]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - tools/perf/util/machine.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27
28 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
29
30 static void dsos__init(struct dsos *dsos)
31 {
32 INIT_LIST_HEAD(&dsos->head);
33 dsos->root = RB_ROOT;
34 init_rwsem(&dsos->lock);
35 }
36
37 static void machine__threads_init(struct machine *machine)
38 {
39 int i;
40
41 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
42 struct threads *threads = &machine->threads[i];
43 threads->entries = RB_ROOT;
44 init_rwsem(&threads->lock);
45 threads->nr = 0;
46 INIT_LIST_HEAD(&threads->dead);
47 threads->last_match = NULL;
48 }
49 }
50
51 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
52 {
53 memset(machine, 0, sizeof(*machine));
54 map_groups__init(&machine->kmaps, machine);
55 RB_CLEAR_NODE(&machine->rb_node);
56 dsos__init(&machine->dsos);
57
58 machine__threads_init(machine);
59
60 machine->vdso_info = NULL;
61 machine->env = NULL;
62
63 machine->pid = pid;
64
65 machine->id_hdr_size = 0;
66 machine->kptr_restrict_warned = false;
67 machine->comm_exec = false;
68 machine->kernel_start = 0;
69
70 memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));
71
72 machine->root_dir = strdup(root_dir);
73 if (machine->root_dir == NULL)
74 return -ENOMEM;
75
76 if (pid != HOST_KERNEL_ID) {
77 struct thread *thread = machine__findnew_thread(machine, -1,
78 pid);
79 char comm[64];
80
81 if (thread == NULL)
82 return -ENOMEM;
83
84 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
85 thread__set_comm(thread, comm, 0);
86 thread__put(thread);
87 }
88
89 machine->current_tid = NULL;
90
91 return 0;
92 }
93
94 struct machine *machine__new_host(void)
95 {
96 struct machine *machine = malloc(sizeof(*machine));
97
98 if (machine != NULL) {
99 machine__init(machine, "", HOST_KERNEL_ID);
100
101 if (machine__create_kernel_maps(machine) < 0)
102 goto out_delete;
103 }
104
105 return machine;
106 out_delete:
107 free(machine);
108 return NULL;
109 }
110
111 struct machine *machine__new_kallsyms(void)
112 {
113 struct machine *machine = machine__new_host();
114 /*
115 * FIXME:
116 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
117 * functions and data objects.
118 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
119 * ask for not using the kcore parsing code, once this one is fixed
120 * to create a map per module.
121 */
122 if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
123 machine__delete(machine);
124 machine = NULL;
125 }
126
127 return machine;
128 }
129
130 static void dsos__purge(struct dsos *dsos)
131 {
132 struct dso *pos, *n;
133
134 down_write(&dsos->lock);
135
136 list_for_each_entry_safe(pos, n, &dsos->head, node) {
137 RB_CLEAR_NODE(&pos->rb_node);
138 pos->root = NULL;
139 list_del_init(&pos->node);
140 dso__put(pos);
141 }
142
143 up_write(&dsos->lock);
144 }
145
146 static void dsos__exit(struct dsos *dsos)
147 {
148 dsos__purge(dsos);
149 exit_rwsem(&dsos->lock);
150 }
151
152 void machine__delete_threads(struct machine *machine)
153 {
154 struct rb_node *nd;
155 int i;
156
157 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
158 struct threads *threads = &machine->threads[i];
159 down_write(&threads->lock);
160 nd = rb_first(&threads->entries);
161 while (nd) {
162 struct thread *t = rb_entry(nd, struct thread, rb_node);
163
164 nd = rb_next(nd);
165 __machine__remove_thread(machine, t, false);
166 }
167 up_write(&threads->lock);
168 }
169 }
170
171 void machine__exit(struct machine *machine)
172 {
173 int i;
174
175 if (machine == NULL)
176 return;
177
178 machine__destroy_kernel_maps(machine);
179 map_groups__exit(&machine->kmaps);
180 dsos__exit(&machine->dsos);
181 machine__exit_vdso(machine);
182 zfree(&machine->root_dir);
183 zfree(&machine->current_tid);
184
185 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
186 struct threads *threads = &machine->threads[i];
187 exit_rwsem(&threads->lock);
188 }
189 }
190
191 void machine__delete(struct machine *machine)
192 {
193 if (machine) {
194 machine__exit(machine);
195 free(machine);
196 }
197 }
198
199 void machines__init(struct machines *machines)
200 {
201 machine__init(&machines->host, "", HOST_KERNEL_ID);
202 machines->guests = RB_ROOT;
203 }
204
205 void machines__exit(struct machines *machines)
206 {
207 machine__exit(&machines->host);
208 /* XXX exit guest */
209 }
210
211 struct machine *machines__add(struct machines *machines, pid_t pid,
212 const char *root_dir)
213 {
214 struct rb_node **p = &machines->guests.rb_node;
215 struct rb_node *parent = NULL;
216 struct machine *pos, *machine = malloc(sizeof(*machine));
217
218 if (machine == NULL)
219 return NULL;
220
221 if (machine__init(machine, root_dir, pid) != 0) {
222 free(machine);
223 return NULL;
224 }
225
226 while (*p != NULL) {
227 parent = *p;
228 pos = rb_entry(parent, struct machine, rb_node);
229 if (pid < pos->pid)
230 p = &(*p)->rb_left;
231 else
232 p = &(*p)->rb_right;
233 }
234
235 rb_link_node(&machine->rb_node, parent, p);
236 rb_insert_color(&machine->rb_node, &machines->guests);
237
238 return machine;
239 }
240
241 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
242 {
243 struct rb_node *nd;
244
245 machines->host.comm_exec = comm_exec;
246
247 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
248 struct machine *machine = rb_entry(nd, struct machine, rb_node);
249
250 machine->comm_exec = comm_exec;
251 }
252 }
253
254 struct machine *machines__find(struct machines *machines, pid_t pid)
255 {
256 struct rb_node **p = &machines->guests.rb_node;
257 struct rb_node *parent = NULL;
258 struct machine *machine;
259 struct machine *default_machine = NULL;
260
261 if (pid == HOST_KERNEL_ID)
262 return &machines->host;
263
264 while (*p != NULL) {
265 parent = *p;
266 machine = rb_entry(parent, struct machine, rb_node);
267 if (pid < machine->pid)
268 p = &(*p)->rb_left;
269 else if (pid > machine->pid)
270 p = &(*p)->rb_right;
271 else
272 return machine;
273 if (!machine->pid)
274 default_machine = machine;
275 }
276
277 return default_machine;
278 }
279
280 struct machine *machines__findnew(struct machines *machines, pid_t pid)
281 {
282 char path[PATH_MAX];
283 const char *root_dir = "";
284 struct machine *machine = machines__find(machines, pid);
285
286 if (machine && (machine->pid == pid))
287 goto out;
288
289 if ((pid != HOST_KERNEL_ID) &&
290 (pid != DEFAULT_GUEST_KERNEL_ID) &&
291 (symbol_conf.guestmount)) {
292 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
293 if (access(path, R_OK)) {
294 static struct strlist *seen;
295
296 if (!seen)
297 seen = strlist__new(NULL, NULL);
298
299 if (!strlist__has_entry(seen, path)) {
300 pr_err("Can't access file %s\n", path);
301 strlist__add(seen, path);
302 }
303 machine = NULL;
304 goto out;
305 }
306 root_dir = path;
307 }
308
309 machine = machines__add(machines, pid, root_dir);
310 out:
311 return machine;
312 }
313
314 void machines__process_guests(struct machines *machines,
315 machine__process_t process, void *data)
316 {
317 struct rb_node *nd;
318
319 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
320 struct machine *pos = rb_entry(nd, struct machine, rb_node);
321 process(pos, data);
322 }
323 }
324
325 char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
326 {
327 if (machine__is_host(machine))
328 snprintf(bf, size, "[%s]", "kernel.kallsyms");
329 else if (machine__is_default_guest(machine))
330 snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
331 else {
332 snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
333 machine->pid);
334 }
335
336 return bf;
337 }
338
339 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
340 {
341 struct rb_node *node;
342 struct machine *machine;
343
344 machines->host.id_hdr_size = id_hdr_size;
345
346 for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
347 machine = rb_entry(node, struct machine, rb_node);
348 machine->id_hdr_size = id_hdr_size;
349 }
350
351 return;
352 }
353
354 static void machine__update_thread_pid(struct machine *machine,
355 struct thread *th, pid_t pid)
356 {
357 struct thread *leader;
358
359 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
360 return;
361
362 th->pid_ = pid;
363
364 if (th->pid_ == th->tid)
365 return;
366
367 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
368 if (!leader)
369 goto out_err;
370
371 if (!leader->mg)
372 leader->mg = map_groups__new(machine);
373
374 if (!leader->mg)
375 goto out_err;
376
377 if (th->mg == leader->mg)
378 return;
379
380 if (th->mg) {
381 /*
382 * Maps are created from MMAP events which provide the pid and
383 * tid. Consequently there never should be any maps on a thread
384 * with an unknown pid. Just print an error if there are.
385 */
386 if (!map_groups__empty(th->mg))
387 pr_err("Discarding thread maps for %d:%d\n",
388 th->pid_, th->tid);
389 map_groups__put(th->mg);
390 }
391
392 th->mg = map_groups__get(leader->mg);
393 out_put:
394 thread__put(leader);
395 return;
396 out_err:
397 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
398 goto out_put;
399 }
400
401 /*
402 * Caller must eventually drop thread->refcnt returned with a successful
403 * lookup/new thread inserted.
404 */
405 static struct thread *____machine__findnew_thread(struct machine *machine,
406 struct threads *threads,
407 pid_t pid, pid_t tid,
408 bool create)
409 {
410 struct rb_node **p = &threads->entries.rb_node;
411 struct rb_node *parent = NULL;
412 struct thread *th;
413
414 /*
415 * Front-end cache - TID lookups come in blocks,
416 * so most of the time we dont have to look up
417 * the full rbtree:
418 */
419 th = threads->last_match;
420 if (th != NULL) {
421 if (th->tid == tid) {
422 machine__update_thread_pid(machine, th, pid);
423 return thread__get(th);
424 }
425
426 threads->last_match = NULL;
427 }
428
429 while (*p != NULL) {
430 parent = *p;
431 th = rb_entry(parent, struct thread, rb_node);
432
433 if (th->tid == tid) {
434 threads->last_match = th;
435 machine__update_thread_pid(machine, th, pid);
436 return thread__get(th);
437 }
438
439 if (tid < th->tid)
440 p = &(*p)->rb_left;
441 else
442 p = &(*p)->rb_right;
443 }
444
445 if (!create)
446 return NULL;
447
448 th = thread__new(pid, tid);
449 if (th != NULL) {
450 rb_link_node(&th->rb_node, parent, p);
451 rb_insert_color(&th->rb_node, &threads->entries);
452
453 /*
454 * We have to initialize map_groups separately
455 * after rb tree is updated.
456 *
457 * The reason is that we call machine__findnew_thread
458 * within thread__init_map_groups to find the thread
459 * leader and that would screwed the rb tree.
460 */
461 if (thread__init_map_groups(th, machine)) {
462 rb_erase_init(&th->rb_node, &threads->entries);
463 RB_CLEAR_NODE(&th->rb_node);
464 thread__put(th);
465 return NULL;
466 }
467 /*
468 * It is now in the rbtree, get a ref
469 */
470 thread__get(th);
471 threads->last_match = th;
472 ++threads->nr;
473 }
474
475 return th;
476 }
477
478 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
479 {
480 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
481 }
482
483 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
484 pid_t tid)
485 {
486 struct threads *threads = machine__threads(machine, tid);
487 struct thread *th;
488
489 down_write(&threads->lock);
490 th = __machine__findnew_thread(machine, pid, tid);
491 up_write(&threads->lock);
492 return th;
493 }
494
495 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
496 pid_t tid)
497 {
498 struct threads *threads = machine__threads(machine, tid);
499 struct thread *th;
500
501 down_read(&threads->lock);
502 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
503 up_read(&threads->lock);
504 return th;
505 }
506
507 struct comm *machine__thread_exec_comm(struct machine *machine,
508 struct thread *thread)
509 {
510 if (machine->comm_exec)
511 return thread__exec_comm(thread);
512 else
513 return thread__comm(thread);
514 }
515
516 int machine__process_comm_event(struct machine *machine, union perf_event *event,
517 struct perf_sample *sample)
518 {
519 struct thread *thread = machine__findnew_thread(machine,
520 event->comm.pid,
521 event->comm.tid);
522 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
523 int err = 0;
524
525 if (exec)
526 machine->comm_exec = true;
527
528 if (dump_trace)
529 perf_event__fprintf_comm(event, stdout);
530
531 if (thread == NULL ||
532 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
533 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
534 err = -1;
535 }
536
537 thread__put(thread);
538
539 return err;
540 }
541
542 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
543 union perf_event *event,
544 struct perf_sample *sample __maybe_unused)
545 {
546 struct thread *thread = machine__findnew_thread(machine,
547 event->namespaces.pid,
548 event->namespaces.tid);
549 int err = 0;
550
551 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
552 "\nWARNING: kernel seems to support more namespaces than perf"
553 " tool.\nTry updating the perf tool..\n\n");
554
555 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
556 "\nWARNING: perf tool seems to support more namespaces than"
557 " the kernel.\nTry updating the kernel..\n\n");
558
559 if (dump_trace)
560 perf_event__fprintf_namespaces(event, stdout);
561
562 if (thread == NULL ||
563 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
564 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
565 err = -1;
566 }
567
568 thread__put(thread);
569
570 return err;
571 }
572
573 int machine__process_lost_event(struct machine *machine __maybe_unused,
574 union perf_event *event, struct perf_sample *sample __maybe_unused)
575 {
576 dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
577 event->lost.id, event->lost.lost);
578 return 0;
579 }
580
581 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
582 union perf_event *event, struct perf_sample *sample)
583 {
584 dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
585 sample->id, event->lost_samples.lost);
586 return 0;
587 }
588
589 static struct dso *machine__findnew_module_dso(struct machine *machine,
590 struct kmod_path *m,
591 const char *filename)
592 {
593 struct dso *dso;
594
595 down_write(&machine->dsos.lock);
596
597 dso = __dsos__find(&machine->dsos, m->name, true);
598 if (!dso) {
599 dso = __dsos__addnew(&machine->dsos, m->name);
600 if (dso == NULL)
601 goto out_unlock;
602
603 dso__set_module_info(dso, m, machine);
604 dso__set_long_name(dso, strdup(filename), true);
605 }
606
607 dso__get(dso);
608 out_unlock:
609 up_write(&machine->dsos.lock);
610 return dso;
611 }
612
613 int machine__process_aux_event(struct machine *machine __maybe_unused,
614 union perf_event *event)
615 {
616 if (dump_trace)
617 perf_event__fprintf_aux(event, stdout);
618 return 0;
619 }
620
621 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
622 union perf_event *event)
623 {
624 if (dump_trace)
625 perf_event__fprintf_itrace_start(event, stdout);
626 return 0;
627 }
628
629 int machine__process_switch_event(struct machine *machine __maybe_unused,
630 union perf_event *event)
631 {
632 if (dump_trace)
633 perf_event__fprintf_switch(event, stdout);
634 return 0;
635 }
636
637 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
638 const char *filename)
639 {
640 struct map *map = NULL;
641 struct dso *dso = NULL;
642 struct kmod_path m;
643
644 if (kmod_path__parse_name(&m, filename))
645 return NULL;
646
647 map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
648 m.name);
649 if (map)
650 goto out;
651
652 dso = machine__findnew_module_dso(machine, &m, filename);
653 if (dso == NULL)
654 goto out;
655
656 map = map__new2(start, dso, MAP__FUNCTION);
657 if (map == NULL)
658 goto out;
659
660 map_groups__insert(&machine->kmaps, map);
661
662 /* Put the map here because map_groups__insert alread got it */
663 map__put(map);
664 out:
665 /* put the dso here, corresponding to machine__findnew_module_dso */
666 dso__put(dso);
667 free(m.name);
668 return map;
669 }
670
671 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
672 {
673 struct rb_node *nd;
674 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
675
676 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
677 struct machine *pos = rb_entry(nd, struct machine, rb_node);
678 ret += __dsos__fprintf(&pos->dsos.head, fp);
679 }
680
681 return ret;
682 }
683
684 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
685 bool (skip)(struct dso *dso, int parm), int parm)
686 {
687 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
688 }
689
690 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
691 bool (skip)(struct dso *dso, int parm), int parm)
692 {
693 struct rb_node *nd;
694 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
695
696 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
697 struct machine *pos = rb_entry(nd, struct machine, rb_node);
698 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
699 }
700 return ret;
701 }
702
703 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
704 {
705 int i;
706 size_t printed = 0;
707 struct dso *kdso = machine__kernel_map(machine)->dso;
708
709 if (kdso->has_build_id) {
710 char filename[PATH_MAX];
711 if (dso__build_id_filename(kdso, filename, sizeof(filename),
712 false))
713 printed += fprintf(fp, "[0] %s\n", filename);
714 }
715
716 for (i = 0; i < vmlinux_path__nr_entries; ++i)
717 printed += fprintf(fp, "[%d] %s\n",
718 i + kdso->has_build_id, vmlinux_path[i]);
719
720 return printed;
721 }
722
723 size_t machine__fprintf(struct machine *machine, FILE *fp)
724 {
725 struct rb_node *nd;
726 size_t ret;
727 int i;
728
729 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
730 struct threads *threads = &machine->threads[i];
731
732 down_read(&threads->lock);
733
734 ret = fprintf(fp, "Threads: %u\n", threads->nr);
735
736 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
737 struct thread *pos = rb_entry(nd, struct thread, rb_node);
738
739 ret += thread__fprintf(pos, fp);
740 }
741
742 up_read(&threads->lock);
743 }
744 return ret;
745 }
746
747 static struct dso *machine__get_kernel(struct machine *machine)
748 {
749 const char *vmlinux_name = NULL;
750 struct dso *kernel;
751
752 if (machine__is_host(machine)) {
753 vmlinux_name = symbol_conf.vmlinux_name;
754 if (!vmlinux_name)
755 vmlinux_name = DSO__NAME_KALLSYMS;
756
757 kernel = machine__findnew_kernel(machine, vmlinux_name,
758 "[kernel]", DSO_TYPE_KERNEL);
759 } else {
760 char bf[PATH_MAX];
761
762 if (machine__is_default_guest(machine))
763 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
764 if (!vmlinux_name)
765 vmlinux_name = machine__mmap_name(machine, bf,
766 sizeof(bf));
767
768 kernel = machine__findnew_kernel(machine, vmlinux_name,
769 "[guest.kernel]",
770 DSO_TYPE_GUEST_KERNEL);
771 }
772
773 if (kernel != NULL && (!kernel->has_build_id))
774 dso__read_running_kernel_build_id(kernel, machine);
775
776 return kernel;
777 }
778
779 struct process_args {
780 u64 start;
781 };
782
783 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
784 size_t bufsz)
785 {
786 if (machine__is_default_guest(machine))
787 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
788 else
789 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
790 }
791
792 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
793
794 /* Figure out the start address of kernel map from /proc/kallsyms.
795 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
796 * symbol_name if it's not that important.
797 */
798 static int machine__get_running_kernel_start(struct machine *machine,
799 const char **symbol_name, u64 *start)
800 {
801 char filename[PATH_MAX];
802 int i, err = -1;
803 const char *name;
804 u64 addr = 0;
805
806 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
807
808 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
809 return 0;
810
811 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
812 err = kallsyms__get_function_start(filename, name, &addr);
813 if (!err)
814 break;
815 }
816
817 if (err)
818 return -1;
819
820 if (symbol_name)
821 *symbol_name = name;
822
823 *start = addr;
824 return 0;
825 }
826
827 /* Kernel-space maps for symbols that are outside the main kernel map and module maps */
828 struct extra_kernel_map {
829 u64 start;
830 u64 end;
831 u64 pgoff;
832 };
833
834 static int machine__create_extra_kernel_map(struct machine *machine,
835 struct dso *kernel,
836 struct extra_kernel_map *xm)
837 {
838 struct kmap *kmap;
839 struct map *map;
840
841 map = map__new2(xm->start, kernel, MAP__FUNCTION);
842 if (!map)
843 return -1;
844
845 map->end = xm->end;
846 map->pgoff = xm->pgoff;
847
848 kmap = map__kmap(map);
849
850 kmap->kmaps = &machine->kmaps;
851
852 map_groups__insert(&machine->kmaps, map);
853
854 pr_debug2("Added extra kernel map %" PRIx64 "-%" PRIx64 "\n",
855 map->start, map->end);
856
857 map__put(map);
858
859 return 0;
860 }
861
862 static u64 find_entry_trampoline(struct dso *dso)
863 {
864 /* Duplicates are removed so lookup all aliases */
865 const char *syms[] = {
866 "_entry_trampoline",
867 "__entry_trampoline_start",
868 "entry_SYSCALL_64_trampoline",
869 };
870 struct symbol *sym = dso__first_symbol(dso, MAP__FUNCTION);
871 unsigned int i;
872
873 for (; sym; sym = dso__next_symbol(sym)) {
874 if (sym->binding != STB_GLOBAL)
875 continue;
876 for (i = 0; i < ARRAY_SIZE(syms); i++) {
877 if (!strcmp(sym->name, syms[i]))
878 return sym->start;
879 }
880 }
881
882 return 0;
883 }
884
885 /*
886 * These values can be used for kernels that do not have symbols for the entry
887 * trampolines in kallsyms.
888 */
889 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
890 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
891 #define X86_64_ENTRY_TRAMPOLINE 0x6000
892
893 /* Map x86_64 PTI entry trampolines */
894 int machine__map_x86_64_entry_trampolines(struct machine *machine,
895 struct dso *kernel)
896 {
897 u64 pgoff = find_entry_trampoline(kernel);
898 int nr_cpus_avail, cpu;
899
900 if (!pgoff)
901 return 0;
902
903 nr_cpus_avail = machine__nr_cpus_avail(machine);
904
905 /* Add a 1 page map for each CPU's entry trampoline */
906 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
907 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
908 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
909 X86_64_ENTRY_TRAMPOLINE;
910 struct extra_kernel_map xm = {
911 .start = va,
912 .end = va + page_size,
913 .pgoff = pgoff,
914 };
915
916 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
917 return -1;
918 }
919
920 return 0;
921 }
922
923 int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
924 {
925 int type;
926 u64 start = 0;
927
928 if (machine__get_running_kernel_start(machine, NULL, &start))
929 return -1;
930
931 /* In case of renewal the kernel map, destroy previous one */
932 machine__destroy_kernel_maps(machine);
933
934 for (type = 0; type < MAP__NR_TYPES; ++type) {
935 struct kmap *kmap;
936 struct map *map;
937
938 machine->vmlinux_maps[type] = map__new2(start, kernel, type);
939 if (machine->vmlinux_maps[type] == NULL)
940 return -1;
941
942 machine->vmlinux_maps[type]->map_ip =
943 machine->vmlinux_maps[type]->unmap_ip =
944 identity__map_ip;
945 map = __machine__kernel_map(machine, type);
946 kmap = map__kmap(map);
947 if (!kmap)
948 return -1;
949
950 kmap->kmaps = &machine->kmaps;
951 map_groups__insert(&machine->kmaps, map);
952 }
953
954 return 0;
955 }
956
957 void machine__destroy_kernel_maps(struct machine *machine)
958 {
959 int type;
960
961 for (type = 0; type < MAP__NR_TYPES; ++type) {
962 struct kmap *kmap;
963 struct map *map = __machine__kernel_map(machine, type);
964
965 if (map == NULL)
966 continue;
967
968 kmap = map__kmap(map);
969 map_groups__remove(&machine->kmaps, map);
970 if (kmap && kmap->ref_reloc_sym) {
971 /*
972 * ref_reloc_sym is shared among all maps, so free just
973 * on one of them.
974 */
975 if (type == MAP__FUNCTION) {
976 zfree((char **)&kmap->ref_reloc_sym->name);
977 zfree(&kmap->ref_reloc_sym);
978 } else
979 kmap->ref_reloc_sym = NULL;
980 }
981
982 map__put(machine->vmlinux_maps[type]);
983 machine->vmlinux_maps[type] = NULL;
984 }
985 }
986
987 int machines__create_guest_kernel_maps(struct machines *machines)
988 {
989 int ret = 0;
990 struct dirent **namelist = NULL;
991 int i, items = 0;
992 char path[PATH_MAX];
993 pid_t pid;
994 char *endp;
995
996 if (symbol_conf.default_guest_vmlinux_name ||
997 symbol_conf.default_guest_modules ||
998 symbol_conf.default_guest_kallsyms) {
999 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1000 }
1001
1002 if (symbol_conf.guestmount) {
1003 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1004 if (items <= 0)
1005 return -ENOENT;
1006 for (i = 0; i < items; i++) {
1007 if (!isdigit(namelist[i]->d_name[0])) {
1008 /* Filter out . and .. */
1009 continue;
1010 }
1011 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1012 if ((*endp != '\0') ||
1013 (endp == namelist[i]->d_name) ||
1014 (errno == ERANGE)) {
1015 pr_debug("invalid directory (%s). Skipping.\n",
1016 namelist[i]->d_name);
1017 continue;
1018 }
1019 sprintf(path, "%s/%s/proc/kallsyms",
1020 symbol_conf.guestmount,
1021 namelist[i]->d_name);
1022 ret = access(path, R_OK);
1023 if (ret) {
1024 pr_debug("Can't access file %s\n", path);
1025 goto failure;
1026 }
1027 machines__create_kernel_maps(machines, pid);
1028 }
1029 failure:
1030 free(namelist);
1031 }
1032
1033 return ret;
1034 }
1035
1036 void machines__destroy_kernel_maps(struct machines *machines)
1037 {
1038 struct rb_node *next = rb_first(&machines->guests);
1039
1040 machine__destroy_kernel_maps(&machines->host);
1041
1042 while (next) {
1043 struct machine *pos = rb_entry(next, struct machine, rb_node);
1044
1045 next = rb_next(&pos->rb_node);
1046 rb_erase(&pos->rb_node, &machines->guests);
1047 machine__delete(pos);
1048 }
1049 }
1050
1051 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1052 {
1053 struct machine *machine = machines__findnew(machines, pid);
1054
1055 if (machine == NULL)
1056 return -1;
1057
1058 return machine__create_kernel_maps(machine);
1059 }
1060
1061 int __machine__load_kallsyms(struct machine *machine, const char *filename,
1062 enum map_type type, bool no_kcore)
1063 {
1064 struct map *map = machine__kernel_map(machine);
1065 int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
1066
1067 if (ret > 0) {
1068 dso__set_loaded(map->dso, type);
1069 /*
1070 * Since /proc/kallsyms will have multiple sessions for the
1071 * kernel, with modules between them, fixup the end of all
1072 * sections.
1073 */
1074 __map_groups__fixup_end(&machine->kmaps, type);
1075 }
1076
1077 return ret;
1078 }
1079
1080 int machine__load_kallsyms(struct machine *machine, const char *filename,
1081 enum map_type type)
1082 {
1083 return __machine__load_kallsyms(machine, filename, type, false);
1084 }
1085
1086 int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1087 {
1088 struct map *map = machine__kernel_map(machine);
1089 int ret = dso__load_vmlinux_path(map->dso, map);
1090
1091 if (ret > 0)
1092 dso__set_loaded(map->dso, type);
1093
1094 return ret;
1095 }
1096
1097 static void map_groups__fixup_end(struct map_groups *mg)
1098 {
1099 int i;
1100 for (i = 0; i < MAP__NR_TYPES; ++i)
1101 __map_groups__fixup_end(mg, i);
1102 }
1103
1104 static char *get_kernel_version(const char *root_dir)
1105 {
1106 char version[PATH_MAX];
1107 FILE *file;
1108 char *name, *tmp;
1109 const char *prefix = "Linux version ";
1110
1111 sprintf(version, "%s/proc/version", root_dir);
1112 file = fopen(version, "r");
1113 if (!file)
1114 return NULL;
1115
1116 version[0] = '\0';
1117 tmp = fgets(version, sizeof(version), file);
1118 fclose(file);
1119
1120 name = strstr(version, prefix);
1121 if (!name)
1122 return NULL;
1123 name += strlen(prefix);
1124 tmp = strchr(name, ' ');
1125 if (tmp)
1126 *tmp = '\0';
1127
1128 return strdup(name);
1129 }
1130
1131 static bool is_kmod_dso(struct dso *dso)
1132 {
1133 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1134 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1135 }
1136
1137 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1138 struct kmod_path *m)
1139 {
1140 struct map *map;
1141 char *long_name;
1142
1143 map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
1144 if (map == NULL)
1145 return 0;
1146
1147 long_name = strdup(path);
1148 if (long_name == NULL)
1149 return -ENOMEM;
1150
1151 dso__set_long_name(map->dso, long_name, true);
1152 dso__kernel_module_get_build_id(map->dso, "");
1153
1154 /*
1155 * Full name could reveal us kmod compression, so
1156 * we need to update the symtab_type if needed.
1157 */
1158 if (m->comp && is_kmod_dso(map->dso))
1159 map->dso->symtab_type++;
1160
1161 return 0;
1162 }
1163
1164 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1165 const char *dir_name, int depth)
1166 {
1167 struct dirent *dent;
1168 DIR *dir = opendir(dir_name);
1169 int ret = 0;
1170
1171 if (!dir) {
1172 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1173 return -1;
1174 }
1175
1176 while ((dent = readdir(dir)) != NULL) {
1177 char path[PATH_MAX];
1178 struct stat st;
1179
1180 /*sshfs might return bad dent->d_type, so we have to stat*/
1181 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1182 if (stat(path, &st))
1183 continue;
1184
1185 if (S_ISDIR(st.st_mode)) {
1186 if (!strcmp(dent->d_name, ".") ||
1187 !strcmp(dent->d_name, ".."))
1188 continue;
1189
1190 /* Do not follow top-level source and build symlinks */
1191 if (depth == 0) {
1192 if (!strcmp(dent->d_name, "source") ||
1193 !strcmp(dent->d_name, "build"))
1194 continue;
1195 }
1196
1197 ret = map_groups__set_modules_path_dir(mg, path,
1198 depth + 1);
1199 if (ret < 0)
1200 goto out;
1201 } else {
1202 struct kmod_path m;
1203
1204 ret = kmod_path__parse_name(&m, dent->d_name);
1205 if (ret)
1206 goto out;
1207
1208 if (m.kmod)
1209 ret = map_groups__set_module_path(mg, path, &m);
1210
1211 free(m.name);
1212
1213 if (ret)
1214 goto out;
1215 }
1216 }
1217
1218 out:
1219 closedir(dir);
1220 return ret;
1221 }
1222
1223 static int machine__set_modules_path(struct machine *machine)
1224 {
1225 char *version;
1226 char modules_path[PATH_MAX];
1227
1228 version = get_kernel_version(machine->root_dir);
1229 if (!version)
1230 return -1;
1231
1232 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1233 machine->root_dir, version);
1234 free(version);
1235
1236 return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1237 }
1238 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1239 u64 *size __maybe_unused,
1240 const char *name __maybe_unused)
1241 {
1242 return 0;
1243 }
1244
1245 static int machine__create_module(void *arg, const char *name, u64 start,
1246 u64 size)
1247 {
1248 struct machine *machine = arg;
1249 struct map *map;
1250
1251 if (arch__fix_module_text_start(&start, &size, name) < 0)
1252 return -1;
1253
1254 map = machine__findnew_module_map(machine, start, name);
1255 if (map == NULL)
1256 return -1;
1257 map->end = start + size;
1258
1259 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1260
1261 return 0;
1262 }
1263
1264 static int machine__create_modules(struct machine *machine)
1265 {
1266 const char *modules;
1267 char path[PATH_MAX];
1268
1269 if (machine__is_default_guest(machine)) {
1270 modules = symbol_conf.default_guest_modules;
1271 } else {
1272 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1273 modules = path;
1274 }
1275
1276 if (symbol__restricted_filename(modules, "/proc/modules"))
1277 return -1;
1278
1279 if (modules__parse(modules, machine, machine__create_module))
1280 return -1;
1281
1282 if (!machine__set_modules_path(machine))
1283 return 0;
1284
1285 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1286
1287 return 0;
1288 }
1289
1290 int machine__create_kernel_maps(struct machine *machine)
1291 {
1292 struct dso *kernel = machine__get_kernel(machine);
1293 const char *name = NULL;
1294 u64 addr = 0;
1295 int ret;
1296
1297 if (kernel == NULL)
1298 return -1;
1299
1300 ret = __machine__create_kernel_maps(machine, kernel);
1301 dso__put(kernel);
1302 if (ret < 0)
1303 return -1;
1304
1305 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1306 if (machine__is_host(machine))
1307 pr_debug("Problems creating module maps, "
1308 "continuing anyway...\n");
1309 else
1310 pr_debug("Problems creating module maps for guest %d, "
1311 "continuing anyway...\n", machine->pid);
1312 }
1313
1314 /*
1315 * Now that we have all the maps created, just set the ->end of them:
1316 */
1317 map_groups__fixup_end(&machine->kmaps);
1318
1319 if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1320 if (name &&
1321 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
1322 machine__destroy_kernel_maps(machine);
1323 return -1;
1324 }
1325 }
1326
1327 return 0;
1328 }
1329
1330 static void machine__set_kernel_mmap_len(struct machine *machine,
1331 union perf_event *event)
1332 {
1333 int i;
1334
1335 for (i = 0; i < MAP__NR_TYPES; i++) {
1336 machine->vmlinux_maps[i]->start = event->mmap.start;
1337 machine->vmlinux_maps[i]->end = (event->mmap.start +
1338 event->mmap.len);
1339 /*
1340 * Be a bit paranoid here, some perf.data file came with
1341 * a zero sized synthesized MMAP event for the kernel.
1342 */
1343 if (machine->vmlinux_maps[i]->end == 0)
1344 machine->vmlinux_maps[i]->end = ~0ULL;
1345 }
1346 }
1347
1348 static bool machine__uses_kcore(struct machine *machine)
1349 {
1350 struct dso *dso;
1351
1352 list_for_each_entry(dso, &machine->dsos.head, node) {
1353 if (dso__is_kcore(dso))
1354 return true;
1355 }
1356
1357 return false;
1358 }
1359
1360 static int machine__process_kernel_mmap_event(struct machine *machine,
1361 union perf_event *event)
1362 {
1363 struct map *map;
1364 char kmmap_prefix[PATH_MAX];
1365 enum dso_kernel_type kernel_type;
1366 bool is_kernel_mmap;
1367
1368 /* If we have maps from kcore then we do not need or want any others */
1369 if (machine__uses_kcore(machine))
1370 return 0;
1371
1372 machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
1373 if (machine__is_host(machine))
1374 kernel_type = DSO_TYPE_KERNEL;
1375 else
1376 kernel_type = DSO_TYPE_GUEST_KERNEL;
1377
1378 is_kernel_mmap = memcmp(event->mmap.filename,
1379 kmmap_prefix,
1380 strlen(kmmap_prefix) - 1) == 0;
1381 if (event->mmap.filename[0] == '/' ||
1382 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1383 map = machine__findnew_module_map(machine, event->mmap.start,
1384 event->mmap.filename);
1385 if (map == NULL)
1386 goto out_problem;
1387
1388 map->end = map->start + event->mmap.len;
1389 } else if (is_kernel_mmap) {
1390 const char *symbol_name = (event->mmap.filename +
1391 strlen(kmmap_prefix));
1392 /*
1393 * Should be there already, from the build-id table in
1394 * the header.
1395 */
1396 struct dso *kernel = NULL;
1397 struct dso *dso;
1398
1399 down_read(&machine->dsos.lock);
1400
1401 list_for_each_entry(dso, &machine->dsos.head, node) {
1402
1403 /*
1404 * The cpumode passed to is_kernel_module is not the
1405 * cpumode of *this* event. If we insist on passing
1406 * correct cpumode to is_kernel_module, we should
1407 * record the cpumode when we adding this dso to the
1408 * linked list.
1409 *
1410 * However we don't really need passing correct
1411 * cpumode. We know the correct cpumode must be kernel
1412 * mode (if not, we should not link it onto kernel_dsos
1413 * list).
1414 *
1415 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1416 * is_kernel_module() treats it as a kernel cpumode.
1417 */
1418
1419 if (!dso->kernel ||
1420 is_kernel_module(dso->long_name,
1421 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1422 continue;
1423
1424
1425 kernel = dso;
1426 break;
1427 }
1428
1429 up_read(&machine->dsos.lock);
1430
1431 if (kernel == NULL)
1432 kernel = machine__findnew_dso(machine, kmmap_prefix);
1433 if (kernel == NULL)
1434 goto out_problem;
1435
1436 kernel->kernel = kernel_type;
1437 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1438 dso__put(kernel);
1439 goto out_problem;
1440 }
1441
1442 if (strstr(kernel->long_name, "vmlinux"))
1443 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1444
1445 machine__set_kernel_mmap_len(machine, event);
1446
1447 /*
1448 * Avoid using a zero address (kptr_restrict) for the ref reloc
1449 * symbol. Effectively having zero here means that at record
1450 * time /proc/sys/kernel/kptr_restrict was non zero.
1451 */
1452 if (event->mmap.pgoff != 0) {
1453 maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
1454 symbol_name,
1455 event->mmap.pgoff);
1456 }
1457
1458 if (machine__is_default_guest(machine)) {
1459 /*
1460 * preload dso of guest kernel and modules
1461 */
1462 dso__load(kernel, machine__kernel_map(machine));
1463 }
1464 }
1465 return 0;
1466 out_problem:
1467 return -1;
1468 }
1469
1470 int machine__process_mmap2_event(struct machine *machine,
1471 union perf_event *event,
1472 struct perf_sample *sample)
1473 {
1474 struct thread *thread;
1475 struct map *map;
1476 enum map_type type;
1477 int ret = 0;
1478
1479 if (dump_trace)
1480 perf_event__fprintf_mmap2(event, stdout);
1481
1482 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1483 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1484 ret = machine__process_kernel_mmap_event(machine, event);
1485 if (ret < 0)
1486 goto out_problem;
1487 return 0;
1488 }
1489
1490 thread = machine__findnew_thread(machine, event->mmap2.pid,
1491 event->mmap2.tid);
1492 if (thread == NULL)
1493 goto out_problem;
1494
1495 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1496 type = MAP__VARIABLE;
1497 else
1498 type = MAP__FUNCTION;
1499
1500 map = map__new(machine, event->mmap2.start,
1501 event->mmap2.len, event->mmap2.pgoff,
1502 event->mmap2.maj,
1503 event->mmap2.min, event->mmap2.ino,
1504 event->mmap2.ino_generation,
1505 event->mmap2.prot,
1506 event->mmap2.flags,
1507 event->mmap2.filename, type, thread);
1508
1509 if (map == NULL)
1510 goto out_problem_map;
1511
1512 ret = thread__insert_map(thread, map);
1513 if (ret)
1514 goto out_problem_insert;
1515
1516 thread__put(thread);
1517 map__put(map);
1518 return 0;
1519
1520 out_problem_insert:
1521 map__put(map);
1522 out_problem_map:
1523 thread__put(thread);
1524 out_problem:
1525 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1526 return 0;
1527 }
1528
1529 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1530 struct perf_sample *sample)
1531 {
1532 struct thread *thread;
1533 struct map *map;
1534 enum map_type type;
1535 int ret = 0;
1536
1537 if (dump_trace)
1538 perf_event__fprintf_mmap(event, stdout);
1539
1540 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1541 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1542 ret = machine__process_kernel_mmap_event(machine, event);
1543 if (ret < 0)
1544 goto out_problem;
1545 return 0;
1546 }
1547
1548 thread = machine__findnew_thread(machine, event->mmap.pid,
1549 event->mmap.tid);
1550 if (thread == NULL)
1551 goto out_problem;
1552
1553 if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
1554 type = MAP__VARIABLE;
1555 else
1556 type = MAP__FUNCTION;
1557
1558 map = map__new(machine, event->mmap.start,
1559 event->mmap.len, event->mmap.pgoff,
1560 0, 0, 0, 0, 0, 0,
1561 event->mmap.filename,
1562 type, thread);
1563
1564 if (map == NULL)
1565 goto out_problem_map;
1566
1567 ret = thread__insert_map(thread, map);
1568 if (ret)
1569 goto out_problem_insert;
1570
1571 thread__put(thread);
1572 map__put(map);
1573 return 0;
1574
1575 out_problem_insert:
1576 map__put(map);
1577 out_problem_map:
1578 thread__put(thread);
1579 out_problem:
1580 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1581 return 0;
1582 }
1583
1584 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1585 {
1586 struct threads *threads = machine__threads(machine, th->tid);
1587
1588 if (threads->last_match == th)
1589 threads->last_match = NULL;
1590
1591 BUG_ON(refcount_read(&th->refcnt) == 0);
1592 if (lock)
1593 down_write(&threads->lock);
1594 rb_erase_init(&th->rb_node, &threads->entries);
1595 RB_CLEAR_NODE(&th->rb_node);
1596 --threads->nr;
1597 /*
1598 * Move it first to the dead_threads list, then drop the reference,
1599 * if this is the last reference, then the thread__delete destructor
1600 * will be called and we will remove it from the dead_threads list.
1601 */
1602 list_add_tail(&th->node, &threads->dead);
1603 if (lock)
1604 up_write(&threads->lock);
1605 thread__put(th);
1606 }
1607
1608 void machine__remove_thread(struct machine *machine, struct thread *th)
1609 {
1610 return __machine__remove_thread(machine, th, true);
1611 }
1612
1613 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1614 struct perf_sample *sample)
1615 {
1616 struct thread *thread = machine__find_thread(machine,
1617 event->fork.pid,
1618 event->fork.tid);
1619 struct thread *parent = machine__findnew_thread(machine,
1620 event->fork.ppid,
1621 event->fork.ptid);
1622 int err = 0;
1623
1624 if (dump_trace)
1625 perf_event__fprintf_task(event, stdout);
1626
1627 /*
1628 * There may be an existing thread that is not actually the parent,
1629 * either because we are processing events out of order, or because the
1630 * (fork) event that would have removed the thread was lost. Assume the
1631 * latter case and continue on as best we can.
1632 */
1633 if (parent->pid_ != (pid_t)event->fork.ppid) {
1634 dump_printf("removing erroneous parent thread %d/%d\n",
1635 parent->pid_, parent->tid);
1636 machine__remove_thread(machine, parent);
1637 thread__put(parent);
1638 parent = machine__findnew_thread(machine, event->fork.ppid,
1639 event->fork.ptid);
1640 }
1641
1642 /* if a thread currently exists for the thread id remove it */
1643 if (thread != NULL) {
1644 machine__remove_thread(machine, thread);
1645 thread__put(thread);
1646 }
1647
1648 thread = machine__findnew_thread(machine, event->fork.pid,
1649 event->fork.tid);
1650
1651 if (thread == NULL || parent == NULL ||
1652 thread__fork(thread, parent, sample->time) < 0) {
1653 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1654 err = -1;
1655 }
1656 thread__put(thread);
1657 thread__put(parent);
1658
1659 return err;
1660 }
1661
1662 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1663 struct perf_sample *sample __maybe_unused)
1664 {
1665 struct thread *thread = machine__find_thread(machine,
1666 event->fork.pid,
1667 event->fork.tid);
1668
1669 if (dump_trace)
1670 perf_event__fprintf_task(event, stdout);
1671
1672 if (thread != NULL) {
1673 thread__exited(thread);
1674 thread__put(thread);
1675 }
1676
1677 return 0;
1678 }
1679
1680 int machine__process_event(struct machine *machine, union perf_event *event,
1681 struct perf_sample *sample)
1682 {
1683 int ret;
1684
1685 switch (event->header.type) {
1686 case PERF_RECORD_COMM:
1687 ret = machine__process_comm_event(machine, event, sample); break;
1688 case PERF_RECORD_MMAP:
1689 ret = machine__process_mmap_event(machine, event, sample); break;
1690 case PERF_RECORD_NAMESPACES:
1691 ret = machine__process_namespaces_event(machine, event, sample); break;
1692 case PERF_RECORD_MMAP2:
1693 ret = machine__process_mmap2_event(machine, event, sample); break;
1694 case PERF_RECORD_FORK:
1695 ret = machine__process_fork_event(machine, event, sample); break;
1696 case PERF_RECORD_EXIT:
1697 ret = machine__process_exit_event(machine, event, sample); break;
1698 case PERF_RECORD_LOST:
1699 ret = machine__process_lost_event(machine, event, sample); break;
1700 case PERF_RECORD_AUX:
1701 ret = machine__process_aux_event(machine, event); break;
1702 case PERF_RECORD_ITRACE_START:
1703 ret = machine__process_itrace_start_event(machine, event); break;
1704 case PERF_RECORD_LOST_SAMPLES:
1705 ret = machine__process_lost_samples_event(machine, event, sample); break;
1706 case PERF_RECORD_SWITCH:
1707 case PERF_RECORD_SWITCH_CPU_WIDE:
1708 ret = machine__process_switch_event(machine, event); break;
1709 default:
1710 ret = -1;
1711 break;
1712 }
1713
1714 return ret;
1715 }
1716
1717 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1718 {
1719 if (!regexec(regex, sym->name, 0, NULL, 0))
1720 return 1;
1721 return 0;
1722 }
1723
1724 static void ip__resolve_ams(struct thread *thread,
1725 struct addr_map_symbol *ams,
1726 u64 ip)
1727 {
1728 struct addr_location al;
1729
1730 memset(&al, 0, sizeof(al));
1731 /*
1732 * We cannot use the header.misc hint to determine whether a
1733 * branch stack address is user, kernel, guest, hypervisor.
1734 * Branches may straddle the kernel/user/hypervisor boundaries.
1735 * Thus, we have to try consecutively until we find a match
1736 * or else, the symbol is unknown
1737 */
1738 thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1739
1740 ams->addr = ip;
1741 ams->al_addr = al.addr;
1742 ams->sym = al.sym;
1743 ams->map = al.map;
1744 ams->phys_addr = 0;
1745 }
1746
1747 static void ip__resolve_data(struct thread *thread,
1748 u8 m, struct addr_map_symbol *ams,
1749 u64 addr, u64 phys_addr)
1750 {
1751 struct addr_location al;
1752
1753 memset(&al, 0, sizeof(al));
1754
1755 thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1756 if (al.map == NULL) {
1757 /*
1758 * some shared data regions have execute bit set which puts
1759 * their mapping in the MAP__FUNCTION type array.
1760 * Check there as a fallback option before dropping the sample.
1761 */
1762 thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1763 }
1764
1765 ams->addr = addr;
1766 ams->al_addr = al.addr;
1767 ams->sym = al.sym;
1768 ams->map = al.map;
1769 ams->phys_addr = phys_addr;
1770 }
1771
1772 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1773 struct addr_location *al)
1774 {
1775 struct mem_info *mi = zalloc(sizeof(*mi));
1776
1777 if (!mi)
1778 return NULL;
1779
1780 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1781 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1782 sample->addr, sample->phys_addr);
1783 mi->data_src.val = sample->data_src;
1784
1785 return mi;
1786 }
1787
1788 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1789 {
1790 char *srcline = NULL;
1791
1792 if (!map || callchain_param.key == CCKEY_FUNCTION)
1793 return srcline;
1794
1795 srcline = srcline__tree_find(&map->dso->srclines, ip);
1796 if (!srcline) {
1797 bool show_sym = false;
1798 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1799
1800 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1801 sym, show_sym, show_addr);
1802 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1803 }
1804
1805 return srcline;
1806 }
1807
1808 struct iterations {
1809 int nr_loop_iter;
1810 u64 cycles;
1811 };
1812
1813 static int add_callchain_ip(struct thread *thread,
1814 struct callchain_cursor *cursor,
1815 struct symbol **parent,
1816 struct addr_location *root_al,
1817 u8 *cpumode,
1818 u64 ip,
1819 bool branch,
1820 struct branch_flags *flags,
1821 struct iterations *iter,
1822 u64 branch_from)
1823 {
1824 struct addr_location al;
1825 int nr_loop_iter = 0;
1826 u64 iter_cycles = 0;
1827 const char *srcline = NULL;
1828
1829 al.filtered = 0;
1830 al.sym = NULL;
1831 if (!cpumode) {
1832 thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
1833 ip, &al);
1834 } else {
1835 if (ip >= PERF_CONTEXT_MAX) {
1836 switch (ip) {
1837 case PERF_CONTEXT_HV:
1838 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1839 break;
1840 case PERF_CONTEXT_KERNEL:
1841 *cpumode = PERF_RECORD_MISC_KERNEL;
1842 break;
1843 case PERF_CONTEXT_USER:
1844 *cpumode = PERF_RECORD_MISC_USER;
1845 break;
1846 default:
1847 pr_debug("invalid callchain context: "
1848 "%"PRId64"\n", (s64) ip);
1849 /*
1850 * It seems the callchain is corrupted.
1851 * Discard all.
1852 */
1853 callchain_cursor_reset(cursor);
1854 return 1;
1855 }
1856 return 0;
1857 }
1858 thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
1859 ip, &al);
1860 }
1861
1862 if (al.sym != NULL) {
1863 if (perf_hpp_list.parent && !*parent &&
1864 symbol__match_regex(al.sym, &parent_regex))
1865 *parent = al.sym;
1866 else if (have_ignore_callees && root_al &&
1867 symbol__match_regex(al.sym, &ignore_callees_regex)) {
1868 /* Treat this symbol as the root,
1869 forgetting its callees. */
1870 *root_al = al;
1871 callchain_cursor_reset(cursor);
1872 }
1873 }
1874
1875 if (symbol_conf.hide_unresolved && al.sym == NULL)
1876 return 0;
1877
1878 if (iter) {
1879 nr_loop_iter = iter->nr_loop_iter;
1880 iter_cycles = iter->cycles;
1881 }
1882
1883 srcline = callchain_srcline(al.map, al.sym, al.addr);
1884 return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1885 branch, flags, nr_loop_iter,
1886 iter_cycles, branch_from, srcline);
1887 }
1888
1889 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1890 struct addr_location *al)
1891 {
1892 unsigned int i;
1893 const struct branch_stack *bs = sample->branch_stack;
1894 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1895
1896 if (!bi)
1897 return NULL;
1898
1899 for (i = 0; i < bs->nr; i++) {
1900 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1901 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1902 bi[i].flags = bs->entries[i].flags;
1903 }
1904 return bi;
1905 }
1906
1907 static void save_iterations(struct iterations *iter,
1908 struct branch_entry *be, int nr)
1909 {
1910 int i;
1911
1912 iter->nr_loop_iter++;
1913 iter->cycles = 0;
1914
1915 for (i = 0; i < nr; i++)
1916 iter->cycles += be[i].flags.cycles;
1917 }
1918
1919 #define CHASHSZ 127
1920 #define CHASHBITS 7
1921 #define NO_ENTRY 0xff
1922
1923 #define PERF_MAX_BRANCH_DEPTH 127
1924
1925 /* Remove loops. */
1926 static int remove_loops(struct branch_entry *l, int nr,
1927 struct iterations *iter)
1928 {
1929 int i, j, off;
1930 unsigned char chash[CHASHSZ];
1931
1932 memset(chash, NO_ENTRY, sizeof(chash));
1933
1934 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1935
1936 for (i = 0; i < nr; i++) {
1937 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1938
1939 /* no collision handling for now */
1940 if (chash[h] == NO_ENTRY) {
1941 chash[h] = i;
1942 } else if (l[chash[h]].from == l[i].from) {
1943 bool is_loop = true;
1944 /* check if it is a real loop */
1945 off = 0;
1946 for (j = chash[h]; j < i && i + off < nr; j++, off++)
1947 if (l[j].from != l[i + off].from) {
1948 is_loop = false;
1949 break;
1950 }
1951 if (is_loop) {
1952 j = nr - (i + off);
1953 if (j > 0) {
1954 save_iterations(iter + i + off,
1955 l + i, off);
1956
1957 memmove(iter + i, iter + i + off,
1958 j * sizeof(*iter));
1959
1960 memmove(l + i, l + i + off,
1961 j * sizeof(*l));
1962 }
1963
1964 nr -= off;
1965 }
1966 }
1967 }
1968 return nr;
1969 }
1970
1971 /*
1972 * Recolve LBR callstack chain sample
1973 * Return:
1974 * 1 on success get LBR callchain information
1975 * 0 no available LBR callchain information, should try fp
1976 * negative error code on other errors.
1977 */
1978 static int resolve_lbr_callchain_sample(struct thread *thread,
1979 struct callchain_cursor *cursor,
1980 struct perf_sample *sample,
1981 struct symbol **parent,
1982 struct addr_location *root_al,
1983 int max_stack)
1984 {
1985 struct ip_callchain *chain = sample->callchain;
1986 int chain_nr = min(max_stack, (int)chain->nr), i;
1987 u8 cpumode = PERF_RECORD_MISC_USER;
1988 u64 ip, branch_from = 0;
1989
1990 for (i = 0; i < chain_nr; i++) {
1991 if (chain->ips[i] == PERF_CONTEXT_USER)
1992 break;
1993 }
1994
1995 /* LBR only affects the user callchain */
1996 if (i != chain_nr) {
1997 struct branch_stack *lbr_stack = sample->branch_stack;
1998 int lbr_nr = lbr_stack->nr, j, k;
1999 bool branch;
2000 struct branch_flags *flags;
2001 /*
2002 * LBR callstack can only get user call chain.
2003 * The mix_chain_nr is kernel call chain
2004 * number plus LBR user call chain number.
2005 * i is kernel call chain number,
2006 * 1 is PERF_CONTEXT_USER,
2007 * lbr_nr + 1 is the user call chain number.
2008 * For details, please refer to the comments
2009 * in callchain__printf
2010 */
2011 int mix_chain_nr = i + 1 + lbr_nr + 1;
2012
2013 for (j = 0; j < mix_chain_nr; j++) {
2014 int err;
2015 branch = false;
2016 flags = NULL;
2017
2018 if (callchain_param.order == ORDER_CALLEE) {
2019 if (j < i + 1)
2020 ip = chain->ips[j];
2021 else if (j > i + 1) {
2022 k = j - i - 2;
2023 ip = lbr_stack->entries[k].from;
2024 branch = true;
2025 flags = &lbr_stack->entries[k].flags;
2026 } else {
2027 ip = lbr_stack->entries[0].to;
2028 branch = true;
2029 flags = &lbr_stack->entries[0].flags;
2030 branch_from =
2031 lbr_stack->entries[0].from;
2032 }
2033 } else {
2034 if (j < lbr_nr) {
2035 k = lbr_nr - j - 1;
2036 ip = lbr_stack->entries[k].from;
2037 branch = true;
2038 flags = &lbr_stack->entries[k].flags;
2039 }
2040 else if (j > lbr_nr)
2041 ip = chain->ips[i + 1 - (j - lbr_nr)];
2042 else {
2043 ip = lbr_stack->entries[0].to;
2044 branch = true;
2045 flags = &lbr_stack->entries[0].flags;
2046 branch_from =
2047 lbr_stack->entries[0].from;
2048 }
2049 }
2050
2051 err = add_callchain_ip(thread, cursor, parent,
2052 root_al, &cpumode, ip,
2053 branch, flags, NULL,
2054 branch_from);
2055 if (err)
2056 return (err < 0) ? err : 0;
2057 }
2058 return 1;
2059 }
2060
2061 return 0;
2062 }
2063
2064 static int thread__resolve_callchain_sample(struct thread *thread,
2065 struct callchain_cursor *cursor,
2066 struct perf_evsel *evsel,
2067 struct perf_sample *sample,
2068 struct symbol **parent,
2069 struct addr_location *root_al,
2070 int max_stack)
2071 {
2072 struct branch_stack *branch = sample->branch_stack;
2073 struct ip_callchain *chain = sample->callchain;
2074 int chain_nr = 0;
2075 u8 cpumode = PERF_RECORD_MISC_USER;
2076 int i, j, err, nr_entries;
2077 int skip_idx = -1;
2078 int first_call = 0;
2079
2080 if (chain)
2081 chain_nr = chain->nr;
2082
2083 if (perf_evsel__has_branch_callstack(evsel)) {
2084 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2085 root_al, max_stack);
2086 if (err)
2087 return (err < 0) ? err : 0;
2088 }
2089
2090 /*
2091 * Based on DWARF debug information, some architectures skip
2092 * a callchain entry saved by the kernel.
2093 */
2094 skip_idx = arch_skip_callchain_idx(thread, chain);
2095
2096 /*
2097 * Add branches to call stack for easier browsing. This gives
2098 * more context for a sample than just the callers.
2099 *
2100 * This uses individual histograms of paths compared to the
2101 * aggregated histograms the normal LBR mode uses.
2102 *
2103 * Limitations for now:
2104 * - No extra filters
2105 * - No annotations (should annotate somehow)
2106 */
2107
2108 if (branch && callchain_param.branch_callstack) {
2109 int nr = min(max_stack, (int)branch->nr);
2110 struct branch_entry be[nr];
2111 struct iterations iter[nr];
2112
2113 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2114 pr_warning("corrupted branch chain. skipping...\n");
2115 goto check_calls;
2116 }
2117
2118 for (i = 0; i < nr; i++) {
2119 if (callchain_param.order == ORDER_CALLEE) {
2120 be[i] = branch->entries[i];
2121
2122 if (chain == NULL)
2123 continue;
2124
2125 /*
2126 * Check for overlap into the callchain.
2127 * The return address is one off compared to
2128 * the branch entry. To adjust for this
2129 * assume the calling instruction is not longer
2130 * than 8 bytes.
2131 */
2132 if (i == skip_idx ||
2133 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2134 first_call++;
2135 else if (be[i].from < chain->ips[first_call] &&
2136 be[i].from >= chain->ips[first_call] - 8)
2137 first_call++;
2138 } else
2139 be[i] = branch->entries[branch->nr - i - 1];
2140 }
2141
2142 memset(iter, 0, sizeof(struct iterations) * nr);
2143 nr = remove_loops(be, nr, iter);
2144
2145 for (i = 0; i < nr; i++) {
2146 err = add_callchain_ip(thread, cursor, parent,
2147 root_al,
2148 NULL, be[i].to,
2149 true, &be[i].flags,
2150 NULL, be[i].from);
2151
2152 if (!err)
2153 err = add_callchain_ip(thread, cursor, parent, root_al,
2154 NULL, be[i].from,
2155 true, &be[i].flags,
2156 &iter[i], 0);
2157 if (err == -EINVAL)
2158 break;
2159 if (err)
2160 return err;
2161 }
2162
2163 if (chain_nr == 0)
2164 return 0;
2165
2166 chain_nr -= nr;
2167 }
2168
2169 check_calls:
2170 for (i = first_call, nr_entries = 0;
2171 i < chain_nr && nr_entries < max_stack; i++) {
2172 u64 ip;
2173
2174 if (callchain_param.order == ORDER_CALLEE)
2175 j = i;
2176 else
2177 j = chain->nr - i - 1;
2178
2179 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2180 if (j == skip_idx)
2181 continue;
2182 #endif
2183 ip = chain->ips[j];
2184
2185 if (ip < PERF_CONTEXT_MAX)
2186 ++nr_entries;
2187
2188 err = add_callchain_ip(thread, cursor, parent,
2189 root_al, &cpumode, ip,
2190 false, NULL, NULL, 0);
2191
2192 if (err)
2193 return (err < 0) ? err : 0;
2194 }
2195
2196 return 0;
2197 }
2198
2199 static int append_inlines(struct callchain_cursor *cursor,
2200 struct map *map, struct symbol *sym, u64 ip)
2201 {
2202 struct inline_node *inline_node;
2203 struct inline_list *ilist;
2204 u64 addr;
2205 int ret = 1;
2206
2207 if (!symbol_conf.inline_name || !map || !sym)
2208 return ret;
2209
2210 addr = map__map_ip(map, ip);
2211 addr = map__rip_2objdump(map, addr);
2212
2213 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2214 if (!inline_node) {
2215 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2216 if (!inline_node)
2217 return ret;
2218 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2219 }
2220
2221 list_for_each_entry(ilist, &inline_node->val, list) {
2222 ret = callchain_cursor_append(cursor, ip, map,
2223 ilist->symbol, false,
2224 NULL, 0, 0, 0, ilist->srcline);
2225
2226 if (ret != 0)
2227 return ret;
2228 }
2229
2230 return ret;
2231 }
2232
2233 static int unwind_entry(struct unwind_entry *entry, void *arg)
2234 {
2235 struct callchain_cursor *cursor = arg;
2236 const char *srcline = NULL;
2237 u64 addr = entry->ip;
2238
2239 if (symbol_conf.hide_unresolved && entry->sym == NULL)
2240 return 0;
2241
2242 if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2243 return 0;
2244
2245 /*
2246 * Convert entry->ip from a virtual address to an offset in
2247 * its corresponding binary.
2248 */
2249 if (entry->map)
2250 addr = map__map_ip(entry->map, entry->ip);
2251
2252 srcline = callchain_srcline(entry->map, entry->sym, addr);
2253 return callchain_cursor_append(cursor, entry->ip,
2254 entry->map, entry->sym,
2255 false, NULL, 0, 0, 0, srcline);
2256 }
2257
2258 static int thread__resolve_callchain_unwind(struct thread *thread,
2259 struct callchain_cursor *cursor,
2260 struct perf_evsel *evsel,
2261 struct perf_sample *sample,
2262 int max_stack)
2263 {
2264 /* Can we do dwarf post unwind? */
2265 if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2266 (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2267 return 0;
2268
2269 /* Bail out if nothing was captured. */
2270 if ((!sample->user_regs.regs) ||
2271 (!sample->user_stack.size))
2272 return 0;
2273
2274 return unwind__get_entries(unwind_entry, cursor,
2275 thread, sample, max_stack);
2276 }
2277
2278 int thread__resolve_callchain(struct thread *thread,
2279 struct callchain_cursor *cursor,
2280 struct perf_evsel *evsel,
2281 struct perf_sample *sample,
2282 struct symbol **parent,
2283 struct addr_location *root_al,
2284 int max_stack)
2285 {
2286 int ret = 0;
2287
2288 callchain_cursor_reset(&callchain_cursor);
2289
2290 if (callchain_param.order == ORDER_CALLEE) {
2291 ret = thread__resolve_callchain_sample(thread, cursor,
2292 evsel, sample,
2293 parent, root_al,
2294 max_stack);
2295 if (ret)
2296 return ret;
2297 ret = thread__resolve_callchain_unwind(thread, cursor,
2298 evsel, sample,
2299 max_stack);
2300 } else {
2301 ret = thread__resolve_callchain_unwind(thread, cursor,
2302 evsel, sample,
2303 max_stack);
2304 if (ret)
2305 return ret;
2306 ret = thread__resolve_callchain_sample(thread, cursor,
2307 evsel, sample,
2308 parent, root_al,
2309 max_stack);
2310 }
2311
2312 return ret;
2313 }
2314
2315 int machine__for_each_thread(struct machine *machine,
2316 int (*fn)(struct thread *thread, void *p),
2317 void *priv)
2318 {
2319 struct threads *threads;
2320 struct rb_node *nd;
2321 struct thread *thread;
2322 int rc = 0;
2323 int i;
2324
2325 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2326 threads = &machine->threads[i];
2327 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2328 thread = rb_entry(nd, struct thread, rb_node);
2329 rc = fn(thread, priv);
2330 if (rc != 0)
2331 return rc;
2332 }
2333
2334 list_for_each_entry(thread, &threads->dead, node) {
2335 rc = fn(thread, priv);
2336 if (rc != 0)
2337 return rc;
2338 }
2339 }
2340 return rc;
2341 }
2342
2343 int machines__for_each_thread(struct machines *machines,
2344 int (*fn)(struct thread *thread, void *p),
2345 void *priv)
2346 {
2347 struct rb_node *nd;
2348 int rc = 0;
2349
2350 rc = machine__for_each_thread(&machines->host, fn, priv);
2351 if (rc != 0)
2352 return rc;
2353
2354 for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2355 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2356
2357 rc = machine__for_each_thread(machine, fn, priv);
2358 if (rc != 0)
2359 return rc;
2360 }
2361 return rc;
2362 }
2363
2364 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2365 struct target *target, struct thread_map *threads,
2366 perf_event__handler_t process, bool data_mmap,
2367 unsigned int proc_map_timeout,
2368 unsigned int nr_threads_synthesize)
2369 {
2370 if (target__has_task(target))
2371 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2372 else if (target__has_cpu(target))
2373 return perf_event__synthesize_threads(tool, process,
2374 machine, data_mmap,
2375 proc_map_timeout,
2376 nr_threads_synthesize);
2377 /* command specified */
2378 return 0;
2379 }
2380
2381 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2382 {
2383 if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2384 return -1;
2385
2386 return machine->current_tid[cpu];
2387 }
2388
2389 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2390 pid_t tid)
2391 {
2392 struct thread *thread;
2393
2394 if (cpu < 0)
2395 return -EINVAL;
2396
2397 if (!machine->current_tid) {
2398 int i;
2399
2400 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2401 if (!machine->current_tid)
2402 return -ENOMEM;
2403 for (i = 0; i < MAX_NR_CPUS; i++)
2404 machine->current_tid[i] = -1;
2405 }
2406
2407 if (cpu >= MAX_NR_CPUS) {
2408 pr_err("Requested CPU %d too large. ", cpu);
2409 pr_err("Consider raising MAX_NR_CPUS\n");
2410 return -EINVAL;
2411 }
2412
2413 machine->current_tid[cpu] = tid;
2414
2415 thread = machine__findnew_thread(machine, pid, tid);
2416 if (!thread)
2417 return -ENOMEM;
2418
2419 thread->cpu = cpu;
2420 thread__put(thread);
2421
2422 return 0;
2423 }
2424
2425 /*
2426 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2427 * normalized arch is needed.
2428 */
2429 bool machine__is(struct machine *machine, const char *arch)
2430 {
2431 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2432 }
2433
2434 int machine__nr_cpus_avail(struct machine *machine)
2435 {
2436 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2437 }
2438
2439 int machine__get_kernel_start(struct machine *machine)
2440 {
2441 struct map *map = machine__kernel_map(machine);
2442 int err = 0;
2443
2444 /*
2445 * The only addresses above 2^63 are kernel addresses of a 64-bit
2446 * kernel. Note that addresses are unsigned so that on a 32-bit system
2447 * all addresses including kernel addresses are less than 2^32. In
2448 * that case (32-bit system), if the kernel mapping is unknown, all
2449 * addresses will be assumed to be in user space - see
2450 * machine__kernel_ip().
2451 */
2452 machine->kernel_start = 1ULL << 63;
2453 if (map) {
2454 err = map__load(map);
2455 /*
2456 * On x86_64, PTI entry trampolines are less than the
2457 * start of kernel text, but still above 2^63. So leave
2458 * kernel_start = 1ULL << 63 for x86_64.
2459 */
2460 if (!err && !machine__is(machine, "x86_64"))
2461 machine->kernel_start = map->start;
2462 }
2463 return err;
2464 }
2465
2466 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2467 {
2468 return dsos__findnew(&machine->dsos, filename);
2469 }
2470
2471 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2472 {
2473 struct machine *machine = vmachine;
2474 struct map *map;
2475 struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2476
2477 if (sym == NULL)
2478 return NULL;
2479
2480 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2481 *addrp = map->unmap_ip(map, sym->start);
2482 return sym->name;
2483 }