]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - tools/testing/radix-tree/multiorder.c
9757b8928bd499b7662ad64d8fd1591c1e6e291b
[mirror_ubuntu-bionic-kernel.git] / tools / testing / radix-tree / multiorder.c
1 /*
2 * multiorder.c: Multi-order radix tree entry testing
3 * Copyright (c) 2016 Intel Corporation
4 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16 #include <linux/radix-tree.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19
20 #include "test.h"
21
22 #define for_each_index(i, base, order) \
23 for (i = base; i < base + (1 << order); i++)
24
25 static void __multiorder_tag_test(int index, int order)
26 {
27 RADIX_TREE(tree, GFP_KERNEL);
28 int base, err, i;
29
30 /* our canonical entry */
31 base = index & ~((1 << order) - 1);
32
33 printf("Multiorder tag test with index %d, canonical entry %d\n",
34 index, base);
35
36 err = item_insert_order(&tree, index, order);
37 assert(!err);
38
39 /*
40 * Verify we get collisions for covered indices. We try and fail to
41 * insert an exceptional entry so we don't leak memory via
42 * item_insert_order().
43 */
44 for_each_index(i, base, order) {
45 err = __radix_tree_insert(&tree, i, order,
46 (void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
47 assert(err == -EEXIST);
48 }
49
50 for_each_index(i, base, order) {
51 assert(!radix_tree_tag_get(&tree, i, 0));
52 assert(!radix_tree_tag_get(&tree, i, 1));
53 }
54
55 assert(radix_tree_tag_set(&tree, index, 0));
56
57 for_each_index(i, base, order) {
58 assert(radix_tree_tag_get(&tree, i, 0));
59 assert(!radix_tree_tag_get(&tree, i, 1));
60 }
61
62 assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
63 assert(radix_tree_tag_clear(&tree, index, 0));
64
65 for_each_index(i, base, order) {
66 assert(!radix_tree_tag_get(&tree, i, 0));
67 assert(radix_tree_tag_get(&tree, i, 1));
68 }
69
70 assert(radix_tree_tag_clear(&tree, index, 1));
71
72 assert(!radix_tree_tagged(&tree, 0));
73 assert(!radix_tree_tagged(&tree, 1));
74
75 item_kill_tree(&tree);
76 }
77
78 static void multiorder_tag_tests(void)
79 {
80 /* test multi-order entry for indices 0-7 with no sibling pointers */
81 __multiorder_tag_test(0, 3);
82 __multiorder_tag_test(5, 3);
83
84 /* test multi-order entry for indices 8-15 with no sibling pointers */
85 __multiorder_tag_test(8, 3);
86 __multiorder_tag_test(15, 3);
87
88 /*
89 * Our order 5 entry covers indices 0-31 in a tree with height=2.
90 * This is broken up as follows:
91 * 0-7: canonical entry
92 * 8-15: sibling 1
93 * 16-23: sibling 2
94 * 24-31: sibling 3
95 */
96 __multiorder_tag_test(0, 5);
97 __multiorder_tag_test(29, 5);
98
99 /* same test, but with indices 32-63 */
100 __multiorder_tag_test(32, 5);
101 __multiorder_tag_test(44, 5);
102
103 /*
104 * Our order 8 entry covers indices 0-255 in a tree with height=3.
105 * This is broken up as follows:
106 * 0-63: canonical entry
107 * 64-127: sibling 1
108 * 128-191: sibling 2
109 * 192-255: sibling 3
110 */
111 __multiorder_tag_test(0, 8);
112 __multiorder_tag_test(190, 8);
113
114 /* same test, but with indices 256-511 */
115 __multiorder_tag_test(256, 8);
116 __multiorder_tag_test(300, 8);
117
118 __multiorder_tag_test(0x12345678UL, 8);
119 }
120
121 static void multiorder_check(unsigned long index, int order)
122 {
123 unsigned long i;
124 unsigned long min = index & ~((1UL << order) - 1);
125 unsigned long max = min + (1UL << order);
126 void **slot;
127 struct item *item2 = item_create(min, order);
128 RADIX_TREE(tree, GFP_KERNEL);
129
130 printf("Multiorder index %ld, order %d\n", index, order);
131
132 assert(item_insert_order(&tree, index, order) == 0);
133
134 for (i = min; i < max; i++) {
135 struct item *item = item_lookup(&tree, i);
136 assert(item != 0);
137 assert(item->index == index);
138 }
139 for (i = 0; i < min; i++)
140 item_check_absent(&tree, i);
141 for (i = max; i < 2*max; i++)
142 item_check_absent(&tree, i);
143 for (i = min; i < max; i++)
144 assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
145
146 slot = radix_tree_lookup_slot(&tree, index);
147 free(*slot);
148 radix_tree_replace_slot(&tree, slot, item2);
149 for (i = min; i < max; i++) {
150 struct item *item = item_lookup(&tree, i);
151 assert(item != 0);
152 assert(item->index == min);
153 }
154
155 assert(item_delete(&tree, min) != 0);
156
157 for (i = 0; i < 2*max; i++)
158 item_check_absent(&tree, i);
159 }
160
161 static void multiorder_shrink(unsigned long index, int order)
162 {
163 unsigned long i;
164 unsigned long max = 1 << order;
165 RADIX_TREE(tree, GFP_KERNEL);
166 struct radix_tree_node *node;
167
168 printf("Multiorder shrink index %ld, order %d\n", index, order);
169
170 assert(item_insert_order(&tree, 0, order) == 0);
171
172 node = tree.rnode;
173
174 assert(item_insert(&tree, index) == 0);
175 assert(node != tree.rnode);
176
177 assert(item_delete(&tree, index) != 0);
178 assert(node == tree.rnode);
179
180 for (i = 0; i < max; i++) {
181 struct item *item = item_lookup(&tree, i);
182 assert(item != 0);
183 assert(item->index == 0);
184 }
185 for (i = max; i < 2*max; i++)
186 item_check_absent(&tree, i);
187
188 if (!item_delete(&tree, 0)) {
189 printf("failed to delete index %ld (order %d)\n", index, order); abort();
190 }
191
192 for (i = 0; i < 2*max; i++)
193 item_check_absent(&tree, i);
194 }
195
196 static void multiorder_insert_bug(void)
197 {
198 RADIX_TREE(tree, GFP_KERNEL);
199
200 item_insert(&tree, 0);
201 radix_tree_tag_set(&tree, 0, 0);
202 item_insert_order(&tree, 3 << 6, 6);
203
204 item_kill_tree(&tree);
205 }
206
207 void multiorder_iteration(void)
208 {
209 RADIX_TREE(tree, GFP_KERNEL);
210 struct radix_tree_iter iter;
211 void **slot;
212 int i, j, err;
213
214 printf("Multiorder iteration test\n");
215
216 #define NUM_ENTRIES 11
217 int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
218 int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
219
220 for (i = 0; i < NUM_ENTRIES; i++) {
221 err = item_insert_order(&tree, index[i], order[i]);
222 assert(!err);
223 }
224
225 for (j = 0; j < 256; j++) {
226 for (i = 0; i < NUM_ENTRIES; i++)
227 if (j <= (index[i] | ((1 << order[i]) - 1)))
228 break;
229
230 radix_tree_for_each_slot(slot, &tree, &iter, j) {
231 int height = order[i] / RADIX_TREE_MAP_SHIFT;
232 int shift = height * RADIX_TREE_MAP_SHIFT;
233 unsigned long mask = (1UL << order[i]) - 1;
234 struct item *item = *slot;
235
236 assert((iter.index | mask) == (index[i] | mask));
237 assert(iter.shift == shift);
238 assert(!radix_tree_is_internal_node(item));
239 assert((item->index | mask) == (index[i] | mask));
240 assert(item->order == order[i]);
241 i++;
242 }
243 }
244
245 item_kill_tree(&tree);
246 }
247
248 void multiorder_tagged_iteration(void)
249 {
250 RADIX_TREE(tree, GFP_KERNEL);
251 struct radix_tree_iter iter;
252 void **slot;
253 int i, j;
254
255 printf("Multiorder tagged iteration test\n");
256
257 #define MT_NUM_ENTRIES 9
258 int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
259 int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
260
261 #define TAG_ENTRIES 7
262 int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
263
264 for (i = 0; i < MT_NUM_ENTRIES; i++)
265 assert(!item_insert_order(&tree, index[i], order[i]));
266
267 assert(!radix_tree_tagged(&tree, 1));
268
269 for (i = 0; i < TAG_ENTRIES; i++)
270 assert(radix_tree_tag_set(&tree, tag_index[i], 1));
271
272 for (j = 0; j < 256; j++) {
273 int k;
274
275 for (i = 0; i < TAG_ENTRIES; i++) {
276 for (k = i; index[k] < tag_index[i]; k++)
277 ;
278 if (j <= (index[k] | ((1 << order[k]) - 1)))
279 break;
280 }
281
282 radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
283 unsigned long mask;
284 struct item *item = *slot;
285 for (k = i; index[k] < tag_index[i]; k++)
286 ;
287 mask = (1UL << order[k]) - 1;
288
289 assert((iter.index | mask) == (tag_index[i] | mask));
290 assert(!radix_tree_is_internal_node(item));
291 assert((item->index | mask) == (tag_index[i] | mask));
292 assert(item->order == order[k]);
293 i++;
294 }
295 }
296
297 assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
298 TAG_ENTRIES);
299
300 for (j = 0; j < 256; j++) {
301 int mask, k;
302
303 for (i = 0; i < TAG_ENTRIES; i++) {
304 for (k = i; index[k] < tag_index[i]; k++)
305 ;
306 if (j <= (index[k] | ((1 << order[k]) - 1)))
307 break;
308 }
309
310 radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
311 struct item *item = *slot;
312 for (k = i; index[k] < tag_index[i]; k++)
313 ;
314 mask = (1 << order[k]) - 1;
315
316 assert((iter.index | mask) == (tag_index[i] | mask));
317 assert(!radix_tree_is_internal_node(item));
318 assert((item->index | mask) == (tag_index[i] | mask));
319 assert(item->order == order[k]);
320 i++;
321 }
322 }
323
324 assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
325 == TAG_ENTRIES);
326 i = 0;
327 radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
328 assert(iter.index == tag_index[i]);
329 i++;
330 }
331
332 item_kill_tree(&tree);
333 }
334
335 static void __multiorder_join(unsigned long index,
336 unsigned order1, unsigned order2)
337 {
338 unsigned long loc;
339 void *item, *item2 = item_create(index + 1, order1);
340 RADIX_TREE(tree, GFP_KERNEL);
341
342 item_insert_order(&tree, index, order2);
343 item = radix_tree_lookup(&tree, index);
344 radix_tree_join(&tree, index + 1, order1, item2);
345 loc = find_item(&tree, item);
346 if (loc == -1)
347 free(item);
348 item = radix_tree_lookup(&tree, index + 1);
349 assert(item == item2);
350 item_kill_tree(&tree);
351 }
352
353 static void __multiorder_join2(unsigned order1, unsigned order2)
354 {
355 RADIX_TREE(tree, GFP_KERNEL);
356 struct radix_tree_node *node;
357 void *item1 = item_create(0, order1);
358 void *item2;
359
360 item_insert_order(&tree, 0, order2);
361 radix_tree_insert(&tree, 1 << order2, (void *)0x12UL);
362 item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
363 assert(item2 == (void *)0x12UL);
364 assert(node->exceptional == 1);
365
366 radix_tree_join(&tree, 0, order1, item1);
367 item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
368 assert(item2 == item1);
369 assert(node->exceptional == 0);
370 item_kill_tree(&tree);
371 }
372
373 static void multiorder_join(void)
374 {
375 int i, j, idx;
376
377 for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
378 for (i = 1; i < 15; i++) {
379 for (j = 0; j < i; j++) {
380 __multiorder_join(idx, i, j);
381 }
382 }
383 }
384
385 for (i = 1; i < 15; i++) {
386 for (j = 0; j < i; j++) {
387 __multiorder_join2(i, j);
388 }
389 }
390 }
391
392 static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc)
393 {
394 struct radix_tree_preload *rtp = &radix_tree_preloads;
395 if (rtp->nr != 0)
396 printf("split(%u %u) remaining %u\n", old_order, new_order,
397 rtp->nr);
398 /*
399 * Can't check for equality here as some nodes may have been
400 * RCU-freed while we ran. But we should never finish with more
401 * nodes allocated since they should have all been preloaded.
402 */
403 if (nr_allocated > alloc)
404 printf("split(%u %u) allocated %u %u\n", old_order, new_order,
405 alloc, nr_allocated);
406 }
407
408 static void __multiorder_split(int old_order, int new_order)
409 {
410 RADIX_TREE(tree, GFP_ATOMIC);
411 void **slot;
412 struct radix_tree_iter iter;
413 unsigned alloc;
414
415 radix_tree_preload(GFP_KERNEL);
416 assert(item_insert_order(&tree, 0, old_order) == 0);
417 radix_tree_preload_end();
418
419 /* Wipe out the preloaded cache or it'll confuse check_mem() */
420 radix_tree_cpu_dead(0);
421
422 radix_tree_tag_set(&tree, 0, 2);
423
424 radix_tree_split_preload(old_order, new_order, GFP_KERNEL);
425 alloc = nr_allocated;
426 radix_tree_split(&tree, 0, new_order);
427 check_mem(old_order, new_order, alloc);
428 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
429 radix_tree_iter_replace(&tree, &iter, slot,
430 item_create(iter.index, new_order));
431 }
432 radix_tree_preload_end();
433
434 item_kill_tree(&tree);
435 }
436
437 static void __multiorder_split2(int old_order, int new_order)
438 {
439 RADIX_TREE(tree, GFP_KERNEL);
440 void **slot;
441 struct radix_tree_iter iter;
442 struct radix_tree_node *node;
443 void *item;
444
445 __radix_tree_insert(&tree, 0, old_order, (void *)0x12);
446
447 item = __radix_tree_lookup(&tree, 0, &node, NULL);
448 assert(item == (void *)0x12);
449 assert(node->exceptional > 0);
450
451 radix_tree_split(&tree, 0, new_order);
452 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
453 radix_tree_iter_replace(&tree, &iter, slot,
454 item_create(iter.index, new_order));
455 }
456
457 item = __radix_tree_lookup(&tree, 0, &node, NULL);
458 assert(item != (void *)0x12);
459 assert(node->exceptional == 0);
460
461 item_kill_tree(&tree);
462 }
463
464 static void __multiorder_split3(int old_order, int new_order)
465 {
466 RADIX_TREE(tree, GFP_KERNEL);
467 void **slot;
468 struct radix_tree_iter iter;
469 struct radix_tree_node *node;
470 void *item;
471
472 __radix_tree_insert(&tree, 0, old_order, (void *)0x12);
473
474 item = __radix_tree_lookup(&tree, 0, &node, NULL);
475 assert(item == (void *)0x12);
476 assert(node->exceptional > 0);
477
478 radix_tree_split(&tree, 0, new_order);
479 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
480 radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16);
481 }
482
483 item = __radix_tree_lookup(&tree, 0, &node, NULL);
484 assert(item == (void *)0x16);
485 assert(node->exceptional > 0);
486
487 item_kill_tree(&tree);
488
489 __radix_tree_insert(&tree, 0, old_order, (void *)0x12);
490
491 item = __radix_tree_lookup(&tree, 0, &node, NULL);
492 assert(item == (void *)0x12);
493 assert(node->exceptional > 0);
494
495 radix_tree_split(&tree, 0, new_order);
496 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
497 if (iter.index == (1 << new_order))
498 radix_tree_iter_replace(&tree, &iter, slot,
499 (void *)0x16);
500 else
501 radix_tree_iter_replace(&tree, &iter, slot, NULL);
502 }
503
504 item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL);
505 assert(item == (void *)0x16);
506 assert(node->count == node->exceptional);
507 do {
508 node = node->parent;
509 if (!node)
510 break;
511 assert(node->count == 1);
512 assert(node->exceptional == 0);
513 } while (1);
514
515 item_kill_tree(&tree);
516 }
517
518 static void multiorder_split(void)
519 {
520 int i, j;
521
522 for (i = 3; i < 11; i++)
523 for (j = 0; j < i; j++) {
524 __multiorder_split(i, j);
525 __multiorder_split2(i, j);
526 __multiorder_split3(i, j);
527 }
528 }
529
530 static void multiorder_account(void)
531 {
532 RADIX_TREE(tree, GFP_KERNEL);
533 struct radix_tree_node *node;
534 void **slot;
535
536 item_insert_order(&tree, 0, 5);
537
538 __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
539 __radix_tree_lookup(&tree, 0, &node, NULL);
540 assert(node->count == node->exceptional * 2);
541 radix_tree_delete(&tree, 1 << 5);
542 assert(node->exceptional == 0);
543
544 __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
545 __radix_tree_lookup(&tree, 1 << 5, &node, &slot);
546 assert(node->count == node->exceptional * 2);
547 __radix_tree_replace(&tree, node, slot, NULL, NULL, NULL);
548 assert(node->exceptional == 0);
549
550 item_kill_tree(&tree);
551 }
552
553 void multiorder_checks(void)
554 {
555 int i;
556
557 for (i = 0; i < 20; i++) {
558 multiorder_check(200, i);
559 multiorder_check(0, i);
560 multiorder_check((1UL << i) + 1, i);
561 }
562
563 for (i = 0; i < 15; i++)
564 multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
565
566 multiorder_insert_bug();
567 multiorder_tag_tests();
568 multiorder_iteration();
569 multiorder_tagged_iteration();
570 multiorder_join();
571 multiorder_split();
572 multiorder_account();
573
574 radix_tree_cpu_dead(0);
575 }