]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - tools/perf/util/machine.c
pinctrl: sh-pfc: r8a77965: Add DRIF pins, groups and functions
[mirror_ubuntu-focal-kernel.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27 #include <linux/mman.h>
28
29 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
30
31 static void dsos__init(struct dsos *dsos)
32 {
33 INIT_LIST_HEAD(&dsos->head);
34 dsos->root = RB_ROOT;
35 init_rwsem(&dsos->lock);
36 }
37
38 static void machine__threads_init(struct machine *machine)
39 {
40 int i;
41
42 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
43 struct threads *threads = &machine->threads[i];
44 threads->entries = RB_ROOT;
45 init_rwsem(&threads->lock);
46 threads->nr = 0;
47 INIT_LIST_HEAD(&threads->dead);
48 threads->last_match = NULL;
49 }
50 }
51
52 static int machine__set_mmap_name(struct machine *machine)
53 {
54 if (machine__is_host(machine))
55 machine->mmap_name = strdup("[kernel.kallsyms]");
56 else if (machine__is_default_guest(machine))
57 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
59 machine->pid) < 0)
60 machine->mmap_name = NULL;
61
62 return machine->mmap_name ? 0 : -ENOMEM;
63 }
64
65 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
66 {
67 int err = -ENOMEM;
68
69 memset(machine, 0, sizeof(*machine));
70 map_groups__init(&machine->kmaps, machine);
71 RB_CLEAR_NODE(&machine->rb_node);
72 dsos__init(&machine->dsos);
73
74 machine__threads_init(machine);
75
76 machine->vdso_info = NULL;
77 machine->env = NULL;
78
79 machine->pid = pid;
80
81 machine->id_hdr_size = 0;
82 machine->kptr_restrict_warned = false;
83 machine->comm_exec = false;
84 machine->kernel_start = 0;
85 machine->vmlinux_map = NULL;
86
87 machine->root_dir = strdup(root_dir);
88 if (machine->root_dir == NULL)
89 return -ENOMEM;
90
91 if (machine__set_mmap_name(machine))
92 goto out;
93
94 if (pid != HOST_KERNEL_ID) {
95 struct thread *thread = machine__findnew_thread(machine, -1,
96 pid);
97 char comm[64];
98
99 if (thread == NULL)
100 goto out;
101
102 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103 thread__set_comm(thread, comm, 0);
104 thread__put(thread);
105 }
106
107 machine->current_tid = NULL;
108 err = 0;
109
110 out:
111 if (err) {
112 zfree(&machine->root_dir);
113 zfree(&machine->mmap_name);
114 }
115 return 0;
116 }
117
118 struct machine *machine__new_host(void)
119 {
120 struct machine *machine = malloc(sizeof(*machine));
121
122 if (machine != NULL) {
123 machine__init(machine, "", HOST_KERNEL_ID);
124
125 if (machine__create_kernel_maps(machine) < 0)
126 goto out_delete;
127 }
128
129 return machine;
130 out_delete:
131 free(machine);
132 return NULL;
133 }
134
135 struct machine *machine__new_kallsyms(void)
136 {
137 struct machine *machine = machine__new_host();
138 /*
139 * FIXME:
140 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
141 * ask for not using the kcore parsing code, once this one is fixed
142 * to create a map per module.
143 */
144 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
145 machine__delete(machine);
146 machine = NULL;
147 }
148
149 return machine;
150 }
151
152 static void dsos__purge(struct dsos *dsos)
153 {
154 struct dso *pos, *n;
155
156 down_write(&dsos->lock);
157
158 list_for_each_entry_safe(pos, n, &dsos->head, node) {
159 RB_CLEAR_NODE(&pos->rb_node);
160 pos->root = NULL;
161 list_del_init(&pos->node);
162 dso__put(pos);
163 }
164
165 up_write(&dsos->lock);
166 }
167
168 static void dsos__exit(struct dsos *dsos)
169 {
170 dsos__purge(dsos);
171 exit_rwsem(&dsos->lock);
172 }
173
174 void machine__delete_threads(struct machine *machine)
175 {
176 struct rb_node *nd;
177 int i;
178
179 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
180 struct threads *threads = &machine->threads[i];
181 down_write(&threads->lock);
182 nd = rb_first(&threads->entries);
183 while (nd) {
184 struct thread *t = rb_entry(nd, struct thread, rb_node);
185
186 nd = rb_next(nd);
187 __machine__remove_thread(machine, t, false);
188 }
189 up_write(&threads->lock);
190 }
191 }
192
193 void machine__exit(struct machine *machine)
194 {
195 int i;
196
197 if (machine == NULL)
198 return;
199
200 machine__destroy_kernel_maps(machine);
201 map_groups__exit(&machine->kmaps);
202 dsos__exit(&machine->dsos);
203 machine__exit_vdso(machine);
204 zfree(&machine->root_dir);
205 zfree(&machine->mmap_name);
206 zfree(&machine->current_tid);
207
208 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
209 struct threads *threads = &machine->threads[i];
210 exit_rwsem(&threads->lock);
211 }
212 }
213
214 void machine__delete(struct machine *machine)
215 {
216 if (machine) {
217 machine__exit(machine);
218 free(machine);
219 }
220 }
221
222 void machines__init(struct machines *machines)
223 {
224 machine__init(&machines->host, "", HOST_KERNEL_ID);
225 machines->guests = RB_ROOT;
226 }
227
228 void machines__exit(struct machines *machines)
229 {
230 machine__exit(&machines->host);
231 /* XXX exit guest */
232 }
233
234 struct machine *machines__add(struct machines *machines, pid_t pid,
235 const char *root_dir)
236 {
237 struct rb_node **p = &machines->guests.rb_node;
238 struct rb_node *parent = NULL;
239 struct machine *pos, *machine = malloc(sizeof(*machine));
240
241 if (machine == NULL)
242 return NULL;
243
244 if (machine__init(machine, root_dir, pid) != 0) {
245 free(machine);
246 return NULL;
247 }
248
249 while (*p != NULL) {
250 parent = *p;
251 pos = rb_entry(parent, struct machine, rb_node);
252 if (pid < pos->pid)
253 p = &(*p)->rb_left;
254 else
255 p = &(*p)->rb_right;
256 }
257
258 rb_link_node(&machine->rb_node, parent, p);
259 rb_insert_color(&machine->rb_node, &machines->guests);
260
261 return machine;
262 }
263
264 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
265 {
266 struct rb_node *nd;
267
268 machines->host.comm_exec = comm_exec;
269
270 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
271 struct machine *machine = rb_entry(nd, struct machine, rb_node);
272
273 machine->comm_exec = comm_exec;
274 }
275 }
276
277 struct machine *machines__find(struct machines *machines, pid_t pid)
278 {
279 struct rb_node **p = &machines->guests.rb_node;
280 struct rb_node *parent = NULL;
281 struct machine *machine;
282 struct machine *default_machine = NULL;
283
284 if (pid == HOST_KERNEL_ID)
285 return &machines->host;
286
287 while (*p != NULL) {
288 parent = *p;
289 machine = rb_entry(parent, struct machine, rb_node);
290 if (pid < machine->pid)
291 p = &(*p)->rb_left;
292 else if (pid > machine->pid)
293 p = &(*p)->rb_right;
294 else
295 return machine;
296 if (!machine->pid)
297 default_machine = machine;
298 }
299
300 return default_machine;
301 }
302
303 struct machine *machines__findnew(struct machines *machines, pid_t pid)
304 {
305 char path[PATH_MAX];
306 const char *root_dir = "";
307 struct machine *machine = machines__find(machines, pid);
308
309 if (machine && (machine->pid == pid))
310 goto out;
311
312 if ((pid != HOST_KERNEL_ID) &&
313 (pid != DEFAULT_GUEST_KERNEL_ID) &&
314 (symbol_conf.guestmount)) {
315 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
316 if (access(path, R_OK)) {
317 static struct strlist *seen;
318
319 if (!seen)
320 seen = strlist__new(NULL, NULL);
321
322 if (!strlist__has_entry(seen, path)) {
323 pr_err("Can't access file %s\n", path);
324 strlist__add(seen, path);
325 }
326 machine = NULL;
327 goto out;
328 }
329 root_dir = path;
330 }
331
332 machine = machines__add(machines, pid, root_dir);
333 out:
334 return machine;
335 }
336
337 void machines__process_guests(struct machines *machines,
338 machine__process_t process, void *data)
339 {
340 struct rb_node *nd;
341
342 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
343 struct machine *pos = rb_entry(nd, struct machine, rb_node);
344 process(pos, data);
345 }
346 }
347
348 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
349 {
350 struct rb_node *node;
351 struct machine *machine;
352
353 machines->host.id_hdr_size = id_hdr_size;
354
355 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
356 machine = rb_entry(node, struct machine, rb_node);
357 machine->id_hdr_size = id_hdr_size;
358 }
359
360 return;
361 }
362
363 static void machine__update_thread_pid(struct machine *machine,
364 struct thread *th, pid_t pid)
365 {
366 struct thread *leader;
367
368 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
369 return;
370
371 th->pid_ = pid;
372
373 if (th->pid_ == th->tid)
374 return;
375
376 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
377 if (!leader)
378 goto out_err;
379
380 if (!leader->mg)
381 leader->mg = map_groups__new(machine);
382
383 if (!leader->mg)
384 goto out_err;
385
386 if (th->mg == leader->mg)
387 return;
388
389 if (th->mg) {
390 /*
391 * Maps are created from MMAP events which provide the pid and
392 * tid. Consequently there never should be any maps on a thread
393 * with an unknown pid. Just print an error if there are.
394 */
395 if (!map_groups__empty(th->mg))
396 pr_err("Discarding thread maps for %d:%d\n",
397 th->pid_, th->tid);
398 map_groups__put(th->mg);
399 }
400
401 th->mg = map_groups__get(leader->mg);
402 out_put:
403 thread__put(leader);
404 return;
405 out_err:
406 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
407 goto out_put;
408 }
409
410 /*
411 * Front-end cache - TID lookups come in blocks,
412 * so most of the time we dont have to look up
413 * the full rbtree:
414 */
415 static struct thread*
416 __threads__get_last_match(struct threads *threads, struct machine *machine,
417 int pid, int tid)
418 {
419 struct thread *th;
420
421 th = threads->last_match;
422 if (th != NULL) {
423 if (th->tid == tid) {
424 machine__update_thread_pid(machine, th, pid);
425 return thread__get(th);
426 }
427
428 threads->last_match = NULL;
429 }
430
431 return NULL;
432 }
433
434 static struct thread*
435 threads__get_last_match(struct threads *threads, struct machine *machine,
436 int pid, int tid)
437 {
438 struct thread *th = NULL;
439
440 if (perf_singlethreaded)
441 th = __threads__get_last_match(threads, machine, pid, tid);
442
443 return th;
444 }
445
446 static void
447 __threads__set_last_match(struct threads *threads, struct thread *th)
448 {
449 threads->last_match = th;
450 }
451
452 static void
453 threads__set_last_match(struct threads *threads, struct thread *th)
454 {
455 if (perf_singlethreaded)
456 __threads__set_last_match(threads, th);
457 }
458
459 /*
460 * Caller must eventually drop thread->refcnt returned with a successful
461 * lookup/new thread inserted.
462 */
463 static struct thread *____machine__findnew_thread(struct machine *machine,
464 struct threads *threads,
465 pid_t pid, pid_t tid,
466 bool create)
467 {
468 struct rb_node **p = &threads->entries.rb_node;
469 struct rb_node *parent = NULL;
470 struct thread *th;
471
472 th = threads__get_last_match(threads, machine, pid, tid);
473 if (th)
474 return th;
475
476 while (*p != NULL) {
477 parent = *p;
478 th = rb_entry(parent, struct thread, rb_node);
479
480 if (th->tid == tid) {
481 threads__set_last_match(threads, th);
482 machine__update_thread_pid(machine, th, pid);
483 return thread__get(th);
484 }
485
486 if (tid < th->tid)
487 p = &(*p)->rb_left;
488 else
489 p = &(*p)->rb_right;
490 }
491
492 if (!create)
493 return NULL;
494
495 th = thread__new(pid, tid);
496 if (th != NULL) {
497 rb_link_node(&th->rb_node, parent, p);
498 rb_insert_color(&th->rb_node, &threads->entries);
499
500 /*
501 * We have to initialize map_groups separately
502 * after rb tree is updated.
503 *
504 * The reason is that we call machine__findnew_thread
505 * within thread__init_map_groups to find the thread
506 * leader and that would screwed the rb tree.
507 */
508 if (thread__init_map_groups(th, machine)) {
509 rb_erase_init(&th->rb_node, &threads->entries);
510 RB_CLEAR_NODE(&th->rb_node);
511 thread__put(th);
512 return NULL;
513 }
514 /*
515 * It is now in the rbtree, get a ref
516 */
517 thread__get(th);
518 threads__set_last_match(threads, th);
519 ++threads->nr;
520 }
521
522 return th;
523 }
524
525 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
526 {
527 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
528 }
529
530 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
531 pid_t tid)
532 {
533 struct threads *threads = machine__threads(machine, tid);
534 struct thread *th;
535
536 down_write(&threads->lock);
537 th = __machine__findnew_thread(machine, pid, tid);
538 up_write(&threads->lock);
539 return th;
540 }
541
542 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
543 pid_t tid)
544 {
545 struct threads *threads = machine__threads(machine, tid);
546 struct thread *th;
547
548 down_read(&threads->lock);
549 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
550 up_read(&threads->lock);
551 return th;
552 }
553
554 struct comm *machine__thread_exec_comm(struct machine *machine,
555 struct thread *thread)
556 {
557 if (machine->comm_exec)
558 return thread__exec_comm(thread);
559 else
560 return thread__comm(thread);
561 }
562
563 int machine__process_comm_event(struct machine *machine, union perf_event *event,
564 struct perf_sample *sample)
565 {
566 struct thread *thread = machine__findnew_thread(machine,
567 event->comm.pid,
568 event->comm.tid);
569 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
570 int err = 0;
571
572 if (exec)
573 machine->comm_exec = true;
574
575 if (dump_trace)
576 perf_event__fprintf_comm(event, stdout);
577
578 if (thread == NULL ||
579 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
580 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
581 err = -1;
582 }
583
584 thread__put(thread);
585
586 return err;
587 }
588
589 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
590 union perf_event *event,
591 struct perf_sample *sample __maybe_unused)
592 {
593 struct thread *thread = machine__findnew_thread(machine,
594 event->namespaces.pid,
595 event->namespaces.tid);
596 int err = 0;
597
598 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
599 "\nWARNING: kernel seems to support more namespaces than perf"
600 " tool.\nTry updating the perf tool..\n\n");
601
602 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
603 "\nWARNING: perf tool seems to support more namespaces than"
604 " the kernel.\nTry updating the kernel..\n\n");
605
606 if (dump_trace)
607 perf_event__fprintf_namespaces(event, stdout);
608
609 if (thread == NULL ||
610 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
611 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
612 err = -1;
613 }
614
615 thread__put(thread);
616
617 return err;
618 }
619
620 int machine__process_lost_event(struct machine *machine __maybe_unused,
621 union perf_event *event, struct perf_sample *sample __maybe_unused)
622 {
623 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
624 event->lost.id, event->lost.lost);
625 return 0;
626 }
627
628 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
629 union perf_event *event, struct perf_sample *sample)
630 {
631 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
632 sample->id, event->lost_samples.lost);
633 return 0;
634 }
635
636 static struct dso *machine__findnew_module_dso(struct machine *machine,
637 struct kmod_path *m,
638 const char *filename)
639 {
640 struct dso *dso;
641
642 down_write(&machine->dsos.lock);
643
644 dso = __dsos__find(&machine->dsos, m->name, true);
645 if (!dso) {
646 dso = __dsos__addnew(&machine->dsos, m->name);
647 if (dso == NULL)
648 goto out_unlock;
649
650 dso__set_module_info(dso, m, machine);
651 dso__set_long_name(dso, strdup(filename), true);
652 }
653
654 dso__get(dso);
655 out_unlock:
656 up_write(&machine->dsos.lock);
657 return dso;
658 }
659
660 int machine__process_aux_event(struct machine *machine __maybe_unused,
661 union perf_event *event)
662 {
663 if (dump_trace)
664 perf_event__fprintf_aux(event, stdout);
665 return 0;
666 }
667
668 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
669 union perf_event *event)
670 {
671 if (dump_trace)
672 perf_event__fprintf_itrace_start(event, stdout);
673 return 0;
674 }
675
676 int machine__process_switch_event(struct machine *machine __maybe_unused,
677 union perf_event *event)
678 {
679 if (dump_trace)
680 perf_event__fprintf_switch(event, stdout);
681 return 0;
682 }
683
684 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
685 {
686 const char *dup_filename;
687
688 if (!filename || !dso || !dso->long_name)
689 return;
690 if (dso->long_name[0] != '[')
691 return;
692 if (!strchr(filename, '/'))
693 return;
694
695 dup_filename = strdup(filename);
696 if (!dup_filename)
697 return;
698
699 dso__set_long_name(dso, dup_filename, true);
700 }
701
702 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
703 const char *filename)
704 {
705 struct map *map = NULL;
706 struct dso *dso = NULL;
707 struct kmod_path m;
708
709 if (kmod_path__parse_name(&m, filename))
710 return NULL;
711
712 map = map_groups__find_by_name(&machine->kmaps, m.name);
713 if (map) {
714 /*
715 * If the map's dso is an offline module, give dso__load()
716 * a chance to find the file path of that module by fixing
717 * long_name.
718 */
719 dso__adjust_kmod_long_name(map->dso, filename);
720 goto out;
721 }
722
723 dso = machine__findnew_module_dso(machine, &m, filename);
724 if (dso == NULL)
725 goto out;
726
727 map = map__new2(start, dso);
728 if (map == NULL)
729 goto out;
730
731 map_groups__insert(&machine->kmaps, map);
732
733 /* Put the map here because map_groups__insert alread got it */
734 map__put(map);
735 out:
736 /* put the dso here, corresponding to machine__findnew_module_dso */
737 dso__put(dso);
738 free(m.name);
739 return map;
740 }
741
742 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
743 {
744 struct rb_node *nd;
745 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
746
747 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
748 struct machine *pos = rb_entry(nd, struct machine, rb_node);
749 ret += __dsos__fprintf(&pos->dsos.head, fp);
750 }
751
752 return ret;
753 }
754
755 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
756 bool (skip)(struct dso *dso, int parm), int parm)
757 {
758 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
759 }
760
761 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
762 bool (skip)(struct dso *dso, int parm), int parm)
763 {
764 struct rb_node *nd;
765 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
766
767 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
768 struct machine *pos = rb_entry(nd, struct machine, rb_node);
769 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
770 }
771 return ret;
772 }
773
774 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
775 {
776 int i;
777 size_t printed = 0;
778 struct dso *kdso = machine__kernel_map(machine)->dso;
779
780 if (kdso->has_build_id) {
781 char filename[PATH_MAX];
782 if (dso__build_id_filename(kdso, filename, sizeof(filename),
783 false))
784 printed += fprintf(fp, "[0] %s\n", filename);
785 }
786
787 for (i = 0; i < vmlinux_path__nr_entries; ++i)
788 printed += fprintf(fp, "[%d] %s\n",
789 i + kdso->has_build_id, vmlinux_path[i]);
790
791 return printed;
792 }
793
794 size_t machine__fprintf(struct machine *machine, FILE *fp)
795 {
796 struct rb_node *nd;
797 size_t ret;
798 int i;
799
800 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
801 struct threads *threads = &machine->threads[i];
802
803 down_read(&threads->lock);
804
805 ret = fprintf(fp, "Threads: %u\n", threads->nr);
806
807 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
808 struct thread *pos = rb_entry(nd, struct thread, rb_node);
809
810 ret += thread__fprintf(pos, fp);
811 }
812
813 up_read(&threads->lock);
814 }
815 return ret;
816 }
817
818 static struct dso *machine__get_kernel(struct machine *machine)
819 {
820 const char *vmlinux_name = machine->mmap_name;
821 struct dso *kernel;
822
823 if (machine__is_host(machine)) {
824 if (symbol_conf.vmlinux_name)
825 vmlinux_name = symbol_conf.vmlinux_name;
826
827 kernel = machine__findnew_kernel(machine, vmlinux_name,
828 "[kernel]", DSO_TYPE_KERNEL);
829 } else {
830 if (symbol_conf.default_guest_vmlinux_name)
831 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
832
833 kernel = machine__findnew_kernel(machine, vmlinux_name,
834 "[guest.kernel]",
835 DSO_TYPE_GUEST_KERNEL);
836 }
837
838 if (kernel != NULL && (!kernel->has_build_id))
839 dso__read_running_kernel_build_id(kernel, machine);
840
841 return kernel;
842 }
843
844 struct process_args {
845 u64 start;
846 };
847
848 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
849 size_t bufsz)
850 {
851 if (machine__is_default_guest(machine))
852 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
853 else
854 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
855 }
856
857 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
858
859 /* Figure out the start address of kernel map from /proc/kallsyms.
860 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
861 * symbol_name if it's not that important.
862 */
863 static int machine__get_running_kernel_start(struct machine *machine,
864 const char **symbol_name, u64 *start)
865 {
866 char filename[PATH_MAX];
867 int i, err = -1;
868 const char *name;
869 u64 addr = 0;
870
871 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
872
873 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
874 return 0;
875
876 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
877 err = kallsyms__get_function_start(filename, name, &addr);
878 if (!err)
879 break;
880 }
881
882 if (err)
883 return -1;
884
885 if (symbol_name)
886 *symbol_name = name;
887
888 *start = addr;
889 return 0;
890 }
891
892 int machine__create_extra_kernel_map(struct machine *machine,
893 struct dso *kernel,
894 struct extra_kernel_map *xm)
895 {
896 struct kmap *kmap;
897 struct map *map;
898
899 map = map__new2(xm->start, kernel);
900 if (!map)
901 return -1;
902
903 map->end = xm->end;
904 map->pgoff = xm->pgoff;
905
906 kmap = map__kmap(map);
907
908 kmap->kmaps = &machine->kmaps;
909 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
910
911 map_groups__insert(&machine->kmaps, map);
912
913 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
914 kmap->name, map->start, map->end);
915
916 map__put(map);
917
918 return 0;
919 }
920
921 static u64 find_entry_trampoline(struct dso *dso)
922 {
923 /* Duplicates are removed so lookup all aliases */
924 const char *syms[] = {
925 "_entry_trampoline",
926 "__entry_trampoline_start",
927 "entry_SYSCALL_64_trampoline",
928 };
929 struct symbol *sym = dso__first_symbol(dso);
930 unsigned int i;
931
932 for (; sym; sym = dso__next_symbol(sym)) {
933 if (sym->binding != STB_GLOBAL)
934 continue;
935 for (i = 0; i < ARRAY_SIZE(syms); i++) {
936 if (!strcmp(sym->name, syms[i]))
937 return sym->start;
938 }
939 }
940
941 return 0;
942 }
943
944 /*
945 * These values can be used for kernels that do not have symbols for the entry
946 * trampolines in kallsyms.
947 */
948 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
949 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
950 #define X86_64_ENTRY_TRAMPOLINE 0x6000
951
952 /* Map x86_64 PTI entry trampolines */
953 int machine__map_x86_64_entry_trampolines(struct machine *machine,
954 struct dso *kernel)
955 {
956 struct map_groups *kmaps = &machine->kmaps;
957 struct maps *maps = &kmaps->maps;
958 int nr_cpus_avail, cpu;
959 bool found = false;
960 struct map *map;
961 u64 pgoff;
962
963 /*
964 * In the vmlinux case, pgoff is a virtual address which must now be
965 * mapped to a vmlinux offset.
966 */
967 for (map = maps__first(maps); map; map = map__next(map)) {
968 struct kmap *kmap = __map__kmap(map);
969 struct map *dest_map;
970
971 if (!kmap || !is_entry_trampoline(kmap->name))
972 continue;
973
974 dest_map = map_groups__find(kmaps, map->pgoff);
975 if (dest_map != map)
976 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
977 found = true;
978 }
979 if (found || machine->trampolines_mapped)
980 return 0;
981
982 pgoff = find_entry_trampoline(kernel);
983 if (!pgoff)
984 return 0;
985
986 nr_cpus_avail = machine__nr_cpus_avail(machine);
987
988 /* Add a 1 page map for each CPU's entry trampoline */
989 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
990 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
991 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
992 X86_64_ENTRY_TRAMPOLINE;
993 struct extra_kernel_map xm = {
994 .start = va,
995 .end = va + page_size,
996 .pgoff = pgoff,
997 };
998
999 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1000
1001 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1002 return -1;
1003 }
1004
1005 machine->trampolines_mapped = nr_cpus_avail;
1006
1007 return 0;
1008 }
1009
1010 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1011 struct dso *kernel __maybe_unused)
1012 {
1013 return 0;
1014 }
1015
1016 static int
1017 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1018 {
1019 struct kmap *kmap;
1020 struct map *map;
1021
1022 /* In case of renewal the kernel map, destroy previous one */
1023 machine__destroy_kernel_maps(machine);
1024
1025 machine->vmlinux_map = map__new2(0, kernel);
1026 if (machine->vmlinux_map == NULL)
1027 return -1;
1028
1029 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1030 map = machine__kernel_map(machine);
1031 kmap = map__kmap(map);
1032 if (!kmap)
1033 return -1;
1034
1035 kmap->kmaps = &machine->kmaps;
1036 map_groups__insert(&machine->kmaps, map);
1037
1038 return 0;
1039 }
1040
1041 void machine__destroy_kernel_maps(struct machine *machine)
1042 {
1043 struct kmap *kmap;
1044 struct map *map = machine__kernel_map(machine);
1045
1046 if (map == NULL)
1047 return;
1048
1049 kmap = map__kmap(map);
1050 map_groups__remove(&machine->kmaps, map);
1051 if (kmap && kmap->ref_reloc_sym) {
1052 zfree((char **)&kmap->ref_reloc_sym->name);
1053 zfree(&kmap->ref_reloc_sym);
1054 }
1055
1056 map__zput(machine->vmlinux_map);
1057 }
1058
1059 int machines__create_guest_kernel_maps(struct machines *machines)
1060 {
1061 int ret = 0;
1062 struct dirent **namelist = NULL;
1063 int i, items = 0;
1064 char path[PATH_MAX];
1065 pid_t pid;
1066 char *endp;
1067
1068 if (symbol_conf.default_guest_vmlinux_name ||
1069 symbol_conf.default_guest_modules ||
1070 symbol_conf.default_guest_kallsyms) {
1071 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1072 }
1073
1074 if (symbol_conf.guestmount) {
1075 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1076 if (items <= 0)
1077 return -ENOENT;
1078 for (i = 0; i < items; i++) {
1079 if (!isdigit(namelist[i]->d_name[0])) {
1080 /* Filter out . and .. */
1081 continue;
1082 }
1083 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1084 if ((*endp != '\0') ||
1085 (endp == namelist[i]->d_name) ||
1086 (errno == ERANGE)) {
1087 pr_debug("invalid directory (%s). Skipping.\n",
1088 namelist[i]->d_name);
1089 continue;
1090 }
1091 sprintf(path, "%s/%s/proc/kallsyms",
1092 symbol_conf.guestmount,
1093 namelist[i]->d_name);
1094 ret = access(path, R_OK);
1095 if (ret) {
1096 pr_debug("Can't access file %s\n", path);
1097 goto failure;
1098 }
1099 machines__create_kernel_maps(machines, pid);
1100 }
1101 failure:
1102 free(namelist);
1103 }
1104
1105 return ret;
1106 }
1107
1108 void machines__destroy_kernel_maps(struct machines *machines)
1109 {
1110 struct rb_node *next = rb_first(&machines->guests);
1111
1112 machine__destroy_kernel_maps(&machines->host);
1113
1114 while (next) {
1115 struct machine *pos = rb_entry(next, struct machine, rb_node);
1116
1117 next = rb_next(&pos->rb_node);
1118 rb_erase(&pos->rb_node, &machines->guests);
1119 machine__delete(pos);
1120 }
1121 }
1122
1123 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1124 {
1125 struct machine *machine = machines__findnew(machines, pid);
1126
1127 if (machine == NULL)
1128 return -1;
1129
1130 return machine__create_kernel_maps(machine);
1131 }
1132
1133 int machine__load_kallsyms(struct machine *machine, const char *filename)
1134 {
1135 struct map *map = machine__kernel_map(machine);
1136 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1137
1138 if (ret > 0) {
1139 dso__set_loaded(map->dso);
1140 /*
1141 * Since /proc/kallsyms will have multiple sessions for the
1142 * kernel, with modules between them, fixup the end of all
1143 * sections.
1144 */
1145 map_groups__fixup_end(&machine->kmaps);
1146 }
1147
1148 return ret;
1149 }
1150
1151 int machine__load_vmlinux_path(struct machine *machine)
1152 {
1153 struct map *map = machine__kernel_map(machine);
1154 int ret = dso__load_vmlinux_path(map->dso, map);
1155
1156 if (ret > 0)
1157 dso__set_loaded(map->dso);
1158
1159 return ret;
1160 }
1161
1162 static char *get_kernel_version(const char *root_dir)
1163 {
1164 char version[PATH_MAX];
1165 FILE *file;
1166 char *name, *tmp;
1167 const char *prefix = "Linux version ";
1168
1169 sprintf(version, "%s/proc/version", root_dir);
1170 file = fopen(version, "r");
1171 if (!file)
1172 return NULL;
1173
1174 version[0] = '\0';
1175 tmp = fgets(version, sizeof(version), file);
1176 fclose(file);
1177
1178 name = strstr(version, prefix);
1179 if (!name)
1180 return NULL;
1181 name += strlen(prefix);
1182 tmp = strchr(name, ' ');
1183 if (tmp)
1184 *tmp = '\0';
1185
1186 return strdup(name);
1187 }
1188
1189 static bool is_kmod_dso(struct dso *dso)
1190 {
1191 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1192 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1193 }
1194
1195 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1196 struct kmod_path *m)
1197 {
1198 char *long_name;
1199 struct map *map = map_groups__find_by_name(mg, m->name);
1200
1201 if (map == NULL)
1202 return 0;
1203
1204 long_name = strdup(path);
1205 if (long_name == NULL)
1206 return -ENOMEM;
1207
1208 dso__set_long_name(map->dso, long_name, true);
1209 dso__kernel_module_get_build_id(map->dso, "");
1210
1211 /*
1212 * Full name could reveal us kmod compression, so
1213 * we need to update the symtab_type if needed.
1214 */
1215 if (m->comp && is_kmod_dso(map->dso)) {
1216 map->dso->symtab_type++;
1217 map->dso->comp = m->comp;
1218 }
1219
1220 return 0;
1221 }
1222
1223 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1224 const char *dir_name, int depth)
1225 {
1226 struct dirent *dent;
1227 DIR *dir = opendir(dir_name);
1228 int ret = 0;
1229
1230 if (!dir) {
1231 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1232 return -1;
1233 }
1234
1235 while ((dent = readdir(dir)) != NULL) {
1236 char path[PATH_MAX];
1237 struct stat st;
1238
1239 /*sshfs might return bad dent->d_type, so we have to stat*/
1240 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1241 if (stat(path, &st))
1242 continue;
1243
1244 if (S_ISDIR(st.st_mode)) {
1245 if (!strcmp(dent->d_name, ".") ||
1246 !strcmp(dent->d_name, ".."))
1247 continue;
1248
1249 /* Do not follow top-level source and build symlinks */
1250 if (depth == 0) {
1251 if (!strcmp(dent->d_name, "source") ||
1252 !strcmp(dent->d_name, "build"))
1253 continue;
1254 }
1255
1256 ret = map_groups__set_modules_path_dir(mg, path,
1257 depth + 1);
1258 if (ret < 0)
1259 goto out;
1260 } else {
1261 struct kmod_path m;
1262
1263 ret = kmod_path__parse_name(&m, dent->d_name);
1264 if (ret)
1265 goto out;
1266
1267 if (m.kmod)
1268 ret = map_groups__set_module_path(mg, path, &m);
1269
1270 free(m.name);
1271
1272 if (ret)
1273 goto out;
1274 }
1275 }
1276
1277 out:
1278 closedir(dir);
1279 return ret;
1280 }
1281
1282 static int machine__set_modules_path(struct machine *machine)
1283 {
1284 char *version;
1285 char modules_path[PATH_MAX];
1286
1287 version = get_kernel_version(machine->root_dir);
1288 if (!version)
1289 return -1;
1290
1291 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1292 machine->root_dir, version);
1293 free(version);
1294
1295 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1296 }
1297 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1298 const char *name __maybe_unused)
1299 {
1300 return 0;
1301 }
1302
1303 static int machine__create_module(void *arg, const char *name, u64 start,
1304 u64 size)
1305 {
1306 struct machine *machine = arg;
1307 struct map *map;
1308
1309 if (arch__fix_module_text_start(&start, name) < 0)
1310 return -1;
1311
1312 map = machine__findnew_module_map(machine, start, name);
1313 if (map == NULL)
1314 return -1;
1315 map->end = start + size;
1316
1317 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1318
1319 return 0;
1320 }
1321
1322 static int machine__create_modules(struct machine *machine)
1323 {
1324 const char *modules;
1325 char path[PATH_MAX];
1326
1327 if (machine__is_default_guest(machine)) {
1328 modules = symbol_conf.default_guest_modules;
1329 } else {
1330 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1331 modules = path;
1332 }
1333
1334 if (symbol__restricted_filename(modules, "/proc/modules"))
1335 return -1;
1336
1337 if (modules__parse(modules, machine, machine__create_module))
1338 return -1;
1339
1340 if (!machine__set_modules_path(machine))
1341 return 0;
1342
1343 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1344
1345 return 0;
1346 }
1347
1348 static void machine__set_kernel_mmap(struct machine *machine,
1349 u64 start, u64 end)
1350 {
1351 machine->vmlinux_map->start = start;
1352 machine->vmlinux_map->end = end;
1353 /*
1354 * Be a bit paranoid here, some perf.data file came with
1355 * a zero sized synthesized MMAP event for the kernel.
1356 */
1357 if (start == 0 && end == 0)
1358 machine->vmlinux_map->end = ~0ULL;
1359 }
1360
1361 int machine__create_kernel_maps(struct machine *machine)
1362 {
1363 struct dso *kernel = machine__get_kernel(machine);
1364 const char *name = NULL;
1365 struct map *map;
1366 u64 addr = 0;
1367 int ret;
1368
1369 if (kernel == NULL)
1370 return -1;
1371
1372 ret = __machine__create_kernel_maps(machine, kernel);
1373 if (ret < 0)
1374 goto out_put;
1375
1376 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1377 if (machine__is_host(machine))
1378 pr_debug("Problems creating module maps, "
1379 "continuing anyway...\n");
1380 else
1381 pr_debug("Problems creating module maps for guest %d, "
1382 "continuing anyway...\n", machine->pid);
1383 }
1384
1385 if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1386 if (name &&
1387 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1388 machine__destroy_kernel_maps(machine);
1389 ret = -1;
1390 goto out_put;
1391 }
1392
1393 /* we have a real start address now, so re-order the kmaps */
1394 map = machine__kernel_map(machine);
1395
1396 map__get(map);
1397 map_groups__remove(&machine->kmaps, map);
1398
1399 /* assume it's the last in the kmaps */
1400 machine__set_kernel_mmap(machine, addr, ~0ULL);
1401
1402 map_groups__insert(&machine->kmaps, map);
1403 map__put(map);
1404 }
1405
1406 if (machine__create_extra_kernel_maps(machine, kernel))
1407 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1408
1409 /* update end address of the kernel map using adjacent module address */
1410 map = map__next(machine__kernel_map(machine));
1411 if (map)
1412 machine__set_kernel_mmap(machine, addr, map->start);
1413 out_put:
1414 dso__put(kernel);
1415 return ret;
1416 }
1417
1418 static bool machine__uses_kcore(struct machine *machine)
1419 {
1420 struct dso *dso;
1421
1422 list_for_each_entry(dso, &machine->dsos.head, node) {
1423 if (dso__is_kcore(dso))
1424 return true;
1425 }
1426
1427 return false;
1428 }
1429
1430 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1431 union perf_event *event)
1432 {
1433 return machine__is(machine, "x86_64") &&
1434 is_entry_trampoline(event->mmap.filename);
1435 }
1436
1437 static int machine__process_extra_kernel_map(struct machine *machine,
1438 union perf_event *event)
1439 {
1440 struct map *kernel_map = machine__kernel_map(machine);
1441 struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1442 struct extra_kernel_map xm = {
1443 .start = event->mmap.start,
1444 .end = event->mmap.start + event->mmap.len,
1445 .pgoff = event->mmap.pgoff,
1446 };
1447
1448 if (kernel == NULL)
1449 return -1;
1450
1451 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1452
1453 return machine__create_extra_kernel_map(machine, kernel, &xm);
1454 }
1455
1456 static int machine__process_kernel_mmap_event(struct machine *machine,
1457 union perf_event *event)
1458 {
1459 struct map *map;
1460 enum dso_kernel_type kernel_type;
1461 bool is_kernel_mmap;
1462
1463 /* If we have maps from kcore then we do not need or want any others */
1464 if (machine__uses_kcore(machine))
1465 return 0;
1466
1467 if (machine__is_host(machine))
1468 kernel_type = DSO_TYPE_KERNEL;
1469 else
1470 kernel_type = DSO_TYPE_GUEST_KERNEL;
1471
1472 is_kernel_mmap = memcmp(event->mmap.filename,
1473 machine->mmap_name,
1474 strlen(machine->mmap_name) - 1) == 0;
1475 if (event->mmap.filename[0] == '/' ||
1476 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1477 map = machine__findnew_module_map(machine, event->mmap.start,
1478 event->mmap.filename);
1479 if (map == NULL)
1480 goto out_problem;
1481
1482 map->end = map->start + event->mmap.len;
1483 } else if (is_kernel_mmap) {
1484 const char *symbol_name = (event->mmap.filename +
1485 strlen(machine->mmap_name));
1486 /*
1487 * Should be there already, from the build-id table in
1488 * the header.
1489 */
1490 struct dso *kernel = NULL;
1491 struct dso *dso;
1492
1493 down_read(&machine->dsos.lock);
1494
1495 list_for_each_entry(dso, &machine->dsos.head, node) {
1496
1497 /*
1498 * The cpumode passed to is_kernel_module is not the
1499 * cpumode of *this* event. If we insist on passing
1500 * correct cpumode to is_kernel_module, we should
1501 * record the cpumode when we adding this dso to the
1502 * linked list.
1503 *
1504 * However we don't really need passing correct
1505 * cpumode. We know the correct cpumode must be kernel
1506 * mode (if not, we should not link it onto kernel_dsos
1507 * list).
1508 *
1509 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1510 * is_kernel_module() treats it as a kernel cpumode.
1511 */
1512
1513 if (!dso->kernel ||
1514 is_kernel_module(dso->long_name,
1515 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1516 continue;
1517
1518
1519 kernel = dso;
1520 break;
1521 }
1522
1523 up_read(&machine->dsos.lock);
1524
1525 if (kernel == NULL)
1526 kernel = machine__findnew_dso(machine, machine->mmap_name);
1527 if (kernel == NULL)
1528 goto out_problem;
1529
1530 kernel->kernel = kernel_type;
1531 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1532 dso__put(kernel);
1533 goto out_problem;
1534 }
1535
1536 if (strstr(kernel->long_name, "vmlinux"))
1537 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1538
1539 machine__set_kernel_mmap(machine, event->mmap.start,
1540 event->mmap.start + event->mmap.len);
1541
1542 /*
1543 * Avoid using a zero address (kptr_restrict) for the ref reloc
1544 * symbol. Effectively having zero here means that at record
1545 * time /proc/sys/kernel/kptr_restrict was non zero.
1546 */
1547 if (event->mmap.pgoff != 0) {
1548 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1549 symbol_name,
1550 event->mmap.pgoff);
1551 }
1552
1553 if (machine__is_default_guest(machine)) {
1554 /*
1555 * preload dso of guest kernel and modules
1556 */
1557 dso__load(kernel, machine__kernel_map(machine));
1558 }
1559 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1560 return machine__process_extra_kernel_map(machine, event);
1561 }
1562 return 0;
1563 out_problem:
1564 return -1;
1565 }
1566
1567 int machine__process_mmap2_event(struct machine *machine,
1568 union perf_event *event,
1569 struct perf_sample *sample)
1570 {
1571 struct thread *thread;
1572 struct map *map;
1573 int ret = 0;
1574
1575 if (dump_trace)
1576 perf_event__fprintf_mmap2(event, stdout);
1577
1578 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1579 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1580 ret = machine__process_kernel_mmap_event(machine, event);
1581 if (ret < 0)
1582 goto out_problem;
1583 return 0;
1584 }
1585
1586 thread = machine__findnew_thread(machine, event->mmap2.pid,
1587 event->mmap2.tid);
1588 if (thread == NULL)
1589 goto out_problem;
1590
1591 map = map__new(machine, event->mmap2.start,
1592 event->mmap2.len, event->mmap2.pgoff,
1593 event->mmap2.maj,
1594 event->mmap2.min, event->mmap2.ino,
1595 event->mmap2.ino_generation,
1596 event->mmap2.prot,
1597 event->mmap2.flags,
1598 event->mmap2.filename, thread);
1599
1600 if (map == NULL)
1601 goto out_problem_map;
1602
1603 ret = thread__insert_map(thread, map);
1604 if (ret)
1605 goto out_problem_insert;
1606
1607 thread__put(thread);
1608 map__put(map);
1609 return 0;
1610
1611 out_problem_insert:
1612 map__put(map);
1613 out_problem_map:
1614 thread__put(thread);
1615 out_problem:
1616 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1617 return 0;
1618 }
1619
1620 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1621 struct perf_sample *sample)
1622 {
1623 struct thread *thread;
1624 struct map *map;
1625 u32 prot = 0;
1626 int ret = 0;
1627
1628 if (dump_trace)
1629 perf_event__fprintf_mmap(event, stdout);
1630
1631 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1632 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1633 ret = machine__process_kernel_mmap_event(machine, event);
1634 if (ret < 0)
1635 goto out_problem;
1636 return 0;
1637 }
1638
1639 thread = machine__findnew_thread(machine, event->mmap.pid,
1640 event->mmap.tid);
1641 if (thread == NULL)
1642 goto out_problem;
1643
1644 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1645 prot = PROT_EXEC;
1646
1647 map = map__new(machine, event->mmap.start,
1648 event->mmap.len, event->mmap.pgoff,
1649 0, 0, 0, 0, prot, 0,
1650 event->mmap.filename,
1651 thread);
1652
1653 if (map == NULL)
1654 goto out_problem_map;
1655
1656 ret = thread__insert_map(thread, map);
1657 if (ret)
1658 goto out_problem_insert;
1659
1660 thread__put(thread);
1661 map__put(map);
1662 return 0;
1663
1664 out_problem_insert:
1665 map__put(map);
1666 out_problem_map:
1667 thread__put(thread);
1668 out_problem:
1669 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1670 return 0;
1671 }
1672
1673 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1674 {
1675 struct threads *threads = machine__threads(machine, th->tid);
1676
1677 if (threads->last_match == th)
1678 threads__set_last_match(threads, NULL);
1679
1680 BUG_ON(refcount_read(&th->refcnt) == 0);
1681 if (lock)
1682 down_write(&threads->lock);
1683 rb_erase_init(&th->rb_node, &threads->entries);
1684 RB_CLEAR_NODE(&th->rb_node);
1685 --threads->nr;
1686 /*
1687 * Move it first to the dead_threads list, then drop the reference,
1688 * if this is the last reference, then the thread__delete destructor
1689 * will be called and we will remove it from the dead_threads list.
1690 */
1691 list_add_tail(&th->node, &threads->dead);
1692 if (lock)
1693 up_write(&threads->lock);
1694 thread__put(th);
1695 }
1696
1697 void machine__remove_thread(struct machine *machine, struct thread *th)
1698 {
1699 return __machine__remove_thread(machine, th, true);
1700 }
1701
1702 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1703 struct perf_sample *sample)
1704 {
1705 struct thread *thread = machine__find_thread(machine,
1706 event->fork.pid,
1707 event->fork.tid);
1708 struct thread *parent = machine__findnew_thread(machine,
1709 event->fork.ppid,
1710 event->fork.ptid);
1711 bool do_maps_clone = true;
1712 int err = 0;
1713
1714 if (dump_trace)
1715 perf_event__fprintf_task(event, stdout);
1716
1717 /*
1718 * There may be an existing thread that is not actually the parent,
1719 * either because we are processing events out of order, or because the
1720 * (fork) event that would have removed the thread was lost. Assume the
1721 * latter case and continue on as best we can.
1722 */
1723 if (parent->pid_ != (pid_t)event->fork.ppid) {
1724 dump_printf("removing erroneous parent thread %d/%d\n",
1725 parent->pid_, parent->tid);
1726 machine__remove_thread(machine, parent);
1727 thread__put(parent);
1728 parent = machine__findnew_thread(machine, event->fork.ppid,
1729 event->fork.ptid);
1730 }
1731
1732 /* if a thread currently exists for the thread id remove it */
1733 if (thread != NULL) {
1734 machine__remove_thread(machine, thread);
1735 thread__put(thread);
1736 }
1737
1738 thread = machine__findnew_thread(machine, event->fork.pid,
1739 event->fork.tid);
1740 /*
1741 * When synthesizing FORK events, we are trying to create thread
1742 * objects for the already running tasks on the machine.
1743 *
1744 * Normally, for a kernel FORK event, we want to clone the parent's
1745 * maps because that is what the kernel just did.
1746 *
1747 * But when synthesizing, this should not be done. If we do, we end up
1748 * with overlapping maps as we process the sythesized MMAP2 events that
1749 * get delivered shortly thereafter.
1750 *
1751 * Use the FORK event misc flags in an internal way to signal this
1752 * situation, so we can elide the map clone when appropriate.
1753 */
1754 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1755 do_maps_clone = false;
1756
1757 if (thread == NULL || parent == NULL ||
1758 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1759 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1760 err = -1;
1761 }
1762 thread__put(thread);
1763 thread__put(parent);
1764
1765 return err;
1766 }
1767
1768 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1769 struct perf_sample *sample __maybe_unused)
1770 {
1771 struct thread *thread = machine__find_thread(machine,
1772 event->fork.pid,
1773 event->fork.tid);
1774
1775 if (dump_trace)
1776 perf_event__fprintf_task(event, stdout);
1777
1778 if (thread != NULL) {
1779 thread__exited(thread);
1780 thread__put(thread);
1781 }
1782
1783 return 0;
1784 }
1785
1786 int machine__process_event(struct machine *machine, union perf_event *event,
1787 struct perf_sample *sample)
1788 {
1789 int ret;
1790
1791 switch (event->header.type) {
1792 case PERF_RECORD_COMM:
1793 ret = machine__process_comm_event(machine, event, sample); break;
1794 case PERF_RECORD_MMAP:
1795 ret = machine__process_mmap_event(machine, event, sample); break;
1796 case PERF_RECORD_NAMESPACES:
1797 ret = machine__process_namespaces_event(machine, event, sample); break;
1798 case PERF_RECORD_MMAP2:
1799 ret = machine__process_mmap2_event(machine, event, sample); break;
1800 case PERF_RECORD_FORK:
1801 ret = machine__process_fork_event(machine, event, sample); break;
1802 case PERF_RECORD_EXIT:
1803 ret = machine__process_exit_event(machine, event, sample); break;
1804 case PERF_RECORD_LOST:
1805 ret = machine__process_lost_event(machine, event, sample); break;
1806 case PERF_RECORD_AUX:
1807 ret = machine__process_aux_event(machine, event); break;
1808 case PERF_RECORD_ITRACE_START:
1809 ret = machine__process_itrace_start_event(machine, event); break;
1810 case PERF_RECORD_LOST_SAMPLES:
1811 ret = machine__process_lost_samples_event(machine, event, sample); break;
1812 case PERF_RECORD_SWITCH:
1813 case PERF_RECORD_SWITCH_CPU_WIDE:
1814 ret = machine__process_switch_event(machine, event); break;
1815 default:
1816 ret = -1;
1817 break;
1818 }
1819
1820 return ret;
1821 }
1822
1823 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1824 {
1825 if (!regexec(regex, sym->name, 0, NULL, 0))
1826 return 1;
1827 return 0;
1828 }
1829
1830 static void ip__resolve_ams(struct thread *thread,
1831 struct addr_map_symbol *ams,
1832 u64 ip)
1833 {
1834 struct addr_location al;
1835
1836 memset(&al, 0, sizeof(al));
1837 /*
1838 * We cannot use the header.misc hint to determine whether a
1839 * branch stack address is user, kernel, guest, hypervisor.
1840 * Branches may straddle the kernel/user/hypervisor boundaries.
1841 * Thus, we have to try consecutively until we find a match
1842 * or else, the symbol is unknown
1843 */
1844 thread__find_cpumode_addr_location(thread, ip, &al);
1845
1846 ams->addr = ip;
1847 ams->al_addr = al.addr;
1848 ams->sym = al.sym;
1849 ams->map = al.map;
1850 ams->phys_addr = 0;
1851 }
1852
1853 static void ip__resolve_data(struct thread *thread,
1854 u8 m, struct addr_map_symbol *ams,
1855 u64 addr, u64 phys_addr)
1856 {
1857 struct addr_location al;
1858
1859 memset(&al, 0, sizeof(al));
1860
1861 thread__find_symbol(thread, m, addr, &al);
1862
1863 ams->addr = addr;
1864 ams->al_addr = al.addr;
1865 ams->sym = al.sym;
1866 ams->map = al.map;
1867 ams->phys_addr = phys_addr;
1868 }
1869
1870 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1871 struct addr_location *al)
1872 {
1873 struct mem_info *mi = mem_info__new();
1874
1875 if (!mi)
1876 return NULL;
1877
1878 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1879 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1880 sample->addr, sample->phys_addr);
1881 mi->data_src.val = sample->data_src;
1882
1883 return mi;
1884 }
1885
1886 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1887 {
1888 char *srcline = NULL;
1889
1890 if (!map || callchain_param.key == CCKEY_FUNCTION)
1891 return srcline;
1892
1893 srcline = srcline__tree_find(&map->dso->srclines, ip);
1894 if (!srcline) {
1895 bool show_sym = false;
1896 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1897
1898 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1899 sym, show_sym, show_addr, ip);
1900 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1901 }
1902
1903 return srcline;
1904 }
1905
1906 struct iterations {
1907 int nr_loop_iter;
1908 u64 cycles;
1909 };
1910
1911 static int add_callchain_ip(struct thread *thread,
1912 struct callchain_cursor *cursor,
1913 struct symbol **parent,
1914 struct addr_location *root_al,
1915 u8 *cpumode,
1916 u64 ip,
1917 bool branch,
1918 struct branch_flags *flags,
1919 struct iterations *iter,
1920 u64 branch_from)
1921 {
1922 struct addr_location al;
1923 int nr_loop_iter = 0;
1924 u64 iter_cycles = 0;
1925 const char *srcline = NULL;
1926
1927 al.filtered = 0;
1928 al.sym = NULL;
1929 if (!cpumode) {
1930 thread__find_cpumode_addr_location(thread, ip, &al);
1931 } else {
1932 if (ip >= PERF_CONTEXT_MAX) {
1933 switch (ip) {
1934 case PERF_CONTEXT_HV:
1935 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1936 break;
1937 case PERF_CONTEXT_KERNEL:
1938 *cpumode = PERF_RECORD_MISC_KERNEL;
1939 break;
1940 case PERF_CONTEXT_USER:
1941 *cpumode = PERF_RECORD_MISC_USER;
1942 break;
1943 default:
1944 pr_debug("invalid callchain context: "
1945 "%"PRId64"\n", (s64) ip);
1946 /*
1947 * It seems the callchain is corrupted.
1948 * Discard all.
1949 */
1950 callchain_cursor_reset(cursor);
1951 return 1;
1952 }
1953 return 0;
1954 }
1955 thread__find_symbol(thread, *cpumode, ip, &al);
1956 }
1957
1958 if (al.sym != NULL) {
1959 if (perf_hpp_list.parent && !*parent &&
1960 symbol__match_regex(al.sym, &parent_regex))
1961 *parent = al.sym;
1962 else if (have_ignore_callees && root_al &&
1963 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1964 /* Treat this symbol as the root,
1965 forgetting its callees. */
1966 *root_al = al;
1967 callchain_cursor_reset(cursor);
1968 }
1969 }
1970
1971 if (symbol_conf.hide_unresolved && al.sym == NULL)
1972 return 0;
1973
1974 if (iter) {
1975 nr_loop_iter = iter->nr_loop_iter;
1976 iter_cycles = iter->cycles;
1977 }
1978
1979 srcline = callchain_srcline(al.map, al.sym, al.addr);
1980 return callchain_cursor_append(cursor, ip, al.map, al.sym,
1981 branch, flags, nr_loop_iter,
1982 iter_cycles, branch_from, srcline);
1983 }
1984
1985 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1986 struct addr_location *al)
1987 {
1988 unsigned int i;
1989 const struct branch_stack *bs = sample->branch_stack;
1990 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1991
1992 if (!bi)
1993 return NULL;
1994
1995 for (i = 0; i < bs->nr; i++) {
1996 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1997 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1998 bi[i].flags = bs->entries[i].flags;
1999 }
2000 return bi;
2001 }
2002
2003 static void save_iterations(struct iterations *iter,
2004 struct branch_entry *be, int nr)
2005 {
2006 int i;
2007
2008 iter->nr_loop_iter = nr;
2009 iter->cycles = 0;
2010
2011 for (i = 0; i < nr; i++)
2012 iter->cycles += be[i].flags.cycles;
2013 }
2014
2015 #define CHASHSZ 127
2016 #define CHASHBITS 7
2017 #define NO_ENTRY 0xff
2018
2019 #define PERF_MAX_BRANCH_DEPTH 127
2020
2021 /* Remove loops. */
2022 static int remove_loops(struct branch_entry *l, int nr,
2023 struct iterations *iter)
2024 {
2025 int i, j, off;
2026 unsigned char chash[CHASHSZ];
2027
2028 memset(chash, NO_ENTRY, sizeof(chash));
2029
2030 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2031
2032 for (i = 0; i < nr; i++) {
2033 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2034
2035 /* no collision handling for now */
2036 if (chash[h] == NO_ENTRY) {
2037 chash[h] = i;
2038 } else if (l[chash[h]].from == l[i].from) {
2039 bool is_loop = true;
2040 /* check if it is a real loop */
2041 off = 0;
2042 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2043 if (l[j].from != l[i + off].from) {
2044 is_loop = false;
2045 break;
2046 }
2047 if (is_loop) {
2048 j = nr - (i + off);
2049 if (j > 0) {
2050 save_iterations(iter + i + off,
2051 l + i, off);
2052
2053 memmove(iter + i, iter + i + off,
2054 j * sizeof(*iter));
2055
2056 memmove(l + i, l + i + off,
2057 j * sizeof(*l));
2058 }
2059
2060 nr -= off;
2061 }
2062 }
2063 }
2064 return nr;
2065 }
2066
2067 /*
2068 * Recolve LBR callstack chain sample
2069 * Return:
2070 * 1 on success get LBR callchain information
2071 * 0 no available LBR callchain information, should try fp
2072 * negative error code on other errors.
2073 */
2074 static int resolve_lbr_callchain_sample(struct thread *thread,
2075 struct callchain_cursor *cursor,
2076 struct perf_sample *sample,
2077 struct symbol **parent,
2078 struct addr_location *root_al,
2079 int max_stack)
2080 {
2081 struct ip_callchain *chain = sample->callchain;
2082 int chain_nr = min(max_stack, (int)chain->nr), i;
2083 u8 cpumode = PERF_RECORD_MISC_USER;
2084 u64 ip, branch_from = 0;
2085
2086 for (i = 0; i < chain_nr; i++) {
2087 if (chain->ips[i] == PERF_CONTEXT_USER)
2088 break;
2089 }
2090
2091 /* LBR only affects the user callchain */
2092 if (i != chain_nr) {
2093 struct branch_stack *lbr_stack = sample->branch_stack;
2094 int lbr_nr = lbr_stack->nr, j, k;
2095 bool branch;
2096 struct branch_flags *flags;
2097 /*
2098 * LBR callstack can only get user call chain.
2099 * The mix_chain_nr is kernel call chain
2100 * number plus LBR user call chain number.
2101 * i is kernel call chain number,
2102 * 1 is PERF_CONTEXT_USER,
2103 * lbr_nr + 1 is the user call chain number.
2104 * For details, please refer to the comments
2105 * in callchain__printf
2106 */
2107 int mix_chain_nr = i + 1 + lbr_nr + 1;
2108
2109 for (j = 0; j < mix_chain_nr; j++) {
2110 int err;
2111 branch = false;
2112 flags = NULL;
2113
2114 if (callchain_param.order == ORDER_CALLEE) {
2115 if (j < i + 1)
2116 ip = chain->ips[j];
2117 else if (j > i + 1) {
2118 k = j - i - 2;
2119 ip = lbr_stack->entries[k].from;
2120 branch = true;
2121 flags = &lbr_stack->entries[k].flags;
2122 } else {
2123 ip = lbr_stack->entries[0].to;
2124 branch = true;
2125 flags = &lbr_stack->entries[0].flags;
2126 branch_from =
2127 lbr_stack->entries[0].from;
2128 }
2129 } else {
2130 if (j < lbr_nr) {
2131 k = lbr_nr - j - 1;
2132 ip = lbr_stack->entries[k].from;
2133 branch = true;
2134 flags = &lbr_stack->entries[k].flags;
2135 }
2136 else if (j > lbr_nr)
2137 ip = chain->ips[i + 1 - (j - lbr_nr)];
2138 else {
2139 ip = lbr_stack->entries[0].to;
2140 branch = true;
2141 flags = &lbr_stack->entries[0].flags;
2142 branch_from =
2143 lbr_stack->entries[0].from;
2144 }
2145 }
2146
2147 err = add_callchain_ip(thread, cursor, parent,
2148 root_al, &cpumode, ip,
2149 branch, flags, NULL,
2150 branch_from);
2151 if (err)
2152 return (err < 0) ? err : 0;
2153 }
2154 return 1;
2155 }
2156
2157 return 0;
2158 }
2159
2160 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2161 struct callchain_cursor *cursor,
2162 struct symbol **parent,
2163 struct addr_location *root_al,
2164 u8 *cpumode, int ent)
2165 {
2166 int err = 0;
2167
2168 while (--ent >= 0) {
2169 u64 ip = chain->ips[ent];
2170
2171 if (ip >= PERF_CONTEXT_MAX) {
2172 err = add_callchain_ip(thread, cursor, parent,
2173 root_al, cpumode, ip,
2174 false, NULL, NULL, 0);
2175 break;
2176 }
2177 }
2178 return err;
2179 }
2180
2181 static int thread__resolve_callchain_sample(struct thread *thread,
2182 struct callchain_cursor *cursor,
2183 struct perf_evsel *evsel,
2184 struct perf_sample *sample,
2185 struct symbol **parent,
2186 struct addr_location *root_al,
2187 int max_stack)
2188 {
2189 struct branch_stack *branch = sample->branch_stack;
2190 struct ip_callchain *chain = sample->callchain;
2191 int chain_nr = 0;
2192 u8 cpumode = PERF_RECORD_MISC_USER;
2193 int i, j, err, nr_entries;
2194 int skip_idx = -1;
2195 int first_call = 0;
2196
2197 if (chain)
2198 chain_nr = chain->nr;
2199
2200 if (perf_evsel__has_branch_callstack(evsel)) {
2201 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2202 root_al, max_stack);
2203 if (err)
2204 return (err < 0) ? err : 0;
2205 }
2206
2207 /*
2208 * Based on DWARF debug information, some architectures skip
2209 * a callchain entry saved by the kernel.
2210 */
2211 skip_idx = arch_skip_callchain_idx(thread, chain);
2212
2213 /*
2214 * Add branches to call stack for easier browsing. This gives
2215 * more context for a sample than just the callers.
2216 *
2217 * This uses individual histograms of paths compared to the
2218 * aggregated histograms the normal LBR mode uses.
2219 *
2220 * Limitations for now:
2221 * - No extra filters
2222 * - No annotations (should annotate somehow)
2223 */
2224
2225 if (branch && callchain_param.branch_callstack) {
2226 int nr = min(max_stack, (int)branch->nr);
2227 struct branch_entry be[nr];
2228 struct iterations iter[nr];
2229
2230 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2231 pr_warning("corrupted branch chain. skipping...\n");
2232 goto check_calls;
2233 }
2234
2235 for (i = 0; i < nr; i++) {
2236 if (callchain_param.order == ORDER_CALLEE) {
2237 be[i] = branch->entries[i];
2238
2239 if (chain == NULL)
2240 continue;
2241
2242 /*
2243 * Check for overlap into the callchain.
2244 * The return address is one off compared to
2245 * the branch entry. To adjust for this
2246 * assume the calling instruction is not longer
2247 * than 8 bytes.
2248 */
2249 if (i == skip_idx ||
2250 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2251 first_call++;
2252 else if (be[i].from < chain->ips[first_call] &&
2253 be[i].from >= chain->ips[first_call] - 8)
2254 first_call++;
2255 } else
2256 be[i] = branch->entries[branch->nr - i - 1];
2257 }
2258
2259 memset(iter, 0, sizeof(struct iterations) * nr);
2260 nr = remove_loops(be, nr, iter);
2261
2262 for (i = 0; i < nr; i++) {
2263 err = add_callchain_ip(thread, cursor, parent,
2264 root_al,
2265 NULL, be[i].to,
2266 true, &be[i].flags,
2267 NULL, be[i].from);
2268
2269 if (!err)
2270 err = add_callchain_ip(thread, cursor, parent, root_al,
2271 NULL, be[i].from,
2272 true, &be[i].flags,
2273 &iter[i], 0);
2274 if (err == -EINVAL)
2275 break;
2276 if (err)
2277 return err;
2278 }
2279
2280 if (chain_nr == 0)
2281 return 0;
2282
2283 chain_nr -= nr;
2284 }
2285
2286 check_calls:
2287 if (callchain_param.order != ORDER_CALLEE) {
2288 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2289 &cpumode, chain->nr - first_call);
2290 if (err)
2291 return (err < 0) ? err : 0;
2292 }
2293 for (i = first_call, nr_entries = 0;
2294 i < chain_nr && nr_entries < max_stack; i++) {
2295 u64 ip;
2296
2297 if (callchain_param.order == ORDER_CALLEE)
2298 j = i;
2299 else
2300 j = chain->nr - i - 1;
2301
2302 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2303 if (j == skip_idx)
2304 continue;
2305 #endif
2306 ip = chain->ips[j];
2307 if (ip < PERF_CONTEXT_MAX)
2308 ++nr_entries;
2309 else if (callchain_param.order != ORDER_CALLEE) {
2310 err = find_prev_cpumode(chain, thread, cursor, parent,
2311 root_al, &cpumode, j);
2312 if (err)
2313 return (err < 0) ? err : 0;
2314 continue;
2315 }
2316
2317 err = add_callchain_ip(thread, cursor, parent,
2318 root_al, &cpumode, ip,
2319 false, NULL, NULL, 0);
2320
2321 if (err)
2322 return (err < 0) ? err : 0;
2323 }
2324
2325 return 0;
2326 }
2327
2328 static int append_inlines(struct callchain_cursor *cursor,
2329 struct map *map, struct symbol *sym, u64 ip)
2330 {
2331 struct inline_node *inline_node;
2332 struct inline_list *ilist;
2333 u64 addr;
2334 int ret = 1;
2335
2336 if (!symbol_conf.inline_name || !map || !sym)
2337 return ret;
2338
2339 addr = map__map_ip(map, ip);
2340 addr = map__rip_2objdump(map, addr);
2341
2342 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2343 if (!inline_node) {
2344 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2345 if (!inline_node)
2346 return ret;
2347 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2348 }
2349
2350 list_for_each_entry(ilist, &inline_node->val, list) {
2351 ret = callchain_cursor_append(cursor, ip, map,
2352 ilist->symbol, false,
2353 NULL, 0, 0, 0, ilist->srcline);
2354
2355 if (ret != 0)
2356 return ret;
2357 }
2358
2359 return ret;
2360 }
2361
2362 static int unwind_entry(struct unwind_entry *entry, void *arg)
2363 {
2364 struct callchain_cursor *cursor = arg;
2365 const char *srcline = NULL;
2366 u64 addr = entry->ip;
2367
2368 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2369 return 0;
2370
2371 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2372 return 0;
2373
2374 /*
2375 * Convert entry->ip from a virtual address to an offset in
2376 * its corresponding binary.
2377 */
2378 if (entry->map)
2379 addr = map__map_ip(entry->map, entry->ip);
2380
2381 srcline = callchain_srcline(entry->map, entry->sym, addr);
2382 return callchain_cursor_append(cursor, entry->ip,
2383 entry->map, entry->sym,
2384 false, NULL, 0, 0, 0, srcline);
2385 }
2386
2387 static int thread__resolve_callchain_unwind(struct thread *thread,
2388 struct callchain_cursor *cursor,
2389 struct perf_evsel *evsel,
2390 struct perf_sample *sample,
2391 int max_stack)
2392 {
2393 /* Can we do dwarf post unwind? */
2394 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2395 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2396 return 0;
2397
2398 /* Bail out if nothing was captured. */
2399 if ((!sample->user_regs.regs) ||
2400 (!sample->user_stack.size))
2401 return 0;
2402
2403 return unwind__get_entries(unwind_entry, cursor,
2404 thread, sample, max_stack);
2405 }
2406
2407 int thread__resolve_callchain(struct thread *thread,
2408 struct callchain_cursor *cursor,
2409 struct perf_evsel *evsel,
2410 struct perf_sample *sample,
2411 struct symbol **parent,
2412 struct addr_location *root_al,
2413 int max_stack)
2414 {
2415 int ret = 0;
2416
2417 callchain_cursor_reset(cursor);
2418
2419 if (callchain_param.order == ORDER_CALLEE) {
2420 ret = thread__resolve_callchain_sample(thread, cursor,
2421 evsel, sample,
2422 parent, root_al,
2423 max_stack);
2424 if (ret)
2425 return ret;
2426 ret = thread__resolve_callchain_unwind(thread, cursor,
2427 evsel, sample,
2428 max_stack);
2429 } else {
2430 ret = thread__resolve_callchain_unwind(thread, cursor,
2431 evsel, sample,
2432 max_stack);
2433 if (ret)
2434 return ret;
2435 ret = thread__resolve_callchain_sample(thread, cursor,
2436 evsel, sample,
2437 parent, root_al,
2438 max_stack);
2439 }
2440
2441 return ret;
2442 }
2443
2444 int machine__for_each_thread(struct machine *machine,
2445 int (*fn)(struct thread *thread, void *p),
2446 void *priv)
2447 {
2448 struct threads *threads;
2449 struct rb_node *nd;
2450 struct thread *thread;
2451 int rc = 0;
2452 int i;
2453
2454 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2455 threads = &machine->threads[i];
2456 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2457 thread = rb_entry(nd, struct thread, rb_node);
2458 rc = fn(thread, priv);
2459 if (rc != 0)
2460 return rc;
2461 }
2462
2463 list_for_each_entry(thread, &threads->dead, node) {
2464 rc = fn(thread, priv);
2465 if (rc != 0)
2466 return rc;
2467 }
2468 }
2469 return rc;
2470 }
2471
2472 int machines__for_each_thread(struct machines *machines,
2473 int (*fn)(struct thread *thread, void *p),
2474 void *priv)
2475 {
2476 struct rb_node *nd;
2477 int rc = 0;
2478
2479 rc = machine__for_each_thread(&machines->host, fn, priv);
2480 if (rc != 0)
2481 return rc;
2482
2483 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2484 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2485
2486 rc = machine__for_each_thread(machine, fn, priv);
2487 if (rc != 0)
2488 return rc;
2489 }
2490 return rc;
2491 }
2492
2493 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2494 struct target *target, struct thread_map *threads,
2495 perf_event__handler_t process, bool data_mmap,
2496 unsigned int nr_threads_synthesize)
2497 {
2498 if (target__has_task(target))
2499 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2500 else if (target__has_cpu(target))
2501 return perf_event__synthesize_threads(tool, process,
2502 machine, data_mmap,
2503 nr_threads_synthesize);
2504 /* command specified */
2505 return 0;
2506 }
2507
2508 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2509 {
2510 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2511 return -1;
2512
2513 return machine->current_tid[cpu];
2514 }
2515
2516 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2517 pid_t tid)
2518 {
2519 struct thread *thread;
2520
2521 if (cpu < 0)
2522 return -EINVAL;
2523
2524 if (!machine->current_tid) {
2525 int i;
2526
2527 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2528 if (!machine->current_tid)
2529 return -ENOMEM;
2530 for (i = 0; i < MAX_NR_CPUS; i++)
2531 machine->current_tid[i] = -1;
2532 }
2533
2534 if (cpu >= MAX_NR_CPUS) {
2535 pr_err("Requested CPU %d too large. ", cpu);
2536 pr_err("Consider raising MAX_NR_CPUS\n");
2537 return -EINVAL;
2538 }
2539
2540 machine->current_tid[cpu] = tid;
2541
2542 thread = machine__findnew_thread(machine, pid, tid);
2543 if (!thread)
2544 return -ENOMEM;
2545
2546 thread->cpu = cpu;
2547 thread__put(thread);
2548
2549 return 0;
2550 }
2551
2552 /*
2553 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2554 * normalized arch is needed.
2555 */
2556 bool machine__is(struct machine *machine, const char *arch)
2557 {
2558 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2559 }
2560
2561 int machine__nr_cpus_avail(struct machine *machine)
2562 {
2563 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2564 }
2565
2566 int machine__get_kernel_start(struct machine *machine)
2567 {
2568 struct map *map = machine__kernel_map(machine);
2569 int err = 0;
2570
2571 /*
2572 * The only addresses above 2^63 are kernel addresses of a 64-bit
2573 * kernel. Note that addresses are unsigned so that on a 32-bit system
2574 * all addresses including kernel addresses are less than 2^32. In
2575 * that case (32-bit system), if the kernel mapping is unknown, all
2576 * addresses will be assumed to be in user space - see
2577 * machine__kernel_ip().
2578 */
2579 machine->kernel_start = 1ULL << 63;
2580 if (map) {
2581 err = map__load(map);
2582 /*
2583 * On x86_64, PTI entry trampolines are less than the
2584 * start of kernel text, but still above 2^63. So leave
2585 * kernel_start = 1ULL << 63 for x86_64.
2586 */
2587 if (!err && !machine__is(machine, "x86_64"))
2588 machine->kernel_start = map->start;
2589 }
2590 return err;
2591 }
2592
2593 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2594 {
2595 u8 addr_cpumode = cpumode;
2596 bool kernel_ip;
2597
2598 if (!machine->single_address_space)
2599 goto out;
2600
2601 kernel_ip = machine__kernel_ip(machine, addr);
2602 switch (cpumode) {
2603 case PERF_RECORD_MISC_KERNEL:
2604 case PERF_RECORD_MISC_USER:
2605 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2606 PERF_RECORD_MISC_USER;
2607 break;
2608 case PERF_RECORD_MISC_GUEST_KERNEL:
2609 case PERF_RECORD_MISC_GUEST_USER:
2610 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2611 PERF_RECORD_MISC_GUEST_USER;
2612 break;
2613 default:
2614 break;
2615 }
2616 out:
2617 return addr_cpumode;
2618 }
2619
2620 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2621 {
2622 return dsos__findnew(&machine->dsos, filename);
2623 }
2624
2625 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2626 {
2627 struct machine *machine = vmachine;
2628 struct map *map;
2629 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2630
2631 if (sym == NULL)
2632 return NULL;
2633
2634 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2635 *addrp = map->unmap_ip(map, sym->start);
2636 return sym->name;
2637 }