]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - tools/perf/util/machine.c
alpha: osf_sys.c: use timespec64 where appropriate
[mirror_ubuntu-jammy-kernel.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29
30 static void dsos__init(struct dsos *dsos)
31 {
32 INIT_LIST_HEAD(&dsos->head);
33 dsos->root = RB_ROOT;
34 init_rwsem(&dsos->lock);
35 }
36
37 static void machine__threads_init(struct machine *machine)
38 {
39 int i;
40
41 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
42 struct threads *threads = &machine->threads[i];
43 threads->entries = RB_ROOT;
44 init_rwsem(&threads->lock);
45 threads->nr = 0;
46 INIT_LIST_HEAD(&threads->dead);
47 threads->last_match = NULL;
48 }
49 }
50
51 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
52 {
53 memset(machine, 0, sizeof(*machine));
54 map_groups__init(&machine->kmaps, machine);
55 RB_CLEAR_NODE(&machine->rb_node);
56 dsos__init(&machine->dsos);
57
58 machine__threads_init(machine);
59
60 machine->vdso_info = NULL;
61 machine->env = NULL;
62
63 machine->pid = pid;
64
65 machine->id_hdr_size = 0;
66 machine->kptr_restrict_warned = false;
67 machine->comm_exec = false;
68 machine->kernel_start = 0;
69
70 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
71
72 machine->root_dir = strdup(root_dir);
73 if (machine->root_dir == NULL)
74 return -ENOMEM;
75
76 if (pid != HOST_KERNEL_ID) {
77 struct thread *thread = machine__findnew_thread(machine, -1,
78 pid);
79 char comm[64];
80
81 if (thread == NULL)
82 return -ENOMEM;
83
84 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
85 thread__set_comm(thread, comm, 0);
86 thread__put(thread);
87 }
88
89 machine->current_tid = NULL;
90
91 return 0;
92 }
93
94 struct machine *machine__new_host(void)
95 {
96 struct machine *machine = malloc(sizeof(*machine));
97
98 if (machine != NULL) {
99 machine__init(machine, "", HOST_KERNEL_ID);
100
101 if (machine__create_kernel_maps(machine) < 0)
102 goto out_delete;
103 }
104
105 return machine;
106 out_delete:
107 free(machine);
108 return NULL;
109 }
110
111 struct machine *machine__new_kallsyms(void)
112 {
113 struct machine *machine = machine__new_host();
114 /*
115 * FIXME:
116 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
117 * functions and data objects.
118 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
119 * ask for not using the kcore parsing code, once this one is fixed
120 * to create a map per module.
121 */
122 if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
123 machine__delete(machine);
124 machine = NULL;
125 }
126
127 return machine;
128 }
129
130 static void dsos__purge(struct dsos *dsos)
131 {
132 struct dso *pos, *n;
133
134 down_write(&dsos->lock);
135
136 list_for_each_entry_safe(pos, n, &dsos->head, node) {
137 RB_CLEAR_NODE(&pos->rb_node);
138 pos->root = NULL;
139 list_del_init(&pos->node);
140 dso__put(pos);
141 }
142
143 up_write(&dsos->lock);
144 }
145
146 static void dsos__exit(struct dsos *dsos)
147 {
148 dsos__purge(dsos);
149 exit_rwsem(&dsos->lock);
150 }
151
152 void machine__delete_threads(struct machine *machine)
153 {
154 struct rb_node *nd;
155 int i;
156
157 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
158 struct threads *threads = &machine->threads[i];
159 down_write(&threads->lock);
160 nd = rb_first(&threads->entries);
161 while (nd) {
162 struct thread *t = rb_entry(nd, struct thread, rb_node);
163
164 nd = rb_next(nd);
165 __machine__remove_thread(machine, t, false);
166 }
167 up_write(&threads->lock);
168 }
169 }
170
171 void machine__exit(struct machine *machine)
172 {
173 int i;
174
175 machine__destroy_kernel_maps(machine);
176 map_groups__exit(&machine->kmaps);
177 dsos__exit(&machine->dsos);
178 machine__exit_vdso(machine);
179 zfree(&machine->root_dir);
180 zfree(&machine->current_tid);
181
182 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
183 struct threads *threads = &machine->threads[i];
184 exit_rwsem(&threads->lock);
185 }
186 }
187
188 void machine__delete(struct machine *machine)
189 {
190 if (machine) {
191 machine__exit(machine);
192 free(machine);
193 }
194 }
195
196 void machines__init(struct machines *machines)
197 {
198 machine__init(&machines->host, "", HOST_KERNEL_ID);
199 machines->guests = RB_ROOT;
200 }
201
202 void machines__exit(struct machines *machines)
203 {
204 machine__exit(&machines->host);
205 /* XXX exit guest */
206 }
207
208 struct machine *machines__add(struct machines *machines, pid_t pid,
209 const char *root_dir)
210 {
211 struct rb_node **p = &machines->guests.rb_node;
212 struct rb_node *parent = NULL;
213 struct machine *pos, *machine = malloc(sizeof(*machine));
214
215 if (machine == NULL)
216 return NULL;
217
218 if (machine__init(machine, root_dir, pid) != 0) {
219 free(machine);
220 return NULL;
221 }
222
223 while (*p != NULL) {
224 parent = *p;
225 pos = rb_entry(parent, struct machine, rb_node);
226 if (pid < pos->pid)
227 p = &(*p)->rb_left;
228 else
229 p = &(*p)->rb_right;
230 }
231
232 rb_link_node(&machine->rb_node, parent, p);
233 rb_insert_color(&machine->rb_node, &machines->guests);
234
235 return machine;
236 }
237
238 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
239 {
240 struct rb_node *nd;
241
242 machines->host.comm_exec = comm_exec;
243
244 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
245 struct machine *machine = rb_entry(nd, struct machine, rb_node);
246
247 machine->comm_exec = comm_exec;
248 }
249 }
250
251 struct machine *machines__find(struct machines *machines, pid_t pid)
252 {
253 struct rb_node **p = &machines->guests.rb_node;
254 struct rb_node *parent = NULL;
255 struct machine *machine;
256 struct machine *default_machine = NULL;
257
258 if (pid == HOST_KERNEL_ID)
259 return &machines->host;
260
261 while (*p != NULL) {
262 parent = *p;
263 machine = rb_entry(parent, struct machine, rb_node);
264 if (pid < machine->pid)
265 p = &(*p)->rb_left;
266 else if (pid > machine->pid)
267 p = &(*p)->rb_right;
268 else
269 return machine;
270 if (!machine->pid)
271 default_machine = machine;
272 }
273
274 return default_machine;
275 }
276
277 struct machine *machines__findnew(struct machines *machines, pid_t pid)
278 {
279 char path[PATH_MAX];
280 const char *root_dir = "";
281 struct machine *machine = machines__find(machines, pid);
282
283 if (machine && (machine->pid == pid))
284 goto out;
285
286 if ((pid != HOST_KERNEL_ID) &&
287 (pid != DEFAULT_GUEST_KERNEL_ID) &&
288 (symbol_conf.guestmount)) {
289 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
290 if (access(path, R_OK)) {
291 static struct strlist *seen;
292
293 if (!seen)
294 seen = strlist__new(NULL, NULL);
295
296 if (!strlist__has_entry(seen, path)) {
297 pr_err("Can't access file %s\n", path);
298 strlist__add(seen, path);
299 }
300 machine = NULL;
301 goto out;
302 }
303 root_dir = path;
304 }
305
306 machine = machines__add(machines, pid, root_dir);
307 out:
308 return machine;
309 }
310
311 void machines__process_guests(struct machines *machines,
312 machine__process_t process, void *data)
313 {
314 struct rb_node *nd;
315
316 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
317 struct machine *pos = rb_entry(nd, struct machine, rb_node);
318 process(pos, data);
319 }
320 }
321
322 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
323 {
324 if (machine__is_host(machine))
325 snprintf(bf, size, "[%s]", "kernel.kallsyms");
326 else if (machine__is_default_guest(machine))
327 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
328 else {
329 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
330 machine->pid);
331 }
332
333 return bf;
334 }
335
336 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
337 {
338 struct rb_node *node;
339 struct machine *machine;
340
341 machines->host.id_hdr_size = id_hdr_size;
342
343 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
344 machine = rb_entry(node, struct machine, rb_node);
345 machine->id_hdr_size = id_hdr_size;
346 }
347
348 return;
349 }
350
351 static void machine__update_thread_pid(struct machine *machine,
352 struct thread *th, pid_t pid)
353 {
354 struct thread *leader;
355
356 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
357 return;
358
359 th->pid_ = pid;
360
361 if (th->pid_ == th->tid)
362 return;
363
364 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
365 if (!leader)
366 goto out_err;
367
368 if (!leader->mg)
369 leader->mg = map_groups__new(machine);
370
371 if (!leader->mg)
372 goto out_err;
373
374 if (th->mg == leader->mg)
375 return;
376
377 if (th->mg) {
378 /*
379 * Maps are created from MMAP events which provide the pid and
380 * tid. Consequently there never should be any maps on a thread
381 * with an unknown pid. Just print an error if there are.
382 */
383 if (!map_groups__empty(th->mg))
384 pr_err("Discarding thread maps for %d:%d\n",
385 th->pid_, th->tid);
386 map_groups__put(th->mg);
387 }
388
389 th->mg = map_groups__get(leader->mg);
390 out_put:
391 thread__put(leader);
392 return;
393 out_err:
394 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
395 goto out_put;
396 }
397
398 /*
399 * Caller must eventually drop thread->refcnt returned with a successful
400 * lookup/new thread inserted.
401 */
402 static struct thread *____machine__findnew_thread(struct machine *machine,
403 struct threads *threads,
404 pid_t pid, pid_t tid,
405 bool create)
406 {
407 struct rb_node **p = &threads->entries.rb_node;
408 struct rb_node *parent = NULL;
409 struct thread *th;
410
411 /*
412 * Front-end cache - TID lookups come in blocks,
413 * so most of the time we dont have to look up
414 * the full rbtree:
415 */
416 th = threads->last_match;
417 if (th != NULL) {
418 if (th->tid == tid) {
419 machine__update_thread_pid(machine, th, pid);
420 return thread__get(th);
421 }
422
423 threads->last_match = NULL;
424 }
425
426 while (*p != NULL) {
427 parent = *p;
428 th = rb_entry(parent, struct thread, rb_node);
429
430 if (th->tid == tid) {
431 threads->last_match = th;
432 machine__update_thread_pid(machine, th, pid);
433 return thread__get(th);
434 }
435
436 if (tid < th->tid)
437 p = &(*p)->rb_left;
438 else
439 p = &(*p)->rb_right;
440 }
441
442 if (!create)
443 return NULL;
444
445 th = thread__new(pid, tid);
446 if (th != NULL) {
447 rb_link_node(&th->rb_node, parent, p);
448 rb_insert_color(&th->rb_node, &threads->entries);
449
450 /*
451 * We have to initialize map_groups separately
452 * after rb tree is updated.
453 *
454 * The reason is that we call machine__findnew_thread
455 * within thread__init_map_groups to find the thread
456 * leader and that would screwed the rb tree.
457 */
458 if (thread__init_map_groups(th, machine)) {
459 rb_erase_init(&th->rb_node, &threads->entries);
460 RB_CLEAR_NODE(&th->rb_node);
461 thread__put(th);
462 return NULL;
463 }
464 /*
465 * It is now in the rbtree, get a ref
466 */
467 thread__get(th);
468 threads->last_match = th;
469 ++threads->nr;
470 }
471
472 return th;
473 }
474
475 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
476 {
477 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
478 }
479
480 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
481 pid_t tid)
482 {
483 struct threads *threads = machine__threads(machine, tid);
484 struct thread *th;
485
486 down_write(&threads->lock);
487 th = __machine__findnew_thread(machine, pid, tid);
488 up_write(&threads->lock);
489 return th;
490 }
491
492 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
493 pid_t tid)
494 {
495 struct threads *threads = machine__threads(machine, tid);
496 struct thread *th;
497
498 down_read(&threads->lock);
499 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
500 up_read(&threads->lock);
501 return th;
502 }
503
504 struct comm *machine__thread_exec_comm(struct machine *machine,
505 struct thread *thread)
506 {
507 if (machine->comm_exec)
508 return thread__exec_comm(thread);
509 else
510 return thread__comm(thread);
511 }
512
513 int machine__process_comm_event(struct machine *machine, union perf_event *event,
514 struct perf_sample *sample)
515 {
516 struct thread *thread = machine__findnew_thread(machine,
517 event->comm.pid,
518 event->comm.tid);
519 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
520 int err = 0;
521
522 if (exec)
523 machine->comm_exec = true;
524
525 if (dump_trace)
526 perf_event__fprintf_comm(event, stdout);
527
528 if (thread == NULL ||
529 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
530 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
531 err = -1;
532 }
533
534 thread__put(thread);
535
536 return err;
537 }
538
539 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
540 union perf_event *event,
541 struct perf_sample *sample __maybe_unused)
542 {
543 struct thread *thread = machine__findnew_thread(machine,
544 event->namespaces.pid,
545 event->namespaces.tid);
546 int err = 0;
547
548 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
549 "\nWARNING: kernel seems to support more namespaces than perf"
550 " tool.\nTry updating the perf tool..\n\n");
551
552 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
553 "\nWARNING: perf tool seems to support more namespaces than"
554 " the kernel.\nTry updating the kernel..\n\n");
555
556 if (dump_trace)
557 perf_event__fprintf_namespaces(event, stdout);
558
559 if (thread == NULL ||
560 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
561 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
562 err = -1;
563 }
564
565 thread__put(thread);
566
567 return err;
568 }
569
570 int machine__process_lost_event(struct machine *machine __maybe_unused,
571 union perf_event *event, struct perf_sample *sample __maybe_unused)
572 {
573 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
574 event->lost.id, event->lost.lost);
575 return 0;
576 }
577
578 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
579 union perf_event *event, struct perf_sample *sample)
580 {
581 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
582 sample->id, event->lost_samples.lost);
583 return 0;
584 }
585
586 static struct dso *machine__findnew_module_dso(struct machine *machine,
587 struct kmod_path *m,
588 const char *filename)
589 {
590 struct dso *dso;
591
592 down_write(&machine->dsos.lock);
593
594 dso = __dsos__find(&machine->dsos, m->name, true);
595 if (!dso) {
596 dso = __dsos__addnew(&machine->dsos, m->name);
597 if (dso == NULL)
598 goto out_unlock;
599
600 dso__set_module_info(dso, m, machine);
601 dso__set_long_name(dso, strdup(filename), true);
602 }
603
604 dso__get(dso);
605 out_unlock:
606 up_write(&machine->dsos.lock);
607 return dso;
608 }
609
610 int machine__process_aux_event(struct machine *machine __maybe_unused,
611 union perf_event *event)
612 {
613 if (dump_trace)
614 perf_event__fprintf_aux(event, stdout);
615 return 0;
616 }
617
618 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
619 union perf_event *event)
620 {
621 if (dump_trace)
622 perf_event__fprintf_itrace_start(event, stdout);
623 return 0;
624 }
625
626 int machine__process_switch_event(struct machine *machine __maybe_unused,
627 union perf_event *event)
628 {
629 if (dump_trace)
630 perf_event__fprintf_switch(event, stdout);
631 return 0;
632 }
633
634 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
635 {
636 const char *dup_filename;
637
638 if (!filename || !dso || !dso->long_name)
639 return;
640 if (dso->long_name[0] != '[')
641 return;
642 if (!strchr(filename, '/'))
643 return;
644
645 dup_filename = strdup(filename);
646 if (!dup_filename)
647 return;
648
649 dso__set_long_name(dso, dup_filename, true);
650 }
651
652 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
653 const char *filename)
654 {
655 struct map *map = NULL;
656 struct dso *dso = NULL;
657 struct kmod_path m;
658
659 if (kmod_path__parse_name(&m, filename))
660 return NULL;
661
662 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
663 m.name);
664 if (map) {
665 /*
666 * If the map's dso is an offline module, give dso__load()
667 * a chance to find the file path of that module by fixing
668 * long_name.
669 */
670 dso__adjust_kmod_long_name(map->dso, filename);
671 goto out;
672 }
673
674 dso = machine__findnew_module_dso(machine, &m, filename);
675 if (dso == NULL)
676 goto out;
677
678 map = map__new2(start, dso, MAP__FUNCTION);
679 if (map == NULL)
680 goto out;
681
682 map_groups__insert(&machine->kmaps, map);
683
684 /* Put the map here because map_groups__insert alread got it */
685 map__put(map);
686 out:
687 /* put the dso here, corresponding to machine__findnew_module_dso */
688 dso__put(dso);
689 free(m.name);
690 return map;
691 }
692
693 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
694 {
695 struct rb_node *nd;
696 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
697
698 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
699 struct machine *pos = rb_entry(nd, struct machine, rb_node);
700 ret += __dsos__fprintf(&pos->dsos.head, fp);
701 }
702
703 return ret;
704 }
705
706 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
707 bool (skip)(struct dso *dso, int parm), int parm)
708 {
709 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
710 }
711
712 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
713 bool (skip)(struct dso *dso, int parm), int parm)
714 {
715 struct rb_node *nd;
716 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
717
718 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
719 struct machine *pos = rb_entry(nd, struct machine, rb_node);
720 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
721 }
722 return ret;
723 }
724
725 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
726 {
727 int i;
728 size_t printed = 0;
729 struct dso *kdso = machine__kernel_map(machine)->dso;
730
731 if (kdso->has_build_id) {
732 char filename[PATH_MAX];
733 if (dso__build_id_filename(kdso, filename, sizeof(filename),
734 false))
735 printed += fprintf(fp, "[0] %s\n", filename);
736 }
737
738 for (i = 0; i < vmlinux_path__nr_entries; ++i)
739 printed += fprintf(fp, "[%d] %s\n",
740 i + kdso->has_build_id, vmlinux_path[i]);
741
742 return printed;
743 }
744
745 size_t machine__fprintf(struct machine *machine, FILE *fp)
746 {
747 struct rb_node *nd;
748 size_t ret;
749 int i;
750
751 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
752 struct threads *threads = &machine->threads[i];
753
754 down_read(&threads->lock);
755
756 ret = fprintf(fp, "Threads: %u\n", threads->nr);
757
758 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
759 struct thread *pos = rb_entry(nd, struct thread, rb_node);
760
761 ret += thread__fprintf(pos, fp);
762 }
763
764 up_read(&threads->lock);
765 }
766 return ret;
767 }
768
769 static struct dso *machine__get_kernel(struct machine *machine)
770 {
771 const char *vmlinux_name = NULL;
772 struct dso *kernel;
773
774 if (machine__is_host(machine)) {
775 vmlinux_name = symbol_conf.vmlinux_name;
776 if (!vmlinux_name)
777 vmlinux_name = DSO__NAME_KALLSYMS;
778
779 kernel = machine__findnew_kernel(machine, vmlinux_name,
780 "[kernel]", DSO_TYPE_KERNEL);
781 } else {
782 char bf[PATH_MAX];
783
784 if (machine__is_default_guest(machine))
785 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
786 if (!vmlinux_name)
787 vmlinux_name = machine__mmap_name(machine, bf,
788 sizeof(bf));
789
790 kernel = machine__findnew_kernel(machine, vmlinux_name,
791 "[guest.kernel]",
792 DSO_TYPE_GUEST_KERNEL);
793 }
794
795 if (kernel != NULL && (!kernel->has_build_id))
796 dso__read_running_kernel_build_id(kernel, machine);
797
798 return kernel;
799 }
800
801 struct process_args {
802 u64 start;
803 };
804
805 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
806 size_t bufsz)
807 {
808 if (machine__is_default_guest(machine))
809 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
810 else
811 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
812 }
813
814 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
815
816 /* Figure out the start address of kernel map from /proc/kallsyms.
817 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
818 * symbol_name if it's not that important.
819 */
820 static int machine__get_running_kernel_start(struct machine *machine,
821 const char **symbol_name, u64 *start)
822 {
823 char filename[PATH_MAX];
824 int i, err = -1;
825 const char *name;
826 u64 addr = 0;
827
828 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
829
830 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
831 return 0;
832
833 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
834 err = kallsyms__get_function_start(filename, name, &addr);
835 if (!err)
836 break;
837 }
838
839 if (err)
840 return -1;
841
842 if (symbol_name)
843 *symbol_name = name;
844
845 *start = addr;
846 return 0;
847 }
848
849 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
850 {
851 int type;
852 u64 start = 0;
853
854 if (machine__get_running_kernel_start(machine, NULL, &start))
855 return -1;
856
857 /* In case of renewal the kernel map, destroy previous one */
858 machine__destroy_kernel_maps(machine);
859
860 for (type = 0; type < MAP__NR_TYPES; ++type) {
861 struct kmap *kmap;
862 struct map *map;
863
864 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
865 if (machine->vmlinux_maps[type] == NULL)
866 return -1;
867
868 machine->vmlinux_maps[type]->map_ip =
869 machine->vmlinux_maps[type]->unmap_ip =
870 identity__map_ip;
871 map = __machine__kernel_map(machine, type);
872 kmap = map__kmap(map);
873 if (!kmap)
874 return -1;
875
876 kmap->kmaps = &machine->kmaps;
877 map_groups__insert(&machine->kmaps, map);
878 }
879
880 return 0;
881 }
882
883 void machine__destroy_kernel_maps(struct machine *machine)
884 {
885 int type;
886
887 for (type = 0; type < MAP__NR_TYPES; ++type) {
888 struct kmap *kmap;
889 struct map *map = __machine__kernel_map(machine, type);
890
891 if (map == NULL)
892 continue;
893
894 kmap = map__kmap(map);
895 map_groups__remove(&machine->kmaps, map);
896 if (kmap && kmap->ref_reloc_sym) {
897 /*
898 * ref_reloc_sym is shared among all maps, so free just
899 * on one of them.
900 */
901 if (type == MAP__FUNCTION) {
902 zfree((char **)&kmap->ref_reloc_sym->name);
903 zfree(&kmap->ref_reloc_sym);
904 } else
905 kmap->ref_reloc_sym = NULL;
906 }
907
908 map__put(machine->vmlinux_maps[type]);
909 machine->vmlinux_maps[type] = NULL;
910 }
911 }
912
913 int machines__create_guest_kernel_maps(struct machines *machines)
914 {
915 int ret = 0;
916 struct dirent **namelist = NULL;
917 int i, items = 0;
918 char path[PATH_MAX];
919 pid_t pid;
920 char *endp;
921
922 if (symbol_conf.default_guest_vmlinux_name ||
923 symbol_conf.default_guest_modules ||
924 symbol_conf.default_guest_kallsyms) {
925 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
926 }
927
928 if (symbol_conf.guestmount) {
929 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
930 if (items <= 0)
931 return -ENOENT;
932 for (i = 0; i < items; i++) {
933 if (!isdigit(namelist[i]->d_name[0])) {
934 /* Filter out . and .. */
935 continue;
936 }
937 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
938 if ((*endp != '\0') ||
939 (endp == namelist[i]->d_name) ||
940 (errno == ERANGE)) {
941 pr_debug("invalid directory (%s). Skipping.\n",
942 namelist[i]->d_name);
943 continue;
944 }
945 sprintf(path, "%s/%s/proc/kallsyms",
946 symbol_conf.guestmount,
947 namelist[i]->d_name);
948 ret = access(path, R_OK);
949 if (ret) {
950 pr_debug("Can't access file %s\n", path);
951 goto failure;
952 }
953 machines__create_kernel_maps(machines, pid);
954 }
955 failure:
956 free(namelist);
957 }
958
959 return ret;
960 }
961
962 void machines__destroy_kernel_maps(struct machines *machines)
963 {
964 struct rb_node *next = rb_first(&machines->guests);
965
966 machine__destroy_kernel_maps(&machines->host);
967
968 while (next) {
969 struct machine *pos = rb_entry(next, struct machine, rb_node);
970
971 next = rb_next(&pos->rb_node);
972 rb_erase(&pos->rb_node, &machines->guests);
973 machine__delete(pos);
974 }
975 }
976
977 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
978 {
979 struct machine *machine = machines__findnew(machines, pid);
980
981 if (machine == NULL)
982 return -1;
983
984 return machine__create_kernel_maps(machine);
985 }
986
987 int __machine__load_kallsyms(struct machine *machine, const char *filename,
988 enum map_type type, bool no_kcore)
989 {
990 struct map *map = machine__kernel_map(machine);
991 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
992
993 if (ret > 0) {
994 dso__set_loaded(map->dso, type);
995 /*
996 * Since /proc/kallsyms will have multiple sessions for the
997 * kernel, with modules between them, fixup the end of all
998 * sections.
999 */
1000 __map_groups__fixup_end(&machine->kmaps, type);
1001 }
1002
1003 return ret;
1004 }
1005
1006 int machine__load_kallsyms(struct machine *machine, const char *filename,
1007 enum map_type type)
1008 {
1009 return __machine__load_kallsyms(machine, filename, type, false);
1010 }
1011
1012 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1013 {
1014 struct map *map = machine__kernel_map(machine);
1015 int ret = dso__load_vmlinux_path(map->dso, map);
1016
1017 if (ret > 0)
1018 dso__set_loaded(map->dso, type);
1019
1020 return ret;
1021 }
1022
1023 static void map_groups__fixup_end(struct map_groups *mg)
1024 {
1025 int i;
1026 for (i = 0; i < MAP__NR_TYPES; ++i)
1027 __map_groups__fixup_end(mg, i);
1028 }
1029
1030 static char *get_kernel_version(const char *root_dir)
1031 {
1032 char version[PATH_MAX];
1033 FILE *file;
1034 char *name, *tmp;
1035 const char *prefix = "Linux version ";
1036
1037 sprintf(version, "%s/proc/version", root_dir);
1038 file = fopen(version, "r");
1039 if (!file)
1040 return NULL;
1041
1042 version[0] = '\0';
1043 tmp = fgets(version, sizeof(version), file);
1044 fclose(file);
1045
1046 name = strstr(version, prefix);
1047 if (!name)
1048 return NULL;
1049 name += strlen(prefix);
1050 tmp = strchr(name, ' ');
1051 if (tmp)
1052 *tmp = '\0';
1053
1054 return strdup(name);
1055 }
1056
1057 static bool is_kmod_dso(struct dso *dso)
1058 {
1059 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1060 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1061 }
1062
1063 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1064 struct kmod_path *m)
1065 {
1066 struct map *map;
1067 char *long_name;
1068
1069 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1070 if (map == NULL)
1071 return 0;
1072
1073 long_name = strdup(path);
1074 if (long_name == NULL)
1075 return -ENOMEM;
1076
1077 dso__set_long_name(map->dso, long_name, true);
1078 dso__kernel_module_get_build_id(map->dso, "");
1079
1080 /*
1081 * Full name could reveal us kmod compression, so
1082 * we need to update the symtab_type if needed.
1083 */
1084 if (m->comp && is_kmod_dso(map->dso))
1085 map->dso->symtab_type++;
1086
1087 return 0;
1088 }
1089
1090 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1091 const char *dir_name, int depth)
1092 {
1093 struct dirent *dent;
1094 DIR *dir = opendir(dir_name);
1095 int ret = 0;
1096
1097 if (!dir) {
1098 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1099 return -1;
1100 }
1101
1102 while ((dent = readdir(dir)) != NULL) {
1103 char path[PATH_MAX];
1104 struct stat st;
1105
1106 /*sshfs might return bad dent->d_type, so we have to stat*/
1107 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1108 if (stat(path, &st))
1109 continue;
1110
1111 if (S_ISDIR(st.st_mode)) {
1112 if (!strcmp(dent->d_name, ".") ||
1113 !strcmp(dent->d_name, ".."))
1114 continue;
1115
1116 /* Do not follow top-level source and build symlinks */
1117 if (depth == 0) {
1118 if (!strcmp(dent->d_name, "source") ||
1119 !strcmp(dent->d_name, "build"))
1120 continue;
1121 }
1122
1123 ret = map_groups__set_modules_path_dir(mg, path,
1124 depth + 1);
1125 if (ret < 0)
1126 goto out;
1127 } else {
1128 struct kmod_path m;
1129
1130 ret = kmod_path__parse_name(&m, dent->d_name);
1131 if (ret)
1132 goto out;
1133
1134 if (m.kmod)
1135 ret = map_groups__set_module_path(mg, path, &m);
1136
1137 free(m.name);
1138
1139 if (ret)
1140 goto out;
1141 }
1142 }
1143
1144 out:
1145 closedir(dir);
1146 return ret;
1147 }
1148
1149 static int machine__set_modules_path(struct machine *machine)
1150 {
1151 char *version;
1152 char modules_path[PATH_MAX];
1153
1154 version = get_kernel_version(machine->root_dir);
1155 if (!version)
1156 return -1;
1157
1158 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1159 machine->root_dir, version);
1160 free(version);
1161
1162 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1163 }
1164 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1165 const char *name __maybe_unused)
1166 {
1167 return 0;
1168 }
1169
1170 static int machine__create_module(void *arg, const char *name, u64 start,
1171 u64 size)
1172 {
1173 struct machine *machine = arg;
1174 struct map *map;
1175
1176 if (arch__fix_module_text_start(&start, name) < 0)
1177 return -1;
1178
1179 map = machine__findnew_module_map(machine, start, name);
1180 if (map == NULL)
1181 return -1;
1182 map->end = start + size;
1183
1184 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1185
1186 return 0;
1187 }
1188
1189 static int machine__create_modules(struct machine *machine)
1190 {
1191 const char *modules;
1192 char path[PATH_MAX];
1193
1194 if (machine__is_default_guest(machine)) {
1195 modules = symbol_conf.default_guest_modules;
1196 } else {
1197 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1198 modules = path;
1199 }
1200
1201 if (symbol__restricted_filename(modules, "/proc/modules"))
1202 return -1;
1203
1204 if (modules__parse(modules, machine, machine__create_module))
1205 return -1;
1206
1207 if (!machine__set_modules_path(machine))
1208 return 0;
1209
1210 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1211
1212 return 0;
1213 }
1214
1215 int machine__create_kernel_maps(struct machine *machine)
1216 {
1217 struct dso *kernel = machine__get_kernel(machine);
1218 const char *name = NULL;
1219 u64 addr = 0;
1220 int ret;
1221
1222 if (kernel == NULL)
1223 return -1;
1224
1225 ret = __machine__create_kernel_maps(machine, kernel);
1226 dso__put(kernel);
1227 if (ret < 0)
1228 return -1;
1229
1230 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1231 if (machine__is_host(machine))
1232 pr_debug("Problems creating module maps, "
1233 "continuing anyway...\n");
1234 else
1235 pr_debug("Problems creating module maps for guest %d, "
1236 "continuing anyway...\n", machine->pid);
1237 }
1238
1239 /*
1240 * Now that we have all the maps created, just set the ->end of them:
1241 */
1242 map_groups__fixup_end(&machine->kmaps);
1243
1244 if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1245 if (name &&
1246 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1247 machine__destroy_kernel_maps(machine);
1248 return -1;
1249 }
1250 }
1251
1252 return 0;
1253 }
1254
1255 static void machine__set_kernel_mmap_len(struct machine *machine,
1256 union perf_event *event)
1257 {
1258 int i;
1259
1260 for (i = 0; i < MAP__NR_TYPES; i++) {
1261 machine->vmlinux_maps[i]->start = event->mmap.start;
1262 machine->vmlinux_maps[i]->end = (event->mmap.start +
1263 event->mmap.len);
1264 /*
1265 * Be a bit paranoid here, some perf.data file came with
1266 * a zero sized synthesized MMAP event for the kernel.
1267 */
1268 if (machine->vmlinux_maps[i]->end == 0)
1269 machine->vmlinux_maps[i]->end = ~0ULL;
1270 }
1271 }
1272
1273 static bool machine__uses_kcore(struct machine *machine)
1274 {
1275 struct dso *dso;
1276
1277 list_for_each_entry(dso, &machine->dsos.head, node) {
1278 if (dso__is_kcore(dso))
1279 return true;
1280 }
1281
1282 return false;
1283 }
1284
1285 static int machine__process_kernel_mmap_event(struct machine *machine,
1286 union perf_event *event)
1287 {
1288 struct map *map;
1289 char kmmap_prefix[PATH_MAX];
1290 enum dso_kernel_type kernel_type;
1291 bool is_kernel_mmap;
1292
1293 /* If we have maps from kcore then we do not need or want any others */
1294 if (machine__uses_kcore(machine))
1295 return 0;
1296
1297 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1298 if (machine__is_host(machine))
1299 kernel_type = DSO_TYPE_KERNEL;
1300 else
1301 kernel_type = DSO_TYPE_GUEST_KERNEL;
1302
1303 is_kernel_mmap = memcmp(event->mmap.filename,
1304 kmmap_prefix,
1305 strlen(kmmap_prefix) - 1) == 0;
1306 if (event->mmap.filename[0] == '/' ||
1307 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1308 map = machine__findnew_module_map(machine, event->mmap.start,
1309 event->mmap.filename);
1310 if (map == NULL)
1311 goto out_problem;
1312
1313 map->end = map->start + event->mmap.len;
1314 } else if (is_kernel_mmap) {
1315 const char *symbol_name = (event->mmap.filename +
1316 strlen(kmmap_prefix));
1317 /*
1318 * Should be there already, from the build-id table in
1319 * the header.
1320 */
1321 struct dso *kernel = NULL;
1322 struct dso *dso;
1323
1324 down_read(&machine->dsos.lock);
1325
1326 list_for_each_entry(dso, &machine->dsos.head, node) {
1327
1328 /*
1329 * The cpumode passed to is_kernel_module is not the
1330 * cpumode of *this* event. If we insist on passing
1331 * correct cpumode to is_kernel_module, we should
1332 * record the cpumode when we adding this dso to the
1333 * linked list.
1334 *
1335 * However we don't really need passing correct
1336 * cpumode. We know the correct cpumode must be kernel
1337 * mode (if not, we should not link it onto kernel_dsos
1338 * list).
1339 *
1340 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1341 * is_kernel_module() treats it as a kernel cpumode.
1342 */
1343
1344 if (!dso->kernel ||
1345 is_kernel_module(dso->long_name,
1346 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1347 continue;
1348
1349
1350 kernel = dso;
1351 break;
1352 }
1353
1354 up_read(&machine->dsos.lock);
1355
1356 if (kernel == NULL)
1357 kernel = machine__findnew_dso(machine, kmmap_prefix);
1358 if (kernel == NULL)
1359 goto out_problem;
1360
1361 kernel->kernel = kernel_type;
1362 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1363 dso__put(kernel);
1364 goto out_problem;
1365 }
1366
1367 if (strstr(kernel->long_name, "vmlinux"))
1368 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1369
1370 machine__set_kernel_mmap_len(machine, event);
1371
1372 /*
1373 * Avoid using a zero address (kptr_restrict) for the ref reloc
1374 * symbol. Effectively having zero here means that at record
1375 * time /proc/sys/kernel/kptr_restrict was non zero.
1376 */
1377 if (event->mmap.pgoff != 0) {
1378 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1379 symbol_name,
1380 event->mmap.pgoff);
1381 }
1382
1383 if (machine__is_default_guest(machine)) {
1384 /*
1385 * preload dso of guest kernel and modules
1386 */
1387 dso__load(kernel, machine__kernel_map(machine));
1388 }
1389 }
1390 return 0;
1391 out_problem:
1392 return -1;
1393 }
1394
1395 int machine__process_mmap2_event(struct machine *machine,
1396 union perf_event *event,
1397 struct perf_sample *sample)
1398 {
1399 struct thread *thread;
1400 struct map *map;
1401 enum map_type type;
1402 int ret = 0;
1403
1404 if (dump_trace)
1405 perf_event__fprintf_mmap2(event, stdout);
1406
1407 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1408 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1409 ret = machine__process_kernel_mmap_event(machine, event);
1410 if (ret < 0)
1411 goto out_problem;
1412 return 0;
1413 }
1414
1415 thread = machine__findnew_thread(machine, event->mmap2.pid,
1416 event->mmap2.tid);
1417 if (thread == NULL)
1418 goto out_problem;
1419
1420 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1421 type = MAP__VARIABLE;
1422 else
1423 type = MAP__FUNCTION;
1424
1425 map = map__new(machine, event->mmap2.start,
1426 event->mmap2.len, event->mmap2.pgoff,
1427 event->mmap2.maj,
1428 event->mmap2.min, event->mmap2.ino,
1429 event->mmap2.ino_generation,
1430 event->mmap2.prot,
1431 event->mmap2.flags,
1432 event->mmap2.filename, type, thread);
1433
1434 if (map == NULL)
1435 goto out_problem_map;
1436
1437 ret = thread__insert_map(thread, map);
1438 if (ret)
1439 goto out_problem_insert;
1440
1441 thread__put(thread);
1442 map__put(map);
1443 return 0;
1444
1445 out_problem_insert:
1446 map__put(map);
1447 out_problem_map:
1448 thread__put(thread);
1449 out_problem:
1450 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1451 return 0;
1452 }
1453
1454 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1455 struct perf_sample *sample)
1456 {
1457 struct thread *thread;
1458 struct map *map;
1459 enum map_type type;
1460 int ret = 0;
1461
1462 if (dump_trace)
1463 perf_event__fprintf_mmap(event, stdout);
1464
1465 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1466 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1467 ret = machine__process_kernel_mmap_event(machine, event);
1468 if (ret < 0)
1469 goto out_problem;
1470 return 0;
1471 }
1472
1473 thread = machine__findnew_thread(machine, event->mmap.pid,
1474 event->mmap.tid);
1475 if (thread == NULL)
1476 goto out_problem;
1477
1478 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1479 type = MAP__VARIABLE;
1480 else
1481 type = MAP__FUNCTION;
1482
1483 map = map__new(machine, event->mmap.start,
1484 event->mmap.len, event->mmap.pgoff,
1485 0, 0, 0, 0, 0, 0,
1486 event->mmap.filename,
1487 type, thread);
1488
1489 if (map == NULL)
1490 goto out_problem_map;
1491
1492 ret = thread__insert_map(thread, map);
1493 if (ret)
1494 goto out_problem_insert;
1495
1496 thread__put(thread);
1497 map__put(map);
1498 return 0;
1499
1500 out_problem_insert:
1501 map__put(map);
1502 out_problem_map:
1503 thread__put(thread);
1504 out_problem:
1505 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1506 return 0;
1507 }
1508
1509 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1510 {
1511 struct threads *threads = machine__threads(machine, th->tid);
1512
1513 if (threads->last_match == th)
1514 threads->last_match = NULL;
1515
1516 BUG_ON(refcount_read(&th->refcnt) == 0);
1517 if (lock)
1518 down_write(&threads->lock);
1519 rb_erase_init(&th->rb_node, &threads->entries);
1520 RB_CLEAR_NODE(&th->rb_node);
1521 --threads->nr;
1522 /*
1523 * Move it first to the dead_threads list, then drop the reference,
1524 * if this is the last reference, then the thread__delete destructor
1525 * will be called and we will remove it from the dead_threads list.
1526 */
1527 list_add_tail(&th->node, &threads->dead);
1528 if (lock)
1529 up_write(&threads->lock);
1530 thread__put(th);
1531 }
1532
1533 void machine__remove_thread(struct machine *machine, struct thread *th)
1534 {
1535 return __machine__remove_thread(machine, th, true);
1536 }
1537
1538 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1539 struct perf_sample *sample)
1540 {
1541 struct thread *thread = machine__find_thread(machine,
1542 event->fork.pid,
1543 event->fork.tid);
1544 struct thread *parent = machine__findnew_thread(machine,
1545 event->fork.ppid,
1546 event->fork.ptid);
1547 int err = 0;
1548
1549 if (dump_trace)
1550 perf_event__fprintf_task(event, stdout);
1551
1552 /*
1553 * There may be an existing thread that is not actually the parent,
1554 * either because we are processing events out of order, or because the
1555 * (fork) event that would have removed the thread was lost. Assume the
1556 * latter case and continue on as best we can.
1557 */
1558 if (parent->pid_ != (pid_t)event->fork.ppid) {
1559 dump_printf("removing erroneous parent thread %d/%d\n",
1560 parent->pid_, parent->tid);
1561 machine__remove_thread(machine, parent);
1562 thread__put(parent);
1563 parent = machine__findnew_thread(machine, event->fork.ppid,
1564 event->fork.ptid);
1565 }
1566
1567 /* if a thread currently exists for the thread id remove it */
1568 if (thread != NULL) {
1569 machine__remove_thread(machine, thread);
1570 thread__put(thread);
1571 }
1572
1573 thread = machine__findnew_thread(machine, event->fork.pid,
1574 event->fork.tid);
1575
1576 if (thread == NULL || parent == NULL ||
1577 thread__fork(thread, parent, sample->time) < 0) {
1578 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1579 err = -1;
1580 }
1581 thread__put(thread);
1582 thread__put(parent);
1583
1584 return err;
1585 }
1586
1587 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1588 struct perf_sample *sample __maybe_unused)
1589 {
1590 struct thread *thread = machine__find_thread(machine,
1591 event->fork.pid,
1592 event->fork.tid);
1593
1594 if (dump_trace)
1595 perf_event__fprintf_task(event, stdout);
1596
1597 if (thread != NULL) {
1598 thread__exited(thread);
1599 thread__put(thread);
1600 }
1601
1602 return 0;
1603 }
1604
1605 int machine__process_event(struct machine *machine, union perf_event *event,
1606 struct perf_sample *sample)
1607 {
1608 int ret;
1609
1610 switch (event->header.type) {
1611 case PERF_RECORD_COMM:
1612 ret = machine__process_comm_event(machine, event, sample); break;
1613 case PERF_RECORD_MMAP:
1614 ret = machine__process_mmap_event(machine, event, sample); break;
1615 case PERF_RECORD_NAMESPACES:
1616 ret = machine__process_namespaces_event(machine, event, sample); break;
1617 case PERF_RECORD_MMAP2:
1618 ret = machine__process_mmap2_event(machine, event, sample); break;
1619 case PERF_RECORD_FORK:
1620 ret = machine__process_fork_event(machine, event, sample); break;
1621 case PERF_RECORD_EXIT:
1622 ret = machine__process_exit_event(machine, event, sample); break;
1623 case PERF_RECORD_LOST:
1624 ret = machine__process_lost_event(machine, event, sample); break;
1625 case PERF_RECORD_AUX:
1626 ret = machine__process_aux_event(machine, event); break;
1627 case PERF_RECORD_ITRACE_START:
1628 ret = machine__process_itrace_start_event(machine, event); break;
1629 case PERF_RECORD_LOST_SAMPLES:
1630 ret = machine__process_lost_samples_event(machine, event, sample); break;
1631 case PERF_RECORD_SWITCH:
1632 case PERF_RECORD_SWITCH_CPU_WIDE:
1633 ret = machine__process_switch_event(machine, event); break;
1634 default:
1635 ret = -1;
1636 break;
1637 }
1638
1639 return ret;
1640 }
1641
1642 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1643 {
1644 if (!regexec(regex, sym->name, 0, NULL, 0))
1645 return 1;
1646 return 0;
1647 }
1648
1649 static void ip__resolve_ams(struct thread *thread,
1650 struct addr_map_symbol *ams,
1651 u64 ip)
1652 {
1653 struct addr_location al;
1654
1655 memset(&al, 0, sizeof(al));
1656 /*
1657 * We cannot use the header.misc hint to determine whether a
1658 * branch stack address is user, kernel, guest, hypervisor.
1659 * Branches may straddle the kernel/user/hypervisor boundaries.
1660 * Thus, we have to try consecutively until we find a match
1661 * or else, the symbol is unknown
1662 */
1663 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1664
1665 ams->addr = ip;
1666 ams->al_addr = al.addr;
1667 ams->sym = al.sym;
1668 ams->map = al.map;
1669 ams->phys_addr = 0;
1670 }
1671
1672 static void ip__resolve_data(struct thread *thread,
1673 u8 m, struct addr_map_symbol *ams,
1674 u64 addr, u64 phys_addr)
1675 {
1676 struct addr_location al;
1677
1678 memset(&al, 0, sizeof(al));
1679
1680 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1681 if (al.map == NULL) {
1682 /*
1683 * some shared data regions have execute bit set which puts
1684 * their mapping in the MAP__FUNCTION type array.
1685 * Check there as a fallback option before dropping the sample.
1686 */
1687 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1688 }
1689
1690 ams->addr = addr;
1691 ams->al_addr = al.addr;
1692 ams->sym = al.sym;
1693 ams->map = al.map;
1694 ams->phys_addr = phys_addr;
1695 }
1696
1697 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1698 struct addr_location *al)
1699 {
1700 struct mem_info *mi = zalloc(sizeof(*mi));
1701
1702 if (!mi)
1703 return NULL;
1704
1705 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1706 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1707 sample->addr, sample->phys_addr);
1708 mi->data_src.val = sample->data_src;
1709
1710 return mi;
1711 }
1712
1713 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1714 {
1715 char *srcline = NULL;
1716
1717 if (!map || callchain_param.key == CCKEY_FUNCTION)
1718 return srcline;
1719
1720 srcline = srcline__tree_find(&map->dso->srclines, ip);
1721 if (!srcline) {
1722 bool show_sym = false;
1723 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1724
1725 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1726 sym, show_sym, show_addr);
1727 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1728 }
1729
1730 return srcline;
1731 }
1732
1733 struct iterations {
1734 int nr_loop_iter;
1735 u64 cycles;
1736 };
1737
1738 static int add_callchain_ip(struct thread *thread,
1739 struct callchain_cursor *cursor,
1740 struct symbol **parent,
1741 struct addr_location *root_al,
1742 u8 *cpumode,
1743 u64 ip,
1744 bool branch,
1745 struct branch_flags *flags,
1746 struct iterations *iter,
1747 u64 branch_from)
1748 {
1749 struct addr_location al;
1750 int nr_loop_iter = 0;
1751 u64 iter_cycles = 0;
1752 const char *srcline = NULL;
1753
1754 al.filtered = 0;
1755 al.sym = NULL;
1756 if (!cpumode) {
1757 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1758 ip, &al);
1759 } else {
1760 if (ip >= PERF_CONTEXT_MAX) {
1761 switch (ip) {
1762 case PERF_CONTEXT_HV:
1763 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1764 break;
1765 case PERF_CONTEXT_KERNEL:
1766 *cpumode = PERF_RECORD_MISC_KERNEL;
1767 break;
1768 case PERF_CONTEXT_USER:
1769 *cpumode = PERF_RECORD_MISC_USER;
1770 break;
1771 default:
1772 pr_debug("invalid callchain context: "
1773 "%"PRId64"\n", (s64) ip);
1774 /*
1775 * It seems the callchain is corrupted.
1776 * Discard all.
1777 */
1778 callchain_cursor_reset(cursor);
1779 return 1;
1780 }
1781 return 0;
1782 }
1783 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1784 ip, &al);
1785 }
1786
1787 if (al.sym != NULL) {
1788 if (perf_hpp_list.parent && !*parent &&
1789 symbol__match_regex(al.sym, &parent_regex))
1790 *parent = al.sym;
1791 else if (have_ignore_callees && root_al &&
1792 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1793 /* Treat this symbol as the root,
1794 forgetting its callees. */
1795 *root_al = al;
1796 callchain_cursor_reset(cursor);
1797 }
1798 }
1799
1800 if (symbol_conf.hide_unresolved && al.sym == NULL)
1801 return 0;
1802
1803 if (iter) {
1804 nr_loop_iter = iter->nr_loop_iter;
1805 iter_cycles = iter->cycles;
1806 }
1807
1808 srcline = callchain_srcline(al.map, al.sym, al.addr);
1809 return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1810 branch, flags, nr_loop_iter,
1811 iter_cycles, branch_from, srcline);
1812 }
1813
1814 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1815 struct addr_location *al)
1816 {
1817 unsigned int i;
1818 const struct branch_stack *bs = sample->branch_stack;
1819 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1820
1821 if (!bi)
1822 return NULL;
1823
1824 for (i = 0; i < bs->nr; i++) {
1825 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1826 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1827 bi[i].flags = bs->entries[i].flags;
1828 }
1829 return bi;
1830 }
1831
1832 static void save_iterations(struct iterations *iter,
1833 struct branch_entry *be, int nr)
1834 {
1835 int i;
1836
1837 iter->nr_loop_iter = nr;
1838 iter->cycles = 0;
1839
1840 for (i = 0; i < nr; i++)
1841 iter->cycles += be[i].flags.cycles;
1842 }
1843
1844 #define CHASHSZ 127
1845 #define CHASHBITS 7
1846 #define NO_ENTRY 0xff
1847
1848 #define PERF_MAX_BRANCH_DEPTH 127
1849
1850 /* Remove loops. */
1851 static int remove_loops(struct branch_entry *l, int nr,
1852 struct iterations *iter)
1853 {
1854 int i, j, off;
1855 unsigned char chash[CHASHSZ];
1856
1857 memset(chash, NO_ENTRY, sizeof(chash));
1858
1859 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1860
1861 for (i = 0; i < nr; i++) {
1862 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1863
1864 /* no collision handling for now */
1865 if (chash[h] == NO_ENTRY) {
1866 chash[h] = i;
1867 } else if (l[chash[h]].from == l[i].from) {
1868 bool is_loop = true;
1869 /* check if it is a real loop */
1870 off = 0;
1871 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1872 if (l[j].from != l[i + off].from) {
1873 is_loop = false;
1874 break;
1875 }
1876 if (is_loop) {
1877 j = nr - (i + off);
1878 if (j > 0) {
1879 save_iterations(iter + i + off,
1880 l + i, off);
1881
1882 memmove(iter + i, iter + i + off,
1883 j * sizeof(*iter));
1884
1885 memmove(l + i, l + i + off,
1886 j * sizeof(*l));
1887 }
1888
1889 nr -= off;
1890 }
1891 }
1892 }
1893 return nr;
1894 }
1895
1896 /*
1897 * Recolve LBR callstack chain sample
1898 * Return:
1899 * 1 on success get LBR callchain information
1900 * 0 no available LBR callchain information, should try fp
1901 * negative error code on other errors.
1902 */
1903 static int resolve_lbr_callchain_sample(struct thread *thread,
1904 struct callchain_cursor *cursor,
1905 struct perf_sample *sample,
1906 struct symbol **parent,
1907 struct addr_location *root_al,
1908 int max_stack)
1909 {
1910 struct ip_callchain *chain = sample->callchain;
1911 int chain_nr = min(max_stack, (int)chain->nr), i;
1912 u8 cpumode = PERF_RECORD_MISC_USER;
1913 u64 ip, branch_from = 0;
1914
1915 for (i = 0; i < chain_nr; i++) {
1916 if (chain->ips[i] == PERF_CONTEXT_USER)
1917 break;
1918 }
1919
1920 /* LBR only affects the user callchain */
1921 if (i != chain_nr) {
1922 struct branch_stack *lbr_stack = sample->branch_stack;
1923 int lbr_nr = lbr_stack->nr, j, k;
1924 bool branch;
1925 struct branch_flags *flags;
1926 /*
1927 * LBR callstack can only get user call chain.
1928 * The mix_chain_nr is kernel call chain
1929 * number plus LBR user call chain number.
1930 * i is kernel call chain number,
1931 * 1 is PERF_CONTEXT_USER,
1932 * lbr_nr + 1 is the user call chain number.
1933 * For details, please refer to the comments
1934 * in callchain__printf
1935 */
1936 int mix_chain_nr = i + 1 + lbr_nr + 1;
1937
1938 for (j = 0; j < mix_chain_nr; j++) {
1939 int err;
1940 branch = false;
1941 flags = NULL;
1942
1943 if (callchain_param.order == ORDER_CALLEE) {
1944 if (j < i + 1)
1945 ip = chain->ips[j];
1946 else if (j > i + 1) {
1947 k = j - i - 2;
1948 ip = lbr_stack->entries[k].from;
1949 branch = true;
1950 flags = &lbr_stack->entries[k].flags;
1951 } else {
1952 ip = lbr_stack->entries[0].to;
1953 branch = true;
1954 flags = &lbr_stack->entries[0].flags;
1955 branch_from =
1956 lbr_stack->entries[0].from;
1957 }
1958 } else {
1959 if (j < lbr_nr) {
1960 k = lbr_nr - j - 1;
1961 ip = lbr_stack->entries[k].from;
1962 branch = true;
1963 flags = &lbr_stack->entries[k].flags;
1964 }
1965 else if (j > lbr_nr)
1966 ip = chain->ips[i + 1 - (j - lbr_nr)];
1967 else {
1968 ip = lbr_stack->entries[0].to;
1969 branch = true;
1970 flags = &lbr_stack->entries[0].flags;
1971 branch_from =
1972 lbr_stack->entries[0].from;
1973 }
1974 }
1975
1976 err = add_callchain_ip(thread, cursor, parent,
1977 root_al, &cpumode, ip,
1978 branch, flags, NULL,
1979 branch_from);
1980 if (err)
1981 return (err < 0) ? err : 0;
1982 }
1983 return 1;
1984 }
1985
1986 return 0;
1987 }
1988
1989 static int thread__resolve_callchain_sample(struct thread *thread,
1990 struct callchain_cursor *cursor,
1991 struct perf_evsel *evsel,
1992 struct perf_sample *sample,
1993 struct symbol **parent,
1994 struct addr_location *root_al,
1995 int max_stack)
1996 {
1997 struct branch_stack *branch = sample->branch_stack;
1998 struct ip_callchain *chain = sample->callchain;
1999 int chain_nr = 0;
2000 u8 cpumode = PERF_RECORD_MISC_USER;
2001 int i, j, err, nr_entries;
2002 int skip_idx = -1;
2003 int first_call = 0;
2004
2005 if (chain)
2006 chain_nr = chain->nr;
2007
2008 if (perf_evsel__has_branch_callstack(evsel)) {
2009 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2010 root_al, max_stack);
2011 if (err)
2012 return (err < 0) ? err : 0;
2013 }
2014
2015 /*
2016 * Based on DWARF debug information, some architectures skip
2017 * a callchain entry saved by the kernel.
2018 */
2019 skip_idx = arch_skip_callchain_idx(thread, chain);
2020
2021 /*
2022 * Add branches to call stack for easier browsing. This gives
2023 * more context for a sample than just the callers.
2024 *
2025 * This uses individual histograms of paths compared to the
2026 * aggregated histograms the normal LBR mode uses.
2027 *
2028 * Limitations for now:
2029 * - No extra filters
2030 * - No annotations (should annotate somehow)
2031 */
2032
2033 if (branch && callchain_param.branch_callstack) {
2034 int nr = min(max_stack, (int)branch->nr);
2035 struct branch_entry be[nr];
2036 struct iterations iter[nr];
2037
2038 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2039 pr_warning("corrupted branch chain. skipping...\n");
2040 goto check_calls;
2041 }
2042
2043 for (i = 0; i < nr; i++) {
2044 if (callchain_param.order == ORDER_CALLEE) {
2045 be[i] = branch->entries[i];
2046
2047 if (chain == NULL)
2048 continue;
2049
2050 /*
2051 * Check for overlap into the callchain.
2052 * The return address is one off compared to
2053 * the branch entry. To adjust for this
2054 * assume the calling instruction is not longer
2055 * than 8 bytes.
2056 */
2057 if (i == skip_idx ||
2058 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2059 first_call++;
2060 else if (be[i].from < chain->ips[first_call] &&
2061 be[i].from >= chain->ips[first_call] - 8)
2062 first_call++;
2063 } else
2064 be[i] = branch->entries[branch->nr - i - 1];
2065 }
2066
2067 memset(iter, 0, sizeof(struct iterations) * nr);
2068 nr = remove_loops(be, nr, iter);
2069
2070 for (i = 0; i < nr; i++) {
2071 err = add_callchain_ip(thread, cursor, parent,
2072 root_al,
2073 NULL, be[i].to,
2074 true, &be[i].flags,
2075 NULL, be[i].from);
2076
2077 if (!err)
2078 err = add_callchain_ip(thread, cursor, parent, root_al,
2079 NULL, be[i].from,
2080 true, &be[i].flags,
2081 &iter[i], 0);
2082 if (err == -EINVAL)
2083 break;
2084 if (err)
2085 return err;
2086 }
2087
2088 if (chain_nr == 0)
2089 return 0;
2090
2091 chain_nr -= nr;
2092 }
2093
2094 check_calls:
2095 for (i = first_call, nr_entries = 0;
2096 i < chain_nr && nr_entries < max_stack; i++) {
2097 u64 ip;
2098
2099 if (callchain_param.order == ORDER_CALLEE)
2100 j = i;
2101 else
2102 j = chain->nr - i - 1;
2103
2104 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2105 if (j == skip_idx)
2106 continue;
2107 #endif
2108 ip = chain->ips[j];
2109
2110 if (ip < PERF_CONTEXT_MAX)
2111 ++nr_entries;
2112
2113 err = add_callchain_ip(thread, cursor, parent,
2114 root_al, &cpumode, ip,
2115 false, NULL, NULL, 0);
2116
2117 if (err)
2118 return (err < 0) ? err : 0;
2119 }
2120
2121 return 0;
2122 }
2123
2124 static int append_inlines(struct callchain_cursor *cursor,
2125 struct map *map, struct symbol *sym, u64 ip)
2126 {
2127 struct inline_node *inline_node;
2128 struct inline_list *ilist;
2129 u64 addr;
2130 int ret = 1;
2131
2132 if (!symbol_conf.inline_name || !map || !sym)
2133 return ret;
2134
2135 addr = map__rip_2objdump(map, ip);
2136
2137 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2138 if (!inline_node) {
2139 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2140 if (!inline_node)
2141 return ret;
2142 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2143 }
2144
2145 list_for_each_entry(ilist, &inline_node->val, list) {
2146 ret = callchain_cursor_append(cursor, ip, map,
2147 ilist->symbol, false,
2148 NULL, 0, 0, 0, ilist->srcline);
2149
2150 if (ret != 0)
2151 return ret;
2152 }
2153
2154 return ret;
2155 }
2156
2157 static int unwind_entry(struct unwind_entry *entry, void *arg)
2158 {
2159 struct callchain_cursor *cursor = arg;
2160 const char *srcline = NULL;
2161
2162 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2163 return 0;
2164
2165 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2166 return 0;
2167
2168 srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2169 return callchain_cursor_append(cursor, entry->ip,
2170 entry->map, entry->sym,
2171 false, NULL, 0, 0, 0, srcline);
2172 }
2173
2174 static int thread__resolve_callchain_unwind(struct thread *thread,
2175 struct callchain_cursor *cursor,
2176 struct perf_evsel *evsel,
2177 struct perf_sample *sample,
2178 int max_stack)
2179 {
2180 /* Can we do dwarf post unwind? */
2181 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2182 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2183 return 0;
2184
2185 /* Bail out if nothing was captured. */
2186 if ((!sample->user_regs.regs) ||
2187 (!sample->user_stack.size))
2188 return 0;
2189
2190 return unwind__get_entries(unwind_entry, cursor,
2191 thread, sample, max_stack);
2192 }
2193
2194 int thread__resolve_callchain(struct thread *thread,
2195 struct callchain_cursor *cursor,
2196 struct perf_evsel *evsel,
2197 struct perf_sample *sample,
2198 struct symbol **parent,
2199 struct addr_location *root_al,
2200 int max_stack)
2201 {
2202 int ret = 0;
2203
2204 callchain_cursor_reset(&callchain_cursor);
2205
2206 if (callchain_param.order == ORDER_CALLEE) {
2207 ret = thread__resolve_callchain_sample(thread, cursor,
2208 evsel, sample,
2209 parent, root_al,
2210 max_stack);
2211 if (ret)
2212 return ret;
2213 ret = thread__resolve_callchain_unwind(thread, cursor,
2214 evsel, sample,
2215 max_stack);
2216 } else {
2217 ret = thread__resolve_callchain_unwind(thread, cursor,
2218 evsel, sample,
2219 max_stack);
2220 if (ret)
2221 return ret;
2222 ret = thread__resolve_callchain_sample(thread, cursor,
2223 evsel, sample,
2224 parent, root_al,
2225 max_stack);
2226 }
2227
2228 return ret;
2229 }
2230
2231 int machine__for_each_thread(struct machine *machine,
2232 int (*fn)(struct thread *thread, void *p),
2233 void *priv)
2234 {
2235 struct threads *threads;
2236 struct rb_node *nd;
2237 struct thread *thread;
2238 int rc = 0;
2239 int i;
2240
2241 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2242 threads = &machine->threads[i];
2243 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2244 thread = rb_entry(nd, struct thread, rb_node);
2245 rc = fn(thread, priv);
2246 if (rc != 0)
2247 return rc;
2248 }
2249
2250 list_for_each_entry(thread, &threads->dead, node) {
2251 rc = fn(thread, priv);
2252 if (rc != 0)
2253 return rc;
2254 }
2255 }
2256 return rc;
2257 }
2258
2259 int machines__for_each_thread(struct machines *machines,
2260 int (*fn)(struct thread *thread, void *p),
2261 void *priv)
2262 {
2263 struct rb_node *nd;
2264 int rc = 0;
2265
2266 rc = machine__for_each_thread(&machines->host, fn, priv);
2267 if (rc != 0)
2268 return rc;
2269
2270 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2271 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2272
2273 rc = machine__for_each_thread(machine, fn, priv);
2274 if (rc != 0)
2275 return rc;
2276 }
2277 return rc;
2278 }
2279
2280 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2281 struct target *target, struct thread_map *threads,
2282 perf_event__handler_t process, bool data_mmap,
2283 unsigned int proc_map_timeout,
2284 unsigned int nr_threads_synthesize)
2285 {
2286 if (target__has_task(target))
2287 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2288 else if (target__has_cpu(target))
2289 return perf_event__synthesize_threads(tool, process,
2290 machine, data_mmap,
2291 proc_map_timeout,
2292 nr_threads_synthesize);
2293 /* command specified */
2294 return 0;
2295 }
2296
2297 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2298 {
2299 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2300 return -1;
2301
2302 return machine->current_tid[cpu];
2303 }
2304
2305 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2306 pid_t tid)
2307 {
2308 struct thread *thread;
2309
2310 if (cpu < 0)
2311 return -EINVAL;
2312
2313 if (!machine->current_tid) {
2314 int i;
2315
2316 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2317 if (!machine->current_tid)
2318 return -ENOMEM;
2319 for (i = 0; i < MAX_NR_CPUS; i++)
2320 machine->current_tid[i] = -1;
2321 }
2322
2323 if (cpu >= MAX_NR_CPUS) {
2324 pr_err("Requested CPU %d too large. ", cpu);
2325 pr_err("Consider raising MAX_NR_CPUS\n");
2326 return -EINVAL;
2327 }
2328
2329 machine->current_tid[cpu] = tid;
2330
2331 thread = machine__findnew_thread(machine, pid, tid);
2332 if (!thread)
2333 return -ENOMEM;
2334
2335 thread->cpu = cpu;
2336 thread__put(thread);
2337
2338 return 0;
2339 }
2340
2341 int machine__get_kernel_start(struct machine *machine)
2342 {
2343 struct map *map = machine__kernel_map(machine);
2344 int err = 0;
2345
2346 /*
2347 * The only addresses above 2^63 are kernel addresses of a 64-bit
2348 * kernel. Note that addresses are unsigned so that on a 32-bit system
2349 * all addresses including kernel addresses are less than 2^32. In
2350 * that case (32-bit system), if the kernel mapping is unknown, all
2351 * addresses will be assumed to be in user space - see
2352 * machine__kernel_ip().
2353 */
2354 machine->kernel_start = 1ULL << 63;
2355 if (map) {
2356 err = map__load(map);
2357 if (!err)
2358 machine->kernel_start = map->start;
2359 }
2360 return err;
2361 }
2362
2363 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2364 {
2365 return dsos__findnew(&machine->dsos, filename);
2366 }
2367
2368 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2369 {
2370 struct machine *machine = vmachine;
2371 struct map *map;
2372 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2373
2374 if (sym == NULL)
2375 return NULL;
2376
2377 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2378 *addrp = map->unmap_ip(map, sym->start);
2379 return sym->name;
2380 }