]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - tools/testing/radix-tree/multiorder.c
Merge tag 'xfs-for-linus-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-zesty-kernel.git] / tools / testing / radix-tree / multiorder.c
1 /*
2 * multiorder.c: Multi-order radix tree entry testing
3 * Copyright (c) 2016 Intel Corporation
4 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16 #include <linux/radix-tree.h>
17 #include <linux/slab.h>
18 #include <linux/errno.h>
19
20 #include "test.h"
21
22 #define for_each_index(i, base, order) \
23 for (i = base; i < base + (1 << order); i++)
24
25 static void __multiorder_tag_test(int index, int order)
26 {
27 RADIX_TREE(tree, GFP_KERNEL);
28 int base, err, i;
29
30 /* our canonical entry */
31 base = index & ~((1 << order) - 1);
32
33 printf("Multiorder tag test with index %d, canonical entry %d\n",
34 index, base);
35
36 err = item_insert_order(&tree, index, order);
37 assert(!err);
38
39 /*
40 * Verify we get collisions for covered indices. We try and fail to
41 * insert an exceptional entry so we don't leak memory via
42 * item_insert_order().
43 */
44 for_each_index(i, base, order) {
45 err = __radix_tree_insert(&tree, i, order,
46 (void *)(0xA0 | RADIX_TREE_EXCEPTIONAL_ENTRY));
47 assert(err == -EEXIST);
48 }
49
50 for_each_index(i, base, order) {
51 assert(!radix_tree_tag_get(&tree, i, 0));
52 assert(!radix_tree_tag_get(&tree, i, 1));
53 }
54
55 assert(radix_tree_tag_set(&tree, index, 0));
56
57 for_each_index(i, base, order) {
58 assert(radix_tree_tag_get(&tree, i, 0));
59 assert(!radix_tree_tag_get(&tree, i, 1));
60 }
61
62 assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 1);
63 assert(radix_tree_tag_clear(&tree, index, 0));
64
65 for_each_index(i, base, order) {
66 assert(!radix_tree_tag_get(&tree, i, 0));
67 assert(radix_tree_tag_get(&tree, i, 1));
68 }
69
70 assert(radix_tree_tag_clear(&tree, index, 1));
71
72 assert(!radix_tree_tagged(&tree, 0));
73 assert(!radix_tree_tagged(&tree, 1));
74
75 item_kill_tree(&tree);
76 }
77
78 static void __multiorder_tag_test2(unsigned order, unsigned long index2)
79 {
80 RADIX_TREE(tree, GFP_KERNEL);
81 unsigned long index = (1 << order);
82 index2 += index;
83
84 assert(item_insert_order(&tree, 0, order) == 0);
85 assert(item_insert(&tree, index2) == 0);
86
87 assert(radix_tree_tag_set(&tree, 0, 0));
88 assert(radix_tree_tag_set(&tree, index2, 0));
89
90 assert(tag_tagged_items(&tree, NULL, 0, ~0UL, 10, 0, 1) == 2);
91
92 item_kill_tree(&tree);
93 }
94
95 static void multiorder_tag_tests(void)
96 {
97 int i, j;
98
99 /* test multi-order entry for indices 0-7 with no sibling pointers */
100 __multiorder_tag_test(0, 3);
101 __multiorder_tag_test(5, 3);
102
103 /* test multi-order entry for indices 8-15 with no sibling pointers */
104 __multiorder_tag_test(8, 3);
105 __multiorder_tag_test(15, 3);
106
107 /*
108 * Our order 5 entry covers indices 0-31 in a tree with height=2.
109 * This is broken up as follows:
110 * 0-7: canonical entry
111 * 8-15: sibling 1
112 * 16-23: sibling 2
113 * 24-31: sibling 3
114 */
115 __multiorder_tag_test(0, 5);
116 __multiorder_tag_test(29, 5);
117
118 /* same test, but with indices 32-63 */
119 __multiorder_tag_test(32, 5);
120 __multiorder_tag_test(44, 5);
121
122 /*
123 * Our order 8 entry covers indices 0-255 in a tree with height=3.
124 * This is broken up as follows:
125 * 0-63: canonical entry
126 * 64-127: sibling 1
127 * 128-191: sibling 2
128 * 192-255: sibling 3
129 */
130 __multiorder_tag_test(0, 8);
131 __multiorder_tag_test(190, 8);
132
133 /* same test, but with indices 256-511 */
134 __multiorder_tag_test(256, 8);
135 __multiorder_tag_test(300, 8);
136
137 __multiorder_tag_test(0x12345678UL, 8);
138
139 for (i = 1; i < 10; i++)
140 for (j = 0; j < (10 << i); j++)
141 __multiorder_tag_test2(i, j);
142 }
143
144 static void multiorder_check(unsigned long index, int order)
145 {
146 unsigned long i;
147 unsigned long min = index & ~((1UL << order) - 1);
148 unsigned long max = min + (1UL << order);
149 void **slot;
150 struct item *item2 = item_create(min, order);
151 RADIX_TREE(tree, GFP_KERNEL);
152
153 printf("Multiorder index %ld, order %d\n", index, order);
154
155 assert(item_insert_order(&tree, index, order) == 0);
156
157 for (i = min; i < max; i++) {
158 struct item *item = item_lookup(&tree, i);
159 assert(item != 0);
160 assert(item->index == index);
161 }
162 for (i = 0; i < min; i++)
163 item_check_absent(&tree, i);
164 for (i = max; i < 2*max; i++)
165 item_check_absent(&tree, i);
166 for (i = min; i < max; i++)
167 assert(radix_tree_insert(&tree, i, item2) == -EEXIST);
168
169 slot = radix_tree_lookup_slot(&tree, index);
170 free(*slot);
171 radix_tree_replace_slot(&tree, slot, item2);
172 for (i = min; i < max; i++) {
173 struct item *item = item_lookup(&tree, i);
174 assert(item != 0);
175 assert(item->index == min);
176 }
177
178 assert(item_delete(&tree, min) != 0);
179
180 for (i = 0; i < 2*max; i++)
181 item_check_absent(&tree, i);
182 }
183
184 static void multiorder_shrink(unsigned long index, int order)
185 {
186 unsigned long i;
187 unsigned long max = 1 << order;
188 RADIX_TREE(tree, GFP_KERNEL);
189 struct radix_tree_node *node;
190
191 printf("Multiorder shrink index %ld, order %d\n", index, order);
192
193 assert(item_insert_order(&tree, 0, order) == 0);
194
195 node = tree.rnode;
196
197 assert(item_insert(&tree, index) == 0);
198 assert(node != tree.rnode);
199
200 assert(item_delete(&tree, index) != 0);
201 assert(node == tree.rnode);
202
203 for (i = 0; i < max; i++) {
204 struct item *item = item_lookup(&tree, i);
205 assert(item != 0);
206 assert(item->index == 0);
207 }
208 for (i = max; i < 2*max; i++)
209 item_check_absent(&tree, i);
210
211 if (!item_delete(&tree, 0)) {
212 printf("failed to delete index %ld (order %d)\n", index, order); abort();
213 }
214
215 for (i = 0; i < 2*max; i++)
216 item_check_absent(&tree, i);
217 }
218
219 static void multiorder_insert_bug(void)
220 {
221 RADIX_TREE(tree, GFP_KERNEL);
222
223 item_insert(&tree, 0);
224 radix_tree_tag_set(&tree, 0, 0);
225 item_insert_order(&tree, 3 << 6, 6);
226
227 item_kill_tree(&tree);
228 }
229
230 void multiorder_iteration(void)
231 {
232 RADIX_TREE(tree, GFP_KERNEL);
233 struct radix_tree_iter iter;
234 void **slot;
235 int i, j, err;
236
237 printf("Multiorder iteration test\n");
238
239 #define NUM_ENTRIES 11
240 int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
241 int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
242
243 for (i = 0; i < NUM_ENTRIES; i++) {
244 err = item_insert_order(&tree, index[i], order[i]);
245 assert(!err);
246 }
247
248 for (j = 0; j < 256; j++) {
249 for (i = 0; i < NUM_ENTRIES; i++)
250 if (j <= (index[i] | ((1 << order[i]) - 1)))
251 break;
252
253 radix_tree_for_each_slot(slot, &tree, &iter, j) {
254 int height = order[i] / RADIX_TREE_MAP_SHIFT;
255 int shift = height * RADIX_TREE_MAP_SHIFT;
256 unsigned long mask = (1UL << order[i]) - 1;
257 struct item *item = *slot;
258
259 assert((iter.index | mask) == (index[i] | mask));
260 assert(iter.shift == shift);
261 assert(!radix_tree_is_internal_node(item));
262 assert((item->index | mask) == (index[i] | mask));
263 assert(item->order == order[i]);
264 i++;
265 }
266 }
267
268 item_kill_tree(&tree);
269 }
270
271 void multiorder_tagged_iteration(void)
272 {
273 RADIX_TREE(tree, GFP_KERNEL);
274 struct radix_tree_iter iter;
275 void **slot;
276 int i, j;
277
278 printf("Multiorder tagged iteration test\n");
279
280 #define MT_NUM_ENTRIES 9
281 int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
282 int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
283
284 #define TAG_ENTRIES 7
285 int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
286
287 for (i = 0; i < MT_NUM_ENTRIES; i++)
288 assert(!item_insert_order(&tree, index[i], order[i]));
289
290 assert(!radix_tree_tagged(&tree, 1));
291
292 for (i = 0; i < TAG_ENTRIES; i++)
293 assert(radix_tree_tag_set(&tree, tag_index[i], 1));
294
295 for (j = 0; j < 256; j++) {
296 int k;
297
298 for (i = 0; i < TAG_ENTRIES; i++) {
299 for (k = i; index[k] < tag_index[i]; k++)
300 ;
301 if (j <= (index[k] | ((1 << order[k]) - 1)))
302 break;
303 }
304
305 radix_tree_for_each_tagged(slot, &tree, &iter, j, 1) {
306 unsigned long mask;
307 struct item *item = *slot;
308 for (k = i; index[k] < tag_index[i]; k++)
309 ;
310 mask = (1UL << order[k]) - 1;
311
312 assert((iter.index | mask) == (tag_index[i] | mask));
313 assert(!radix_tree_is_internal_node(item));
314 assert((item->index | mask) == (tag_index[i] | mask));
315 assert(item->order == order[k]);
316 i++;
317 }
318 }
319
320 assert(tag_tagged_items(&tree, NULL, 0, ~0UL, TAG_ENTRIES, 1, 2) ==
321 TAG_ENTRIES);
322
323 for (j = 0; j < 256; j++) {
324 int mask, k;
325
326 for (i = 0; i < TAG_ENTRIES; i++) {
327 for (k = i; index[k] < tag_index[i]; k++)
328 ;
329 if (j <= (index[k] | ((1 << order[k]) - 1)))
330 break;
331 }
332
333 radix_tree_for_each_tagged(slot, &tree, &iter, j, 2) {
334 struct item *item = *slot;
335 for (k = i; index[k] < tag_index[i]; k++)
336 ;
337 mask = (1 << order[k]) - 1;
338
339 assert((iter.index | mask) == (tag_index[i] | mask));
340 assert(!radix_tree_is_internal_node(item));
341 assert((item->index | mask) == (tag_index[i] | mask));
342 assert(item->order == order[k]);
343 i++;
344 }
345 }
346
347 assert(tag_tagged_items(&tree, NULL, 1, ~0UL, MT_NUM_ENTRIES * 2, 1, 0)
348 == TAG_ENTRIES);
349 i = 0;
350 radix_tree_for_each_tagged(slot, &tree, &iter, 0, 0) {
351 assert(iter.index == tag_index[i]);
352 i++;
353 }
354
355 item_kill_tree(&tree);
356 }
357
358 static void multiorder_join1(unsigned long index,
359 unsigned order1, unsigned order2)
360 {
361 unsigned long loc;
362 void *item, *item2 = item_create(index + 1, order1);
363 RADIX_TREE(tree, GFP_KERNEL);
364
365 item_insert_order(&tree, index, order2);
366 item = radix_tree_lookup(&tree, index);
367 radix_tree_join(&tree, index + 1, order1, item2);
368 loc = find_item(&tree, item);
369 if (loc == -1)
370 free(item);
371 item = radix_tree_lookup(&tree, index + 1);
372 assert(item == item2);
373 item_kill_tree(&tree);
374 }
375
376 static void multiorder_join2(unsigned order1, unsigned order2)
377 {
378 RADIX_TREE(tree, GFP_KERNEL);
379 struct radix_tree_node *node;
380 void *item1 = item_create(0, order1);
381 void *item2;
382
383 item_insert_order(&tree, 0, order2);
384 radix_tree_insert(&tree, 1 << order2, (void *)0x12UL);
385 item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
386 assert(item2 == (void *)0x12UL);
387 assert(node->exceptional == 1);
388
389 radix_tree_join(&tree, 0, order1, item1);
390 item2 = __radix_tree_lookup(&tree, 1 << order2, &node, NULL);
391 assert(item2 == item1);
392 assert(node->exceptional == 0);
393 item_kill_tree(&tree);
394 }
395
396 /*
397 * This test revealed an accounting bug for exceptional entries at one point.
398 * Nodes were being freed back into the pool with an elevated exception count
399 * by radix_tree_join() and then radix_tree_split() was failing to zero the
400 * count of exceptional entries.
401 */
402 static void multiorder_join3(unsigned int order)
403 {
404 RADIX_TREE(tree, GFP_KERNEL);
405 struct radix_tree_node *node;
406 void **slot;
407 struct radix_tree_iter iter;
408 unsigned long i;
409
410 for (i = 0; i < (1 << order); i++) {
411 radix_tree_insert(&tree, i, (void *)0x12UL);
412 }
413
414 radix_tree_join(&tree, 0, order, (void *)0x16UL);
415 rcu_barrier();
416
417 radix_tree_split(&tree, 0, 0);
418
419 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
420 radix_tree_iter_replace(&tree, &iter, slot, (void *)0x12UL);
421 }
422
423 __radix_tree_lookup(&tree, 0, &node, NULL);
424 assert(node->exceptional == node->count);
425
426 item_kill_tree(&tree);
427 }
428
429 static void multiorder_join(void)
430 {
431 int i, j, idx;
432
433 for (idx = 0; idx < 1024; idx = idx * 2 + 3) {
434 for (i = 1; i < 15; i++) {
435 for (j = 0; j < i; j++) {
436 multiorder_join1(idx, i, j);
437 }
438 }
439 }
440
441 for (i = 1; i < 15; i++) {
442 for (j = 0; j < i; j++) {
443 multiorder_join2(i, j);
444 }
445 }
446
447 for (i = 3; i < 10; i++) {
448 multiorder_join3(i);
449 }
450 }
451
452 static void check_mem(unsigned old_order, unsigned new_order, unsigned alloc)
453 {
454 struct radix_tree_preload *rtp = &radix_tree_preloads;
455 if (rtp->nr != 0)
456 printf("split(%u %u) remaining %u\n", old_order, new_order,
457 rtp->nr);
458 /*
459 * Can't check for equality here as some nodes may have been
460 * RCU-freed while we ran. But we should never finish with more
461 * nodes allocated since they should have all been preloaded.
462 */
463 if (nr_allocated > alloc)
464 printf("split(%u %u) allocated %u %u\n", old_order, new_order,
465 alloc, nr_allocated);
466 }
467
468 static void __multiorder_split(int old_order, int new_order)
469 {
470 RADIX_TREE(tree, GFP_ATOMIC);
471 void **slot;
472 struct radix_tree_iter iter;
473 unsigned alloc;
474
475 radix_tree_preload(GFP_KERNEL);
476 assert(item_insert_order(&tree, 0, old_order) == 0);
477 radix_tree_preload_end();
478
479 /* Wipe out the preloaded cache or it'll confuse check_mem() */
480 radix_tree_cpu_dead(0);
481
482 radix_tree_tag_set(&tree, 0, 2);
483
484 radix_tree_split_preload(old_order, new_order, GFP_KERNEL);
485 alloc = nr_allocated;
486 radix_tree_split(&tree, 0, new_order);
487 check_mem(old_order, new_order, alloc);
488 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
489 radix_tree_iter_replace(&tree, &iter, slot,
490 item_create(iter.index, new_order));
491 }
492 radix_tree_preload_end();
493
494 item_kill_tree(&tree);
495 }
496
497 static void __multiorder_split2(int old_order, int new_order)
498 {
499 RADIX_TREE(tree, GFP_KERNEL);
500 void **slot;
501 struct radix_tree_iter iter;
502 struct radix_tree_node *node;
503 void *item;
504
505 __radix_tree_insert(&tree, 0, old_order, (void *)0x12);
506
507 item = __radix_tree_lookup(&tree, 0, &node, NULL);
508 assert(item == (void *)0x12);
509 assert(node->exceptional > 0);
510
511 radix_tree_split(&tree, 0, new_order);
512 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
513 radix_tree_iter_replace(&tree, &iter, slot,
514 item_create(iter.index, new_order));
515 }
516
517 item = __radix_tree_lookup(&tree, 0, &node, NULL);
518 assert(item != (void *)0x12);
519 assert(node->exceptional == 0);
520
521 item_kill_tree(&tree);
522 }
523
524 static void __multiorder_split3(int old_order, int new_order)
525 {
526 RADIX_TREE(tree, GFP_KERNEL);
527 void **slot;
528 struct radix_tree_iter iter;
529 struct radix_tree_node *node;
530 void *item;
531
532 __radix_tree_insert(&tree, 0, old_order, (void *)0x12);
533
534 item = __radix_tree_lookup(&tree, 0, &node, NULL);
535 assert(item == (void *)0x12);
536 assert(node->exceptional > 0);
537
538 radix_tree_split(&tree, 0, new_order);
539 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
540 radix_tree_iter_replace(&tree, &iter, slot, (void *)0x16);
541 }
542
543 item = __radix_tree_lookup(&tree, 0, &node, NULL);
544 assert(item == (void *)0x16);
545 assert(node->exceptional > 0);
546
547 item_kill_tree(&tree);
548
549 __radix_tree_insert(&tree, 0, old_order, (void *)0x12);
550
551 item = __radix_tree_lookup(&tree, 0, &node, NULL);
552 assert(item == (void *)0x12);
553 assert(node->exceptional > 0);
554
555 radix_tree_split(&tree, 0, new_order);
556 radix_tree_for_each_slot(slot, &tree, &iter, 0) {
557 if (iter.index == (1 << new_order))
558 radix_tree_iter_replace(&tree, &iter, slot,
559 (void *)0x16);
560 else
561 radix_tree_iter_replace(&tree, &iter, slot, NULL);
562 }
563
564 item = __radix_tree_lookup(&tree, 1 << new_order, &node, NULL);
565 assert(item == (void *)0x16);
566 assert(node->count == node->exceptional);
567 do {
568 node = node->parent;
569 if (!node)
570 break;
571 assert(node->count == 1);
572 assert(node->exceptional == 0);
573 } while (1);
574
575 item_kill_tree(&tree);
576 }
577
578 static void multiorder_split(void)
579 {
580 int i, j;
581
582 for (i = 3; i < 11; i++)
583 for (j = 0; j < i; j++) {
584 __multiorder_split(i, j);
585 __multiorder_split2(i, j);
586 __multiorder_split3(i, j);
587 }
588 }
589
590 static void multiorder_account(void)
591 {
592 RADIX_TREE(tree, GFP_KERNEL);
593 struct radix_tree_node *node;
594 void **slot;
595
596 item_insert_order(&tree, 0, 5);
597
598 __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
599 __radix_tree_lookup(&tree, 0, &node, NULL);
600 assert(node->count == node->exceptional * 2);
601 radix_tree_delete(&tree, 1 << 5);
602 assert(node->exceptional == 0);
603
604 __radix_tree_insert(&tree, 1 << 5, 5, (void *)0x12);
605 __radix_tree_lookup(&tree, 1 << 5, &node, &slot);
606 assert(node->count == node->exceptional * 2);
607 __radix_tree_replace(&tree, node, slot, NULL, NULL, NULL);
608 assert(node->exceptional == 0);
609
610 item_kill_tree(&tree);
611 }
612
613 void multiorder_checks(void)
614 {
615 int i;
616
617 for (i = 0; i < 20; i++) {
618 multiorder_check(200, i);
619 multiorder_check(0, i);
620 multiorder_check((1UL << i) + 1, i);
621 }
622
623 for (i = 0; i < 15; i++)
624 multiorder_shrink((1UL << (i + RADIX_TREE_MAP_SHIFT)), i);
625
626 multiorder_insert_bug();
627 multiorder_tag_tests();
628 multiorder_iteration();
629 multiorder_tagged_iteration();
630 multiorder_join();
631 multiorder_split();
632 multiorder_account();
633
634 radix_tree_cpu_dead(0);
635 }