->mg = map_groups__new(machine);
388
389 if (!leader->mg)
390 goto out_err;
391
392 if (th->mg == leader->mg)
393 return;
394
395 if (th->mg) {
396 /*
397 * Maps are created from MMAP events which provide the pid and
398 * tid. Consequently there never should be any maps on a thread
399 * with an unknown pid. Just print an error if there are.
400 */
401 if (!map_groups__empty(th->mg))
402 pr_err("Discarding thread maps for %d:%d\n",
403 th->pid_, th->tid);
404 map_groups__put(th->mg);
405 }
406
407 th->mg = map_groups__get(leader->mg);
408 out_put:
409 thread__put(leader);
410 return;
411 out_err:
412 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
413 goto out_put;
414 }
415
416 /*
417 * Front-end cache - TID lookups come in blocks,
418 * so most of the time we dont have to look up
419 * the full rbtree:
420 */
421 static struct thread*
422 __threads__get_last_match(struct threads *threads, struct machine *machine,
423 int pid, int tid)
424 {
425 struct thread *th;
426
427 th = threads->last_match;
428 if (th != NULL) {
429 if (th->tid == tid) {
430 machine__update_thread_pid(machine, th, pid);
431 return thread__get(th);
432 }
433
434 threads->last_match = NULL;
435 }
436
437 return NULL;
438 }
439
440 static struct thread*
441 threads__get_last_match(struct threads *threads, struct machine *machine,
442 int pid, int tid)
443 {
444 struct thread *th = NULL;
445
446 if (perf_singlethreaded)
447 th = __threads__get_last_match(threads, machine, pid, tid);
448
449 return th;
450 }
451
452 static void
453 __threads__set_last_match(struct threads *threads, struct thread *th)
454 {
455 threads->last_match = th;
456 }
457
458 static void
459 threads__set_last_match(struct threads *threads, struct thread *th)
460 {
461 if (perf_singlethreaded)
462 __threads__set_last_match(threads, th);
463 }
464
465 /*
466 * Caller must eventually drop thread->refcnt returned with a successful
467 * lookup/new thread inserted.
468 */
469 static struct thread *____machine__findnew_thread(struct machine *machine,
470 struct threads *threads,
471 pid_t pid, pid_t tid,
472 bool create)
473 {
474 struct rb_node **p = &threads->entries.rb_root.rb_node;
475 struct rb_node *parent = NULL;
476 struct thread *th;
477 bool leftmost = true;
478
479 th = threads__get_last_match(threads, machine, pid, tid);
480 if (th)
481 return th;
482
483 while (*p != NULL) {
484 parent = *p;
485 th = rb_entry(parent, struct thread, rb_node);
486
487 if (th->tid == tid) {
488 threads__set_last_match(threads, th);
489 machine__update_thread_pid(machine, th, pid);
490 return thread__get(th);
491 }
492
493 if (tid < th->tid)
494 p = &(*p)->rb_left;
495 else {
496 p = &(*p)->rb_right;
497 leftmost = false;
498 }
499 }
500
501 if (!create)
502 return NULL;
503
504 th = thread__new(pid, tid);
505 if (th != NULL) {
506 rb_link_node(&th->rb_node, parent, p);
507 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
508
509 /*
510 * We have to initialize map_groups separately
511 * after rb tree is updated.
512 *
513 * The reason is that we call machine__findnew_thread
514 * within thread__init_map_groups to find the thread
515 * leader and that would screwed the rb tree.
516 */
517 if (thread__init_map_groups(th, machine)) {
518 rb_erase_cached(&th->rb_node, &threads->entries);
519 RB_CLEAR_NODE(&th->rb_node);
520 thread__put(th);
521 return NULL;
522 }
523 /*
524 * It is now in the rbtree, get a ref
525 */
526 thread__get(th);
527 threads__set_last_match(threads, th);
528 ++threads->nr;
529 }
530
531 return th;
532 }
533
534 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
535 {
536 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
537 }
538
539 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
540 pid_t tid)
541 {
542 struct threads *threads = machine__threads(machine, tid);
543 struct thread *th;
544
545 down_write(&threads->lock);
546 th = __machine__findnew_thread(machine, pid, tid);
547 up_write(&threads->lock);
548 return th;
549 }
550
551 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
552 pid_t tid)
553 {
554 struct threads *threads = machine__threads(machine, tid);
555 struct thread *th;
556
557 down_read(&threads->lock);
558 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
559 up_read(&threads->lock);
560 return th;
561 }
562
563 struct comm *machine__thread_exec_comm(struct machine *machine,
564 struct thread *thread)
565 {
566 if (machine->comm_exec)
567 return thread__exec_comm(thread);
568 else
569 return thread__comm(thread);
570 }
571
572 int machine__process_comm_event(struct machine *machine, union perf_event *event,
573 struct perf_sample *sample)
574 {
575 struct thread *thread = machine__findnew_thread(machine,
576 event->comm.pid,
577 event->comm.tid);
578 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
579 int err = 0;
580
581 if (exec)
582 machine->comm_exec = true;
583
584 if (dump_trace)
585 perf_event__fprintf_comm(event, stdout);
586
587 if (thread == NULL ||
588 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
589 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
590 err = -1;
591 }
592
593 thread__put(thread);
594
595 return err;
596 }
597
598 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
599 union perf_event *event,
600 struct perf_sample *sample __maybe_unused)
601 {
602 struct thread *thread = machine__findnew_thread(machine,
603 event->namespaces.pid,
604 event->namespaces.tid);
605 int err = 0;
606
607 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
608 "\nWARNING: kernel seems to support more namespaces than perf"
609 " tool.\nTry updating the perf tool..\n\n");
610
611 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
612 "\nWARNING: perf tool seems to support more namespaces than"
613 " the kernel.\nTry updating the kernel..\n\n");
614
615 if (dump_trace)
616 perf_event__fprintf_namespaces(event, stdout);
617
618 if (thread == NULL ||
619 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
620 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
621 err = -1;
622 }
623
624 thread__put(thread);
625
626 return err;
627 }
628
629 int machine__process_lost_event(struct machine *machine __maybe_unused,
630 union perf_event *event, struct perf_sample *sample __maybe_unused)
631 {
632 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
633 event->lost.id, event->lost.lost);
634 return 0;
635 }
636
637 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
638 union perf_event *event, struct perf_sample *sample)
639 {
640 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
641 sample->id, event->lost_samples.lost);
642 return 0;
643 }
644
645 static struct dso *machine__findnew_module_dso(struct machine *machine,
646 struct kmod_path *m,
647 const char *filename)
648 {
649 struct dso *dso;
650
651 down_write(&machine->dsos.lock);
652
653 dso = __dsos__find(&machine->dsos, m->name, true);
654 if (!dso) {
655 dso = __dsos__addnew(&machine->dsos, m->name);
656 if (dso == NULL)
657 goto out_unlock;
658
659 dso__set_module_info(dso, m, machine);
660 dso__set_long_name(dso, strdup(filename), true);
661 }
662
663 dso__get(dso);
664 out_unlock:
665 up_write(&machine->dsos.lock);
666 return dso;
667 }
668
669 int machine__process_aux_event(struct machine *machine __maybe_unused,
670 union perf_event *event)
671 {
672 if (dump_trace)
673 perf_event__fprintf_aux(event, stdout);
674 return 0;
675 }
676
677 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
678 union perf_event *event)
679 {
680 if (dump_trace)
681 perf_event__fprintf_itrace_start(event, stdout);
682 return 0;
683 }
684
685 int machine__process_switch_event(struct machine *machine __maybe_unused,
686 union perf_event *event)
687 {
688 if (dump_trace)
689 perf_event__fprintf_switch(event, stdout);
690 return 0;
691 }
692
693 static int machine__process_ksymbol_register(struct machine *machine,
694 union perf_event *event,
695 struct perf_sample *sample __maybe_unused)
696 {
697 struct symbol *sym;
698 struct map *map;
699
700 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
701 if (!map) {
702 map = dso__new_map(event->ksymbol_event.name);
703 if (!map)
704 return -ENOMEM;
705
706 map->start = event->ksymbol_event.addr;
707 map->pgoff = map->start;
708 map->end = map->start + event->ksymbol_event.len;
709 map_groups__insert(&machine->kmaps, map);
710 }
711
712 sym = symbol__new(event->ksymbol_event.addr, event->ksymbol_event.len,
713 0, 0, event->ksymbol_event.name);
714 if (!sym)
715 return -ENOMEM;
716 dso__insert_symbol(map->dso, sym);
717 return 0;
718 }
719
720 static int machine__process_ksymbol_unregister(struct machine *machine,
721 union perf_event *event,
722 struct perf_sample *sample __maybe_unused)
723 {
724 struct map *map;
725
726 map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
727 if (map)
728 map_groups__remove(&machine->kmaps, map);
729
730 return 0;
731 }
732
733 int machine__process_ksymbol(struct machine *machine __maybe_unused,
734 union perf_event *event,
735 struct perf_sample *sample)
736 {
737 if (dump_trace)
738 perf_event__fprintf_ksymbol(event, stdout);
739
740 if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
741 return machine__process_ksymbol_unregister(machine, event,
742 sample);
743 return machine__process_ksymbol_register(machine, event, sample);
744 }
745
746 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
747 {
748 const char *dup_filename;
749
750 if (!filename || !dso || !dso->long_name)
751 return;
752 if (dso->long_name[0] != '[')
753 return;
754 if (!strchr(filename, '/'))
755 return;
756
757 dup_filename = strdup(filename);
758 if (!dup_filename)
759 return;
760
761 dso__set_long_name(dso, dup_filename, true);
762 }
763
764 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
765 const char *filename)
766 {
767 struct map *map = NULL;
768 struct dso *dso = NULL;
769 struct kmod_path m;
770
771 if (kmod_path__parse_name(&m, filename))
772 return NULL;
773
774 map = map_groups__find_by_name(&machine->kmaps, m.name);
775 if (map) {
776 /*
777 * If the map's dso is an offline module, give dso__load()
778 * a chance to find the file path of that module by fixing
779 * long_name.
780 */
781 dso__adjust_kmod_long_name(map->dso, filename);
782 goto out;
783 }
784
785 dso = machine__findnew_module_dso(machine, &m, filename);
786 if (dso == NULL)
787 goto out;
788
789 map = map__new2(start, dso);
790 if (map == NULL)
791 goto out;
792
793 map_groups__insert(&machine->kmaps, map);
794
795 /* Put the map here because map_groups__insert alread got it */
796 map__put(map);
797 out:
798 /* put the dso here, corresponding to machine__findnew_module_dso */
799 dso__put(dso);
800 free(m.name);
801 return map;
802 }
803
804 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
805 {
806 struct rb_node *nd;
807 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
808
809 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
810 struct machine *pos = rb_entry(nd, struct machine, rb_node);
811 ret += __dsos__fprintf(&pos->dsos.head, fp);
812 }
813
814 return ret;
815 }
816
817 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
818 bool (skip)(struct dso *dso, int parm), int parm)
819 {
820 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
821 }
822
823 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
824 bool (skip)(struct dso *dso, int parm), int parm)
825 {
826 struct rb_node *nd;
827 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
828
829 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
830 struct machine *pos = rb_entry(nd, struct machine, rb_node);
831 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
832 }
833 return ret;
834 }
835
836 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
837 {
838 int i;
839 size_t printed = 0;
840 struct dso *kdso = machine__kernel_map(machine)->dso;
841
842 if (kdso->has_build_id) {
843 char filename[PATH_MAX];
844 if (dso__build_id_filename(kdso, filename, sizeof(filename),
845 false))
846 printed += fprintf(fp, "[0] %s\n", filename);
847 }
848
849 for (i = 0; i < vmlinux_path__nr_entries; ++i)
850 printed += fprintf(fp, "[%d] %s\n",
851 i + kdso->has_build_id, vmlinux_path[i]);
852
853 return printed;
854 }
855
856 size_t machine__fprintf(struct machine *machine, FILE *fp)
857 {
858 struct rb_node *nd;
859 size_t ret;
860 int i;
861
862 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
863 struct threads *threads = &machine->threads[i];
864
865 down_read(&threads->lock);
866
867 ret = fprintf(fp, "Threads: %u\n", threads->nr);
868
869 for (nd = rb_first_cached(&threads->entries); nd;
870 nd = rb_next(nd)) {
871 struct thread *pos = rb_entry(nd, struct thread, rb_node);
872
873 ret += thread__fprintf(pos, fp);
874 }
875
876 up_read(&threads->lock);
877 }
878 return ret;
879 }
880
881 static struct dso *machine__get_kernel(struct machine *machine)
882 {
883 const char *vmlinux_name = machine->mmap_name;
884 struct dso *kernel;
885
886 if (machine__is_host(machine)) {
887 if (symbol_conf.vmlinux_name)
888 vmlinux_name = symbol_conf.vmlinux_name;
889
890 kernel = machine__findnew_kernel(machine, vmlinux_name,
891 "[kernel]", DSO_TYPE_KERNEL);
892 } else {
893 if (symbol_conf.default_guest_vmlinux_name)
894 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
895
896 kernel = machine__findnew_kernel(machine, vmlinux_name,
897 "[guest.kernel]",
898 DSO_TYPE_GUEST_KERNEL);
899 }
900
901 if (kernel != NULL && (!kernel->has_build_id))
902 dso__read_running_kernel_build_id(kernel, machine);
903
904 return kernel;
905 }
906
907 struct process_args {
908 u64 start;
909 };
910
911 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
912 size_t bufsz)
913 {
914 if (machine__is_default_guest(machine))
915 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
916 else
917 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
918 }
919
920 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
921
922 /* Figure out the start address of kernel map from /proc/kallsyms.
923 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
924 * symbol_name if it's not that important.
925 */
926 static int machine__get_running_kernel_start(struct machine *machine,
927 const char **symbol_name, u64 *start)
928 {
929 char filename[PATH_MAX];
930 int i, err = -1;
931 const char *name;
932 u64 addr = 0;
933
934 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
935
936 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
937 return 0;
938
939 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
940 err = kallsyms__get_function_start(filename, name, &addr);
941 if (!err)
942 break;
943 }
944
945 if (err)
946 return -1;
947
948 if (symbol_name)
949 *symbol_name = name;
950
951 *start = addr;
952 return 0;
953 }
954
955 int machine__create_extra_kernel_map(struct machine *machine,
956 struct dso *kernel,
957 struct extra_kernel_map *xm)
958 {
959 struct kmap *kmap;
960 struct map *map;
961
962 map = map__new2(xm->start, kernel);
963 if (!map)
964 return -1;
965
966 map->end = xm->end;
967 map->pgoff = xm->pgoff;
968
969 kmap = map__kmap(map);
970
971 kmap->kmaps = &machine->kmaps;
972 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
973
974 map_groups__insert(&machine->kmaps, map);
975
976 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
977 kmap->name, map->start, map->end);
978
979 map__put(map);
980
981 return 0;
982 }
983
984 static u64 find_entry_trampoline(struct dso *dso)
985 {
986 /* Duplicates are removed so lookup all aliases */
987 const char *syms[] = {
988 "_entry_trampoline",
989 "__entry_trampoline_start",
990 "entry_SYSCALL_64_trampoline",
991 };
992 struct symbol *sym = dso__first_symbol(dso);
993 unsigned int i;
994
995 for (; sym; sym = dso__next_symbol(sym)) {
996 if (sym->binding != STB_GLOBAL)
997 continue;
998 for (i = 0; i < ARRAY_SIZE(syms); i++) {
999 if (!strcmp(sym->name, syms[i]))
1000 return sym->start;
1001 }
1002 }
1003
1004 return 0;
1005 }
1006
1007 /*
1008 * These values can be used for kernels that do not have symbols for the entry
1009 * trampolines in kallsyms.
1010 */
1011 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1012 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1013 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1014
1015 /* Map x86_64 PTI entry trampolines */
1016 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1017 struct dso *kernel)
1018 {
1019 struct map_groups *kmaps = &machine->kmaps;
1020 struct maps *maps = &kmaps->maps;
1021 int nr_cpus_avail, cpu;
1022 bool found = false;
1023 struct map *map;
1024 u64 pgoff;
1025
1026 /*
1027 * In the vmlinux case, pgoff is a virtual address which must now be
1028 * mapped to a vmlinux offset.
1029 */
1030 for (map = maps__first(maps); map; map = map__next(map)) {
1031 struct kmap *kmap = __map__kmap(map);
1032 struct map *dest_map;
1033
1034 if (!kmap || !is_entry_trampoline(kmap->name))
1035 continue;
1036
1037 dest_map = map_groups__find(kmaps, map->pgoff);
1038 if (dest_map != map)
1039 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1040 found = true;
1041 }
1042 if (found || machine->trampolines_mapped)
1043 return 0;
1044
1045 pgoff = find_entry_trampoline(kernel);
1046 if (!pgoff)
1047 return 0;
1048
1049 nr_cpus_avail = machine__nr_cpus_avail(machine);
1050
1051 /* Add a 1 page map for each CPU's entry trampoline */
1052 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1053 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1054 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1055 X86_64_ENTRY_TRAMPOLINE;
1056 struct extra_kernel_map xm = {
1057 .start = va,
1058 .end = va + page_size,
1059 .pgoff = pgoff,
1060 };
1061
1062 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1063
1064 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1065 return -1;
1066 }
1067
1068 machine->trampolines_mapped = nr_cpus_avail;
1069
1070 return 0;
1071 }
1072
1073 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1074 struct dso *kernel __maybe_unused)
1075 {
1076 return 0;
1077 }
1078
1079 static int
1080 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1081 {
1082 struct kmap *kmap;
1083 struct map *map;
1084
1085 /* In case of renewal the kernel map, destroy previous one */
1086 machine__destroy_kernel_maps(machine);
1087
1088 machine->vmlinux_map = map__new2(0, kernel);
1089 if (machine->vmlinux_map == NULL)
1090 return -1;
1091
1092 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1093 map = machine__kernel_map(machine);
1094 kmap = map__kmap(map);
1095 if (!kmap)
1096 return -1;
1097
1098 kmap->kmaps = &machine->kmaps;
1099 map_groups__insert(&machine->kmaps, map);
1100
1101 return 0;
1102 }
1103
1104 void machine__destroy_kernel_maps(struct machine *machine)
1105 {
1106 struct kmap *kmap;
1107 struct map *map = machine__kernel_map(machine);
1108
1109 if (map == NULL)
1110 return;
1111
1112 kmap = map__kmap(map);
1113 map_groups__remove(&machine->kmaps, map);
1114 if (kmap && kmap->ref_reloc_sym) {
1115 zfree((char **)&kmap->ref_reloc_sym->name);
1116 zfree(&kmap->ref_reloc_sym);
1117 }
1118
1119 map__zput(machine->vmlinux_map);
1120 }
1121
1122 int machines__create_guest_kernel_maps(struct machines *machines)
1123 {
1124 int ret = 0;
1125 struct dirent **namelist = NULL;
1126 int i, items = 0;
1127 char path[PATH_MAX];
1128 pid_t pid;
1129 char *endp;
1130
1131 if (symbol_conf.default_guest_vmlinux_name ||
1132 symbol_conf.default_guest_modules ||
1133 symbol_conf.default_guest_kallsyms) {
1134 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1135 }
1136
1137 if (symbol_conf.guestmount) {
1138 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1139 if (items <= 0)
1140 return -ENOENT;
1141 for (i = 0; i < items; i++) {
1142 if (!isdigit(namelist[i]->d_name[0])) {
1143 /* Filter out . and .. */
1144 continue;
1145 }
1146 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1147 if ((*endp != '\0') ||
1148 (endp == namelist[i]->d_name) ||
1149 (errno == ERANGE)) {
1150 pr_debug("invalid directory (%s). Skipping.\n",
1151 namelist[i]->d_name);
1152 continue;
1153 }
1154 sprintf(path, "%s/%s/proc/kallsyms",
1155 symbol_conf.guestmount,
1156 namelist[i]->d_name);
1157 ret = access(path, R_OK);
1158 if (ret) {
1159 pr_debug("Can't access file %s\n", path);
1160 goto failure;
1161 }
1162 machines__create_kernel_maps(machines, pid);
1163 }
1164 failure:
1165 free(namelist);
1166 }
1167
1168 return ret;
1169 }
1170
1171 void machines__destroy_kernel_maps(struct machines *machines)
1172 {
1173 struct rb_node *next = rb_first_cached(&machines->guests);
1174
1175 machine__destroy_kernel_maps(&machines->host);
1176
1177 while (next) {
1178 struct machine *pos = rb_entry(next, struct machine, rb_node);
1179
1180 next = rb_next(&pos->rb_node);
1181 rb_erase_cached(&pos->rb_node, &machines->guests);
1182 machine__delete(pos);
1183 }
1184 }
1185
1186 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1187 {
1188 struct machine *machine = machines__findnew(machines, pid);
1189
1190 if (machine == NULL)
1191 return -1;
1192
1193 return machine__create_kernel_maps(machine);
1194 }
1195
1196 int machine__load_kallsyms(struct machine *machine, const char *filename)
1197 {
1198 struct map *map = machine__kernel_map(machine);
1199 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1200
1201 if (ret > 0) {
1202 dso__set_loaded(map->dso);
1203 /*
1204 * Since /proc/kallsyms will have multiple sessions for the
1205 * kernel, with modules between them, fixup the end of all
1206 * sections.
1207 */
1208 map_groups__fixup_end(&machine->kmaps);
1209 }
1210
1211 return ret;
1212 }
1213
1214 int machine__load_vmlinux_path(struct machine *machine)
1215 {
1216 struct map *map = machine__kernel_map(machine);
1217 int ret = dso__load_vmlinux_path(map->dso, map);
1218
1219 if (ret > 0)
1220 dso__set_loaded(map->dso);
1221
1222 return ret;
1223 }
1224
1225 static char *get_kernel_version(const char *root_dir)
1226 {
1227 char version[PATH_MAX];
1228 FILE *file;
1229 char *name, *tmp;
1230 const char *prefix = "Linux version ";
1231
1232 sprintf(version, "%s/proc/version", root_dir);
1233 file = fopen(version, "r");
1234 if (!file)
1235 return NULL;
1236
1237 version[0] = '\0';
1238 tmp = fgets(version, sizeof(version), file);
1239 fclose(file);
1240
1241 name = strstr(version, prefix);
1242 if (!name)
1243 return NULL;
1244 name += strlen(prefix);
1245 tmp = strchr(name, ' ');
1246 if (tmp)
1247 *tmp = '\0';
1248
1249 return strdup(name);
1250 }
1251
1252 static bool is_kmod_dso(struct dso *dso)
1253 {
1254 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1255 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1256 }
1257
1258 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1259 struct kmod_path *m)
1260 {
1261 char *long_name;
1262 struct map *map = map_groups__find_by_name(mg, m->name);
1263
1264 if (map == NULL)
1265 return 0;
1266
1267 long_name = strdup(path);
1268 if (long_name == NULL)
1269 return -ENOMEM;
1270
1271 dso__set_long_name(map->dso, long_name, true);
1272 dso__kernel_module_get_build_id(map->dso, "");
1273
1274 /*
1275 * Full name could reveal us kmod compression, so
1276 * we need to update the symtab_type if needed.
1277 */
1278 if (m->comp && is_kmod_dso(map->dso)) {
1279 map->dso->symtab_type++;
1280 map->dso->comp = m->comp;
1281 }
1282
1283 return 0;
1284 }
1285
1286 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1287 const char *dir_name, int depth)
1288 {
1289 struct dirent *dent;
1290 DIR *dir = opendir(dir_name);
1291 int ret = 0;
1292
1293 if (!dir) {
1294 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1295 return -1;
1296 }
1297
1298 while ((dent = readdir(dir)) != NULL) {
1299 char path[PATH_MAX];
1300 struct stat st;
1301
1302 /*sshfs might return bad dent->d_type, so we have to stat*/
1303 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1304 if (stat(path, &st))
1305 continue;
1306
1307 if (S_ISDIR(st.st_mode)) {
1308 if (!strcmp(dent->d_name, ".") ||
1309 !strcmp(dent->d_name, ".."))
1310 continue;
1311
1312 /* Do not follow top-level source and build symlinks */
1313 if (depth == 0) {
1314 if (!strcmp(dent->d_name, "source") ||
1315 !strcmp(dent->d_name, "build"))
1316 continue;
1317 }
1318
1319 ret = map_groups__set_modules_path_dir(mg, path,
1320 depth + 1);
1321 if (ret < 0)
1322 goto out;
1323 } else {
1324 struct kmod_path m;
1325
1326 ret = kmod_path__parse_name(&m, dent->d_name);
1327 if (ret)
1328 goto out;
1329
1330 if (m.kmod)
1331 ret = map_groups__set_module_path(mg, path, &m);
1332
1333 free(m.name);
1334
1335 if (ret)
1336 goto out;
1337 }
1338 }
1339
1340 out:
1341 closedir(dir);
1342 return ret;
1343 }
1344
1345 static int machine__set_modules_path(struct machine *machine)
1346 {
1347 char *version;
1348 char modules_path[PATH_MAX];
1349
1350 version = get_kernel_version(machine->root_dir);
1351 if (!version)
1352 return -1;
1353
1354 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1355 machine->root_dir, version);
1356 free(version);
1357
1358 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1359 }
1360 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1361 const char *name __maybe_unused)
1362 {
1363 return 0;
1364 }
1365
1366 static int machine__create_module(void *arg, const char *name, u64 start,
1367 u64 size)
1368 {
1369 struct machine *machine = arg;
1370 struct map *map;
1371
1372 if (arch__fix_module_text_start(&start, name) < 0)
1373 return -1;
1374
1375 map = machine__findnew_module_map(machine, start, name);
1376 if (map == NULL)
1377 return -1;
1378 map->end = start + size;
1379
1380 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1381
1382 return 0;
1383 }
1384
1385 static int machine__create_modules(struct machine *machine)
1386 {
1387 const char *modules;
1388 char path[PATH_MAX];
1389
1390 if (machine__is_default_guest(machine)) {
1391 modules = symbol_conf.default_guest_modules;
1392 } else {
1393 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1394 modules = path;
1395 }
1396
1397 if (symbol__restricted_filename(modules, "/proc/modules"))
1398 return -1;
1399
1400 if (modules__parse(modules, machine, machine__create_module))
1401 return -1;
1402
1403 if (!machine__set_modules_path(machine))
1404 return 0;
1405
1406 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1407
1408 return 0;
1409 }
1410
1411 static void machine__set_kernel_mmap(struct machine *machine,
1412 u64 start, u64 end)
1413 {
1414 machine->vmlinux_map->start = start;
1415 machine->vmlinux_map->end = end;
1416 /*
1417 * Be a bit paranoid here, some perf.data file came with
1418 * a zero sized synthesized MMAP event for the kernel.
1419 */
1420 if (start == 0 && end == 0)
1421 machine->vmlinux_map->end = ~0ULL;
1422 }
1423
1424 static void machine__update_kernel_mmap(struct machine *machine,
1425 u64 start, u64 end)
1426 {
1427 struct map *map = machine__kernel_map(machine);
1428
1429 map__get(map);
1430 map_groups__remove(&machine->kmaps, map);
1431
1432 machine__set_kernel_mmap(machine, start, end);
1433
1434 map_groups__insert(&machine->kmaps, map);
1435 map__put(map);
1436 }
1437
1438 int machine__create_kernel_maps(struct machine *machine)
1439 {
1440 struct dso *kernel = machine__get_kernel(machine);
1441 const char *name = NULL;
1442 struct map *map;
1443 u64 addr = 0;
1444 int ret;
1445
1446 if (kernel == NULL)
1447 return -1;
1448
1449 ret = __machine__create_kernel_maps(machine, kernel);
1450 if (ret < 0)
1451 goto out_put;
1452
1453 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1454 if (machine__is_host(machine))
1455 pr_debug("Problems creating module maps, "
1456 "continuing anyway...\n");
1457 else
1458 pr_debug("Problems creating module maps for guest %d, "
1459 "continuing anyway...\n", machine->pid);
1460 }
1461
1462 if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1463 if (name &&
1464 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1465 machine__destroy_kernel_maps(machine);
1466 ret = -1;
1467 goto out_put;
1468 }
1469
1470 /*
1471 * we have a real start address now, so re-order the kmaps
1472 * assume it's the last in the kmaps
1473 */
1474 machine__update_kernel_mmap(machine, addr, ~0ULL);
1475 }
1476
1477 if (machine__create_extra_kernel_maps(machine, kernel))
1478 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1479
1480 /* update end address of the kernel map using adjacent module address */
1481 map = map__next(machine__kernel_map(machine));
1482 if (map)
1483 machine__set_kernel_mmap(machine, addr, map->start);
1484 out_put:
1485 dso__put(kernel);
1486 return ret;
1487 }
1488
1489 static bool machine__uses_kcore(struct machine *machine)
1490 {
1491 struct dso *dso;
1492
1493 list_for_each_entry(dso, &machine->dsos.head, node) {
1494 if (dso__is_kcore(dso))
1495 return true;
1496 }
1497
1498 return false;
1499 }
1500
1501 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1502 union perf_event *event)
1503 {
1504 return machine__is(machine, "x86_64") &&
1505 is_entry_trampoline(event->mmap.filename);
1506 }
1507
1508 static int machine__process_extra_kernel_map(struct machine *machine,
1509 union perf_event *event)
1510 {
1511 struct map *kernel_map = machine__kernel_map(machine);
1512 struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1513 struct extra_kernel_map xm = {
1514 .start = event->mmap.start,
1515 .end = event->mmap.start + event->mmap.len,
1516 .pgoff = event->mmap.pgoff,
1517 };
1518
1519 if (kernel == NULL)
1520 return -1;
1521
1522 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1523
1524 return machine__create_extra_kernel_map(machine, kernel, &xm);
1525 }
1526
1527 static int machine__process_kernel_mmap_event(struct machine *machine,
1528 union perf_event *event)
1529 {
1530 struct map *map;
1531 enum dso_kernel_type kernel_type;
1532 bool is_kernel_mmap;
1533
1534 /* If we have maps from kcore then we do not need or want any others */
1535 if (machine__uses_kcore(machine))
1536 return 0;
1537
1538 if (machine__is_host(machine))
1539 kernel_type = DSO_TYPE_KERNEL;
1540 else
1541 kernel_type = DSO_TYPE_GUEST_KERNEL;
1542
1543 is_kernel_mmap = memcmp(event->mmap.filename,
1544 machine->mmap_name,
1545 strlen(machine->mmap_name) - 1) == 0;
1546 if (event->mmap.filename[0] == '/' ||
1547 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1548 map = machine__findnew_module_map(machine, event->mmap.start,
1549 event->mmap.filename);
1550 if (map == NULL)
1551 goto out_problem;
1552
1553 map->end = map->start + event->mmap.len;
1554 } else if (is_kernel_mmap) {
1555 const char *symbol_name = (event->mmap.filename +
1556 strlen(machine->mmap_name));
1557 /*
1558 * Should be there already, from the build-id table in
1559 * the header.
1560 */
1561 struct dso *kernel = NULL;
1562 struct dso *dso;
1563
1564 down_read(&machine->dsos.lock);
1565
1566 list_for_each_entry(dso, &machine->dsos.head, node) {
1567
1568 /*
1569 * The cpumode passed to is_kernel_module is not the
1570 * cpumode of *this* event. If we insist on passing
1571 * correct cpumode to is_kernel_module, we should
1572 * record the cpumode when we adding this dso to the
1573 * linked list.
1574 *
1575 * However we don't really need passing correct
1576 * cpumode. We know the correct cpumode must be kernel
1577 * mode (if not, we should not link it onto kernel_dsos
1578 * list).
1579 *
1580 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1581 * is_kernel_module() treats it as a kernel cpumode.
1582 */
1583
1584 if (!dso->kernel ||
1585 is_kernel_module(dso->long_name,
1586 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1587 continue;
1588
1589
1590 kernel = dso;
1591 break;
1592 }
1593
1594 up_read(&machine->dsos.lock);
1595
1596 if (kernel == NULL)
1597 kernel = machine__findnew_dso(machine, machine->mmap_name);
1598 if (kernel == NULL)
1599 goto out_problem;
1600
1601 kernel->kernel = kernel_type;
1602 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1603 dso__put(kernel);
1604 goto out_problem;
1605 }
1606
1607 if (strstr(kernel->long_name, "vmlinux"))
1608 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1609
1610 machine__update_kernel_mmap(machine, event->mmap.start,
1611 event->mmap.start + event->mmap.len);
1612
1613 /*
1614 * Avoid using a zero address (kptr_restrict) for the ref reloc
1615 * symbol. Effectively having zero here means that at record
1616 * time /proc/sys/kernel/kptr_restrict was non zero.
1617 */
1618 if (event->mmap.pgoff != 0) {
1619 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1620 symbol_name,
1621 event->mmap.pgoff);
1622 }
1623
1624 if (machine__is_default_guest(machine)) {
1625 /*
1626 * preload dso of guest kernel and modules
1627 */
1628 dso__load(kernel, machine__kernel_map(machine));
1629 }
1630 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1631 return machine__process_extra_kernel_map(machine, event);
1632 }
1633 return 0;
1634 out_problem:
1635 return -1;
1636 }
1637
1638 int machine__process_mmap2_event(struct machine *machine,
1639 union perf_event *event,
1640 struct perf_sample *sample)
1641 {
1642 struct thread *thread;
1643 struct map *map;
1644 int ret = 0;
1645
1646 if (dump_trace)
1647 perf_event__fprintf_mmap2(event, stdout);
1648
1649 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1650 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1651 ret = machine__process_kernel_mmap_event(machine, event);
1652 if (ret < 0)
1653 goto out_problem;
1654 return 0;
1655 }
1656
1657 thread = machine__findnew_thread(machine, event->mmap2.pid,
1658 event->mmap2.tid);
1659 if (thread == NULL)
1660 goto out_problem;
1661
1662 map = map__new(machine, event->mmap2.start,
1663 event->mmap2.len, event->mmap2.pgoff,
1664 event->mmap2.maj,
1665 event->mmap2.min, event->mmap2.ino,
1666 event->mmap2.ino_generation,
1667 event->mmap2.prot,
1668 event->mmap2.flags,
1669 event->mmap2.filename, thread);
1670
1671 if (map == NULL)
1672 goto out_problem_map;
1673
1674 ret = thread__insert_map(thread, map);
1675 if (ret)
1676 goto out_problem_insert;
1677
1678 thread__put(thread);
1679 map__put(map);
1680 return 0;
1681
1682 out_problem_insert:
1683 map__put(map);
1684 out_problem_map:
1685 thread__put(thread);
1686 out_problem:
1687 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1688 return 0;
1689 }
1690
1691 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1692 struct perf_sample *sample)
1693 {
1694 struct thread *thread;
1695 struct map *map;
1696 u32 prot = 0;
1697 int ret = 0;
1698
1699 if (dump_trace)
1700 perf_event__fprintf_mmap(event, stdout);
1701
1702 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1703 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1704 ret = machine__process_kernel_mmap_event(machine, event);
1705 if (ret < 0)
1706 goto out_problem;
1707 return 0;
1708 }
1709
1710 thread = machine__findnew_thread(machine, event->mmap.pid,
1711 event->mmap.tid);
1712 if (thread == NULL)
1713 goto out_problem;
1714
1715 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1716 prot = PROT_EXEC;
1717
1718 map = map__new(machine, event->mmap.start,
1719 event->mmap.len, event->mmap.pgoff,
1720 0, 0, 0, 0, prot, 0,
1721 event->mmap.filename,
1722 thread);
1723
1724 if (map == NULL)
1725 goto out_problem_map;
1726
1727 ret = thread__insert_map(thread, map);
1728 if (ret)
1729 goto out_problem_insert;
1730
1731 thread__put(thread);
1732 map__put(map);
1733 return 0;
1734
1735 out_problem_insert:
1736 map__put(map);
1737 out_problem_map:
1738 thread__put(thread);
1739 out_problem:
1740 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1741 return 0;
1742 }
1743
1744 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1745 {
1746 struct threads *threads = machine__threads(machine, th->tid);
1747
1748 if (threads->last_match == th)
1749 threads__set_last_match(threads, NULL);
1750
1751 BUG_ON(refcount_read(&th->refcnt) == 0);
1752 if (lock)
1753 down_write(&threads->lock);
1754 rb_erase_cached(&th->rb_node, &threads->entries);
1755 RB_CLEAR_NODE(&th->rb_node);
1756 --threads->nr;
1757 /*
1758 * Move it first to the dead_threads list, then drop the reference,
1759 * if this is the last reference, then the thread__delete destructor
1760 * will be called and we will remove it from the dead_threads list.
1761 */
1762 list_add_tail(&th->node, &threads->dead);
1763 if (lock)
1764 up_write(&threads->lock);
1765 thread__put(th);
1766 }
1767
1768 void machine__remove_thread(struct machine *machine, struct thread *th)
1769 {
1770 return __machine__remove_thread(machine, th, true);
1771 }
1772
1773 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1774 struct perf_sample *sample)
1775 {
1776 struct thread *thread = machine__find_thread(machine,
1777 event->fork.pid,
1778 event->fork.tid);
1779 struct thread *parent = machine__findnew_thread(machine,
1780 event->fork.ppid,
1781 event->fork.ptid);
1782 bool do_maps_clone = true;
1783 int err = 0;
1784
1785 if (dump_trace)
1786 perf_event__fprintf_task(event, stdout);
1787
1788 /*
1789 * There may be an existing thread that is not actually the parent,
1790 * either because we are processing events out of order, or because the
1791 * (fork) event that would have removed the thread was lost. Assume the
1792 * latter case and continue on as best we can.
1793 */
1794 if (parent->pid_ != (pid_t)event->fork.ppid) {
1795 dump_printf("removing erroneous parent thread %d/%d\n",
1796 parent->pid_, parent->tid);
1797 machine__remove_thread(machine, parent);
1798 thread__put(parent);
1799 parent = machine__findnew_thread(machine, event->fork.ppid,
1800 event->fork.ptid);
1801 }
1802
1803 /* if a thread currently exists for the thread id remove it */
1804 if (thread != NULL) {
1805 machine__remove_thread(machine, thread);
1806 thread__put(thread);
1807 }
1808
1809 thread = machine__findnew_thread(machine, event->fork.pid,
1810 event->fork.tid);
1811 /*
1812 * When synthesizing FORK events, we are trying to create thread
1813 * objects for the already running tasks on the machine.
1814 *
1815 * Normally, for a kernel FORK event, we want to clone the parent's
1816 * maps because that is what the kernel just did.
1817 *
1818 * But when synthesizing, this should not be done. If we do, we end up
1819 * with overlapping maps as we process the sythesized MMAP2 events that
1820 * get delivered shortly thereafter.
1821 *
1822 * Use the FORK event misc flags in an internal way to signal this
1823 * situation, so we can elide the map clone when appropriate.
1824 */
1825 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1826 do_maps_clone = false;
1827
1828 if (thread == NULL || parent == NULL ||
1829 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1830 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1831 err = -1;
1832 }
1833 thread__put(thread);
1834 thread__put(parent);
1835
1836 return err;
1837 }
1838
1839 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1840 struct perf_sample *sample __maybe_unused)
1841 {
1842 struct thread *thread = machine__find_thread(machine,
1843 event->fork.pid,
1844 event->fork.tid);
1845
1846 if (dump_trace)
1847 perf_event__fprintf_task(event, stdout);
1848
1849 if (thread != NULL) {
1850 thread__exited(thread);
1851 thread__put(thread);
1852 }
1853
1854 return 0;
1855 }
1856
1857 int machine__process_event(struct machine *machine, union perf_event *event,
1858 struct perf_sample *sample)
1859 {
1860 int ret;
1861
1862 switch (event->header.type) {
1863 case PERF_RECORD_COMM:
1864 ret = machine__process_comm_event(machine, event, sample); break;
1865 case PERF_RECORD_MMAP:
1866 ret = machine__process_mmap_event(machine, event, sample); break;
1867 case PERF_RECORD_NAMESPACES:
1868 ret = machine__process_namespaces_event(machine, event, sample); break;
1869 case PERF_RECORD_MMAP2:
1870 ret = machine__process_mmap2_event(machine, event, sample); break;
1871 case PERF_RECORD_FORK:
1872 ret = machine__process_fork_event(machine, event, sample); break;
1873 case PERF_RECORD_EXIT:
1874 ret = machine__process_exit_event(machine, event, sample); break;
1875 case PERF_RECORD_LOST:
1876 ret = machine__process_lost_event(machine, event, sample); break;
1877 case PERF_RECORD_AUX:
1878 ret = machine__process_aux_event(machine, event); break;
1879 case PERF_RECORD_ITRACE_START:
1880 ret = machine__process_itrace_start_event(machine, event); break;
1881 case PERF_RECORD_LOST_SAMPLES:
1882 ret = machine__process_lost_samples_event(machine, event, sample); break;
1883 case PERF_RECORD_SWITCH:
1884 case PERF_RECORD_SWITCH_CPU_WIDE:
1885 ret = machine__process_switch_event(machine, event); break;
1886 case PERF_RECORD_KSYMBOL:
1887 ret = machine__process_ksymbol(machine, event, sample); break;
1888 case PERF_RECORD_BPF_EVENT:
1889 ret = machine__process_bpf_event(machine, event, sample); break;
1890 default:
1891 ret = -1;
1892 break;
1893 }
1894
1895 return ret;
1896 }
1897
1898 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1899 {
1900 if (!regexec(regex, sym->name, 0, NULL, 0))
1901 return 1;
1902 return 0;
1903 }
1904
1905 static void ip__resolve_ams(struct thread *thread,
1906 struct addr_map_symbol *ams,
1907 u64 ip)
1908 {
1909 struct addr_location al;
1910
1911 memset(&al, 0, sizeof(al));
1912 /*
1913 * We cannot use the header.misc hint to determine whether a
1914 * branch stack address is user, kernel, guest, hypervisor.
1915 * Branches may straddle the kernel/user/hypervisor boundaries.
1916 * Thus, we have to try consecutively until we find a match
1917 * or else, the symbol is unknown
1918 */
1919 thread__find_cpumode_addr_location(thread, ip, &al);
1920
1921 ams->addr = ip;
1922 ams->al_addr = al.addr;
1923 ams->sym = al.sym;
1924 ams->map = al.map;
1925 ams->phys_addr = 0;
1926 }
1927
1928 static void ip__resolve_data(struct thread *thread,
1929 u8 m, struct addr_map_symbol *ams,
1930 u64 addr, u64 phys_addr)
1931 {
1932 struct addr_location al;
1933
1934 memset(&al, 0, sizeof(al));
1935
1936 thread__find_symbol(thread, m, addr, &al);
1937
1938 ams->addr = addr;
1939 ams->al_addr = al.addr;
1940 ams->sym = al.sym;
1941 ams->map = al.map;
1942 ams->phys_addr = phys_addr;
1943 }
1944
1945 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1946 struct addr_location *al)
1947 {
1948 struct mem_info *mi = mem_info__new();
1949
1950 if (!mi)
1951 return NULL;
1952
1953 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1954 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1955 sample->addr, sample->phys_addr);
1956 mi->data_src.val = sample->data_src;
1957
1958 return mi;
1959 }
1960
1961 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1962 {
1963 char *srcline = NULL;
1964
1965 if (!map || callchain_param.key == CCKEY_FUNCTION)
1966 return srcline;
1967
1968 srcline = srcline__tree_find(&map->dso->srclines, ip);
1969 if (!srcline) {
1970 bool show_sym = false;
1971 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1972
1973 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1974 sym, show_sym, show_addr, ip);
1975 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1976 }
1977
1978 return srcline;
1979 }
1980
1981 struct iterations {
1982 int nr_loop_iter;
1983 u64 cycles;
1984 };
1985
1986 static int add_callchain_ip(struct thread *thread,
1987 struct callchain_cursor *cursor,
1988 struct symbol **parent,
1989 struct addr_location *root_al,
1990 u8 *cpumode,
1991 u64 ip,
1992 bool branch,
1993 struct branch_flags *flags,
1994 struct iterations *iter,
1995 u64 branch_from)
1996 {
1997 struct addr_location al;
1998 int nr_loop_iter = 0;
1999 u64 iter_cycles = 0;
2000 const char *srcline = NULL;
2001
2002 al.filtered = 0;
2003 al.sym = NULL;
2004 if (!cpumode) {
2005 thread__find_cpumode_addr_location(thread, ip, &al);
2006 } else {
2007 if (ip >= PERF_CONTEXT_MAX) {
2008 switch (ip) {
2009 case PERF_CONTEXT_HV:
2010 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2011 break;
2012 case PERF_CONTEXT_KERNEL:
2013 *cpumode = PERF_RECORD_MISC_KERNEL;
2014 break;
2015 case PERF_CONTEXT_USER:
2016 *cpumode = PERF_RECORD_MISC_USER;
2017 break;
2018 default:
2019 pr_debug("invalid callchain context: "
2020 "%"PRId64"\n", (s64) ip);
2021 /*
2022 * It seems the callchain is corrupted.
2023 * Discard all.
2024 */
2025 callchain_cursor_reset(cursor);
2026 return 1;
2027 }
2028 return 0;
2029 }
2030 thread__find_symbol(thread, *cpumode, ip, &al);
2031 }
2032
2033 if (al.sym != NULL) {
2034 if (perf_hpp_list.parent && !*parent &&
2035 symbol__match_regex(al.sym, &parent_regex))
2036 *parent = al.sym;
2037 else if (have_ignore_callees && root_al &&
2038 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2039 /* Treat this symbol as the root,
2040 forgetting its callees. */
2041 *root_al = al;
2042 callchain_cursor_reset(cursor);
2043 }
2044 }
2045
2046 if (symbol_conf.hide_unresolved && al.sym == NULL)
2047 return 0;
2048
2049 if (iter) {
2050 nr_loop_iter = iter->nr_loop_iter;
2051 iter_cycles = iter->cycles;
2052 }
2053
2054 srcline = callchain_srcline(al.map, al.sym, al.addr);
2055 return callchain_cursor_append(cursor, ip, al.map, al.sym,
2056 branch, flags, nr_loop_iter,
2057 iter_cycles, branch_from, srcline);
2058 }
2059
2060 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2061 struct addr_location *al)
2062 {
2063 unsigned int i;
2064 const struct branch_stack *bs = sample->branch_stack;
2065 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2066
2067 if (!bi)
2068 return NULL;
2069
2070 for (i = 0; i < bs->nr; i++) {
2071 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2072 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2073 bi[i].flags = bs->entries[i].flags;
2074 }
2075 return bi;
2076 }
2077
2078 static void save_iterations(struct iterations *iter,
2079 struct branch_entry *be, int nr)
2080 {
2081 int i;
2082
2083 iter->nr_loop_iter++;
2084 iter->cycles = 0;
2085
2086 for (i = 0; i < nr; i++)
2087 iter->cycles += be[i].flags.cycles;
2088 }
2089
2090 #define CHASHSZ 127
2091 #define CHASHBITS 7
2092 #define NO_ENTRY 0xff
2093
2094 #define PERF_MAX_BRANCH_DEPTH 127
2095
2096 /* Remove loops. */
2097 static int remove_loops(struct branch_entry *l, int nr,
2098 struct iterations *iter)
2099 {
2100 int i, j, off;
2101 unsigned char chash[CHASHSZ];
2102
2103 memset(chash, NO_ENTRY, sizeof(chash));
2104
2105 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2106
2107 for (i = 0; i < nr; i++) {
2108 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2109
2110 /* no collision handling for now */
2111 if (chash[h] == NO_ENTRY) {
2112 chash[h] = i;
2113 } else if (l[chash[h]].from == l[i].from) {
2114 bool is_loop = true;
2115 /* check if it is a real loop */
2116 off = 0;
2117 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2118 if (l[j].from != l[i + off].from) {
2119 is_loop = false;
2120 break;
2121 }
2122 if (is_loop) {
2123 j = nr - (i + off);
2124 if (j > 0) {
2125 save_iterations(iter + i + off,
2126 l + i, off);
2127
2128 memmove(iter + i, iter + i + off,
2129 j * sizeof(*iter));
2130
2131 memmove(l + i, l + i + off,
2132 j * sizeof(*l));
2133 }
2134
2135 nr -= off;
2136 }
2137 }
2138 }
2139 return nr;
2140 }
2141
2142 /*
2143 * Recolve LBR callstack chain sample
2144 * Return:
2145 * 1 on success get LBR callchain information
2146 * 0 no available LBR callchain information, should try fp
2147 * negative error code on other errors.
2148 */
2149 static int resolve_lbr_callchain_sample(struct thread *thread,
2150 struct callchain_cursor *cursor,
2151 struct perf_sample *sample,
2152 struct symbol **parent,
2153 struct addr_location *root_al,
2154 int max_stack)
2155 {
2156 struct ip_callchain *chain = sample->callchain;
2157 int chain_nr = min(max_stack, (int)chain->nr), i;
2158 u8 cpumode = PERF_RECORD_MISC_USER;
2159 u64 ip, branch_from = 0;
2160
2161 for (i = 0; i < chain_nr; i++) {
2162 if (chain->ips[i] == PERF_CONTEXT_USER)
2163 break;
2164 }
2165
2166 /* LBR only affects the user callchain */
2167 if (i != chain_nr) {
2168 struct branch_stack *lbr_stack = sample->branch_stack;
2169 int lbr_nr = lbr_stack->nr, j, k;
2170 bool branch;
2171 struct branch_flags *flags;
2172 /*
2173 * LBR callstack can only get user call chain.
2174 * The mix_chain_nr is kernel call chain
2175 * number plus LBR user call chain number.
2176 * i is kernel call chain number,
2177 * 1 is PERF_CONTEXT_USER,
2178 * lbr_nr + 1 is the user call chain number.
2179 * For details, please refer to the comments
2180 * in callchain__printf
2181 */
2182 int mix_chain_nr = i + 1 + lbr_nr + 1;
2183
2184 for (j = 0; j < mix_chain_nr; j++) {
2185 int err;
2186 branch = false;
2187 flags = NULL;
2188
2189 if (callchain_param.order == ORDER_CALLEE) {
2190 if (j < i + 1)
2191 ip = chain->ips[j];
2192 else if (j > i + 1) {
2193 k = j - i - 2;
2194 ip = lbr_stack->entries[k].from;
2195 branch = true;
2196 flags = &lbr_stack->entries[k].flags;
2197 } else {
2198 ip = lbr_stack->entries[0].to;
2199 branch = true;
2200 flags = &lbr_stack->entries[0].flags;
2201 branch_from =
2202 lbr_stack->entries[0].from;
2203 }
2204 } else {
2205 if (j < lbr_nr) {
2206 k = lbr_nr - j - 1;
2207 ip = lbr_stack->entries[k].from;
2208 branch = true;
2209 flags = &lbr_stack->entries[k].flags;
2210 }
2211 else if (j > lbr_nr)
2212 ip = chain->ips[i + 1 - (j - lbr_nr)];
2213 else {
2214 ip = lbr_stack->entries[0].to;
2215 branch = true;
2216 flags = &lbr_stack->entries[0].flags;
2217 branch_from =
2218 lbr_stack->entries[0].from;
2219 }
2220 }
2221
2222 err = add_callchain_ip(thread, cursor, parent,
2223 root_al, &cpumode, ip,
2224 branch, flags, NULL,
2225 branch_from);
2226 if (err)
2227 return (err < 0) ? err : 0;
2228 }
2229 return 1;
2230 }
2231
2232 return 0;
2233 }
2234
2235 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2236 struct callchain_cursor *cursor,
2237 struct symbol **parent,
2238 struct addr_location *root_al,
2239 u8 *cpumode, int ent)
2240 {
2241 int err = 0;
2242
2243 while (--ent >= 0) {
2244 u64 ip = chain->ips[ent];
2245
2246 if (ip >= PERF_CONTEXT_MAX) {
2247 err = add_callchain_ip(thread, cursor, parent,
2248 root_al, cpumode, ip,
2249 false, NULL, NULL, 0);
2250 break;
2251 }
2252 }
2253 return err;
2254 }
2255
2256 static int thread__resolve_callchain_sample(struct thread *thread,
2257 struct callchain_cursor *cursor,
2258 struct perf_evsel *evsel,
2259 struct perf_sample *sample,
2260 struct symbol **parent,
2261 struct addr_location *root_al,
2262 int max_stack)
2263 {
2264 struct branch_stack *branch = sample->branch_stack;
2265 struct ip_callchain *chain = sample->callchain;
2266 int chain_nr = 0;
2267 u8 cpumode = PERF_RECORD_MISC_USER;
2268 int i, j, err, nr_entries;
2269 int skip_idx = -1;
2270 int first_call = 0;
2271
2272 if (chain)
2273 chain_nr = chain->nr;
2274
2275 if (perf_evsel__has_branch_callstack(evsel)) {
2276 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2277 root_al, max_stack);
2278 if (err)
2279 return (err < 0) ? err : 0;
2280 }
2281
2282 /*
2283 * Based on DWARF debug information, some architectures skip
2284 * a callchain entry saved by the kernel.
2285 */
2286 skip_idx = arch_skip_callchain_idx(thread, chain);
2287
2288 /*
2289 * Add branches to call stack for easier browsing. This gives
2290 * more context for a sample than just the callers.
2291 *
2292 * This uses individual histograms of paths compared to the
2293 * aggregated histograms the normal LBR mode uses.
2294 *
2295 * Limitations for now:
2296 * - No extra filters
2297 * - No annotations (should annotate somehow)
2298 */
2299
2300 if (branch && callchain_param.branch_callstack) {
2301 int nr = min(max_stack, (int)branch->nr);
2302 struct branch_entry be[nr];
2303 struct iterations iter[nr];
2304
2305 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2306 pr_warning("corrupted branch chain. skipping...\n");
2307 goto check_calls;
2308 }
2309
2310 for (i = 0; i < nr; i++) {
2311 if (callchain_param.order == ORDER_CALLEE) {
2312 be[i] = branch->entries[i];
2313
2314 if (chain == NULL)
2315 continue;
2316
2317 /*
2318 * Check for overlap into the callchain.
2319 * The return address is one off compared to
2320 * the branch entry. To adjust for this
2321 * assume the calling instruction is not longer
2322 * than 8 bytes.
2323 */
2324 if (i == skip_idx ||
2325 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2326 first_call++;
2327 else if (be[i].from < chain->ips[first_call] &&
2328 be[i].from >= chain->ips[first_call] - 8)
2329 first_call++;
2330 } else
2331 be[i] = branch->entries[branch->nr - i - 1];
2332 }
2333
2334 memset(iter, 0, sizeof(struct iterations) * nr);
2335 nr = remove_loops(be, nr, iter);
2336
2337 for (i = 0; i < nr; i++) {
2338 err = add_callchain_ip(thread, cursor, parent,
2339 root_al,
2340 NULL, be[i].to,
2341 true, &be[i].flags,
2342 NULL, be[i].from);
2343
2344 if (!err)
2345 err = add_callchain_ip(thread, cursor, parent, root_al,
2346 NULL, be[i].from,
2347 true, &be[i].flags,
2348 &iter[i], 0);
2349 if (err == -EINVAL)
2350 break;
2351 if (err)
2352 return err;
2353 }
2354
2355 if (chain_nr == 0)
2356 return 0;
2357
2358 chain_nr -= nr;
2359 }
2360
2361 check_calls:
2362 if (callchain_param.order != ORDER_CALLEE) {
2363 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2364 &cpumode, chain->nr - first_call);
2365 if (err)
2366 return (err < 0) ? err : 0;
2367 }
2368 for (i = first_call, nr_entries = 0;
2369 i < chain_nr && nr_entries < max_stack; i++) {
2370 u64 ip;
2371
2372 if (callchain_param.order == ORDER_CALLEE)
2373 j = i;
2374 else
2375 j = chain->nr - i - 1;
2376
2377 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2378 if (j == skip_idx)
2379 continue;
2380 #endif
2381 ip = chain->ips[j];
2382 if (ip < PERF_CONTEXT_MAX)
2383 ++nr_entries;
2384 else if (callchain_param.order != ORDER_CALLEE) {
2385 err = find_prev_cpumode(chain, thread, cursor, parent,
2386 root_al, &cpumode, j);
2387 if (err)
2388 return (err < 0) ? err : 0;
2389 continue;
2390 }
2391
2392 err = add_callchain_ip(thread, cursor, parent,
2393 root_al, &cpumode, ip,
2394 false, NULL, NULL, 0);
2395
2396 if (err)
2397 return (err < 0) ? err : 0;
2398 }
2399
2400 return 0;
2401 }
2402
2403 static int append_inlines(struct callchain_cursor *cursor,
2404 struct map *map, struct symbol *sym, u64 ip)
2405 {
2406 struct inline_node *inline_node;
2407 struct inline_list *ilist;
2408 u64 addr;
2409 int ret = 1;
2410
2411 if (!symbol_conf.inline_name || !map || !sym)
2412 return ret;
2413
2414 addr = map__map_ip(map, ip);
2415 addr = map__rip_2objdump(map, addr);
2416
2417 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2418 if (!inline_node) {
2419 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2420 if (!inline_node)
2421 return ret;
2422 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2423 }
2424
2425 list_for_each_entry(ilist, &inline_node->val, list) {
2426 ret = callchain_cursor_append(cursor, ip, map,
2427 ilist->symbol, false,
2428 NULL, 0, 0, 0, ilist->srcline);
2429
2430 if (ret != 0)
2431 return ret;
2432 }
2433
2434 return ret;
2435 }
2436
2437 static int unwind_entry(struct unwind_entry *entry, void *arg)
2438 {
2439 struct callchain_cursor *cursor = arg;
2440 const char *srcline = NULL;
2441 u64 addr = entry->ip;
2442
2443 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2444 return 0;
2445
2446 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2447 return 0;
2448
2449 /*
2450 * Convert entry->ip from a virtual address to an offset in
2451 * its corresponding binary.
2452 */
2453 if (entry->map)
2454 addr = map__map_ip(entry->map, entry->ip);
2455
2456 srcline = callchain_srcline(entry->map, entry->sym, addr);
2457 return callchain_cursor_append(cursor, entry->ip,
2458 entry->map, entry->sym,
2459 false, NULL, 0, 0, 0, srcline);
2460 }
2461
2462 static int thread__resolve_callchain_unwind(struct thread *thread,
2463 struct callchain_cursor *cursor,
2464 struct perf_evsel *evsel,
2465 struct perf_sample *sample,
2466 int max_stack)
2467 {
2468 /* Can we do dwarf post unwind? */
2469 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2470 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2471 return 0;
2472
2473 /* Bail out if nothing was captured. */
2474 if ((!sample->user_regs.regs) ||
2475 (!sample->user_stack.size))
2476 return 0;
2477
2478 return unwind__get_entries(unwind_entry, cursor,
2479 thread, sample, max_stack);
2480 }
2481
2482 int thread__resolve_callchain(struct thread *thread,
2483 struct callchain_cursor *cursor,
2484 struct perf_evsel *evsel,
2485 struct perf_sample *sample,
2486 struct symbol **parent,
2487 struct addr_location *root_al,
2488 int max_stack)
2489 {
2490 int ret = 0;
2491
2492 callchain_cursor_reset(cursor);
2493
2494 if (callchain_param.order == ORDER_CALLEE) {
2495 ret = thread__resolve_callchain_sample(thread, cursor,
2496 evsel, sample,
2497 parent, root_al,
2498 max_stack);
2499 if (ret)
2500 return ret;
2501 ret = thread__resolve_callchain_unwind(thread, cursor,
2502 evsel, sample,
2503 max_stack);
2504 } else {
2505 ret = thread__resolve_callchain_unwind(thread, cursor,
2506 evsel, sample,
2507 max_stack);
2508 if (ret)
2509 return ret;
2510 ret = thread__resolve_callchain_sample(thread, cursor,
2511 evsel, sample,
2512 parent, root_al,
2513 max_stack);
2514 }
2515
2516 return ret;
2517 }
2518
2519 int machine__for_each_thread(struct machine *machine,
2520 int (*fn)(struct thread *thread, void *p),
2521 void *priv)
2522 {
2523 struct threads *threads;
2524 struct rb_node *nd;
2525 struct thread *thread;
2526 int rc = 0;
2527 int i;
2528
2529 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2530 threads = &machine->threads[i];
2531 for (nd = rb_first_cached(&threads->entries); nd;
2532 nd = rb_next(nd)) {
2533 thread = rb_entry(nd, struct thread, rb_node);
2534 rc = fn(thread, priv);
2535 if (rc != 0)
2536 return rc;
2537 }
2538
2539 list_for_each_entry(thread, &threads->dead, node) {
2540 rc = fn(thread, priv);
2541 if (rc != 0)
2542 return rc;
2543 }
2544 }
2545 return rc;
2546 }
2547
2548 int machines__for_each_thread(struct machines *machines,
2549 int (*fn)(struct thread *thread, void *p),
2550 void *priv)
2551 {
2552 struct rb_node *nd;
2553 int rc = 0;
2554
2555 rc = machine__for_each_thread(&machines->host, fn, priv);
2556 if (rc != 0)
2557 return rc;
2558
2559 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2560 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2561
2562 rc = machine__for_each_thread(machine, fn, priv);
2563 if (rc != 0)
2564 return rc;
2565 }
2566 return rc;
2567 }
2568
2569 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2570 struct target *target, struct thread_map *threads,
2571 perf_event__handler_t process, bool data_mmap,
2572 unsigned int nr_threads_synthesize)
2573 {
2574 if (target__has_task(target))
2575 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2576 else if (target__has_cpu(target))
2577 return perf_event__synthesize_threads(tool, process,
2578 machine, data_mmap,
2579 nr_threads_synthesize);
2580 /* command specified */
2581 return 0;
2582 }
2583
2584 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2585 {
2586 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2587 return -1;
2588
2589 return machine->current_tid[cpu];
2590 }
2591
2592 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2593 pid_t tid)
2594 {
2595 struct thread *thread;
2596
2597 if (cpu < 0)
2598 return -EINVAL;
2599
2600 if (!machine->current_tid) {
2601 int i;
2602
2603 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2604 if (!machine->current_tid)
2605 return -ENOMEM;
2606 for (i = 0; i < MAX_NR_CPUS; i++)
2607 machine->current_tid[i] = -1;
2608 }
2609
2610 if (cpu >= MAX_NR_CPUS) {
2611 pr_err("Requested CPU %d too large. ", cpu);
2612 pr_err("Consider raising MAX_NR_CPUS\n");
2613 return -EINVAL;
2614 }
2615
2616 machine->current_tid[cpu] = tid;
2617
2618 thread = machine__findnew_thread(machine, pid, tid);
2619 if (!thread)
2620 return -ENOMEM;
2621
2622 thread->cpu = cpu;
2623 thread__put(thread);
2624
2625 return 0;
2626 }
2627
2628 /*
2629 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2630 * normalized arch is needed.
2631 */
2632 bool machine__is(struct machine *machine, const char *arch)
2633 {
2634 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2635 }
2636
2637 int machine__nr_cpus_avail(struct machine *machine)
2638 {
2639 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2640 }
2641
2642 int machine__get_kernel_start(struct machine *machine)
2643 {
2644 struct map *map = machine__kernel_map(machine);
2645 int err = 0;
2646
2647 /*
2648 * The only addresses above 2^63 are kernel addresses of a 64-bit
2649 * kernel. Note that addresses are unsigned so that on a 32-bit system
2650 * all addresses including kernel addresses are less than 2^32. In
2651 * that case (32-bit system), if the kernel mapping is unknown, all
2652 * addresses will be assumed to be in user space - see
2653 * machine__kernel_ip().
2654 */
2655 machine->kernel_start = 1ULL << 63;
2656 if (map) {
2657 err = map__load(map);
2658 /*
2659 * On x86_64, PTI entry trampolines are less than the
2660 * start of kernel text, but still above 2^63. So leave
2661 * kernel_start = 1ULL << 63 for x86_64.
2662 */
2663 if (!err && !machine__is(machine, "x86_64"))
2664 machine->kernel_start = map->start;
2665 }
2666 return err;
2667 }
2668
2669 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2670 {
2671 u8 addr_cpumode = cpumode;
2672 bool kernel_ip;
2673
2674 if (!machine->single_address_space)
2675 goto out;
2676
2677 kernel_ip = machine__kernel_ip(machine, addr);
2678 switch (cpumode) {
2679 case PERF_RECORD_MISC_KERNEL:
2680 case PERF_RECORD_MISC_USER:
2681 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2682 PERF_RECORD_MISC_USER;
2683 break;
2684 case PERF_RECORD_MISC_GUEST_KERNEL:
2685 case PERF_RECORD_MISC_GUEST_USER:
2686 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2687 PERF_RECORD_MISC_GUEST_USER;
2688 break;
2689 default:
2690 break;
2691 }
2692 out:
2693 return addr_cpumode;
2694 }
2695
2696 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2697 {
2698 return dsos__findnew(&machine->dsos, filename);
2699 }
2700
2701 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2702 {
2703 struct machine *machine = vmachine;
2704 struct map *map;
2705 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2706
2707 if (sym == NULL)
2708 return NULL;
2709
2710 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2711 *addrp = map->unmap_ip(map, sym->start);
2712 return sym->name;
2713 }