]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - tools/testing/radix-tree/multiorder.c
radix tree test suite: check multiorder iteration
[mirror_ubuntu-bionic-kernel.git] / tools / testing / radix-tree / multiorder.c
1 /*
2 * multiorder.c: Multi-order radix tree entry testing
3 * Copyright (c) 2016 Intel Corporation
4 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16 #include <linux/radix-tree.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19
20 #include "test.h"
21
22 #define for_each_index(i, base, order) \
23 for (i = base; i < base + (1 << order); i++)
24
25 static void __multiorder_tag_test(int index, int order)
26 {
27 RADIX_TREE(tree, GFP_KERNEL);
28 int base, err, i;
29
30 /* our canonical entry */
31 base = index & ~((1 << order) - 1);
32
33 printf("Multiorder tag test with index %d, canonical entry %d\n",
34 index, base);
35
36 err = item_insert_order(&tree, index, order);
37 assert(!err);
38
39 /*
40 * Verify we get collisions for covered indices. We try and fail to
41 * insert an exceptional entry so we don't leak memory via
42 * item_insert_order().
43 */
44 for_each_index(i, base, order) {
45 err = __radix_tree_insert(&tree, i, order,
46 (void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
47 assert(err == -EEXIST);
48 }
49
50 for_each_index(i, base, order) {
51 assert(!radix_tree_tag_get(&tree, i, 0));
52 assert(!radix_tree_tag_get(&tree, i, 1));
53 }
54
55 assert(radix_tree_tag_set(&tree, index, 0));
56
57 for_each_index(i, base, order) {
58 assert(radix_tree_tag_get(&tree, i, 0));
59 assert(!radix_tree_tag_get(&tree, i, 1));
60 }
61
62 assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
63 assert(radix_tree_tag_clear(&tree, index, 0));
64
65 for_each_index(i, base, order) {
66 assert(!radix_tree_tag_get(&tree, i, 0));
67 assert(radix_tree_tag_get(&tree, i, 1));
68 }
69
70 assert(radix_tree_tag_clear(&tree, index, 1));
71
72 assert(!radix_tree_tagged(&tree, 0));
73 assert(!radix_tree_tagged(&tree, 1));
74
75 item_kill_tree(&tree);
76 }
77
78 static void __multiorder_tag_test2(unsigned order, unsigned long index2)
79 {
80 RADIX_TREE(tree, GFP_KERNEL);
81 unsigned long index = (1 << order);
82 index2 += index;
83
84 assert(item_insert_order(&tree, 0, order) == 0);
85 assert(item_insert(&tree, index2) == 0);
86
87 assert(radix_tree_tag_set(&tree, 0, 0));
88 assert(radix_tree_tag_set(&tree, index2, 0));
89
90 assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2);
91
92 item_kill_tree(&tree);
93 }
94
95 static void multiorder_tag_tests(void)
96 {
97 int i, j;
98
99 /* test multi-order entry for indices 0-7 with no sibling pointers */
100 __multiorder_tag_test(0, 3);
101 __multiorder_tag_test(5, 3);
102
103 /* test multi-order entry for indices 8-15 with no sibling pointers */
104 __multiorder_tag_test(8, 3);
105 __multiorder_tag_test(15, 3);
106
107 /*
108 * Our order 5 entry covers indices 0-31 in a tree with height=2.
109 * This is broken up as follows:
110 * 0-7: canonical entry
111 * 8-15: sibling 1
112 * 16-23: sibling 2
113 * 24-31: sibling 3
114 */
115 __multiorder_tag_test(0, 5);
116 __multiorder_tag_test(29, 5);
117
118 /* same test, but with indices 32-63 */
119 __multiorder_tag_test(32, 5);
120 __multiorder_tag_test(44, 5);
121
122 /*
123 * Our order 8 entry covers indices 0-255 in a tree with height=3.
124 * This is broken up as follows:
125 * 0-63: canonical entry
126 * 64-127: sibling 1
127 * 128-191: sibling 2
128 * 192-255: sibling 3
129 */
130 __multiorder_tag_test(0, 8);
131 __multiorder_tag_test(190, 8);
132
133 /* same test, but with indices 256-511 */
134 __multiorder_tag_test(256, 8);
135 __multiorder_tag_test(300, 8);
136
137 __multiorder_tag_test(0x12345678UL, 8);
138
139 for (i = 1; i < 10; i++)
140 for (j = 0; j < (10 << i); j++)
141 __multiorder_tag_test2(i, j);
142 }
143
144 static void multiorder_check(unsigned long index, int order)
145 {
146 unsigned long i;
147 unsigned long min = index & ~((1UL << order) - 1);
148 unsigned long max = min + (1UL << order);
149 void **slot;
150 struct item *item2 = item_create(min, order);
151 RADIX_TREE(tree, GFP_KERNEL);
152
153 printf("Multiorder index %ld, order %d\n", index, order);
154
155 assert(item_insert_order(&tree, index, order) == 0);
156
157 for (i = min; i < max; i++) {
158 struct item *item = item_lookup(&tree, i);
159 assert(item != 0);
160 assert(item->index == index);
161 }
162 for (i = 0; i < min; i++)
163 item_check_absent(&tree, i);
164 for (i = max; i < 2*max; i++)
165 item_check_absent(&tree, i);
166 for (i = min; i < max; i++)
167 assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
168
169 slot = radix_tree_lookup_slot(&tree, index);
170 free(*slot);
171 radix_tree_replace_slot(&tree, slot, item2);
172 for (i = min; i < max; i++) {
173 struct item *item = item_lookup(&tree, i);
174 assert(item != 0);
175 assert(item->index == min);
176 }
177
178 assert(item_delete(&tree, min) != 0);
179
180 for (i = 0; i < 2*max; i++)
181 item_check_absent(&tree, i);
182 }
183
184 static void multiorder_shrink(unsigned long index, int order)
185 {
186 unsigned long i;
187 unsigned long max = 1 << order;
188 RADIX_TREE(tree, GFP_KERNEL);
189 struct radix_tree_node *node;
190
191 printf("Multiorder shrink index %ld, order %d\n", index, order);
192
193 assert(item_insert_order(&tree, 0, order) == 0);
194
195 node = tree.rnode;
196
197 assert(item_insert(&tree, index) == 0);
198 assert(node != tree.rnode);
199
200 assert(item_delete(&tree, index) != 0);
201 assert(node == tree.rnode);
202
203 for (i = 0; i < max; i++) {
204 struct item *item = item_lookup(&tree, i);
205 assert(item != 0);
206 assert(item->index == 0);
207 }
208 for (i = max; i < 2*max; i++)
209 item_check_absent(&tree, i);
210
211 if (!item_delete(&tree, 0)) {
212 printf("failed to delete index %ld (order %d)\n", index, order); abort();
213 }
214
215 for (i = 0; i < 2*max; i++)
216 item_check_absent(&tree, i);
217 }
218
219 static void multiorder_insert_bug(void)
220 {
221 RADIX_TREE(tree, GFP_KERNEL);
222
223 item_insert(&tree, 0);
224 radix_tree_tag_set(&tree, 0, 0);
225 item_insert_order(&tree, 3 << 6, 6);
226
227 item_kill_tree(&tree);
228 }
229
230 void multiorder_iteration(void)
231 {
232 RADIX_TREE(tree, GFP_KERNEL);
233 struct radix_tree_iter iter;
234 void **slot;
235 int i, j, err;
236
237 printf("Multiorder iteration test\n");
238
239 #define NUM_ENTRIES 11
240 int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
241 int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
242
243 for (i = 0; i < NUM_ENTRIES; i++) {
244 err = item_insert_order(&tree, index[i], order[i]);
245 assert(!err);
246 }
247
248 for (j = 0; j < 256; j++) {
249 for (i = 0; i < NUM_ENTRIES; i++)
250 if (j <= (index[i] | ((1 << order[i]) - 1)))
251 break;
252
253 radix_tree_for_each_slot(slot, &tree, &iter, j) {
254 int height = order[i] / RADIX_TREE_MAP_SHIFT;
255 int shift = height * RADIX_TREE_MAP_SHIFT;
256 unsigned long mask = (1UL << order[i]) - 1;
257 struct item *item = *slot;
258
259 assert((iter.index | mask) == (index[i] | mask));
260 assert(iter.shift == shift);
261 assert(!radix_tree_is_internal_node(item));
262 assert((item->index | mask) == (index[i] | mask));
263 assert(item->order == order[i]);
264 i++;
265 }
266 }
267
268 item_kill_tree(&tree);
269 }
270
271 void multiorder_tagged_iteration(void)
272 {
273 RADIX_TREE(tree, GFP_KERNEL);
274 struct radix_tree_iter iter;
275 void **slot;
276 int i, j;
277
278 printf("Multiorder tagged iteration test\n");
279
280 #define MT_NUM_ENTRIES 9
281 int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
282 int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
283
284 #define TAG_ENTRIES 7
285 int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
286
287 for (i = 0; i < MT_NUM_ENTRIES; i++)
288 assert(!item_insert_order(&tree, index[i], order[i]));
289
290 assert(!radix_tree_tagged(&tree, 1));
291
292 for (i = 0; i < TAG_ENTRIES; i++)
293 assert(radix_tree_tag_set(&tree, tag_index[i], 1));
294
295 for (j = 0; j < 256; j++) {
296 int k;
297
298 for (i = 0; i < TAG_ENTRIES; i++) {
299 for (k = i; index[k] < tag_index[i]; k++)
300 ;
301 if (j <= (index[k] | ((1 << order[k]) - 1)))
302 break;
303 }
304
305 radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
306 unsigned long mask;
307 struct item *item = *slot;
308 for (k = i; index[k] < tag_index[i]; k++)
309 ;
310 mask = (1UL << order[k]) - 1;
311
312 assert((iter.index | mask) == (tag_index[i] | mask));
313 assert(!radix_tree_is_internal_node(item));
314 assert((item->index | mask) == (tag_index[i] | mask));
315 assert(item->order == order[k]);
316 i++;
317 }
318 }
319
320 assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
321 TAG_ENTRIES);
322
323 for (j = 0; j < 256; j++) {
324 int mask, k;
325
326 for (i = 0; i < TAG_ENTRIES; i++) {
327 for (k = i; index[k] < tag_index[i]; k++)
328 ;
329 if (j <= (index[k] | ((1 << order[k]) - 1)))
330 break;
331 }
332
333 radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
334 struct item *item = *slot;
335 for (k = i; index[k] < tag_index[i]; k++)
336 ;
337 mask = (1 << order[k]) - 1;
338
339 assert((iter.index | mask) == (tag_index[i] | mask));
340 assert(!radix_tree_is_internal_node(item));
341 assert((item->index | mask) == (tag_index[i] | mask));
342 assert(item->order == order[k]);
343 i++;
344 }
345 }
346
347 assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
348 == TAG_ENTRIES);
349 i = 0;
350 radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
351 assert(iter.index == tag_index[i]);
352 i++;
353 }
354
355 item_kill_tree(&tree);
356 }
357
358 static void __multiorder_join(unsigned long index,
359 unsigned order1, unsigned order2)
360 {
361 unsigned long loc;
362 void *item, *item2 = item_create(index + 1, order1);
363 RADIX_TREE(tree, GFP_KERNEL);
364
365 item_insert_order(&tree, index, order2);
366 item = radix_tree_lookup(&tree, index);
367 radix_tree_join(&tree, index + 1, order1, item2);
368 loc = find_item(&tree, item);
369 if (loc == -1)
370 free(item);
371 item = radix_tree_lookup(&tree, index + 1);
372 assert(item == item2);
373 item_kill_tree(&tree);
374 }
375
376 static void __multiorder_join2(unsigned order1, unsigned order2)
377 {
378 RADIX_TREE(tree, GFP_KERNEL);
379 struct radix_tree_node *node;
380 void *item1 = item_create(0, order1);
381 void *item2;
382
383 item_insert_order(&tree, 0, order2);
384 radix_tree_insert(&tree, 1 << order2, (void *)0x12UL);
385 item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
386 assert(item2 == (void *)0x12UL);
387 assert(node->exceptional == 1);
388
389 radix_tree_join(&tree, 0, order1, item1);
390 item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
391 assert(item2 == item1);
392 assert(node->exceptional == 0);
393 item_kill_tree(&tree);
394 }
395
396 static void multiorder_join(void)
397 {
398 int i, j, idx;
399
400 for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
401 for (i = 1; i < 15; i++) {
402 for (j = 0; j < i; j++) {
403 __multiorder_join(idx, i, j);
404 }
405 }
406 }
407
408 for (i = 1; i < 15; i++) {
409 for (j = 0; j < i; j++) {
410 __multiorder_join2(i, j);
411 }
412 }
413 }
414
415 static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc)
416 {
417 struct radix_tree_preload *rtp = &radix_tree_preloads;
418 if (rtp->nr != 0)
419 printf("split(%u %u) remaining %u\n", old_order, new_order,
420 rtp->nr);
421 /*
422 * Can't check for equality here as some nodes may have been
423 * RCU-freed while we ran. But we should never finish with more
424 * nodes allocated since they should have all been preloaded.
425 */
426 if (nr_allocated > alloc)
427 printf("split(%u %u) allocated %u %u\n", old_order, new_order,
428 alloc, nr_allocated);
429 }
430
431 static void __multiorder_split(int old_order, int new_order)
432 {
433 RADIX_TREE(tree, GFP_ATOMIC);
434 void **slot;
435 struct radix_tree_iter iter;
436 unsigned alloc;
437
438 radix_tree_preload(GFP_KERNEL);
439 assert(item_insert_order(&tree, 0, old_order) == 0);
440 radix_tree_preload_end();
441
442 /* Wipe out the preloaded cache or it'll confuse check_mem() */
443 radix_tree_cpu_dead(0);
444
445 radix_tree_tag_set(&tree, 0, 2);
446
447 radix_tree_split_preload(old_order, new_order, GFP_KERNEL);
448 alloc = nr_allocated;
449 radix_tree_split(&tree, 0, new_order);
450 check_mem(old_order, new_order, alloc);
451 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
452 radix_tree_iter_replace(&tree, &iter, slot,
453 item_create(iter.index, new_order));
454 }
455 radix_tree_preload_end();
456
457 item_kill_tree(&tree);
458 }
459
460 static void __multiorder_split2(int old_order, int new_order)
461 {
462 RADIX_TREE(tree, GFP_KERNEL);
463 void **slot;
464 struct radix_tree_iter iter;
465 struct radix_tree_node *node;
466 void *item;
467
468 __radix_tree_insert(&tree, 0, old_order, (void *)0x12);
469
470 item = __radix_tree_lookup(&tree, 0, &node, NULL);
471 assert(item == (void *)0x12);
472 assert(node->exceptional > 0);
473
474 radix_tree_split(&tree, 0, new_order);
475 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
476 radix_tree_iter_replace(&tree, &iter, slot,
477 item_create(iter.index, new_order));
478 }
479
480 item = __radix_tree_lookup(&tree, 0, &node, NULL);
481 assert(item != (void *)0x12);
482 assert(node->exceptional == 0);
483
484 item_kill_tree(&tree);
485 }
486
487 static void __multiorder_split3(int old_order, int new_order)
488 {
489 RADIX_TREE(tree, GFP_KERNEL);
490 void **slot;
491 struct radix_tree_iter iter;
492 struct radix_tree_node *node;
493 void *item;
494
495 __radix_tree_insert(&tree, 0, old_order, (void *)0x12);
496
497 item = __radix_tree_lookup(&tree, 0, &node, NULL);
498 assert(item == (void *)0x12);
499 assert(node->exceptional > 0);
500
501 radix_tree_split(&tree, 0, new_order);
502 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
503 radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16);
504 }
505
506 item = __radix_tree_lookup(&tree, 0, &node, NULL);
507 assert(item == (void *)0x16);
508 assert(node->exceptional > 0);
509
510 item_kill_tree(&tree);
511
512 __radix_tree_insert(&tree, 0, old_order, (void *)0x12);
513
514 item = __radix_tree_lookup(&tree, 0, &node, NULL);
515 assert(item == (void *)0x12);
516 assert(node->exceptional > 0);
517
518 radix_tree_split(&tree, 0, new_order);
519 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
520 if (iter.index == (1 << new_order))
521 radix_tree_iter_replace(&tree, &iter, slot,
522 (void *)0x16);
523 else
524 radix_tree_iter_replace(&tree, &iter, slot, NULL);
525 }
526
527 item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL);
528 assert(item == (void *)0x16);
529 assert(node->count == node->exceptional);
530 do {
531 node = node->parent;
532 if (!node)
533 break;
534 assert(node->count == 1);
535 assert(node->exceptional == 0);
536 } while (1);
537
538 item_kill_tree(&tree);
539 }
540
541 static void multiorder_split(void)
542 {
543 int i, j;
544
545 for (i = 3; i < 11; i++)
546 for (j = 0; j < i; j++) {
547 __multiorder_split(i, j);
548 __multiorder_split2(i, j);
549 __multiorder_split3(i, j);
550 }
551 }
552
553 static void multiorder_account(void)
554 {
555 RADIX_TREE(tree, GFP_KERNEL);
556 struct radix_tree_node *node;
557 void **slot;
558
559 item_insert_order(&tree, 0, 5);
560
561 __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
562 __radix_tree_lookup(&tree, 0, &node, NULL);
563 assert(node->count == node->exceptional * 2);
564 radix_tree_delete(&tree, 1 << 5);
565 assert(node->exceptional == 0);
566
567 __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
568 __radix_tree_lookup(&tree, 1 << 5, &node, &slot);
569 assert(node->count == node->exceptional * 2);
570 __radix_tree_replace(&tree, node, slot, NULL, NULL, NULL);
571 assert(node->exceptional == 0);
572
573 item_kill_tree(&tree);
574 }
575
576 void multiorder_checks(void)
577 {
578 int i;
579
580 for (i = 0; i < 20; i++) {
581 multiorder_check(200, i);
582 multiorder_check(0, i);
583 multiorder_check((1UL << i) + 1, i);
584 }
585
586 for (i = 0; i < 15; i++)
587 multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
588
589 multiorder_insert_bug();
590 multiorder_tag_tests();
591 multiorder_iteration();
592 multiorder_tagged_iteration();
593 multiorder_join();
594 multiorder_split();
595 multiorder_account();
596
597 radix_tree_cpu_dead(0);
598 }