]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - tools/perf/util/machine.c
Merge tag 'omap-for-v5.5/dt-fixes-merge-window-signed' of git://git.kernel.org/pub...
[mirror_ubuntu-jammy-kernel.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36
37 #include <linux/ctype.h>
38 #include <symbol/kallsyms.h>
39 #include <linux/mman.h>
40 #include <linux/string.h>
41 #include <linux/zalloc.h>
42
43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44
45 static struct dso *machine__kernel_dso(struct machine *machine)
46 {
47 return machine->vmlinux_map->dso;
48 }
49
50 static void dsos__init(struct dsos *dsos)
51 {
52 INIT_LIST_HEAD(&dsos->head);
53 dsos->root = RB_ROOT;
54 init_rwsem(&dsos->lock);
55 }
56
57 static void machine__threads_init(struct machine *machine)
58 {
59 int i;
60
61 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
62 struct threads *threads = &machine->threads[i];
63 threads->entries = RB_ROOT_CACHED;
64 init_rwsem(&threads->lock);
65 threads->nr = 0;
66 INIT_LIST_HEAD(&threads->dead);
67 threads->last_match = NULL;
68 }
69 }
70
71 static int machine__set_mmap_name(struct machine *machine)
72 {
73 if (machine__is_host(machine))
74 machine->mmap_name = strdup("[kernel.kallsyms]");
75 else if (machine__is_default_guest(machine))
76 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
77 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
78 machine->pid) < 0)
79 machine->mmap_name = NULL;
80
81 return machine->mmap_name ? 0 : -ENOMEM;
82 }
83
84 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
85 {
86 int err = -ENOMEM;
87
88 memset(machine, 0, sizeof(*machine));
89 maps__init(&machine->kmaps, machine);
90 RB_CLEAR_NODE(&machine->rb_node);
91 dsos__init(&machine->dsos);
92
93 machine__threads_init(machine);
94
95 machine->vdso_info = NULL;
96 machine->env = NULL;
97
98 machine->pid = pid;
99
100 machine->id_hdr_size = 0;
101 machine->kptr_restrict_warned = false;
102 machine->comm_exec = false;
103 machine->kernel_start = 0;
104 machine->vmlinux_map = NULL;
105
106 machine->root_dir = strdup(root_dir);
107 if (machine->root_dir == NULL)
108 return -ENOMEM;
109
110 if (machine__set_mmap_name(machine))
111 goto out;
112
113 if (pid != HOST_KERNEL_ID) {
114 struct thread *thread = machine__findnew_thread(machine, -1,
115 pid);
116 char comm[64];
117
118 if (thread == NULL)
119 goto out;
120
121 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
122 thread__set_comm(thread, comm, 0);
123 thread__put(thread);
124 }
125
126 machine->current_tid = NULL;
127 err = 0;
128
129 out:
130 if (err) {
131 zfree(&machine->root_dir);
132 zfree(&machine->mmap_name);
133 }
134 return 0;
135 }
136
137 struct machine *machine__new_host(void)
138 {
139 struct machine *machine = malloc(sizeof(*machine));
140
141 if (machine != NULL) {
142 machine__init(machine, "", HOST_KERNEL_ID);
143
144 if (machine__create_kernel_maps(machine) < 0)
145 goto out_delete;
146 }
147
148 return machine;
149 out_delete:
150 free(machine);
151 return NULL;
152 }
153
154 struct machine *machine__new_kallsyms(void)
155 {
156 struct machine *machine = machine__new_host();
157 /*
158 * FIXME:
159 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
160 * ask for not using the kcore parsing code, once this one is fixed
161 * to create a map per module.
162 */
163 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
164 machine__delete(machine);
165 machine = NULL;
166 }
167
168 return machine;
169 }
170
171 static void dsos__purge(struct dsos *dsos)
172 {
173 struct dso *pos, *n;
174
175 down_write(&dsos->lock);
176
177 list_for_each_entry_safe(pos, n, &dsos->head, node) {
178 RB_CLEAR_NODE(&pos->rb_node);
179 pos->root = NULL;
180 list_del_init(&pos->node);
181 dso__put(pos);
182 }
183
184 up_write(&dsos->lock);
185 }
186
187 static void dsos__exit(struct dsos *dsos)
188 {
189 dsos__purge(dsos);
190 exit_rwsem(&dsos->lock);
191 }
192
193 void machine__delete_threads(struct machine *machine)
194 {
195 struct rb_node *nd;
196 int i;
197
198 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
199 struct threads *threads = &machine->threads[i];
200 down_write(&threads->lock);
201 nd = rb_first_cached(&threads->entries);
202 while (nd) {
203 struct thread *t = rb_entry(nd, struct thread, rb_node);
204
205 nd = rb_next(nd);
206 __machine__remove_thread(machine, t, false);
207 }
208 up_write(&threads->lock);
209 }
210 }
211
212 void machine__exit(struct machine *machine)
213 {
214 int i;
215
216 if (machine == NULL)
217 return;
218
219 machine__destroy_kernel_maps(machine);
220 maps__exit(&machine->kmaps);
221 dsos__exit(&machine->dsos);
222 machine__exit_vdso(machine);
223 zfree(&machine->root_dir);
224 zfree(&machine->mmap_name);
225 zfree(&machine->current_tid);
226
227 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
228 struct threads *threads = &machine->threads[i];
229 struct thread *thread, *n;
230 /*
231 * Forget about the dead, at this point whatever threads were
232 * left in the dead lists better have a reference count taken
233 * by who is using them, and then, when they drop those references
234 * and it finally hits zero, thread__put() will check and see that
235 * its not in the dead threads list and will not try to remove it
236 * from there, just calling thread__delete() straight away.
237 */
238 list_for_each_entry_safe(thread, n, &threads->dead, node)
239 list_del_init(&thread->node);
240
241 exit_rwsem(&threads->lock);
242 }
243 }
244
245 void machine__delete(struct machine *machine)
246 {
247 if (machine) {
248 machine__exit(machine);
249 free(machine);
250 }
251 }
252
253 void machines__init(struct machines *machines)
254 {
255 machine__init(&machines->host, "", HOST_KERNEL_ID);
256 machines->guests = RB_ROOT_CACHED;
257 }
258
259 void machines__exit(struct machines *machines)
260 {
261 machine__exit(&machines->host);
262 /* XXX exit guest */
263 }
264
265 struct machine *machines__add(struct machines *machines, pid_t pid,
266 const char *root_dir)
267 {
268 struct rb_node **p = &machines->guests.rb_root.rb_node;
269 struct rb_node *parent = NULL;
270 struct machine *pos, *machine = malloc(sizeof(*machine));
271 bool leftmost = true;
272
273 if (machine == NULL)
274 return NULL;
275
276 if (machine__init(machine, root_dir, pid) != 0) {
277 free(machine);
278 return NULL;
279 }
280
281 while (*p != NULL) {
282 parent = *p;
283 pos = rb_entry(parent, struct machine, rb_node);
284 if (pid < pos->pid)
285 p = &(*p)->rb_left;
286 else {
287 p = &(*p)->rb_right;
288 leftmost = false;
289 }
290 }
291
292 rb_link_node(&machine->rb_node, parent, p);
293 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
294
295 return machine;
296 }
297
298 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
299 {
300 struct rb_node *nd;
301
302 machines->host.comm_exec = comm_exec;
303
304 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
305 struct machine *machine = rb_entry(nd, struct machine, rb_node);
306
307 machine->comm_exec = comm_exec;
308 }
309 }
310
311 struct machine *machines__find(struct machines *machines, pid_t pid)
312 {
313 struct rb_node **p = &machines->guests.rb_root.rb_node;
314 struct rb_node *parent = NULL;
315 struct machine *machine;
316 struct machine *default_machine = NULL;
317
318 if (pid == HOST_KERNEL_ID)
319 return &machines->host;
320
321 while (*p != NULL) {
322 parent = *p;
323 machine = rb_entry(parent, struct machine, rb_node);
324 if (pid < machine->pid)
325 p = &(*p)->rb_left;
326 else if (pid > machine->pid)
327 p = &(*p)->rb_right;
328 else
329 return machine;
330 if (!machine->pid)
331 default_machine = machine;
332 }
333
334 return default_machine;
335 }
336
337 struct machine *machines__findnew(struct machines *machines, pid_t pid)
338 {
339 char path[PATH_MAX];
340 const char *root_dir = "";
341 struct machine *machine = machines__find(machines, pid);
342
343 if (machine && (machine->pid == pid))
344 goto out;
345
346 if ((pid != HOST_KERNEL_ID) &&
347 (pid != DEFAULT_GUEST_KERNEL_ID) &&
348 (symbol_conf.guestmount)) {
349 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
350 if (access(path, R_OK)) {
351 static struct strlist *seen;
352
353 if (!seen)
354 seen = strlist__new(NULL, NULL);
355
356 if (!strlist__has_entry(seen, path)) {
357 pr_err("Can't access file %s\n", path);
358 strlist__add(seen, path);
359 }
360 machine = NULL;
361 goto out;
362 }
363 root_dir = path;
364 }
365
366 machine = machines__add(machines, pid, root_dir);
367 out:
368 return machine;
369 }
370
371 void machines__process_guests(struct machines *machines,
372 machine__process_t process, void *data)
373 {
374 struct rb_node *nd;
375
376 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
377 struct machine *pos = rb_entry(nd, struct machine, rb_node);
378 process(pos, data);
379 }
380 }
381
382 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
383 {
384 struct rb_node *node;
385 struct machine *machine;
386
387 machines->host.id_hdr_size = id_hdr_size;
388
389 for (node = rb_first_cached(&machines->guests); node;
390 node = rb_next(node)) {
391 machine = rb_entry(node, struct machine, rb_node);
392 machine->id_hdr_size = id_hdr_size;
393 }
394
395 return;
396 }
397
398 static void machine__update_thread_pid(struct machine *machine,
399 struct thread *th, pid_t pid)
400 {
401 struct thread *leader;
402
403 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
404 return;
405
406 th->pid_ = pid;
407
408 if (th->pid_ == th->tid)
409 return;
410
411 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
412 if (!leader)
413 goto out_err;
414
415 if (!leader->maps)
416 leader->maps = maps__new(machine);
417
418 if (!leader->maps)
419 goto out_err;
420
421 if (th->maps == leader->maps)
422 return;
423
424 if (th->maps) {
425 /*
426 * Maps are created from MMAP events which provide the pid and
427 * tid. Consequently there never should be any maps on a thread
428 * with an unknown pid. Just print an error if there are.
429 */
430 if (!maps__empty(th->maps))
431 pr_err("Discarding thread maps for %d:%d\n",
432 th->pid_, th->tid);
433 maps__put(th->maps);
434 }
435
436 th->maps = maps__get(leader->maps);
437 out_put:
438 thread__put(leader);
439 return;
440 out_err:
441 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
442 goto out_put;
443 }
444
445 /*
446 * Front-end cache - TID lookups come in blocks,
447 * so most of the time we dont have to look up
448 * the full rbtree:
449 */
450 static struct thread*
451 __threads__get_last_match(struct threads *threads, struct machine *machine,
452 int pid, int tid)
453 {
454 struct thread *th;
455
456 th = threads->last_match;
457 if (th != NULL) {
458 if (th->tid == tid) {
459 machine__update_thread_pid(machine, th, pid);
460 return thread__get(th);
461 }
462
463 threads->last_match = NULL;
464 }
465
466 return NULL;
467 }
468
469 static struct thread*
470 threads__get_last_match(struct threads *threads, struct machine *machine,
471 int pid, int tid)
472 {
473 struct thread *th = NULL;
474
475 if (perf_singlethreaded)
476 th = __threads__get_last_match(threads, machine, pid, tid);
477
478 return th;
479 }
480
481 static void
482 __threads__set_last_match(struct threads *threads, struct thread *th)
483 {
484 threads->last_match = th;
485 }
486
487 static void
488 threads__set_last_match(struct threads *threads, struct thread *th)
489 {
490 if (perf_singlethreaded)
491 __threads__set_last_match(threads, th);
492 }
493
494 /*
495 * Caller must eventually drop thread->refcnt returned with a successful
496 * lookup/new thread inserted.
497 */
498 static struct thread *____machine__findnew_thread(struct machine *machine,
499 struct threads *threads,
500 pid_t pid, pid_t tid,
501 bool create)
502 {
503 struct rb_node **p = &threads->entries.rb_root.rb_node;
504 struct rb_node *parent = NULL;
505 struct thread *th;
506 bool leftmost = true;
507
508 th = threads__get_last_match(threads, machine, pid, tid);
509 if (th)
510 return th;
511
512 while (*p != NULL) {
513 parent = *p;
514 th = rb_entry(parent, struct thread, rb_node);
515
516 if (th->tid == tid) {
517 threads__set_last_match(threads, th);
518 machine__update_thread_pid(machine, th, pid);
519 return thread__get(th);
520 }
521
522 if (tid < th->tid)
523 p = &(*p)->rb_left;
524 else {
525 p = &(*p)->rb_right;
526 leftmost = false;
527 }
528 }
529
530 if (!create)
531 return NULL;
532
533 th = thread__new(pid, tid);
534 if (th != NULL) {
535 rb_link_node(&th->rb_node, parent, p);
536 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
537
538 /*
539 * We have to initialize maps separately after rb tree is updated.
540 *
541 * The reason is that we call machine__findnew_thread
542 * within thread__init_maps to find the thread
543 * leader and that would screwed the rb tree.
544 */
545 if (thread__init_maps(th, machine)) {
546 rb_erase_cached(&th->rb_node, &threads->entries);
547 RB_CLEAR_NODE(&th->rb_node);
548 thread__put(th);
549 return NULL;
550 }
551 /*
552 * It is now in the rbtree, get a ref
553 */
554 thread__get(th);
555 threads__set_last_match(threads, th);
556 ++threads->nr;
557 }
558
559 return th;
560 }
561
562 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
563 {
564 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
565 }
566
567 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
568 pid_t tid)
569 {
570 struct threads *threads = machine__threads(machine, tid);
571 struct thread *th;
572
573 down_write(&threads->lock);
574 th = __machine__findnew_thread(machine, pid, tid);
575 up_write(&threads->lock);
576 return th;
577 }
578
579 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
580 pid_t tid)
581 {
582 struct threads *threads = machine__threads(machine, tid);
583 struct thread *th;
584
585 down_read(&threads->lock);
586 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
587 up_read(&threads->lock);
588 return th;
589 }
590
591 struct comm *machine__thread_exec_comm(struct machine *machine,
592 struct thread *thread)
593 {
594 if (machine->comm_exec)
595 return thread__exec_comm(thread);
596 else
597 return thread__comm(thread);
598 }
599
600 int machine__process_comm_event(struct machine *machine, union perf_event *event,
601 struct perf_sample *sample)
602 {
603 struct thread *thread = machine__findnew_thread(machine,
604 event->comm.pid,
605 event->comm.tid);
606 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
607 int err = 0;
608
609 if (exec)
610 machine->comm_exec = true;
611
612 if (dump_trace)
613 perf_event__fprintf_comm(event, stdout);
614
615 if (thread == NULL ||
616 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
617 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
618 err = -1;
619 }
620
621 thread__put(thread);
622
623 return err;
624 }
625
626 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
627 union perf_event *event,
628 struct perf_sample *sample __maybe_unused)
629 {
630 struct thread *thread = machine__findnew_thread(machine,
631 event->namespaces.pid,
632 event->namespaces.tid);
633 int err = 0;
634
635 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
636 "\nWARNING: kernel seems to support more namespaces than perf"
637 " tool.\nTry updating the perf tool..\n\n");
638
639 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
640 "\nWARNING: perf tool seems to support more namespaces than"
641 " the kernel.\nTry updating the kernel..\n\n");
642
643 if (dump_trace)
644 perf_event__fprintf_namespaces(event, stdout);
645
646 if (thread == NULL ||
647 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
648 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
649 err = -1;
650 }
651
652 thread__put(thread);
653
654 return err;
655 }
656
657 int machine__process_lost_event(struct machine *machine __maybe_unused,
658 union perf_event *event, struct perf_sample *sample __maybe_unused)
659 {
660 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
661 event->lost.id, event->lost.lost);
662 return 0;
663 }
664
665 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
666 union perf_event *event, struct perf_sample *sample)
667 {
668 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
669 sample->id, event->lost_samples.lost);
670 return 0;
671 }
672
673 static struct dso *machine__findnew_module_dso(struct machine *machine,
674 struct kmod_path *m,
675 const char *filename)
676 {
677 struct dso *dso;
678
679 down_write(&machine->dsos.lock);
680
681 dso = __dsos__find(&machine->dsos, m->name, true);
682 if (!dso) {
683 dso = __dsos__addnew(&machine->dsos, m->name);
684 if (dso == NULL)
685 goto out_unlock;
686
687 dso__set_module_info(dso, m, machine);
688 dso__set_long_name(dso, strdup(filename), true);
689 }
690
691 dso__get(dso);
692 out_unlock:
693 up_write(&machine->dsos.lock);
694 return dso;
695 }
696
697 int machine__process_aux_event(struct machine *machine __maybe_unused,
698 union perf_event *event)
699 {
700 if (dump_trace)
701 perf_event__fprintf_aux(event, stdout);
702 return 0;
703 }
704
705 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
706 union perf_event *event)
707 {
708 if (dump_trace)
709 perf_event__fprintf_itrace_start(event, stdout);
710 return 0;
711 }
712
713 int machine__process_switch_event(struct machine *machine __maybe_unused,
714 union perf_event *event)
715 {
716 if (dump_trace)
717 perf_event__fprintf_switch(event, stdout);
718 return 0;
719 }
720
721 static int machine__process_ksymbol_register(struct machine *machine,
722 union perf_event *event,
723 struct perf_sample *sample __maybe_unused)
724 {
725 struct symbol *sym;
726 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
727
728 if (!map) {
729 map = dso__new_map(event->ksymbol.name);
730 if (!map)
731 return -ENOMEM;
732
733 map->start = event->ksymbol.addr;
734 map->end = map->start + event->ksymbol.len;
735 maps__insert(&machine->kmaps, map);
736 }
737
738 sym = symbol__new(map->map_ip(map, map->start),
739 event->ksymbol.len,
740 0, 0, event->ksymbol.name);
741 if (!sym)
742 return -ENOMEM;
743 dso__insert_symbol(map->dso, sym);
744 return 0;
745 }
746
747 static int machine__process_ksymbol_unregister(struct machine *machine,
748 union perf_event *event,
749 struct perf_sample *sample __maybe_unused)
750 {
751 struct map *map;
752
753 map = maps__find(&machine->kmaps, event->ksymbol.addr);
754 if (map)
755 maps__remove(&machine->kmaps, map);
756
757 return 0;
758 }
759
760 int machine__process_ksymbol(struct machine *machine __maybe_unused,
761 union perf_event *event,
762 struct perf_sample *sample)
763 {
764 if (dump_trace)
765 perf_event__fprintf_ksymbol(event, stdout);
766
767 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
768 return machine__process_ksymbol_unregister(machine, event,
769 sample);
770 return machine__process_ksymbol_register(machine, event, sample);
771 }
772
773 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
774 const char *filename)
775 {
776 struct map *map = NULL;
777 struct kmod_path m;
778 struct dso *dso;
779
780 if (kmod_path__parse_name(&m, filename))
781 return NULL;
782
783 dso = machine__findnew_module_dso(machine, &m, filename);
784 if (dso == NULL)
785 goto out;
786
787 map = map__new2(start, dso);
788 if (map == NULL)
789 goto out;
790
791 maps__insert(&machine->kmaps, map);
792
793 /* Put the map here because maps__insert alread got it */
794 map__put(map);
795 out:
796 /* put the dso here, corresponding to machine__findnew_module_dso */
797 dso__put(dso);
798 zfree(&m.name);
799 return map;
800 }
801
802 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
803 {
804 struct rb_node *nd;
805 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
806
807 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
808 struct machine *pos = rb_entry(nd, struct machine, rb_node);
809 ret += __dsos__fprintf(&pos->dsos.head, fp);
810 }
811
812 return ret;
813 }
814
815 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
816 bool (skip)(struct dso *dso, int parm), int parm)
817 {
818 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
819 }
820
821 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
822 bool (skip)(struct dso *dso, int parm), int parm)
823 {
824 struct rb_node *nd;
825 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
826
827 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
828 struct machine *pos = rb_entry(nd, struct machine, rb_node);
829 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
830 }
831 return ret;
832 }
833
834 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
835 {
836 int i;
837 size_t printed = 0;
838 struct dso *kdso = machine__kernel_dso(machine);
839
840 if (kdso->has_build_id) {
841 char filename[PATH_MAX];
842 if (dso__build_id_filename(kdso, filename, sizeof(filename),
843 false))
844 printed += fprintf(fp, "[0] %s\n", filename);
845 }
846
847 for (i = 0; i < vmlinux_path__nr_entries; ++i)
848 printed += fprintf(fp, "[%d] %s\n",
849 i + kdso->has_build_id, vmlinux_path[i]);
850
851 return printed;
852 }
853
854 size_t machine__fprintf(struct machine *machine, FILE *fp)
855 {
856 struct rb_node *nd;
857 size_t ret;
858 int i;
859
860 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
861 struct threads *threads = &machine->threads[i];
862
863 down_read(&threads->lock);
864
865 ret = fprintf(fp, "Threads: %u\n", threads->nr);
866
867 for (nd = rb_first_cached(&threads->entries); nd;
868 nd = rb_next(nd)) {
869 struct thread *pos = rb_entry(nd, struct thread, rb_node);
870
871 ret += thread__fprintf(pos, fp);
872 }
873
874 up_read(&threads->lock);
875 }
876 return ret;
877 }
878
879 static struct dso *machine__get_kernel(struct machine *machine)
880 {
881 const char *vmlinux_name = machine->mmap_name;
882 struct dso *kernel;
883
884 if (machine__is_host(machine)) {
885 if (symbol_conf.vmlinux_name)
886 vmlinux_name = symbol_conf.vmlinux_name;
887
888 kernel = machine__findnew_kernel(machine, vmlinux_name,
889 "[kernel]", DSO_TYPE_KERNEL);
890 } else {
891 if (symbol_conf.default_guest_vmlinux_name)
892 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
893
894 kernel = machine__findnew_kernel(machine, vmlinux_name,
895 "[guest.kernel]",
896 DSO_TYPE_GUEST_KERNEL);
897 }
898
899 if (kernel != NULL && (!kernel->has_build_id))
900 dso__read_running_kernel_build_id(kernel, machine);
901
902 return kernel;
903 }
904
905 struct process_args {
906 u64 start;
907 };
908
909 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
910 size_t bufsz)
911 {
912 if (machine__is_default_guest(machine))
913 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
914 else
915 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
916 }
917
918 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
919
920 /* Figure out the start address of kernel map from /proc/kallsyms.
921 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
922 * symbol_name if it's not that important.
923 */
924 static int machine__get_running_kernel_start(struct machine *machine,
925 const char **symbol_name,
926 u64 *start, u64 *end)
927 {
928 char filename[PATH_MAX];
929 int i, err = -1;
930 const char *name;
931 u64 addr = 0;
932
933 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
934
935 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
936 return 0;
937
938 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
939 err = kallsyms__get_function_start(filename, name, &addr);
940 if (!err)
941 break;
942 }
943
944 if (err)
945 return -1;
946
947 if (symbol_name)
948 *symbol_name = name;
949
950 *start = addr;
951
952 err = kallsyms__get_function_start(filename, "_etext", &addr);
953 if (!err)
954 *end = addr;
955
956 return 0;
957 }
958
959 int machine__create_extra_kernel_map(struct machine *machine,
960 struct dso *kernel,
961 struct extra_kernel_map *xm)
962 {
963 struct kmap *kmap;
964 struct map *map;
965
966 map = map__new2(xm->start, kernel);
967 if (!map)
968 return -1;
969
970 map->end = xm->end;
971 map->pgoff = xm->pgoff;
972
973 kmap = map__kmap(map);
974
975 kmap->kmaps = &machine->kmaps;
976 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
977
978 maps__insert(&machine->kmaps, map);
979
980 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
981 kmap->name, map->start, map->end);
982
983 map__put(map);
984
985 return 0;
986 }
987
988 static u64 find_entry_trampoline(struct dso *dso)
989 {
990 /* Duplicates are removed so lookup all aliases */
991 const char *syms[] = {
992 "_entry_trampoline",
993 "__entry_trampoline_start",
994 "entry_SYSCALL_64_trampoline",
995 };
996 struct symbol *sym = dso__first_symbol(dso);
997 unsigned int i;
998
999 for (; sym; sym = dso__next_symbol(sym)) {
1000 if (sym->binding != STB_GLOBAL)
1001 continue;
1002 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1003 if (!strcmp(sym->name, syms[i]))
1004 return sym->start;
1005 }
1006 }
1007
1008 return 0;
1009 }
1010
1011 /*
1012 * These values can be used for kernels that do not have symbols for the entry
1013 * trampolines in kallsyms.
1014 */
1015 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1016 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1017 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1018
1019 /* Map x86_64 PTI entry trampolines */
1020 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1021 struct dso *kernel)
1022 {
1023 struct maps *kmaps = &machine->kmaps;
1024 int nr_cpus_avail, cpu;
1025 bool found = false;
1026 struct map *map;
1027 u64 pgoff;
1028
1029 /*
1030 * In the vmlinux case, pgoff is a virtual address which must now be
1031 * mapped to a vmlinux offset.
1032 */
1033 maps__for_each_entry(kmaps, map) {
1034 struct kmap *kmap = __map__kmap(map);
1035 struct map *dest_map;
1036
1037 if (!kmap || !is_entry_trampoline(kmap->name))
1038 continue;
1039
1040 dest_map = maps__find(kmaps, map->pgoff);
1041 if (dest_map != map)
1042 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1043 found = true;
1044 }
1045 if (found || machine->trampolines_mapped)
1046 return 0;
1047
1048 pgoff = find_entry_trampoline(kernel);
1049 if (!pgoff)
1050 return 0;
1051
1052 nr_cpus_avail = machine__nr_cpus_avail(machine);
1053
1054 /* Add a 1 page map for each CPU's entry trampoline */
1055 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1056 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1057 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1058 X86_64_ENTRY_TRAMPOLINE;
1059 struct extra_kernel_map xm = {
1060 .start = va,
1061 .end = va + page_size,
1062 .pgoff = pgoff,
1063 };
1064
1065 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1066
1067 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1068 return -1;
1069 }
1070
1071 machine->trampolines_mapped = nr_cpus_avail;
1072
1073 return 0;
1074 }
1075
1076 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1077 struct dso *kernel __maybe_unused)
1078 {
1079 return 0;
1080 }
1081
1082 static int
1083 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1084 {
1085 struct kmap *kmap;
1086 struct map *map;
1087
1088 /* In case of renewal the kernel map, destroy previous one */
1089 machine__destroy_kernel_maps(machine);
1090
1091 machine->vmlinux_map = map__new2(0, kernel);
1092 if (machine->vmlinux_map == NULL)
1093 return -1;
1094
1095 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1096 map = machine__kernel_map(machine);
1097 kmap = map__kmap(map);
1098 if (!kmap)
1099 return -1;
1100
1101 kmap->kmaps = &machine->kmaps;
1102 maps__insert(&machine->kmaps, map);
1103
1104 return 0;
1105 }
1106
1107 void machine__destroy_kernel_maps(struct machine *machine)
1108 {
1109 struct kmap *kmap;
1110 struct map *map = machine__kernel_map(machine);
1111
1112 if (map == NULL)
1113 return;
1114
1115 kmap = map__kmap(map);
1116 maps__remove(&machine->kmaps, map);
1117 if (kmap && kmap->ref_reloc_sym) {
1118 zfree((char **)&kmap->ref_reloc_sym->name);
1119 zfree(&kmap->ref_reloc_sym);
1120 }
1121
1122 map__zput(machine->vmlinux_map);
1123 }
1124
1125 int machines__create_guest_kernel_maps(struct machines *machines)
1126 {
1127 int ret = 0;
1128 struct dirent **namelist = NULL;
1129 int i, items = 0;
1130 char path[PATH_MAX];
1131 pid_t pid;
1132 char *endp;
1133
1134 if (symbol_conf.default_guest_vmlinux_name ||
1135 symbol_conf.default_guest_modules ||
1136 symbol_conf.default_guest_kallsyms) {
1137 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1138 }
1139
1140 if (symbol_conf.guestmount) {
1141 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1142 if (items <= 0)
1143 return -ENOENT;
1144 for (i = 0; i < items; i++) {
1145 if (!isdigit(namelist[i]->d_name[0])) {
1146 /* Filter out . and .. */
1147 continue;
1148 }
1149 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1150 if ((*endp != '\0') ||
1151 (endp == namelist[i]->d_name) ||
1152 (errno == ERANGE)) {
1153 pr_debug("invalid directory (%s). Skipping.\n",
1154 namelist[i]->d_name);
1155 continue;
1156 }
1157 sprintf(path, "%s/%s/proc/kallsyms",
1158 symbol_conf.guestmount,
1159 namelist[i]->d_name);
1160 ret = access(path, R_OK);
1161 if (ret) {
1162 pr_debug("Can't access file %s\n", path);
1163 goto failure;
1164 }
1165 machines__create_kernel_maps(machines, pid);
1166 }
1167 failure:
1168 free(namelist);
1169 }
1170
1171 return ret;
1172 }
1173
1174 void machines__destroy_kernel_maps(struct machines *machines)
1175 {
1176 struct rb_node *next = rb_first_cached(&machines->guests);
1177
1178 machine__destroy_kernel_maps(&machines->host);
1179
1180 while (next) {
1181 struct machine *pos = rb_entry(next, struct machine, rb_node);
1182
1183 next = rb_next(&pos->rb_node);
1184 rb_erase_cached(&pos->rb_node, &machines->guests);
1185 machine__delete(pos);
1186 }
1187 }
1188
1189 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1190 {
1191 struct machine *machine = machines__findnew(machines, pid);
1192
1193 if (machine == NULL)
1194 return -1;
1195
1196 return machine__create_kernel_maps(machine);
1197 }
1198
1199 int machine__load_kallsyms(struct machine *machine, const char *filename)
1200 {
1201 struct map *map = machine__kernel_map(machine);
1202 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1203
1204 if (ret > 0) {
1205 dso__set_loaded(map->dso);
1206 /*
1207 * Since /proc/kallsyms will have multiple sessions for the
1208 * kernel, with modules between them, fixup the end of all
1209 * sections.
1210 */
1211 maps__fixup_end(&machine->kmaps);
1212 }
1213
1214 return ret;
1215 }
1216
1217 int machine__load_vmlinux_path(struct machine *machine)
1218 {
1219 struct map *map = machine__kernel_map(machine);
1220 int ret = dso__load_vmlinux_path(map->dso, map);
1221
1222 if (ret > 0)
1223 dso__set_loaded(map->dso);
1224
1225 return ret;
1226 }
1227
1228 static char *get_kernel_version(const char *root_dir)
1229 {
1230 char version[PATH_MAX];
1231 FILE *file;
1232 char *name, *tmp;
1233 const char *prefix = "Linux version ";
1234
1235 sprintf(version, "%s/proc/version", root_dir);
1236 file = fopen(version, "r");
1237 if (!file)
1238 return NULL;
1239
1240 tmp = fgets(version, sizeof(version), file);
1241 fclose(file);
1242 if (!tmp)
1243 return NULL;
1244
1245 name = strstr(version, prefix);
1246 if (!name)
1247 return NULL;
1248 name += strlen(prefix);
1249 tmp = strchr(name, ' ');
1250 if (tmp)
1251 *tmp = '\0';
1252
1253 return strdup(name);
1254 }
1255
1256 static bool is_kmod_dso(struct dso *dso)
1257 {
1258 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1259 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1260 }
1261
1262 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1263 {
1264 char *long_name;
1265 struct map *map = maps__find_by_name(maps, m->name);
1266
1267 if (map == NULL)
1268 return 0;
1269
1270 long_name = strdup(path);
1271 if (long_name == NULL)
1272 return -ENOMEM;
1273
1274 dso__set_long_name(map->dso, long_name, true);
1275 dso__kernel_module_get_build_id(map->dso, "");
1276
1277 /*
1278 * Full name could reveal us kmod compression, so
1279 * we need to update the symtab_type if needed.
1280 */
1281 if (m->comp && is_kmod_dso(map->dso)) {
1282 map->dso->symtab_type++;
1283 map->dso->comp = m->comp;
1284 }
1285
1286 return 0;
1287 }
1288
1289 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1290 {
1291 struct dirent *dent;
1292 DIR *dir = opendir(dir_name);
1293 int ret = 0;
1294
1295 if (!dir) {
1296 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1297 return -1;
1298 }
1299
1300 while ((dent = readdir(dir)) != NULL) {
1301 char path[PATH_MAX];
1302 struct stat st;
1303
1304 /*sshfs might return bad dent->d_type, so we have to stat*/
1305 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1306 if (stat(path, &st))
1307 continue;
1308
1309 if (S_ISDIR(st.st_mode)) {
1310 if (!strcmp(dent->d_name, ".") ||
1311 !strcmp(dent->d_name, ".."))
1312 continue;
1313
1314 /* Do not follow top-level source and build symlinks */
1315 if (depth == 0) {
1316 if (!strcmp(dent->d_name, "source") ||
1317 !strcmp(dent->d_name, "build"))
1318 continue;
1319 }
1320
1321 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1322 if (ret < 0)
1323 goto out;
1324 } else {
1325 struct kmod_path m;
1326
1327 ret = kmod_path__parse_name(&m, dent->d_name);
1328 if (ret)
1329 goto out;
1330
1331 if (m.kmod)
1332 ret = maps__set_module_path(maps, path, &m);
1333
1334 zfree(&m.name);
1335
1336 if (ret)
1337 goto out;
1338 }
1339 }
1340
1341 out:
1342 closedir(dir);
1343 return ret;
1344 }
1345
1346 static int machine__set_modules_path(struct machine *machine)
1347 {
1348 char *version;
1349 char modules_path[PATH_MAX];
1350
1351 version = get_kernel_version(machine->root_dir);
1352 if (!version)
1353 return -1;
1354
1355 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1356 machine->root_dir, version);
1357 free(version);
1358
1359 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1360 }
1361 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1362 u64 *size __maybe_unused,
1363 const char *name __maybe_unused)
1364 {
1365 return 0;
1366 }
1367
1368 static int machine__create_module(void *arg, const char *name, u64 start,
1369 u64 size)
1370 {
1371 struct machine *machine = arg;
1372 struct map *map;
1373
1374 if (arch__fix_module_text_start(&start, &size, name) < 0)
1375 return -1;
1376
1377 map = machine__addnew_module_map(machine, start, name);
1378 if (map == NULL)
1379 return -1;
1380 map->end = start + size;
1381
1382 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1383
1384 return 0;
1385 }
1386
1387 static int machine__create_modules(struct machine *machine)
1388 {
1389 const char *modules;
1390 char path[PATH_MAX];
1391
1392 if (machine__is_default_guest(machine)) {
1393 modules = symbol_conf.default_guest_modules;
1394 } else {
1395 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1396 modules = path;
1397 }
1398
1399 if (symbol__restricted_filename(modules, "/proc/modules"))
1400 return -1;
1401
1402 if (modules__parse(modules, machine, machine__create_module))
1403 return -1;
1404
1405 if (!machine__set_modules_path(machine))
1406 return 0;
1407
1408 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1409
1410 return 0;
1411 }
1412
1413 static void machine__set_kernel_mmap(struct machine *machine,
1414 u64 start, u64 end)
1415 {
1416 machine->vmlinux_map->start = start;
1417 machine->vmlinux_map->end = end;
1418 /*
1419 * Be a bit paranoid here, some perf.data file came with
1420 * a zero sized synthesized MMAP event for the kernel.
1421 */
1422 if (start == 0 && end == 0)
1423 machine->vmlinux_map->end = ~0ULL;
1424 }
1425
1426 static void machine__update_kernel_mmap(struct machine *machine,
1427 u64 start, u64 end)
1428 {
1429 struct map *map = machine__kernel_map(machine);
1430
1431 map__get(map);
1432 maps__remove(&machine->kmaps, map);
1433
1434 machine__set_kernel_mmap(machine, start, end);
1435
1436 maps__insert(&machine->kmaps, map);
1437 map__put(map);
1438 }
1439
1440 int machine__create_kernel_maps(struct machine *machine)
1441 {
1442 struct dso *kernel = machine__get_kernel(machine);
1443 const char *name = NULL;
1444 struct map *map;
1445 u64 start = 0, end = ~0ULL;
1446 int ret;
1447
1448 if (kernel == NULL)
1449 return -1;
1450
1451 ret = __machine__create_kernel_maps(machine, kernel);
1452 if (ret < 0)
1453 goto out_put;
1454
1455 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1456 if (machine__is_host(machine))
1457 pr_debug("Problems creating module maps, "
1458 "continuing anyway...\n");
1459 else
1460 pr_debug("Problems creating module maps for guest %d, "
1461 "continuing anyway...\n", machine->pid);
1462 }
1463
1464 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1465 if (name &&
1466 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1467 machine__destroy_kernel_maps(machine);
1468 ret = -1;
1469 goto out_put;
1470 }
1471
1472 /*
1473 * we have a real start address now, so re-order the kmaps
1474 * assume it's the last in the kmaps
1475 */
1476 machine__update_kernel_mmap(machine, start, end);
1477 }
1478
1479 if (machine__create_extra_kernel_maps(machine, kernel))
1480 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1481
1482 if (end == ~0ULL) {
1483 /* update end address of the kernel map using adjacent module address */
1484 map = map__next(machine__kernel_map(machine));
1485 if (map)
1486 machine__set_kernel_mmap(machine, start, map->start);
1487 }
1488
1489 out_put:
1490 dso__put(kernel);
1491 return ret;
1492 }
1493
1494 static bool machine__uses_kcore(struct machine *machine)
1495 {
1496 struct dso *dso;
1497
1498 list_for_each_entry(dso, &machine->dsos.head, node) {
1499 if (dso__is_kcore(dso))
1500 return true;
1501 }
1502
1503 return false;
1504 }
1505
1506 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1507 union perf_event *event)
1508 {
1509 return machine__is(machine, "x86_64") &&
1510 is_entry_trampoline(event->mmap.filename);
1511 }
1512
1513 static int machine__process_extra_kernel_map(struct machine *machine,
1514 union perf_event *event)
1515 {
1516 struct dso *kernel = machine__kernel_dso(machine);
1517 struct extra_kernel_map xm = {
1518 .start = event->mmap.start,
1519 .end = event->mmap.start + event->mmap.len,
1520 .pgoff = event->mmap.pgoff,
1521 };
1522
1523 if (kernel == NULL)
1524 return -1;
1525
1526 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1527
1528 return machine__create_extra_kernel_map(machine, kernel, &xm);
1529 }
1530
1531 static int machine__process_kernel_mmap_event(struct machine *machine,
1532 union perf_event *event)
1533 {
1534 struct map *map;
1535 enum dso_kernel_type kernel_type;
1536 bool is_kernel_mmap;
1537
1538 /* If we have maps from kcore then we do not need or want any others */
1539 if (machine__uses_kcore(machine))
1540 return 0;
1541
1542 if (machine__is_host(machine))
1543 kernel_type = DSO_TYPE_KERNEL;
1544 else
1545 kernel_type = DSO_TYPE_GUEST_KERNEL;
1546
1547 is_kernel_mmap = memcmp(event->mmap.filename,
1548 machine->mmap_name,
1549 strlen(machine->mmap_name) - 1) == 0;
1550 if (event->mmap.filename[0] == '/' ||
1551 (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1552 map = machine__addnew_module_map(machine, event->mmap.start,
1553 event->mmap.filename);
1554 if (map == NULL)
1555 goto out_problem;
1556
1557 map->end = map->start + event->mmap.len;
1558 } else if (is_kernel_mmap) {
1559 const char *symbol_name = (event->mmap.filename +
1560 strlen(machine->mmap_name));
1561 /*
1562 * Should be there already, from the build-id table in
1563 * the header.
1564 */
1565 struct dso *kernel = NULL;
1566 struct dso *dso;
1567
1568 down_read(&machine->dsos.lock);
1569
1570 list_for_each_entry(dso, &machine->dsos.head, node) {
1571
1572 /*
1573 * The cpumode passed to is_kernel_module is not the
1574 * cpumode of *this* event. If we insist on passing
1575 * correct cpumode to is_kernel_module, we should
1576 * record the cpumode when we adding this dso to the
1577 * linked list.
1578 *
1579 * However we don't really need passing correct
1580 * cpumode. We know the correct cpumode must be kernel
1581 * mode (if not, we should not link it onto kernel_dsos
1582 * list).
1583 *
1584 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1585 * is_kernel_module() treats it as a kernel cpumode.
1586 */
1587
1588 if (!dso->kernel ||
1589 is_kernel_module(dso->long_name,
1590 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1591 continue;
1592
1593
1594 kernel = dso;
1595 break;
1596 }
1597
1598 up_read(&machine->dsos.lock);
1599
1600 if (kernel == NULL)
1601 kernel = machine__findnew_dso(machine, machine->mmap_name);
1602 if (kernel == NULL)
1603 goto out_problem;
1604
1605 kernel->kernel = kernel_type;
1606 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1607 dso__put(kernel);
1608 goto out_problem;
1609 }
1610
1611 if (strstr(kernel->long_name, "vmlinux"))
1612 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1613
1614 machine__update_kernel_mmap(machine, event->mmap.start,
1615 event->mmap.start + event->mmap.len);
1616
1617 /*
1618 * Avoid using a zero address (kptr_restrict) for the ref reloc
1619 * symbol. Effectively having zero here means that at record
1620 * time /proc/sys/kernel/kptr_restrict was non zero.
1621 */
1622 if (event->mmap.pgoff != 0) {
1623 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1624 symbol_name,
1625 event->mmap.pgoff);
1626 }
1627
1628 if (machine__is_default_guest(machine)) {
1629 /*
1630 * preload dso of guest kernel and modules
1631 */
1632 dso__load(kernel, machine__kernel_map(machine));
1633 }
1634 } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1635 return machine__process_extra_kernel_map(machine, event);
1636 }
1637 return 0;
1638 out_problem:
1639 return -1;
1640 }
1641
1642 int machine__process_mmap2_event(struct machine *machine,
1643 union perf_event *event,
1644 struct perf_sample *sample)
1645 {
1646 struct thread *thread;
1647 struct map *map;
1648 struct dso_id dso_id = {
1649 .maj = event->mmap2.maj,
1650 .min = event->mmap2.min,
1651 .ino = event->mmap2.ino,
1652 .ino_generation = event->mmap2.ino_generation,
1653 };
1654 int ret = 0;
1655
1656 if (dump_trace)
1657 perf_event__fprintf_mmap2(event, stdout);
1658
1659 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1660 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1661 ret = machine__process_kernel_mmap_event(machine, event);
1662 if (ret < 0)
1663 goto out_problem;
1664 return 0;
1665 }
1666
1667 thread = machine__findnew_thread(machine, event->mmap2.pid,
1668 event->mmap2.tid);
1669 if (thread == NULL)
1670 goto out_problem;
1671
1672 map = map__new(machine, event->mmap2.start,
1673 event->mmap2.len, event->mmap2.pgoff,
1674 &dso_id, event->mmap2.prot,
1675 event->mmap2.flags,
1676 event->mmap2.filename, thread);
1677
1678 if (map == NULL)
1679 goto out_problem_map;
1680
1681 ret = thread__insert_map(thread, map);
1682 if (ret)
1683 goto out_problem_insert;
1684
1685 thread__put(thread);
1686 map__put(map);
1687 return 0;
1688
1689 out_problem_insert:
1690 map__put(map);
1691 out_problem_map:
1692 thread__put(thread);
1693 out_problem:
1694 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1695 return 0;
1696 }
1697
1698 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1699 struct perf_sample *sample)
1700 {
1701 struct thread *thread;
1702 struct map *map;
1703 u32 prot = 0;
1704 int ret = 0;
1705
1706 if (dump_trace)
1707 perf_event__fprintf_mmap(event, stdout);
1708
1709 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1710 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1711 ret = machine__process_kernel_mmap_event(machine, event);
1712 if (ret < 0)
1713 goto out_problem;
1714 return 0;
1715 }
1716
1717 thread = machine__findnew_thread(machine, event->mmap.pid,
1718 event->mmap.tid);
1719 if (thread == NULL)
1720 goto out_problem;
1721
1722 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1723 prot = PROT_EXEC;
1724
1725 map = map__new(machine, event->mmap.start,
1726 event->mmap.len, event->mmap.pgoff,
1727 NULL, prot, 0, event->mmap.filename, thread);
1728
1729 if (map == NULL)
1730 goto out_problem_map;
1731
1732 ret = thread__insert_map(thread, map);
1733 if (ret)
1734 goto out_problem_insert;
1735
1736 thread__put(thread);
1737 map__put(map);
1738 return 0;
1739
1740 out_problem_insert:
1741 map__put(map);
1742 out_problem_map:
1743 thread__put(thread);
1744 out_problem:
1745 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1746 return 0;
1747 }
1748
1749 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1750 {
1751 struct threads *threads = machine__threads(machine, th->tid);
1752
1753 if (threads->last_match == th)
1754 threads__set_last_match(threads, NULL);
1755
1756 if (lock)
1757 down_write(&threads->lock);
1758
1759 BUG_ON(refcount_read(&th->refcnt) == 0);
1760
1761 rb_erase_cached(&th->rb_node, &threads->entries);
1762 RB_CLEAR_NODE(&th->rb_node);
1763 --threads->nr;
1764 /*
1765 * Move it first to the dead_threads list, then drop the reference,
1766 * if this is the last reference, then the thread__delete destructor
1767 * will be called and we will remove it from the dead_threads list.
1768 */
1769 list_add_tail(&th->node, &threads->dead);
1770
1771 /*
1772 * We need to do the put here because if this is the last refcount,
1773 * then we will be touching the threads->dead head when removing the
1774 * thread.
1775 */
1776 thread__put(th);
1777
1778 if (lock)
1779 up_write(&threads->lock);
1780 }
1781
1782 void machine__remove_thread(struct machine *machine, struct thread *th)
1783 {
1784 return __machine__remove_thread(machine, th, true);
1785 }
1786
1787 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1788 struct perf_sample *sample)
1789 {
1790 struct thread *thread = machine__find_thread(machine,
1791 event->fork.pid,
1792 event->fork.tid);
1793 struct thread *parent = machine__findnew_thread(machine,
1794 event->fork.ppid,
1795 event->fork.ptid);
1796 bool do_maps_clone = true;
1797 int err = 0;
1798
1799 if (dump_trace)
1800 perf_event__fprintf_task(event, stdout);
1801
1802 /*
1803 * There may be an existing thread that is not actually the parent,
1804 * either because we are processing events out of order, or because the
1805 * (fork) event that would have removed the thread was lost. Assume the
1806 * latter case and continue on as best we can.
1807 */
1808 if (parent->pid_ != (pid_t)event->fork.ppid) {
1809 dump_printf("removing erroneous parent thread %d/%d\n",
1810 parent->pid_, parent->tid);
1811 machine__remove_thread(machine, parent);
1812 thread__put(parent);
1813 parent = machine__findnew_thread(machine, event->fork.ppid,
1814 event->fork.ptid);
1815 }
1816
1817 /* if a thread currently exists for the thread id remove it */
1818 if (thread != NULL) {
1819 machine__remove_thread(machine, thread);
1820 thread__put(thread);
1821 }
1822
1823 thread = machine__findnew_thread(machine, event->fork.pid,
1824 event->fork.tid);
1825 /*
1826 * When synthesizing FORK events, we are trying to create thread
1827 * objects for the already running tasks on the machine.
1828 *
1829 * Normally, for a kernel FORK event, we want to clone the parent's
1830 * maps because that is what the kernel just did.
1831 *
1832 * But when synthesizing, this should not be done. If we do, we end up
1833 * with overlapping maps as we process the sythesized MMAP2 events that
1834 * get delivered shortly thereafter.
1835 *
1836 * Use the FORK event misc flags in an internal way to signal this
1837 * situation, so we can elide the map clone when appropriate.
1838 */
1839 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1840 do_maps_clone = false;
1841
1842 if (thread == NULL || parent == NULL ||
1843 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1844 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1845 err = -1;
1846 }
1847 thread__put(thread);
1848 thread__put(parent);
1849
1850 return err;
1851 }
1852
1853 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1854 struct perf_sample *sample __maybe_unused)
1855 {
1856 struct thread *thread = machine__find_thread(machine,
1857 event->fork.pid,
1858 event->fork.tid);
1859
1860 if (dump_trace)
1861 perf_event__fprintf_task(event, stdout);
1862
1863 if (thread != NULL) {
1864 thread__exited(thread);
1865 thread__put(thread);
1866 }
1867
1868 return 0;
1869 }
1870
1871 int machine__process_event(struct machine *machine, union perf_event *event,
1872 struct perf_sample *sample)
1873 {
1874 int ret;
1875
1876 switch (event->header.type) {
1877 case PERF_RECORD_COMM:
1878 ret = machine__process_comm_event(machine, event, sample); break;
1879 case PERF_RECORD_MMAP:
1880 ret = machine__process_mmap_event(machine, event, sample); break;
1881 case PERF_RECORD_NAMESPACES:
1882 ret = machine__process_namespaces_event(machine, event, sample); break;
1883 case PERF_RECORD_MMAP2:
1884 ret = machine__process_mmap2_event(machine, event, sample); break;
1885 case PERF_RECORD_FORK:
1886 ret = machine__process_fork_event(machine, event, sample); break;
1887 case PERF_RECORD_EXIT:
1888 ret = machine__process_exit_event(machine, event, sample); break;
1889 case PERF_RECORD_LOST:
1890 ret = machine__process_lost_event(machine, event, sample); break;
1891 case PERF_RECORD_AUX:
1892 ret = machine__process_aux_event(machine, event); break;
1893 case PERF_RECORD_ITRACE_START:
1894 ret = machine__process_itrace_start_event(machine, event); break;
1895 case PERF_RECORD_LOST_SAMPLES:
1896 ret = machine__process_lost_samples_event(machine, event, sample); break;
1897 case PERF_RECORD_SWITCH:
1898 case PERF_RECORD_SWITCH_CPU_WIDE:
1899 ret = machine__process_switch_event(machine, event); break;
1900 case PERF_RECORD_KSYMBOL:
1901 ret = machine__process_ksymbol(machine, event, sample); break;
1902 case PERF_RECORD_BPF_EVENT:
1903 ret = machine__process_bpf(machine, event, sample); break;
1904 default:
1905 ret = -1;
1906 break;
1907 }
1908
1909 return ret;
1910 }
1911
1912 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1913 {
1914 if (!regexec(regex, sym->name, 0, NULL, 0))
1915 return 1;
1916 return 0;
1917 }
1918
1919 static void ip__resolve_ams(struct thread *thread,
1920 struct addr_map_symbol *ams,
1921 u64 ip)
1922 {
1923 struct addr_location al;
1924
1925 memset(&al, 0, sizeof(al));
1926 /*
1927 * We cannot use the header.misc hint to determine whether a
1928 * branch stack address is user, kernel, guest, hypervisor.
1929 * Branches may straddle the kernel/user/hypervisor boundaries.
1930 * Thus, we have to try consecutively until we find a match
1931 * or else, the symbol is unknown
1932 */
1933 thread__find_cpumode_addr_location(thread, ip, &al);
1934
1935 ams->addr = ip;
1936 ams->al_addr = al.addr;
1937 ams->ms.maps = al.maps;
1938 ams->ms.sym = al.sym;
1939 ams->ms.map = al.map;
1940 ams->phys_addr = 0;
1941 }
1942
1943 static void ip__resolve_data(struct thread *thread,
1944 u8 m, struct addr_map_symbol *ams,
1945 u64 addr, u64 phys_addr)
1946 {
1947 struct addr_location al;
1948
1949 memset(&al, 0, sizeof(al));
1950
1951 thread__find_symbol(thread, m, addr, &al);
1952
1953 ams->addr = addr;
1954 ams->al_addr = al.addr;
1955 ams->ms.maps = al.maps;
1956 ams->ms.sym = al.sym;
1957 ams->ms.map = al.map;
1958 ams->phys_addr = phys_addr;
1959 }
1960
1961 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1962 struct addr_location *al)
1963 {
1964 struct mem_info *mi = mem_info__new();
1965
1966 if (!mi)
1967 return NULL;
1968
1969 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1970 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1971 sample->addr, sample->phys_addr);
1972 mi->data_src.val = sample->data_src;
1973
1974 return mi;
1975 }
1976
1977 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
1978 {
1979 struct map *map = ms->map;
1980 char *srcline = NULL;
1981
1982 if (!map || callchain_param.key == CCKEY_FUNCTION)
1983 return srcline;
1984
1985 srcline = srcline__tree_find(&map->dso->srclines, ip);
1986 if (!srcline) {
1987 bool show_sym = false;
1988 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1989
1990 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1991 ms->sym, show_sym, show_addr, ip);
1992 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1993 }
1994
1995 return srcline;
1996 }
1997
1998 struct iterations {
1999 int nr_loop_iter;
2000 u64 cycles;
2001 };
2002
2003 static int add_callchain_ip(struct thread *thread,
2004 struct callchain_cursor *cursor,
2005 struct symbol **parent,
2006 struct addr_location *root_al,
2007 u8 *cpumode,
2008 u64 ip,
2009 bool branch,
2010 struct branch_flags *flags,
2011 struct iterations *iter,
2012 u64 branch_from)
2013 {
2014 struct map_symbol ms;
2015 struct addr_location al;
2016 int nr_loop_iter = 0;
2017 u64 iter_cycles = 0;
2018 const char *srcline = NULL;
2019
2020 al.filtered = 0;
2021 al.sym = NULL;
2022 if (!cpumode) {
2023 thread__find_cpumode_addr_location(thread, ip, &al);
2024 } else {
2025 if (ip >= PERF_CONTEXT_MAX) {
2026 switch (ip) {
2027 case PERF_CONTEXT_HV:
2028 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2029 break;
2030 case PERF_CONTEXT_KERNEL:
2031 *cpumode = PERF_RECORD_MISC_KERNEL;
2032 break;
2033 case PERF_CONTEXT_USER:
2034 *cpumode = PERF_RECORD_MISC_USER;
2035 break;
2036 default:
2037 pr_debug("invalid callchain context: "
2038 "%"PRId64"\n", (s64) ip);
2039 /*
2040 * It seems the callchain is corrupted.
2041 * Discard all.
2042 */
2043 callchain_cursor_reset(cursor);
2044 return 1;
2045 }
2046 return 0;
2047 }
2048 thread__find_symbol(thread, *cpumode, ip, &al);
2049 }
2050
2051 if (al.sym != NULL) {
2052 if (perf_hpp_list.parent && !*parent &&
2053 symbol__match_regex(al.sym, &parent_regex))
2054 *parent = al.sym;
2055 else if (have_ignore_callees && root_al &&
2056 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2057 /* Treat this symbol as the root,
2058 forgetting its callees. */
2059 *root_al = al;
2060 callchain_cursor_reset(cursor);
2061 }
2062 }
2063
2064 if (symbol_conf.hide_unresolved && al.sym == NULL)
2065 return 0;
2066
2067 if (iter) {
2068 nr_loop_iter = iter->nr_loop_iter;
2069 iter_cycles = iter->cycles;
2070 }
2071
2072 ms.maps = al.maps;
2073 ms.map = al.map;
2074 ms.sym = al.sym;
2075 srcline = callchain_srcline(&ms, al.addr);
2076 return callchain_cursor_append(cursor, ip, &ms,
2077 branch, flags, nr_loop_iter,
2078 iter_cycles, branch_from, srcline);
2079 }
2080
2081 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2082 struct addr_location *al)
2083 {
2084 unsigned int i;
2085 const struct branch_stack *bs = sample->branch_stack;
2086 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2087
2088 if (!bi)
2089 return NULL;
2090
2091 for (i = 0; i < bs->nr; i++) {
2092 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2093 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2094 bi[i].flags = bs->entries[i].flags;
2095 }
2096 return bi;
2097 }
2098
2099 static void save_iterations(struct iterations *iter,
2100 struct branch_entry *be, int nr)
2101 {
2102 int i;
2103
2104 iter->nr_loop_iter++;
2105 iter->cycles = 0;
2106
2107 for (i = 0; i < nr; i++)
2108 iter->cycles += be[i].flags.cycles;
2109 }
2110
2111 #define CHASHSZ 127
2112 #define CHASHBITS 7
2113 #define NO_ENTRY 0xff
2114
2115 #define PERF_MAX_BRANCH_DEPTH 127
2116
2117 /* Remove loops. */
2118 static int remove_loops(struct branch_entry *l, int nr,
2119 struct iterations *iter)
2120 {
2121 int i, j, off;
2122 unsigned char chash[CHASHSZ];
2123
2124 memset(chash, NO_ENTRY, sizeof(chash));
2125
2126 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2127
2128 for (i = 0; i < nr; i++) {
2129 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2130
2131 /* no collision handling for now */
2132 if (chash[h] == NO_ENTRY) {
2133 chash[h] = i;
2134 } else if (l[chash[h]].from == l[i].from) {
2135 bool is_loop = true;
2136 /* check if it is a real loop */
2137 off = 0;
2138 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2139 if (l[j].from != l[i + off].from) {
2140 is_loop = false;
2141 break;
2142 }
2143 if (is_loop) {
2144 j = nr - (i + off);
2145 if (j > 0) {
2146 save_iterations(iter + i + off,
2147 l + i, off);
2148
2149 memmove(iter + i, iter + i + off,
2150 j * sizeof(*iter));
2151
2152 memmove(l + i, l + i + off,
2153 j * sizeof(*l));
2154 }
2155
2156 nr -= off;
2157 }
2158 }
2159 }
2160 return nr;
2161 }
2162
2163 /*
2164 * Recolve LBR callstack chain sample
2165 * Return:
2166 * 1 on success get LBR callchain information
2167 * 0 no available LBR callchain information, should try fp
2168 * negative error code on other errors.
2169 */
2170 static int resolve_lbr_callchain_sample(struct thread *thread,
2171 struct callchain_cursor *cursor,
2172 struct perf_sample *sample,
2173 struct symbol **parent,
2174 struct addr_location *root_al,
2175 int max_stack)
2176 {
2177 struct ip_callchain *chain = sample->callchain;
2178 int chain_nr = min(max_stack, (int)chain->nr), i;
2179 u8 cpumode = PERF_RECORD_MISC_USER;
2180 u64 ip, branch_from = 0;
2181
2182 for (i = 0; i < chain_nr; i++) {
2183 if (chain->ips[i] == PERF_CONTEXT_USER)
2184 break;
2185 }
2186
2187 /* LBR only affects the user callchain */
2188 if (i != chain_nr) {
2189 struct branch_stack *lbr_stack = sample->branch_stack;
2190 int lbr_nr = lbr_stack->nr, j, k;
2191 bool branch;
2192 struct branch_flags *flags;
2193 /*
2194 * LBR callstack can only get user call chain.
2195 * The mix_chain_nr is kernel call chain
2196 * number plus LBR user call chain number.
2197 * i is kernel call chain number,
2198 * 1 is PERF_CONTEXT_USER,
2199 * lbr_nr + 1 is the user call chain number.
2200 * For details, please refer to the comments
2201 * in callchain__printf
2202 */
2203 int mix_chain_nr = i + 1 + lbr_nr + 1;
2204
2205 for (j = 0; j < mix_chain_nr; j++) {
2206 int err;
2207 branch = false;
2208 flags = NULL;
2209
2210 if (callchain_param.order == ORDER_CALLEE) {
2211 if (j < i + 1)
2212 ip = chain->ips[j];
2213 else if (j > i + 1) {
2214 k = j - i - 2;
2215 ip = lbr_stack->entries[k].from;
2216 branch = true;
2217 flags = &lbr_stack->entries[k].flags;
2218 } else {
2219 ip = lbr_stack->entries[0].to;
2220 branch = true;
2221 flags = &lbr_stack->entries[0].flags;
2222 branch_from =
2223 lbr_stack->entries[0].from;
2224 }
2225 } else {
2226 if (j < lbr_nr) {
2227 k = lbr_nr - j - 1;
2228 ip = lbr_stack->entries[k].from;
2229 branch = true;
2230 flags = &lbr_stack->entries[k].flags;
2231 }
2232 else if (j > lbr_nr)
2233 ip = chain->ips[i + 1 - (j - lbr_nr)];
2234 else {
2235 ip = lbr_stack->entries[0].to;
2236 branch = true;
2237 flags = &lbr_stack->entries[0].flags;
2238 branch_from =
2239 lbr_stack->entries[0].from;
2240 }
2241 }
2242
2243 err = add_callchain_ip(thread, cursor, parent,
2244 root_al, &cpumode, ip,
2245 branch, flags, NULL,
2246 branch_from);
2247 if (err)
2248 return (err < 0) ? err : 0;
2249 }
2250 return 1;
2251 }
2252
2253 return 0;
2254 }
2255
2256 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2257 struct callchain_cursor *cursor,
2258 struct symbol **parent,
2259 struct addr_location *root_al,
2260 u8 *cpumode, int ent)
2261 {
2262 int err = 0;
2263
2264 while (--ent >= 0) {
2265 u64 ip = chain->ips[ent];
2266
2267 if (ip >= PERF_CONTEXT_MAX) {
2268 err = add_callchain_ip(thread, cursor, parent,
2269 root_al, cpumode, ip,
2270 false, NULL, NULL, 0);
2271 break;
2272 }
2273 }
2274 return err;
2275 }
2276
2277 static int thread__resolve_callchain_sample(struct thread *thread,
2278 struct callchain_cursor *cursor,
2279 struct evsel *evsel,
2280 struct perf_sample *sample,
2281 struct symbol **parent,
2282 struct addr_location *root_al,
2283 int max_stack)
2284 {
2285 struct branch_stack *branch = sample->branch_stack;
2286 struct ip_callchain *chain = sample->callchain;
2287 int chain_nr = 0;
2288 u8 cpumode = PERF_RECORD_MISC_USER;
2289 int i, j, err, nr_entries;
2290 int skip_idx = -1;
2291 int first_call = 0;
2292
2293 if (chain)
2294 chain_nr = chain->nr;
2295
2296 if (perf_evsel__has_branch_callstack(evsel)) {
2297 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2298 root_al, max_stack);
2299 if (err)
2300 return (err < 0) ? err : 0;
2301 }
2302
2303 /*
2304 * Based on DWARF debug information, some architectures skip
2305 * a callchain entry saved by the kernel.
2306 */
2307 skip_idx = arch_skip_callchain_idx(thread, chain);
2308
2309 /*
2310 * Add branches to call stack for easier browsing. This gives
2311 * more context for a sample than just the callers.
2312 *
2313 * This uses individual histograms of paths compared to the
2314 * aggregated histograms the normal LBR mode uses.
2315 *
2316 * Limitations for now:
2317 * - No extra filters
2318 * - No annotations (should annotate somehow)
2319 */
2320
2321 if (branch && callchain_param.branch_callstack) {
2322 int nr = min(max_stack, (int)branch->nr);
2323 struct branch_entry be[nr];
2324 struct iterations iter[nr];
2325
2326 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2327 pr_warning("corrupted branch chain. skipping...\n");
2328 goto check_calls;
2329 }
2330
2331 for (i = 0; i < nr; i++) {
2332 if (callchain_param.order == ORDER_CALLEE) {
2333 be[i] = branch->entries[i];
2334
2335 if (chain == NULL)
2336 continue;
2337
2338 /*
2339 * Check for overlap into the callchain.
2340 * The return address is one off compared to
2341 * the branch entry. To adjust for this
2342 * assume the calling instruction is not longer
2343 * than 8 bytes.
2344 */
2345 if (i == skip_idx ||
2346 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2347 first_call++;
2348 else if (be[i].from < chain->ips[first_call] &&
2349 be[i].from >= chain->ips[first_call] - 8)
2350 first_call++;
2351 } else
2352 be[i] = branch->entries[branch->nr - i - 1];
2353 }
2354
2355 memset(iter, 0, sizeof(struct iterations) * nr);
2356 nr = remove_loops(be, nr, iter);
2357
2358 for (i = 0; i < nr; i++) {
2359 err = add_callchain_ip(thread, cursor, parent,
2360 root_al,
2361 NULL, be[i].to,
2362 true, &be[i].flags,
2363 NULL, be[i].from);
2364
2365 if (!err)
2366 err = add_callchain_ip(thread, cursor, parent, root_al,
2367 NULL, be[i].from,
2368 true, &be[i].flags,
2369 &iter[i], 0);
2370 if (err == -EINVAL)
2371 break;
2372 if (err)
2373 return err;
2374 }
2375
2376 if (chain_nr == 0)
2377 return 0;
2378
2379 chain_nr -= nr;
2380 }
2381
2382 check_calls:
2383 if (chain && callchain_param.order != ORDER_CALLEE) {
2384 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2385 &cpumode, chain->nr - first_call);
2386 if (err)
2387 return (err < 0) ? err : 0;
2388 }
2389 for (i = first_call, nr_entries = 0;
2390 i < chain_nr && nr_entries < max_stack; i++) {
2391 u64 ip;
2392
2393 if (callchain_param.order == ORDER_CALLEE)
2394 j = i;
2395 else
2396 j = chain->nr - i - 1;
2397
2398 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2399 if (j == skip_idx)
2400 continue;
2401 #endif
2402 ip = chain->ips[j];
2403 if (ip < PERF_CONTEXT_MAX)
2404 ++nr_entries;
2405 else if (callchain_param.order != ORDER_CALLEE) {
2406 err = find_prev_cpumode(chain, thread, cursor, parent,
2407 root_al, &cpumode, j);
2408 if (err)
2409 return (err < 0) ? err : 0;
2410 continue;
2411 }
2412
2413 err = add_callchain_ip(thread, cursor, parent,
2414 root_al, &cpumode, ip,
2415 false, NULL, NULL, 0);
2416
2417 if (err)
2418 return (err < 0) ? err : 0;
2419 }
2420
2421 return 0;
2422 }
2423
2424 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2425 {
2426 struct symbol *sym = ms->sym;
2427 struct map *map = ms->map;
2428 struct inline_node *inline_node;
2429 struct inline_list *ilist;
2430 u64 addr;
2431 int ret = 1;
2432
2433 if (!symbol_conf.inline_name || !map || !sym)
2434 return ret;
2435
2436 addr = map__map_ip(map, ip);
2437 addr = map__rip_2objdump(map, addr);
2438
2439 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2440 if (!inline_node) {
2441 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2442 if (!inline_node)
2443 return ret;
2444 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2445 }
2446
2447 list_for_each_entry(ilist, &inline_node->val, list) {
2448 struct map_symbol ilist_ms = {
2449 .map = map,
2450 .sym = ilist->symbol,
2451 };
2452 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2453 NULL, 0, 0, 0, ilist->srcline);
2454
2455 if (ret != 0)
2456 return ret;
2457 }
2458
2459 return ret;
2460 }
2461
2462 static int unwind_entry(struct unwind_entry *entry, void *arg)
2463 {
2464 struct callchain_cursor *cursor = arg;
2465 const char *srcline = NULL;
2466 u64 addr = entry->ip;
2467
2468 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2469 return 0;
2470
2471 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2472 return 0;
2473
2474 /*
2475 * Convert entry->ip from a virtual address to an offset in
2476 * its corresponding binary.
2477 */
2478 if (entry->ms.map)
2479 addr = map__map_ip(entry->ms.map, entry->ip);
2480
2481 srcline = callchain_srcline(&entry->ms, addr);
2482 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2483 false, NULL, 0, 0, 0, srcline);
2484 }
2485
2486 static int thread__resolve_callchain_unwind(struct thread *thread,
2487 struct callchain_cursor *cursor,
2488 struct evsel *evsel,
2489 struct perf_sample *sample,
2490 int max_stack)
2491 {
2492 /* Can we do dwarf post unwind? */
2493 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2494 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2495 return 0;
2496
2497 /* Bail out if nothing was captured. */
2498 if ((!sample->user_regs.regs) ||
2499 (!sample->user_stack.size))
2500 return 0;
2501
2502 return unwind__get_entries(unwind_entry, cursor,
2503 thread, sample, max_stack);
2504 }
2505
2506 int thread__resolve_callchain(struct thread *thread,
2507 struct callchain_cursor *cursor,
2508 struct evsel *evsel,
2509 struct perf_sample *sample,
2510 struct symbol **parent,
2511 struct addr_location *root_al,
2512 int max_stack)
2513 {
2514 int ret = 0;
2515
2516 callchain_cursor_reset(cursor);
2517
2518 if (callchain_param.order == ORDER_CALLEE) {
2519 ret = thread__resolve_callchain_sample(thread, cursor,
2520 evsel, sample,
2521 parent, root_al,
2522 max_stack);
2523 if (ret)
2524 return ret;
2525 ret = thread__resolve_callchain_unwind(thread, cursor,
2526 evsel, sample,
2527 max_stack);
2528 } else {
2529 ret = thread__resolve_callchain_unwind(thread, cursor,
2530 evsel, sample,
2531 max_stack);
2532 if (ret)
2533 return ret;
2534 ret = thread__resolve_callchain_sample(thread, cursor,
2535 evsel, sample,
2536 parent, root_al,
2537 max_stack);
2538 }
2539
2540 return ret;
2541 }
2542
2543 int machine__for_each_thread(struct machine *machine,
2544 int (*fn)(struct thread *thread, void *p),
2545 void *priv)
2546 {
2547 struct threads *threads;
2548 struct rb_node *nd;
2549 struct thread *thread;
2550 int rc = 0;
2551 int i;
2552
2553 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2554 threads = &machine->threads[i];
2555 for (nd = rb_first_cached(&threads->entries); nd;
2556 nd = rb_next(nd)) {
2557 thread = rb_entry(nd, struct thread, rb_node);
2558 rc = fn(thread, priv);
2559 if (rc != 0)
2560 return rc;
2561 }
2562
2563 list_for_each_entry(thread, &threads->dead, node) {
2564 rc = fn(thread, priv);
2565 if (rc != 0)
2566 return rc;
2567 }
2568 }
2569 return rc;
2570 }
2571
2572 int machines__for_each_thread(struct machines *machines,
2573 int (*fn)(struct thread *thread, void *p),
2574 void *priv)
2575 {
2576 struct rb_node *nd;
2577 int rc = 0;
2578
2579 rc = machine__for_each_thread(&machines->host, fn, priv);
2580 if (rc != 0)
2581 return rc;
2582
2583 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2584 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2585
2586 rc = machine__for_each_thread(machine, fn, priv);
2587 if (rc != 0)
2588 return rc;
2589 }
2590 return rc;
2591 }
2592
2593 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2594 {
2595 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2596
2597 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2598 return -1;
2599
2600 return machine->current_tid[cpu];
2601 }
2602
2603 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2604 pid_t tid)
2605 {
2606 struct thread *thread;
2607 int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2608
2609 if (cpu < 0)
2610 return -EINVAL;
2611
2612 if (!machine->current_tid) {
2613 int i;
2614
2615 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2616 if (!machine->current_tid)
2617 return -ENOMEM;
2618 for (i = 0; i < nr_cpus; i++)
2619 machine->current_tid[i] = -1;
2620 }
2621
2622 if (cpu >= nr_cpus) {
2623 pr_err("Requested CPU %d too large. ", cpu);
2624 pr_err("Consider raising MAX_NR_CPUS\n");
2625 return -EINVAL;
2626 }
2627
2628 machine->current_tid[cpu] = tid;
2629
2630 thread = machine__findnew_thread(machine, pid, tid);
2631 if (!thread)
2632 return -ENOMEM;
2633
2634 thread->cpu = cpu;
2635 thread__put(thread);
2636
2637 return 0;
2638 }
2639
2640 /*
2641 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2642 * normalized arch is needed.
2643 */
2644 bool machine__is(struct machine *machine, const char *arch)
2645 {
2646 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2647 }
2648
2649 int machine__nr_cpus_avail(struct machine *machine)
2650 {
2651 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2652 }
2653
2654 int machine__get_kernel_start(struct machine *machine)
2655 {
2656 struct map *map = machine__kernel_map(machine);
2657 int err = 0;
2658
2659 /*
2660 * The only addresses above 2^63 are kernel addresses of a 64-bit
2661 * kernel. Note that addresses are unsigned so that on a 32-bit system
2662 * all addresses including kernel addresses are less than 2^32. In
2663 * that case (32-bit system), if the kernel mapping is unknown, all
2664 * addresses will be assumed to be in user space - see
2665 * machine__kernel_ip().
2666 */
2667 machine->kernel_start = 1ULL << 63;
2668 if (map) {
2669 err = map__load(map);
2670 /*
2671 * On x86_64, PTI entry trampolines are less than the
2672 * start of kernel text, but still above 2^63. So leave
2673 * kernel_start = 1ULL << 63 for x86_64.
2674 */
2675 if (!err && !machine__is(machine, "x86_64"))
2676 machine->kernel_start = map->start;
2677 }
2678 return err;
2679 }
2680
2681 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2682 {
2683 u8 addr_cpumode = cpumode;
2684 bool kernel_ip;
2685
2686 if (!machine->single_address_space)
2687 goto out;
2688
2689 kernel_ip = machine__kernel_ip(machine, addr);
2690 switch (cpumode) {
2691 case PERF_RECORD_MISC_KERNEL:
2692 case PERF_RECORD_MISC_USER:
2693 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2694 PERF_RECORD_MISC_USER;
2695 break;
2696 case PERF_RECORD_MISC_GUEST_KERNEL:
2697 case PERF_RECORD_MISC_GUEST_USER:
2698 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2699 PERF_RECORD_MISC_GUEST_USER;
2700 break;
2701 default:
2702 break;
2703 }
2704 out:
2705 return addr_cpumode;
2706 }
2707
2708 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
2709 {
2710 return dsos__findnew_id(&machine->dsos, filename, id);
2711 }
2712
2713 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2714 {
2715 return machine__findnew_dso_id(machine, filename, NULL);
2716 }
2717
2718 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2719 {
2720 struct machine *machine = vmachine;
2721 struct map *map;
2722 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2723
2724 if (sym == NULL)
2725 return NULL;
2726
2727 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2728 *addrp = map->unmap_ip(map, sym->start);
2729 return sym->name;
2730 }