]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - tools/perf/util/machine.c
perf report: Add branch flag to callchain cursor node
[mirror_ubuntu-artful-kernel.git] / tools / perf / util / machine.c
1 #include "callchain.h"
2 #include "debug.h"
3 #include "event.h"
4 #include "evsel.h"
5 #include "hist.h"
6 #include "machine.h"
7 #include "map.h"
8 #include "sort.h"
9 #include "strlist.h"
10 #include "thread.h"
11 #include "vdso.h"
12 #include <stdbool.h>
13 #include <symbol/kallsyms.h>
14 #include "unwind.h"
15 #include "linux/hash.h"
16
17 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
18
19 static void dsos__init(struct dsos *dsos)
20 {
21 INIT_LIST_HEAD(&dsos->head);
22 dsos->root = RB_ROOT;
23 pthread_rwlock_init(&dsos->lock, NULL);
24 }
25
26 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
27 {
28 memset(machine, 0, sizeof(*machine));
29 map_groups__init(&machine->kmaps, machine);
30 RB_CLEAR_NODE(&machine->rb_node);
31 dsos__init(&machine->dsos);
32
33 machine->threads = RB_ROOT;
34 pthread_rwlock_init(&machine->threads_lock, NULL);
35 machine->nr_threads = 0;
36 INIT_LIST_HEAD(&machine->dead_threads);
37 machine->last_match = NULL;
38
39 machine->vdso_info = NULL;
40 machine->env = NULL;
41
42 machine->pid = pid;
43
44 machine->id_hdr_size = 0;
45 machine->kptr_restrict_warned = false;
46 machine->comm_exec = false;
47 machine->kernel_start = 0;
48
49 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
50
51 machine->root_dir = strdup(root_dir);
52 if (machine->root_dir == NULL)
53 return -ENOMEM;
54
55 if (pid != HOST_KERNEL_ID) {
56 struct thread *thread = machine__findnew_thread(machine, -1,
57 pid);
58 char comm[64];
59
60 if (thread == NULL)
61 return -ENOMEM;
62
63 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
64 thread__set_comm(thread, comm, 0);
65 thread__put(thread);
66 }
67
68 machine->current_tid = NULL;
69
70 return 0;
71 }
72
73 struct machine *machine__new_host(void)
74 {
75 struct machine *machine = malloc(sizeof(*machine));
76
77 if (machine != NULL) {
78 machine__init(machine, "", HOST_KERNEL_ID);
79
80 if (machine__create_kernel_maps(machine) < 0)
81 goto out_delete;
82 }
83
84 return machine;
85 out_delete:
86 free(machine);
87 return NULL;
88 }
89
90 static void dsos__purge(struct dsos *dsos)
91 {
92 struct dso *pos, *n;
93
94 pthread_rwlock_wrlock(&dsos->lock);
95
96 list_for_each_entry_safe(pos, n, &dsos->head, node) {
97 RB_CLEAR_NODE(&pos->rb_node);
98 pos->root = NULL;
99 list_del_init(&pos->node);
100 dso__put(pos);
101 }
102
103 pthread_rwlock_unlock(&dsos->lock);
104 }
105
106 static void dsos__exit(struct dsos *dsos)
107 {
108 dsos__purge(dsos);
109 pthread_rwlock_destroy(&dsos->lock);
110 }
111
112 void machine__delete_threads(struct machine *machine)
113 {
114 struct rb_node *nd;
115
116 pthread_rwlock_wrlock(&machine->threads_lock);
117 nd = rb_first(&machine->threads);
118 while (nd) {
119 struct thread *t = rb_entry(nd, struct thread, rb_node);
120
121 nd = rb_next(nd);
122 __machine__remove_thread(machine, t, false);
123 }
124 pthread_rwlock_unlock(&machine->threads_lock);
125 }
126
127 void machine__exit(struct machine *machine)
128 {
129 machine__destroy_kernel_maps(machine);
130 map_groups__exit(&machine->kmaps);
131 dsos__exit(&machine->dsos);
132 machine__exit_vdso(machine);
133 zfree(&machine->root_dir);
134 zfree(&machine->current_tid);
135 pthread_rwlock_destroy(&machine->threads_lock);
136 }
137
138 void machine__delete(struct machine *machine)
139 {
140 if (machine) {
141 machine__exit(machine);
142 free(machine);
143 }
144 }
145
146 void machines__init(struct machines *machines)
147 {
148 machine__init(&machines->host, "", HOST_KERNEL_ID);
149 machines->guests = RB_ROOT;
150 }
151
152 void machines__exit(struct machines *machines)
153 {
154 machine__exit(&machines->host);
155 /* XXX exit guest */
156 }
157
158 struct machine *machines__add(struct machines *machines, pid_t pid,
159 const char *root_dir)
160 {
161 struct rb_node **p = &machines->guests.rb_node;
162 struct rb_node *parent = NULL;
163 struct machine *pos, *machine = malloc(sizeof(*machine));
164
165 if (machine == NULL)
166 return NULL;
167
168 if (machine__init(machine, root_dir, pid) != 0) {
169 free(machine);
170 return NULL;
171 }
172
173 while (*p != NULL) {
174 parent = *p;
175 pos = rb_entry(parent, struct machine, rb_node);
176 if (pid < pos->pid)
177 p = &(*p)->rb_left;
178 else
179 p = &(*p)->rb_right;
180 }
181
182 rb_link_node(&machine->rb_node, parent, p);
183 rb_insert_color(&machine->rb_node, &machines->guests);
184
185 return machine;
186 }
187
188 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
189 {
190 struct rb_node *nd;
191
192 machines->host.comm_exec = comm_exec;
193
194 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
195 struct machine *machine = rb_entry(nd, struct machine, rb_node);
196
197 machine->comm_exec = comm_exec;
198 }
199 }
200
201 struct machine *machines__find(struct machines *machines, pid_t pid)
202 {
203 struct rb_node **p = &machines->guests.rb_node;
204 struct rb_node *parent = NULL;
205 struct machine *machine;
206 struct machine *default_machine = NULL;
207
208 if (pid == HOST_KERNEL_ID)
209 return &machines->host;
210
211 while (*p != NULL) {
212 parent = *p;
213 machine = rb_entry(parent, struct machine, rb_node);
214 if (pid < machine->pid)
215 p = &(*p)->rb_left;
216 else if (pid > machine->pid)
217 p = &(*p)->rb_right;
218 else
219 return machine;
220 if (!machine->pid)
221 default_machine = machine;
222 }
223
224 return default_machine;
225 }
226
227 struct machine *machines__findnew(struct machines *machines, pid_t pid)
228 {
229 char path[PATH_MAX];
230 const char *root_dir = "";
231 struct machine *machine = machines__find(machines, pid);
232
233 if (machine && (machine->pid == pid))
234 goto out;
235
236 if ((pid != HOST_KERNEL_ID) &&
237 (pid != DEFAULT_GUEST_KERNEL_ID) &&
238 (symbol_conf.guestmount)) {
239 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
240 if (access(path, R_OK)) {
241 static struct strlist *seen;
242
243 if (!seen)
244 seen = strlist__new(NULL, NULL);
245
246 if (!strlist__has_entry(seen, path)) {
247 pr_err("Can't access file %s\n", path);
248 strlist__add(seen, path);
249 }
250 machine = NULL;
251 goto out;
252 }
253 root_dir = path;
254 }
255
256 machine = machines__add(machines, pid, root_dir);
257 out:
258 return machine;
259 }
260
261 void machines__process_guests(struct machines *machines,
262 machine__process_t process, void *data)
263 {
264 struct rb_node *nd;
265
266 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
267 struct machine *pos = rb_entry(nd, struct machine, rb_node);
268 process(pos, data);
269 }
270 }
271
272 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
273 {
274 if (machine__is_host(machine))
275 snprintf(bf, size, "[%s]", "kernel.kallsyms");
276 else if (machine__is_default_guest(machine))
277 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
278 else {
279 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
280 machine->pid);
281 }
282
283 return bf;
284 }
285
286 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
287 {
288 struct rb_node *node;
289 struct machine *machine;
290
291 machines->host.id_hdr_size = id_hdr_size;
292
293 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
294 machine = rb_entry(node, struct machine, rb_node);
295 machine->id_hdr_size = id_hdr_size;
296 }
297
298 return;
299 }
300
301 static void machine__update_thread_pid(struct machine *machine,
302 struct thread *th, pid_t pid)
303 {
304 struct thread *leader;
305
306 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
307 return;
308
309 th->pid_ = pid;
310
311 if (th->pid_ == th->tid)
312 return;
313
314 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
315 if (!leader)
316 goto out_err;
317
318 if (!leader->mg)
319 leader->mg = map_groups__new(machine);
320
321 if (!leader->mg)
322 goto out_err;
323
324 if (th->mg == leader->mg)
325 return;
326
327 if (th->mg) {
328 /*
329 * Maps are created from MMAP events which provide the pid and
330 * tid. Consequently there never should be any maps on a thread
331 * with an unknown pid. Just print an error if there are.
332 */
333 if (!map_groups__empty(th->mg))
334 pr_err("Discarding thread maps for %d:%d\n",
335 th->pid_, th->tid);
336 map_groups__put(th->mg);
337 }
338
339 th->mg = map_groups__get(leader->mg);
340 out_put:
341 thread__put(leader);
342 return;
343 out_err:
344 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
345 goto out_put;
346 }
347
348 /*
349 * Caller must eventually drop thread->refcnt returned with a successful
350 * lookup/new thread inserted.
351 */
352 static struct thread *____machine__findnew_thread(struct machine *machine,
353 pid_t pid, pid_t tid,
354 bool create)
355 {
356 struct rb_node **p = &machine->threads.rb_node;
357 struct rb_node *parent = NULL;
358 struct thread *th;
359
360 /*
361 * Front-end cache - TID lookups come in blocks,
362 * so most of the time we dont have to look up
363 * the full rbtree:
364 */
365 th = machine->last_match;
366 if (th != NULL) {
367 if (th->tid == tid) {
368 machine__update_thread_pid(machine, th, pid);
369 return thread__get(th);
370 }
371
372 machine->last_match = NULL;
373 }
374
375 while (*p != NULL) {
376 parent = *p;
377 th = rb_entry(parent, struct thread, rb_node);
378
379 if (th->tid == tid) {
380 machine->last_match = th;
381 machine__update_thread_pid(machine, th, pid);
382 return thread__get(th);
383 }
384
385 if (tid < th->tid)
386 p = &(*p)->rb_left;
387 else
388 p = &(*p)->rb_right;
389 }
390
391 if (!create)
392 return NULL;
393
394 th = thread__new(pid, tid);
395 if (th != NULL) {
396 rb_link_node(&th->rb_node, parent, p);
397 rb_insert_color(&th->rb_node, &machine->threads);
398
399 /*
400 * We have to initialize map_groups separately
401 * after rb tree is updated.
402 *
403 * The reason is that we call machine__findnew_thread
404 * within thread__init_map_groups to find the thread
405 * leader and that would screwed the rb tree.
406 */
407 if (thread__init_map_groups(th, machine)) {
408 rb_erase_init(&th->rb_node, &machine->threads);
409 RB_CLEAR_NODE(&th->rb_node);
410 thread__put(th);
411 return NULL;
412 }
413 /*
414 * It is now in the rbtree, get a ref
415 */
416 thread__get(th);
417 machine->last_match = th;
418 ++machine->nr_threads;
419 }
420
421 return th;
422 }
423
424 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
425 {
426 return ____machine__findnew_thread(machine, pid, tid, true);
427 }
428
429 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
430 pid_t tid)
431 {
432 struct thread *th;
433
434 pthread_rwlock_wrlock(&machine->threads_lock);
435 th = __machine__findnew_thread(machine, pid, tid);
436 pthread_rwlock_unlock(&machine->threads_lock);
437 return th;
438 }
439
440 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
441 pid_t tid)
442 {
443 struct thread *th;
444 pthread_rwlock_rdlock(&machine->threads_lock);
445 th = ____machine__findnew_thread(machine, pid, tid, false);
446 pthread_rwlock_unlock(&machine->threads_lock);
447 return th;
448 }
449
450 struct comm *machine__thread_exec_comm(struct machine *machine,
451 struct thread *thread)
452 {
453 if (machine->comm_exec)
454 return thread__exec_comm(thread);
455 else
456 return thread__comm(thread);
457 }
458
459 int machine__process_comm_event(struct machine *machine, union perf_event *event,
460 struct perf_sample *sample)
461 {
462 struct thread *thread = machine__findnew_thread(machine,
463 event->comm.pid,
464 event->comm.tid);
465 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
466 int err = 0;
467
468 if (exec)
469 machine->comm_exec = true;
470
471 if (dump_trace)
472 perf_event__fprintf_comm(event, stdout);
473
474 if (thread == NULL ||
475 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
476 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
477 err = -1;
478 }
479
480 thread__put(thread);
481
482 return err;
483 }
484
485 int machine__process_lost_event(struct machine *machine __maybe_unused,
486 union perf_event *event, struct perf_sample *sample __maybe_unused)
487 {
488 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
489 event->lost.id, event->lost.lost);
490 return 0;
491 }
492
493 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
494 union perf_event *event, struct perf_sample *sample)
495 {
496 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
497 sample->id, event->lost_samples.lost);
498 return 0;
499 }
500
501 static struct dso *machine__findnew_module_dso(struct machine *machine,
502 struct kmod_path *m,
503 const char *filename)
504 {
505 struct dso *dso;
506
507 pthread_rwlock_wrlock(&machine->dsos.lock);
508
509 dso = __dsos__find(&machine->dsos, m->name, true);
510 if (!dso) {
511 dso = __dsos__addnew(&machine->dsos, m->name);
512 if (dso == NULL)
513 goto out_unlock;
514
515 if (machine__is_host(machine))
516 dso->symtab_type = DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE;
517 else
518 dso->symtab_type = DSO_BINARY_TYPE__GUEST_KMODULE;
519
520 /* _KMODULE_COMP should be next to _KMODULE */
521 if (m->kmod && m->comp)
522 dso->symtab_type++;
523
524 dso__set_short_name(dso, strdup(m->name), true);
525 dso__set_long_name(dso, strdup(filename), true);
526 }
527
528 dso__get(dso);
529 out_unlock:
530 pthread_rwlock_unlock(&machine->dsos.lock);
531 return dso;
532 }
533
534 int machine__process_aux_event(struct machine *machine __maybe_unused,
535 union perf_event *event)
536 {
537 if (dump_trace)
538 perf_event__fprintf_aux(event, stdout);
539 return 0;
540 }
541
542 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
543 union perf_event *event)
544 {
545 if (dump_trace)
546 perf_event__fprintf_itrace_start(event, stdout);
547 return 0;
548 }
549
550 int machine__process_switch_event(struct machine *machine __maybe_unused,
551 union perf_event *event)
552 {
553 if (dump_trace)
554 perf_event__fprintf_switch(event, stdout);
555 return 0;
556 }
557
558 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
559 {
560 const char *dup_filename;
561
562 if (!filename || !dso || !dso->long_name)
563 return;
564 if (dso->long_name[0] != '[')
565 return;
566 if (!strchr(filename, '/'))
567 return;
568
569 dup_filename = strdup(filename);
570 if (!dup_filename)
571 return;
572
573 dso__set_long_name(dso, dup_filename, true);
574 }
575
576 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
577 const char *filename)
578 {
579 struct map *map = NULL;
580 struct dso *dso = NULL;
581 struct kmod_path m;
582
583 if (kmod_path__parse_name(&m, filename))
584 return NULL;
585
586 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
587 m.name);
588 if (map) {
589 /*
590 * If the map's dso is an offline module, give dso__load()
591 * a chance to find the file path of that module by fixing
592 * long_name.
593 */
594 dso__adjust_kmod_long_name(map->dso, filename);
595 goto out;
596 }
597
598 dso = machine__findnew_module_dso(machine, &m, filename);
599 if (dso == NULL)
600 goto out;
601
602 map = map__new2(start, dso, MAP__FUNCTION);
603 if (map == NULL)
604 goto out;
605
606 map_groups__insert(&machine->kmaps, map);
607
608 /* Put the map here because map_groups__insert alread got it */
609 map__put(map);
610 out:
611 /* put the dso here, corresponding to machine__findnew_module_dso */
612 dso__put(dso);
613 free(m.name);
614 return map;
615 }
616
617 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
618 {
619 struct rb_node *nd;
620 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
621
622 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
623 struct machine *pos = rb_entry(nd, struct machine, rb_node);
624 ret += __dsos__fprintf(&pos->dsos.head, fp);
625 }
626
627 return ret;
628 }
629
630 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
631 bool (skip)(struct dso *dso, int parm), int parm)
632 {
633 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
634 }
635
636 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
637 bool (skip)(struct dso *dso, int parm), int parm)
638 {
639 struct rb_node *nd;
640 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
641
642 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
643 struct machine *pos = rb_entry(nd, struct machine, rb_node);
644 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
645 }
646 return ret;
647 }
648
649 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
650 {
651 int i;
652 size_t printed = 0;
653 struct dso *kdso = machine__kernel_map(machine)->dso;
654
655 if (kdso->has_build_id) {
656 char filename[PATH_MAX];
657 if (dso__build_id_filename(kdso, filename, sizeof(filename)))
658 printed += fprintf(fp, "[0] %s\n", filename);
659 }
660
661 for (i = 0; i < vmlinux_path__nr_entries; ++i)
662 printed += fprintf(fp, "[%d] %s\n",
663 i + kdso->has_build_id, vmlinux_path[i]);
664
665 return printed;
666 }
667
668 size_t machine__fprintf(struct machine *machine, FILE *fp)
669 {
670 size_t ret;
671 struct rb_node *nd;
672
673 pthread_rwlock_rdlock(&machine->threads_lock);
674
675 ret = fprintf(fp, "Threads: %u\n", machine->nr_threads);
676
677 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
678 struct thread *pos = rb_entry(nd, struct thread, rb_node);
679
680 ret += thread__fprintf(pos, fp);
681 }
682
683 pthread_rwlock_unlock(&machine->threads_lock);
684
685 return ret;
686 }
687
688 static struct dso *machine__get_kernel(struct machine *machine)
689 {
690 const char *vmlinux_name = NULL;
691 struct dso *kernel;
692
693 if (machine__is_host(machine)) {
694 vmlinux_name = symbol_conf.vmlinux_name;
695 if (!vmlinux_name)
696 vmlinux_name = DSO__NAME_KALLSYMS;
697
698 kernel = machine__findnew_kernel(machine, vmlinux_name,
699 "[kernel]", DSO_TYPE_KERNEL);
700 } else {
701 char bf[PATH_MAX];
702
703 if (machine__is_default_guest(machine))
704 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
705 if (!vmlinux_name)
706 vmlinux_name = machine__mmap_name(machine, bf,
707 sizeof(bf));
708
709 kernel = machine__findnew_kernel(machine, vmlinux_name,
710 "[guest.kernel]",
711 DSO_TYPE_GUEST_KERNEL);
712 }
713
714 if (kernel != NULL && (!kernel->has_build_id))
715 dso__read_running_kernel_build_id(kernel, machine);
716
717 return kernel;
718 }
719
720 struct process_args {
721 u64 start;
722 };
723
724 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
725 size_t bufsz)
726 {
727 if (machine__is_default_guest(machine))
728 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
729 else
730 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
731 }
732
733 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
734
735 /* Figure out the start address of kernel map from /proc/kallsyms.
736 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
737 * symbol_name if it's not that important.
738 */
739 static u64 machine__get_running_kernel_start(struct machine *machine,
740 const char **symbol_name)
741 {
742 char filename[PATH_MAX];
743 int i;
744 const char *name;
745 u64 addr = 0;
746
747 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
748
749 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
750 return 0;
751
752 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
753 addr = kallsyms__get_function_start(filename, name);
754 if (addr)
755 break;
756 }
757
758 if (symbol_name)
759 *symbol_name = name;
760
761 return addr;
762 }
763
764 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
765 {
766 enum map_type type;
767 u64 start = machine__get_running_kernel_start(machine, NULL);
768
769 /* In case of renewal the kernel map, destroy previous one */
770 machine__destroy_kernel_maps(machine);
771
772 for (type = 0; type < MAP__NR_TYPES; ++type) {
773 struct kmap *kmap;
774 struct map *map;
775
776 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
777 if (machine->vmlinux_maps[type] == NULL)
778 return -1;
779
780 machine->vmlinux_maps[type]->map_ip =
781 machine->vmlinux_maps[type]->unmap_ip =
782 identity__map_ip;
783 map = __machine__kernel_map(machine, type);
784 kmap = map__kmap(map);
785 if (!kmap)
786 return -1;
787
788 kmap->kmaps = &machine->kmaps;
789 map_groups__insert(&machine->kmaps, map);
790 }
791
792 return 0;
793 }
794
795 void machine__destroy_kernel_maps(struct machine *machine)
796 {
797 enum map_type type;
798
799 for (type = 0; type < MAP__NR_TYPES; ++type) {
800 struct kmap *kmap;
801 struct map *map = __machine__kernel_map(machine, type);
802
803 if (map == NULL)
804 continue;
805
806 kmap = map__kmap(map);
807 map_groups__remove(&machine->kmaps, map);
808 if (kmap && kmap->ref_reloc_sym) {
809 /*
810 * ref_reloc_sym is shared among all maps, so free just
811 * on one of them.
812 */
813 if (type == MAP__FUNCTION) {
814 zfree((char **)&kmap->ref_reloc_sym->name);
815 zfree(&kmap->ref_reloc_sym);
816 } else
817 kmap->ref_reloc_sym = NULL;
818 }
819
820 map__put(machine->vmlinux_maps[type]);
821 machine->vmlinux_maps[type] = NULL;
822 }
823 }
824
825 int machines__create_guest_kernel_maps(struct machines *machines)
826 {
827 int ret = 0;
828 struct dirent **namelist = NULL;
829 int i, items = 0;
830 char path[PATH_MAX];
831 pid_t pid;
832 char *endp;
833
834 if (symbol_conf.default_guest_vmlinux_name ||
835 symbol_conf.default_guest_modules ||
836 symbol_conf.default_guest_kallsyms) {
837 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
838 }
839
840 if (symbol_conf.guestmount) {
841 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
842 if (items <= 0)
843 return -ENOENT;
844 for (i = 0; i < items; i++) {
845 if (!isdigit(namelist[i]->d_name[0])) {
846 /* Filter out . and .. */
847 continue;
848 }
849 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
850 if ((*endp != '\0') ||
851 (endp == namelist[i]->d_name) ||
852 (errno == ERANGE)) {
853 pr_debug("invalid directory (%s). Skipping.\n",
854 namelist[i]->d_name);
855 continue;
856 }
857 sprintf(path, "%s/%s/proc/kallsyms",
858 symbol_conf.guestmount,
859 namelist[i]->d_name);
860 ret = access(path, R_OK);
861 if (ret) {
862 pr_debug("Can't access file %s\n", path);
863 goto failure;
864 }
865 machines__create_kernel_maps(machines, pid);
866 }
867 failure:
868 free(namelist);
869 }
870
871 return ret;
872 }
873
874 void machines__destroy_kernel_maps(struct machines *machines)
875 {
876 struct rb_node *next = rb_first(&machines->guests);
877
878 machine__destroy_kernel_maps(&machines->host);
879
880 while (next) {
881 struct machine *pos = rb_entry(next, struct machine, rb_node);
882
883 next = rb_next(&pos->rb_node);
884 rb_erase(&pos->rb_node, &machines->guests);
885 machine__delete(pos);
886 }
887 }
888
889 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
890 {
891 struct machine *machine = machines__findnew(machines, pid);
892
893 if (machine == NULL)
894 return -1;
895
896 return machine__create_kernel_maps(machine);
897 }
898
899 int __machine__load_kallsyms(struct machine *machine, const char *filename,
900 enum map_type type, bool no_kcore)
901 {
902 struct map *map = machine__kernel_map(machine);
903 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
904
905 if (ret > 0) {
906 dso__set_loaded(map->dso, type);
907 /*
908 * Since /proc/kallsyms will have multiple sessions for the
909 * kernel, with modules between them, fixup the end of all
910 * sections.
911 */
912 __map_groups__fixup_end(&machine->kmaps, type);
913 }
914
915 return ret;
916 }
917
918 int machine__load_kallsyms(struct machine *machine, const char *filename,
919 enum map_type type)
920 {
921 return __machine__load_kallsyms(machine, filename, type, false);
922 }
923
924 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
925 {
926 struct map *map = machine__kernel_map(machine);
927 int ret = dso__load_vmlinux_path(map->dso, map);
928
929 if (ret > 0)
930 dso__set_loaded(map->dso, type);
931
932 return ret;
933 }
934
935 static void map_groups__fixup_end(struct map_groups *mg)
936 {
937 int i;
938 for (i = 0; i < MAP__NR_TYPES; ++i)
939 __map_groups__fixup_end(mg, i);
940 }
941
942 static char *get_kernel_version(const char *root_dir)
943 {
944 char version[PATH_MAX];
945 FILE *file;
946 char *name, *tmp;
947 const char *prefix = "Linux version ";
948
949 sprintf(version, "%s/proc/version", root_dir);
950 file = fopen(version, "r");
951 if (!file)
952 return NULL;
953
954 version[0] = '\0';
955 tmp = fgets(version, sizeof(version), file);
956 fclose(file);
957
958 name = strstr(version, prefix);
959 if (!name)
960 return NULL;
961 name += strlen(prefix);
962 tmp = strchr(name, ' ');
963 if (tmp)
964 *tmp = '\0';
965
966 return strdup(name);
967 }
968
969 static bool is_kmod_dso(struct dso *dso)
970 {
971 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
972 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
973 }
974
975 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
976 struct kmod_path *m)
977 {
978 struct map *map;
979 char *long_name;
980
981 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
982 if (map == NULL)
983 return 0;
984
985 long_name = strdup(path);
986 if (long_name == NULL)
987 return -ENOMEM;
988
989 dso__set_long_name(map->dso, long_name, true);
990 dso__kernel_module_get_build_id(map->dso, "");
991
992 /*
993 * Full name could reveal us kmod compression, so
994 * we need to update the symtab_type if needed.
995 */
996 if (m->comp && is_kmod_dso(map->dso))
997 map->dso->symtab_type++;
998
999 return 0;
1000 }
1001
1002 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1003 const char *dir_name, int depth)
1004 {
1005 struct dirent *dent;
1006 DIR *dir = opendir(dir_name);
1007 int ret = 0;
1008
1009 if (!dir) {
1010 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1011 return -1;
1012 }
1013
1014 while ((dent = readdir(dir)) != NULL) {
1015 char path[PATH_MAX];
1016 struct stat st;
1017
1018 /*sshfs might return bad dent->d_type, so we have to stat*/
1019 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1020 if (stat(path, &st))
1021 continue;
1022
1023 if (S_ISDIR(st.st_mode)) {
1024 if (!strcmp(dent->d_name, ".") ||
1025 !strcmp(dent->d_name, ".."))
1026 continue;
1027
1028 /* Do not follow top-level source and build symlinks */
1029 if (depth == 0) {
1030 if (!strcmp(dent->d_name, "source") ||
1031 !strcmp(dent->d_name, "build"))
1032 continue;
1033 }
1034
1035 ret = map_groups__set_modules_path_dir(mg, path,
1036 depth + 1);
1037 if (ret < 0)
1038 goto out;
1039 } else {
1040 struct kmod_path m;
1041
1042 ret = kmod_path__parse_name(&m, dent->d_name);
1043 if (ret)
1044 goto out;
1045
1046 if (m.kmod)
1047 ret = map_groups__set_module_path(mg, path, &m);
1048
1049 free(m.name);
1050
1051 if (ret)
1052 goto out;
1053 }
1054 }
1055
1056 out:
1057 closedir(dir);
1058 return ret;
1059 }
1060
1061 static int machine__set_modules_path(struct machine *machine)
1062 {
1063 char *version;
1064 char modules_path[PATH_MAX];
1065
1066 version = get_kernel_version(machine->root_dir);
1067 if (!version)
1068 return -1;
1069
1070 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1071 machine->root_dir, version);
1072 free(version);
1073
1074 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1075 }
1076 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1077 const char *name __maybe_unused)
1078 {
1079 return 0;
1080 }
1081
1082 static int machine__create_module(void *arg, const char *name, u64 start)
1083 {
1084 struct machine *machine = arg;
1085 struct map *map;
1086
1087 if (arch__fix_module_text_start(&start, name) < 0)
1088 return -1;
1089
1090 map = machine__findnew_module_map(machine, start, name);
1091 if (map == NULL)
1092 return -1;
1093
1094 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1095
1096 return 0;
1097 }
1098
1099 static int machine__create_modules(struct machine *machine)
1100 {
1101 const char *modules;
1102 char path[PATH_MAX];
1103
1104 if (machine__is_default_guest(machine)) {
1105 modules = symbol_conf.default_guest_modules;
1106 } else {
1107 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1108 modules = path;
1109 }
1110
1111 if (symbol__restricted_filename(modules, "/proc/modules"))
1112 return -1;
1113
1114 if (modules__parse(modules, machine, machine__create_module))
1115 return -1;
1116
1117 if (!machine__set_modules_path(machine))
1118 return 0;
1119
1120 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1121
1122 return 0;
1123 }
1124
1125 int machine__create_kernel_maps(struct machine *machine)
1126 {
1127 struct dso *kernel = machine__get_kernel(machine);
1128 const char *name;
1129 u64 addr;
1130 int ret;
1131
1132 if (kernel == NULL)
1133 return -1;
1134
1135 ret = __machine__create_kernel_maps(machine, kernel);
1136 dso__put(kernel);
1137 if (ret < 0)
1138 return -1;
1139
1140 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1141 if (machine__is_host(machine))
1142 pr_debug("Problems creating module maps, "
1143 "continuing anyway...\n");
1144 else
1145 pr_debug("Problems creating module maps for guest %d, "
1146 "continuing anyway...\n", machine->pid);
1147 }
1148
1149 /*
1150 * Now that we have all the maps created, just set the ->end of them:
1151 */
1152 map_groups__fixup_end(&machine->kmaps);
1153
1154 addr = machine__get_running_kernel_start(machine, &name);
1155 if (!addr) {
1156 } else if (maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1157 machine__destroy_kernel_maps(machine);
1158 return -1;
1159 }
1160
1161 return 0;
1162 }
1163
1164 static void machine__set_kernel_mmap_len(struct machine *machine,
1165 union perf_event *event)
1166 {
1167 int i;
1168
1169 for (i = 0; i < MAP__NR_TYPES; i++) {
1170 machine->vmlinux_maps[i]->start = event->mmap.start;
1171 machine->vmlinux_maps[i]->end = (event->mmap.start +
1172 event->mmap.len);
1173 /*
1174 * Be a bit paranoid here, some perf.data file came with
1175 * a zero sized synthesized MMAP event for the kernel.
1176 */
1177 if (machine->vmlinux_maps[i]->end == 0)
1178 machine->vmlinux_maps[i]->end = ~0ULL;
1179 }
1180 }
1181
1182 static bool machine__uses_kcore(struct machine *machine)
1183 {
1184 struct dso *dso;
1185
1186 list_for_each_entry(dso, &machine->dsos.head, node) {
1187 if (dso__is_kcore(dso))
1188 return true;
1189 }
1190
1191 return false;
1192 }
1193
1194 static int machine__process_kernel_mmap_event(struct machine *machine,
1195 union perf_event *event)
1196 {
1197 struct map *map;
1198 char kmmap_prefix[PATH_MAX];
1199 enum dso_kernel_type kernel_type;
1200 bool is_kernel_mmap;
1201
1202 /* If we have maps from kcore then we do not need or want any others */
1203 if (machine__uses_kcore(machine))
1204 return 0;
1205
1206 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1207 if (machine__is_host(machine))
1208 kernel_type = DSO_TYPE_KERNEL;
1209 else
1210 kernel_type = DSO_TYPE_GUEST_KERNEL;
1211
1212 is_kernel_mmap = memcmp(event->mmap.filename,
1213 kmmap_prefix,
1214 strlen(kmmap_prefix) - 1) == 0;
1215 if (event->mmap.filename[0] == '/' ||
1216 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1217 map = machine__findnew_module_map(machine, event->mmap.start,
1218 event->mmap.filename);
1219 if (map == NULL)
1220 goto out_problem;
1221
1222 map->end = map->start + event->mmap.len;
1223 } else if (is_kernel_mmap) {
1224 const char *symbol_name = (event->mmap.filename +
1225 strlen(kmmap_prefix));
1226 /*
1227 * Should be there already, from the build-id table in
1228 * the header.
1229 */
1230 struct dso *kernel = NULL;
1231 struct dso *dso;
1232
1233 pthread_rwlock_rdlock(&machine->dsos.lock);
1234
1235 list_for_each_entry(dso, &machine->dsos.head, node) {
1236
1237 /*
1238 * The cpumode passed to is_kernel_module is not the
1239 * cpumode of *this* event. If we insist on passing
1240 * correct cpumode to is_kernel_module, we should
1241 * record the cpumode when we adding this dso to the
1242 * linked list.
1243 *
1244 * However we don't really need passing correct
1245 * cpumode. We know the correct cpumode must be kernel
1246 * mode (if not, we should not link it onto kernel_dsos
1247 * list).
1248 *
1249 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1250 * is_kernel_module() treats it as a kernel cpumode.
1251 */
1252
1253 if (!dso->kernel ||
1254 is_kernel_module(dso->long_name,
1255 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1256 continue;
1257
1258
1259 kernel = dso;
1260 break;
1261 }
1262
1263 pthread_rwlock_unlock(&machine->dsos.lock);
1264
1265 if (kernel == NULL)
1266 kernel = machine__findnew_dso(machine, kmmap_prefix);
1267 if (kernel == NULL)
1268 goto out_problem;
1269
1270 kernel->kernel = kernel_type;
1271 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1272 dso__put(kernel);
1273 goto out_problem;
1274 }
1275
1276 if (strstr(kernel->long_name, "vmlinux"))
1277 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1278
1279 machine__set_kernel_mmap_len(machine, event);
1280
1281 /*
1282 * Avoid using a zero address (kptr_restrict) for the ref reloc
1283 * symbol. Effectively having zero here means that at record
1284 * time /proc/sys/kernel/kptr_restrict was non zero.
1285 */
1286 if (event->mmap.pgoff != 0) {
1287 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1288 symbol_name,
1289 event->mmap.pgoff);
1290 }
1291
1292 if (machine__is_default_guest(machine)) {
1293 /*
1294 * preload dso of guest kernel and modules
1295 */
1296 dso__load(kernel, machine__kernel_map(machine));
1297 }
1298 }
1299 return 0;
1300 out_problem:
1301 return -1;
1302 }
1303
1304 int machine__process_mmap2_event(struct machine *machine,
1305 union perf_event *event,
1306 struct perf_sample *sample)
1307 {
1308 struct thread *thread;
1309 struct map *map;
1310 enum map_type type;
1311 int ret = 0;
1312
1313 if (dump_trace)
1314 perf_event__fprintf_mmap2(event, stdout);
1315
1316 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1317 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1318 ret = machine__process_kernel_mmap_event(machine, event);
1319 if (ret < 0)
1320 goto out_problem;
1321 return 0;
1322 }
1323
1324 thread = machine__findnew_thread(machine, event->mmap2.pid,
1325 event->mmap2.tid);
1326 if (thread == NULL)
1327 goto out_problem;
1328
1329 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1330 type = MAP__VARIABLE;
1331 else
1332 type = MAP__FUNCTION;
1333
1334 map = map__new(machine, event->mmap2.start,
1335 event->mmap2.len, event->mmap2.pgoff,
1336 event->mmap2.pid, event->mmap2.maj,
1337 event->mmap2.min, event->mmap2.ino,
1338 event->mmap2.ino_generation,
1339 event->mmap2.prot,
1340 event->mmap2.flags,
1341 event->mmap2.filename, type, thread);
1342
1343 if (map == NULL)
1344 goto out_problem_map;
1345
1346 ret = thread__insert_map(thread, map);
1347 if (ret)
1348 goto out_problem_insert;
1349
1350 thread__put(thread);
1351 map__put(map);
1352 return 0;
1353
1354 out_problem_insert:
1355 map__put(map);
1356 out_problem_map:
1357 thread__put(thread);
1358 out_problem:
1359 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1360 return 0;
1361 }
1362
1363 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1364 struct perf_sample *sample)
1365 {
1366 struct thread *thread;
1367 struct map *map;
1368 enum map_type type;
1369 int ret = 0;
1370
1371 if (dump_trace)
1372 perf_event__fprintf_mmap(event, stdout);
1373
1374 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1375 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1376 ret = machine__process_kernel_mmap_event(machine, event);
1377 if (ret < 0)
1378 goto out_problem;
1379 return 0;
1380 }
1381
1382 thread = machine__findnew_thread(machine, event->mmap.pid,
1383 event->mmap.tid);
1384 if (thread == NULL)
1385 goto out_problem;
1386
1387 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1388 type = MAP__VARIABLE;
1389 else
1390 type = MAP__FUNCTION;
1391
1392 map = map__new(machine, event->mmap.start,
1393 event->mmap.len, event->mmap.pgoff,
1394 event->mmap.pid, 0, 0, 0, 0, 0, 0,
1395 event->mmap.filename,
1396 type, thread);
1397
1398 if (map == NULL)
1399 goto out_problem_map;
1400
1401 ret = thread__insert_map(thread, map);
1402 if (ret)
1403 goto out_problem_insert;
1404
1405 thread__put(thread);
1406 map__put(map);
1407 return 0;
1408
1409 out_problem_insert:
1410 map__put(map);
1411 out_problem_map:
1412 thread__put(thread);
1413 out_problem:
1414 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1415 return 0;
1416 }
1417
1418 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1419 {
1420 if (machine->last_match == th)
1421 machine->last_match = NULL;
1422
1423 BUG_ON(atomic_read(&th->refcnt) == 0);
1424 if (lock)
1425 pthread_rwlock_wrlock(&machine->threads_lock);
1426 rb_erase_init(&th->rb_node, &machine->threads);
1427 RB_CLEAR_NODE(&th->rb_node);
1428 --machine->nr_threads;
1429 /*
1430 * Move it first to the dead_threads list, then drop the reference,
1431 * if this is the last reference, then the thread__delete destructor
1432 * will be called and we will remove it from the dead_threads list.
1433 */
1434 list_add_tail(&th->node, &machine->dead_threads);
1435 if (lock)
1436 pthread_rwlock_unlock(&machine->threads_lock);
1437 thread__put(th);
1438 }
1439
1440 void machine__remove_thread(struct machine *machine, struct thread *th)
1441 {
1442 return __machine__remove_thread(machine, th, true);
1443 }
1444
1445 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1446 struct perf_sample *sample)
1447 {
1448 struct thread *thread = machine__find_thread(machine,
1449 event->fork.pid,
1450 event->fork.tid);
1451 struct thread *parent = machine__findnew_thread(machine,
1452 event->fork.ppid,
1453 event->fork.ptid);
1454 int err = 0;
1455
1456 if (dump_trace)
1457 perf_event__fprintf_task(event, stdout);
1458
1459 /*
1460 * There may be an existing thread that is not actually the parent,
1461 * either because we are processing events out of order, or because the
1462 * (fork) event that would have removed the thread was lost. Assume the
1463 * latter case and continue on as best we can.
1464 */
1465 if (parent->pid_ != (pid_t)event->fork.ppid) {
1466 dump_printf("removing erroneous parent thread %d/%d\n",
1467 parent->pid_, parent->tid);
1468 machine__remove_thread(machine, parent);
1469 thread__put(parent);
1470 parent = machine__findnew_thread(machine, event->fork.ppid,
1471 event->fork.ptid);
1472 }
1473
1474 /* if a thread currently exists for the thread id remove it */
1475 if (thread != NULL) {
1476 machine__remove_thread(machine, thread);
1477 thread__put(thread);
1478 }
1479
1480 thread = machine__findnew_thread(machine, event->fork.pid,
1481 event->fork.tid);
1482
1483 if (thread == NULL || parent == NULL ||
1484 thread__fork(thread, parent, sample->time) < 0) {
1485 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1486 err = -1;
1487 }
1488 thread__put(thread);
1489 thread__put(parent);
1490
1491 return err;
1492 }
1493
1494 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1495 struct perf_sample *sample __maybe_unused)
1496 {
1497 struct thread *thread = machine__find_thread(machine,
1498 event->fork.pid,
1499 event->fork.tid);
1500
1501 if (dump_trace)
1502 perf_event__fprintf_task(event, stdout);
1503
1504 if (thread != NULL) {
1505 thread__exited(thread);
1506 thread__put(thread);
1507 }
1508
1509 return 0;
1510 }
1511
1512 int machine__process_event(struct machine *machine, union perf_event *event,
1513 struct perf_sample *sample)
1514 {
1515 int ret;
1516
1517 switch (event->header.type) {
1518 case PERF_RECORD_COMM:
1519 ret = machine__process_comm_event(machine, event, sample); break;
1520 case PERF_RECORD_MMAP:
1521 ret = machine__process_mmap_event(machine, event, sample); break;
1522 case PERF_RECORD_MMAP2:
1523 ret = machine__process_mmap2_event(machine, event, sample); break;
1524 case PERF_RECORD_FORK:
1525 ret = machine__process_fork_event(machine, event, sample); break;
1526 case PERF_RECORD_EXIT:
1527 ret = machine__process_exit_event(machine, event, sample); break;
1528 case PERF_RECORD_LOST:
1529 ret = machine__process_lost_event(machine, event, sample); break;
1530 case PERF_RECORD_AUX:
1531 ret = machine__process_aux_event(machine, event); break;
1532 case PERF_RECORD_ITRACE_START:
1533 ret = machine__process_itrace_start_event(machine, event); break;
1534 case PERF_RECORD_LOST_SAMPLES:
1535 ret = machine__process_lost_samples_event(machine, event, sample); break;
1536 case PERF_RECORD_SWITCH:
1537 case PERF_RECORD_SWITCH_CPU_WIDE:
1538 ret = machine__process_switch_event(machine, event); break;
1539 default:
1540 ret = -1;
1541 break;
1542 }
1543
1544 return ret;
1545 }
1546
1547 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1548 {
1549 if (sym->name && !regexec(regex, sym->name, 0, NULL, 0))
1550 return 1;
1551 return 0;
1552 }
1553
1554 static void ip__resolve_ams(struct thread *thread,
1555 struct addr_map_symbol *ams,
1556 u64 ip)
1557 {
1558 struct addr_location al;
1559
1560 memset(&al, 0, sizeof(al));
1561 /*
1562 * We cannot use the header.misc hint to determine whether a
1563 * branch stack address is user, kernel, guest, hypervisor.
1564 * Branches may straddle the kernel/user/hypervisor boundaries.
1565 * Thus, we have to try consecutively until we find a match
1566 * or else, the symbol is unknown
1567 */
1568 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1569
1570 ams->addr = ip;
1571 ams->al_addr = al.addr;
1572 ams->sym = al.sym;
1573 ams->map = al.map;
1574 }
1575
1576 static void ip__resolve_data(struct thread *thread,
1577 u8 m, struct addr_map_symbol *ams, u64 addr)
1578 {
1579 struct addr_location al;
1580
1581 memset(&al, 0, sizeof(al));
1582
1583 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1584 if (al.map == NULL) {
1585 /*
1586 * some shared data regions have execute bit set which puts
1587 * their mapping in the MAP__FUNCTION type array.
1588 * Check there as a fallback option before dropping the sample.
1589 */
1590 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1591 }
1592
1593 ams->addr = addr;
1594 ams->al_addr = al.addr;
1595 ams->sym = al.sym;
1596 ams->map = al.map;
1597 }
1598
1599 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1600 struct addr_location *al)
1601 {
1602 struct mem_info *mi = zalloc(sizeof(*mi));
1603
1604 if (!mi)
1605 return NULL;
1606
1607 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1608 ip__resolve_data(al->thread, al->cpumode, &mi->daddr, sample->addr);
1609 mi->data_src.val = sample->data_src;
1610
1611 return mi;
1612 }
1613
1614 static int add_callchain_ip(struct thread *thread,
1615 struct callchain_cursor *cursor,
1616 struct symbol **parent,
1617 struct addr_location *root_al,
1618 u8 *cpumode,
1619 u64 ip,
1620 bool branch,
1621 struct branch_flags *flags,
1622 int nr_loop_iter,
1623 int samples)
1624 {
1625 struct addr_location al;
1626
1627 al.filtered = 0;
1628 al.sym = NULL;
1629 if (!cpumode) {
1630 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1631 ip, &al);
1632 } else {
1633 if (ip >= PERF_CONTEXT_MAX) {
1634 switch (ip) {
1635 case PERF_CONTEXT_HV:
1636 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1637 break;
1638 case PERF_CONTEXT_KERNEL:
1639 *cpumode = PERF_RECORD_MISC_KERNEL;
1640 break;
1641 case PERF_CONTEXT_USER:
1642 *cpumode = PERF_RECORD_MISC_USER;
1643 break;
1644 default:
1645 pr_debug("invalid callchain context: "
1646 "%"PRId64"\n", (s64) ip);
1647 /*
1648 * It seems the callchain is corrupted.
1649 * Discard all.
1650 */
1651 callchain_cursor_reset(cursor);
1652 return 1;
1653 }
1654 return 0;
1655 }
1656 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1657 ip, &al);
1658 }
1659
1660 if (al.sym != NULL) {
1661 if (perf_hpp_list.parent && !*parent &&
1662 symbol__match_regex(al.sym, &parent_regex))
1663 *parent = al.sym;
1664 else if (have_ignore_callees && root_al &&
1665 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1666 /* Treat this symbol as the root,
1667 forgetting its callees. */
1668 *root_al = al;
1669 callchain_cursor_reset(cursor);
1670 }
1671 }
1672
1673 if (symbol_conf.hide_unresolved && al.sym == NULL)
1674 return 0;
1675 return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1676 branch, flags, nr_loop_iter, samples);
1677 }
1678
1679 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1680 struct addr_location *al)
1681 {
1682 unsigned int i;
1683 const struct branch_stack *bs = sample->branch_stack;
1684 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1685
1686 if (!bi)
1687 return NULL;
1688
1689 for (i = 0; i < bs->nr; i++) {
1690 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1691 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1692 bi[i].flags = bs->entries[i].flags;
1693 }
1694 return bi;
1695 }
1696
1697 #define CHASHSZ 127
1698 #define CHASHBITS 7
1699 #define NO_ENTRY 0xff
1700
1701 #define PERF_MAX_BRANCH_DEPTH 127
1702
1703 /* Remove loops. */
1704 static int remove_loops(struct branch_entry *l, int nr)
1705 {
1706 int i, j, off;
1707 unsigned char chash[CHASHSZ];
1708
1709 memset(chash, NO_ENTRY, sizeof(chash));
1710
1711 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1712
1713 for (i = 0; i < nr; i++) {
1714 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1715
1716 /* no collision handling for now */
1717 if (chash[h] == NO_ENTRY) {
1718 chash[h] = i;
1719 } else if (l[chash[h]].from == l[i].from) {
1720 bool is_loop = true;
1721 /* check if it is a real loop */
1722 off = 0;
1723 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1724 if (l[j].from != l[i + off].from) {
1725 is_loop = false;
1726 break;
1727 }
1728 if (is_loop) {
1729 memmove(l + i, l + i + off,
1730 (nr - (i + off)) * sizeof(*l));
1731 nr -= off;
1732 }
1733 }
1734 }
1735 return nr;
1736 }
1737
1738 /*
1739 * Recolve LBR callstack chain sample
1740 * Return:
1741 * 1 on success get LBR callchain information
1742 * 0 no available LBR callchain information, should try fp
1743 * negative error code on other errors.
1744 */
1745 static int resolve_lbr_callchain_sample(struct thread *thread,
1746 struct callchain_cursor *cursor,
1747 struct perf_sample *sample,
1748 struct symbol **parent,
1749 struct addr_location *root_al,
1750 int max_stack)
1751 {
1752 struct ip_callchain *chain = sample->callchain;
1753 int chain_nr = min(max_stack, (int)chain->nr), i;
1754 u8 cpumode = PERF_RECORD_MISC_USER;
1755 u64 ip;
1756
1757 for (i = 0; i < chain_nr; i++) {
1758 if (chain->ips[i] == PERF_CONTEXT_USER)
1759 break;
1760 }
1761
1762 /* LBR only affects the user callchain */
1763 if (i != chain_nr) {
1764 struct branch_stack *lbr_stack = sample->branch_stack;
1765 int lbr_nr = lbr_stack->nr, j, k;
1766 bool branch;
1767 struct branch_flags *flags;
1768 /*
1769 * LBR callstack can only get user call chain.
1770 * The mix_chain_nr is kernel call chain
1771 * number plus LBR user call chain number.
1772 * i is kernel call chain number,
1773 * 1 is PERF_CONTEXT_USER,
1774 * lbr_nr + 1 is the user call chain number.
1775 * For details, please refer to the comments
1776 * in callchain__printf
1777 */
1778 int mix_chain_nr = i + 1 + lbr_nr + 1;
1779
1780 for (j = 0; j < mix_chain_nr; j++) {
1781 int err;
1782 branch = false;
1783 flags = NULL;
1784
1785 if (callchain_param.order == ORDER_CALLEE) {
1786 if (j < i + 1)
1787 ip = chain->ips[j];
1788 else if (j > i + 1) {
1789 k = j - i - 2;
1790 ip = lbr_stack->entries[k].from;
1791 branch = true;
1792 flags = &lbr_stack->entries[k].flags;
1793 } else {
1794 ip = lbr_stack->entries[0].to;
1795 branch = true;
1796 flags = &lbr_stack->entries[0].flags;
1797 }
1798 } else {
1799 if (j < lbr_nr) {
1800 k = lbr_nr - j - 1;
1801 ip = lbr_stack->entries[k].from;
1802 branch = true;
1803 flags = &lbr_stack->entries[k].flags;
1804 }
1805 else if (j > lbr_nr)
1806 ip = chain->ips[i + 1 - (j - lbr_nr)];
1807 else {
1808 ip = lbr_stack->entries[0].to;
1809 branch = true;
1810 flags = &lbr_stack->entries[0].flags;
1811 }
1812 }
1813
1814 err = add_callchain_ip(thread, cursor, parent,
1815 root_al, &cpumode, ip,
1816 branch, flags, 0, 0);
1817 if (err)
1818 return (err < 0) ? err : 0;
1819 }
1820 return 1;
1821 }
1822
1823 return 0;
1824 }
1825
1826 static int thread__resolve_callchain_sample(struct thread *thread,
1827 struct callchain_cursor *cursor,
1828 struct perf_evsel *evsel,
1829 struct perf_sample *sample,
1830 struct symbol **parent,
1831 struct addr_location *root_al,
1832 int max_stack)
1833 {
1834 struct branch_stack *branch = sample->branch_stack;
1835 struct ip_callchain *chain = sample->callchain;
1836 int chain_nr = chain->nr;
1837 u8 cpumode = PERF_RECORD_MISC_USER;
1838 int i, j, err, nr_entries;
1839 int skip_idx = -1;
1840 int first_call = 0;
1841 int nr_loop_iter;
1842
1843 if (perf_evsel__has_branch_callstack(evsel)) {
1844 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1845 root_al, max_stack);
1846 if (err)
1847 return (err < 0) ? err : 0;
1848 }
1849
1850 /*
1851 * Based on DWARF debug information, some architectures skip
1852 * a callchain entry saved by the kernel.
1853 */
1854 skip_idx = arch_skip_callchain_idx(thread, chain);
1855
1856 /*
1857 * Add branches to call stack for easier browsing. This gives
1858 * more context for a sample than just the callers.
1859 *
1860 * This uses individual histograms of paths compared to the
1861 * aggregated histograms the normal LBR mode uses.
1862 *
1863 * Limitations for now:
1864 * - No extra filters
1865 * - No annotations (should annotate somehow)
1866 */
1867
1868 if (branch && callchain_param.branch_callstack) {
1869 int nr = min(max_stack, (int)branch->nr);
1870 struct branch_entry be[nr];
1871
1872 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1873 pr_warning("corrupted branch chain. skipping...\n");
1874 goto check_calls;
1875 }
1876
1877 for (i = 0; i < nr; i++) {
1878 if (callchain_param.order == ORDER_CALLEE) {
1879 be[i] = branch->entries[i];
1880 /*
1881 * Check for overlap into the callchain.
1882 * The return address is one off compared to
1883 * the branch entry. To adjust for this
1884 * assume the calling instruction is not longer
1885 * than 8 bytes.
1886 */
1887 if (i == skip_idx ||
1888 chain->ips[first_call] >= PERF_CONTEXT_MAX)
1889 first_call++;
1890 else if (be[i].from < chain->ips[first_call] &&
1891 be[i].from >= chain->ips[first_call] - 8)
1892 first_call++;
1893 } else
1894 be[i] = branch->entries[branch->nr - i - 1];
1895 }
1896
1897 nr_loop_iter = nr;
1898 nr = remove_loops(be, nr);
1899
1900 /*
1901 * Get the number of iterations.
1902 * It's only approximation, but good enough in practice.
1903 */
1904 if (nr_loop_iter > nr)
1905 nr_loop_iter = nr_loop_iter - nr + 1;
1906 else
1907 nr_loop_iter = 0;
1908
1909 for (i = 0; i < nr; i++) {
1910 if (i == nr - 1)
1911 err = add_callchain_ip(thread, cursor, parent,
1912 root_al,
1913 NULL, be[i].to,
1914 true, &be[i].flags,
1915 nr_loop_iter, 1);
1916 else
1917 err = add_callchain_ip(thread, cursor, parent,
1918 root_al,
1919 NULL, be[i].to,
1920 true, &be[i].flags,
1921 0, 0);
1922
1923 if (!err)
1924 err = add_callchain_ip(thread, cursor, parent, root_al,
1925 NULL, be[i].from,
1926 true, &be[i].flags,
1927 0, 0);
1928 if (err == -EINVAL)
1929 break;
1930 if (err)
1931 return err;
1932 }
1933 chain_nr -= nr;
1934 }
1935
1936 check_calls:
1937 for (i = first_call, nr_entries = 0;
1938 i < chain_nr && nr_entries < max_stack; i++) {
1939 u64 ip;
1940
1941 if (callchain_param.order == ORDER_CALLEE)
1942 j = i;
1943 else
1944 j = chain->nr - i - 1;
1945
1946 #ifdef HAVE_SKIP_CALLCHAIN_IDX
1947 if (j == skip_idx)
1948 continue;
1949 #endif
1950 ip = chain->ips[j];
1951
1952 if (ip < PERF_CONTEXT_MAX)
1953 ++nr_entries;
1954
1955 err = add_callchain_ip(thread, cursor, parent,
1956 root_al, &cpumode, ip,
1957 false, NULL, 0, 0);
1958
1959 if (err)
1960 return (err < 0) ? err : 0;
1961 }
1962
1963 return 0;
1964 }
1965
1966 static int unwind_entry(struct unwind_entry *entry, void *arg)
1967 {
1968 struct callchain_cursor *cursor = arg;
1969
1970 if (symbol_conf.hide_unresolved && entry->sym == NULL)
1971 return 0;
1972 return callchain_cursor_append(cursor, entry->ip,
1973 entry->map, entry->sym,
1974 false, NULL, 0, 0);
1975 }
1976
1977 static int thread__resolve_callchain_unwind(struct thread *thread,
1978 struct callchain_cursor *cursor,
1979 struct perf_evsel *evsel,
1980 struct perf_sample *sample,
1981 int max_stack)
1982 {
1983 /* Can we do dwarf post unwind? */
1984 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
1985 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
1986 return 0;
1987
1988 /* Bail out if nothing was captured. */
1989 if ((!sample->user_regs.regs) ||
1990 (!sample->user_stack.size))
1991 return 0;
1992
1993 return unwind__get_entries(unwind_entry, cursor,
1994 thread, sample, max_stack);
1995 }
1996
1997 int thread__resolve_callchain(struct thread *thread,
1998 struct callchain_cursor *cursor,
1999 struct perf_evsel *evsel,
2000 struct perf_sample *sample,
2001 struct symbol **parent,
2002 struct addr_location *root_al,
2003 int max_stack)
2004 {
2005 int ret = 0;
2006
2007 callchain_cursor_reset(&callchain_cursor);
2008
2009 if (callchain_param.order == ORDER_CALLEE) {
2010 ret = thread__resolve_callchain_sample(thread, cursor,
2011 evsel, sample,
2012 parent, root_al,
2013 max_stack);
2014 if (ret)
2015 return ret;
2016 ret = thread__resolve_callchain_unwind(thread, cursor,
2017 evsel, sample,
2018 max_stack);
2019 } else {
2020 ret = thread__resolve_callchain_unwind(thread, cursor,
2021 evsel, sample,
2022 max_stack);
2023 if (ret)
2024 return ret;
2025 ret = thread__resolve_callchain_sample(thread, cursor,
2026 evsel, sample,
2027 parent, root_al,
2028 max_stack);
2029 }
2030
2031 return ret;
2032 }
2033
2034 int machine__for_each_thread(struct machine *machine,
2035 int (*fn)(struct thread *thread, void *p),
2036 void *priv)
2037 {
2038 struct rb_node *nd;
2039 struct thread *thread;
2040 int rc = 0;
2041
2042 for (nd = rb_first(&machine->threads); nd; nd = rb_next(nd)) {
2043 thread = rb_entry(nd, struct thread, rb_node);
2044 rc = fn(thread, priv);
2045 if (rc != 0)
2046 return rc;
2047 }
2048
2049 list_for_each_entry(thread, &machine->dead_threads, node) {
2050 rc = fn(thread, priv);
2051 if (rc != 0)
2052 return rc;
2053 }
2054 return rc;
2055 }
2056
2057 int machines__for_each_thread(struct machines *machines,
2058 int (*fn)(struct thread *thread, void *p),
2059 void *priv)
2060 {
2061 struct rb_node *nd;
2062 int rc = 0;
2063
2064 rc = machine__for_each_thread(&machines->host, fn, priv);
2065 if (rc != 0)
2066 return rc;
2067
2068 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2069 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2070
2071 rc = machine__for_each_thread(machine, fn, priv);
2072 if (rc != 0)
2073 return rc;
2074 }
2075 return rc;
2076 }
2077
2078 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2079 struct target *target, struct thread_map *threads,
2080 perf_event__handler_t process, bool data_mmap,
2081 unsigned int proc_map_timeout)
2082 {
2083 if (target__has_task(target))
2084 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2085 else if (target__has_cpu(target))
2086 return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2087 /* command specified */
2088 return 0;
2089 }
2090
2091 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2092 {
2093 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2094 return -1;
2095
2096 return machine->current_tid[cpu];
2097 }
2098
2099 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2100 pid_t tid)
2101 {
2102 struct thread *thread;
2103
2104 if (cpu < 0)
2105 return -EINVAL;
2106
2107 if (!machine->current_tid) {
2108 int i;
2109
2110 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2111 if (!machine->current_tid)
2112 return -ENOMEM;
2113 for (i = 0; i < MAX_NR_CPUS; i++)
2114 machine->current_tid[i] = -1;
2115 }
2116
2117 if (cpu >= MAX_NR_CPUS) {
2118 pr_err("Requested CPU %d too large. ", cpu);
2119 pr_err("Consider raising MAX_NR_CPUS\n");
2120 return -EINVAL;
2121 }
2122
2123 machine->current_tid[cpu] = tid;
2124
2125 thread = machine__findnew_thread(machine, pid, tid);
2126 if (!thread)
2127 return -ENOMEM;
2128
2129 thread->cpu = cpu;
2130 thread__put(thread);
2131
2132 return 0;
2133 }
2134
2135 int machine__get_kernel_start(struct machine *machine)
2136 {
2137 struct map *map = machine__kernel_map(machine);
2138 int err = 0;
2139
2140 /*
2141 * The only addresses above 2^63 are kernel addresses of a 64-bit
2142 * kernel. Note that addresses are unsigned so that on a 32-bit system
2143 * all addresses including kernel addresses are less than 2^32. In
2144 * that case (32-bit system), if the kernel mapping is unknown, all
2145 * addresses will be assumed to be in user space - see
2146 * machine__kernel_ip().
2147 */
2148 machine->kernel_start = 1ULL << 63;
2149 if (map) {
2150 err = map__load(map);
2151 if (map->start)
2152 machine->kernel_start = map->start;
2153 }
2154 return err;
2155 }
2156
2157 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2158 {
2159 return dsos__findnew(&machine->dsos, filename);
2160 }
2161
2162 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2163 {
2164 struct machine *machine = vmachine;
2165 struct map *map;
2166 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2167
2168 if (sym == NULL)
2169 return NULL;
2170
2171 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2172 *addrp = map->unmap_ip(map, sym->start);
2173 return sym->name;
2174 }