]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - tools/testing/selftests/bpf/test_verifier.c
timekeeping: Repair ktime_get_coarse*() granularity
[mirror_ubuntu-jammy-kernel.git] / tools / testing / selftests / bpf / test_verifier.c
1 /*
2 * Testsuite for eBPF verifier
3 *
4 * Copyright (c) 2014 PLUMgrid, http://plumgrid.com
5 * Copyright (c) 2017 Facebook
6 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of version 2 of the GNU General Public
10 * License as published by the Free Software Foundation.
11 */
12
13 #include <endian.h>
14 #include <asm/types.h>
15 #include <linux/types.h>
16 #include <stdint.h>
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <unistd.h>
20 #include <errno.h>
21 #include <string.h>
22 #include <stddef.h>
23 #include <stdbool.h>
24 #include <sched.h>
25 #include <limits.h>
26 #include <assert.h>
27
28 #include <sys/capability.h>
29
30 #include <linux/unistd.h>
31 #include <linux/filter.h>
32 #include <linux/bpf_perf_event.h>
33 #include <linux/bpf.h>
34 #include <linux/if_ether.h>
35 #include <linux/btf.h>
36
37 #include <bpf/bpf.h>
38 #include <bpf/libbpf.h>
39
40 #ifdef HAVE_GENHDR
41 # include "autoconf.h"
42 #else
43 # if defined(__i386) || defined(__x86_64) || defined(__s390x__) || defined(__aarch64__)
44 # define CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS 1
45 # endif
46 #endif
47 #include "bpf_rlimit.h"
48 #include "bpf_rand.h"
49 #include "bpf_util.h"
50 #include "test_btf.h"
51 #include "../../../include/linux/filter.h"
52
53 #define MAX_INSNS BPF_MAXINSNS
54 #define MAX_TEST_INSNS 1000000
55 #define MAX_FIXUPS 8
56 #define MAX_NR_MAPS 18
57 #define MAX_TEST_RUNS 8
58 #define POINTER_VALUE 0xcafe4all
59 #define TEST_DATA_LEN 64
60
61 #define F_NEEDS_EFFICIENT_UNALIGNED_ACCESS (1 << 0)
62 #define F_LOAD_WITH_STRICT_ALIGNMENT (1 << 1)
63
64 #define UNPRIV_SYSCTL "kernel/unprivileged_bpf_disabled"
65 static bool unpriv_disabled = false;
66 static int skips;
67
68 struct bpf_test {
69 const char *descr;
70 struct bpf_insn insns[MAX_INSNS];
71 struct bpf_insn *fill_insns;
72 int fixup_map_hash_8b[MAX_FIXUPS];
73 int fixup_map_hash_48b[MAX_FIXUPS];
74 int fixup_map_hash_16b[MAX_FIXUPS];
75 int fixup_map_array_48b[MAX_FIXUPS];
76 int fixup_map_sockmap[MAX_FIXUPS];
77 int fixup_map_sockhash[MAX_FIXUPS];
78 int fixup_map_xskmap[MAX_FIXUPS];
79 int fixup_map_stacktrace[MAX_FIXUPS];
80 int fixup_prog1[MAX_FIXUPS];
81 int fixup_prog2[MAX_FIXUPS];
82 int fixup_map_in_map[MAX_FIXUPS];
83 int fixup_cgroup_storage[MAX_FIXUPS];
84 int fixup_percpu_cgroup_storage[MAX_FIXUPS];
85 int fixup_map_spin_lock[MAX_FIXUPS];
86 int fixup_map_array_ro[MAX_FIXUPS];
87 int fixup_map_array_wo[MAX_FIXUPS];
88 int fixup_map_array_small[MAX_FIXUPS];
89 int fixup_sk_storage_map[MAX_FIXUPS];
90 const char *errstr;
91 const char *errstr_unpriv;
92 uint32_t retval, retval_unpriv, insn_processed;
93 int prog_len;
94 enum {
95 UNDEF,
96 ACCEPT,
97 REJECT
98 } result, result_unpriv;
99 enum bpf_prog_type prog_type;
100 uint8_t flags;
101 __u8 data[TEST_DATA_LEN];
102 void (*fill_helper)(struct bpf_test *self);
103 uint8_t runs;
104 struct {
105 uint32_t retval, retval_unpriv;
106 union {
107 __u8 data[TEST_DATA_LEN];
108 __u64 data64[TEST_DATA_LEN / 8];
109 };
110 } retvals[MAX_TEST_RUNS];
111 };
112
113 /* Note we want this to be 64 bit aligned so that the end of our array is
114 * actually the end of the structure.
115 */
116 #define MAX_ENTRIES 11
117
118 struct test_val {
119 unsigned int index;
120 int foo[MAX_ENTRIES];
121 };
122
123 struct other_val {
124 long long foo;
125 long long bar;
126 };
127
128 static void bpf_fill_ld_abs_vlan_push_pop(struct bpf_test *self)
129 {
130 /* test: {skb->data[0], vlan_push} x 51 + {skb->data[0], vlan_pop} x 51 */
131 #define PUSH_CNT 51
132 /* jump range is limited to 16 bit. PUSH_CNT of ld_abs needs room */
133 unsigned int len = (1 << 15) - PUSH_CNT * 2 * 5 * 6;
134 struct bpf_insn *insn = self->fill_insns;
135 int i = 0, j, k = 0;
136
137 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
138 loop:
139 for (j = 0; j < PUSH_CNT; j++) {
140 insn[i++] = BPF_LD_ABS(BPF_B, 0);
141 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 2);
142 i++;
143 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
144 insn[i++] = BPF_MOV64_IMM(BPF_REG_2, 1);
145 insn[i++] = BPF_MOV64_IMM(BPF_REG_3, 2);
146 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
147 BPF_FUNC_skb_vlan_push),
148 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 2);
149 i++;
150 }
151
152 for (j = 0; j < PUSH_CNT; j++) {
153 insn[i++] = BPF_LD_ABS(BPF_B, 0);
154 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0x34, len - i - 2);
155 i++;
156 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
157 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
158 BPF_FUNC_skb_vlan_pop),
159 insn[i] = BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, len - i - 2);
160 i++;
161 }
162 if (++k < 5)
163 goto loop;
164
165 for (; i < len - 1; i++)
166 insn[i] = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, 0xbef);
167 insn[len - 1] = BPF_EXIT_INSN();
168 self->prog_len = len;
169 }
170
171 static void bpf_fill_jump_around_ld_abs(struct bpf_test *self)
172 {
173 struct bpf_insn *insn = self->fill_insns;
174 /* jump range is limited to 16 bit. every ld_abs is replaced by 6 insns */
175 unsigned int len = (1 << 15) / 6;
176 int i = 0;
177
178 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
179 insn[i++] = BPF_LD_ABS(BPF_B, 0);
180 insn[i] = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 10, len - i - 2);
181 i++;
182 while (i < len - 1)
183 insn[i++] = BPF_LD_ABS(BPF_B, 1);
184 insn[i] = BPF_EXIT_INSN();
185 self->prog_len = i + 1;
186 }
187
188 static void bpf_fill_rand_ld_dw(struct bpf_test *self)
189 {
190 struct bpf_insn *insn = self->fill_insns;
191 uint64_t res = 0;
192 int i = 0;
193
194 insn[i++] = BPF_MOV32_IMM(BPF_REG_0, 0);
195 while (i < self->retval) {
196 uint64_t val = bpf_semi_rand_get();
197 struct bpf_insn tmp[2] = { BPF_LD_IMM64(BPF_REG_1, val) };
198
199 res ^= val;
200 insn[i++] = tmp[0];
201 insn[i++] = tmp[1];
202 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
203 }
204 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_0);
205 insn[i++] = BPF_ALU64_IMM(BPF_RSH, BPF_REG_1, 32);
206 insn[i++] = BPF_ALU64_REG(BPF_XOR, BPF_REG_0, BPF_REG_1);
207 insn[i] = BPF_EXIT_INSN();
208 self->prog_len = i + 1;
209 res ^= (res >> 32);
210 self->retval = (uint32_t)res;
211 }
212
213 /* test the sequence of 1k jumps */
214 static void bpf_fill_scale1(struct bpf_test *self)
215 {
216 struct bpf_insn *insn = self->fill_insns;
217 int i = 0, k = 0;
218
219 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
220 /* test to check that the sequence of 1024 jumps is acceptable */
221 while (k++ < 1024) {
222 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
223 BPF_FUNC_get_prandom_u32);
224 insn[i++] = BPF_JMP_IMM(BPF_JGT, BPF_REG_0, bpf_semi_rand_get(), 2);
225 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
226 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
227 -8 * (k % 64 + 1));
228 }
229 /* every jump adds 1024 steps to insn_processed, so to stay exactly
230 * within 1m limit add MAX_TEST_INSNS - 1025 MOVs and 1 EXIT
231 */
232 while (i < MAX_TEST_INSNS - 1025)
233 insn[i++] = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, 42);
234 insn[i] = BPF_EXIT_INSN();
235 self->prog_len = i + 1;
236 self->retval = 42;
237 }
238
239 /* test the sequence of 1k jumps in inner most function (function depth 8)*/
240 static void bpf_fill_scale2(struct bpf_test *self)
241 {
242 struct bpf_insn *insn = self->fill_insns;
243 int i = 0, k = 0;
244
245 #define FUNC_NEST 7
246 for (k = 0; k < FUNC_NEST; k++) {
247 insn[i++] = BPF_CALL_REL(1);
248 insn[i++] = BPF_EXIT_INSN();
249 }
250 insn[i++] = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
251 /* test to check that the sequence of 1024 jumps is acceptable */
252 while (k++ < 1024) {
253 insn[i++] = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
254 BPF_FUNC_get_prandom_u32);
255 insn[i++] = BPF_JMP_IMM(BPF_JGT, BPF_REG_0, bpf_semi_rand_get(), 2);
256 insn[i++] = BPF_MOV64_REG(BPF_REG_1, BPF_REG_10);
257 insn[i++] = BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_6,
258 -8 * (k % (64 - 4 * FUNC_NEST) + 1));
259 }
260 /* every jump adds 1024 steps to insn_processed, so to stay exactly
261 * within 1m limit add MAX_TEST_INSNS - 1025 MOVs and 1 EXIT
262 */
263 while (i < MAX_TEST_INSNS - 1025)
264 insn[i++] = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, 42);
265 insn[i] = BPF_EXIT_INSN();
266 self->prog_len = i + 1;
267 self->retval = 42;
268 }
269
270 static void bpf_fill_scale(struct bpf_test *self)
271 {
272 switch (self->retval) {
273 case 1:
274 return bpf_fill_scale1(self);
275 case 2:
276 return bpf_fill_scale2(self);
277 default:
278 self->prog_len = 0;
279 break;
280 }
281 }
282
283 /* BPF_SK_LOOKUP contains 13 instructions, if you need to fix up maps */
284 #define BPF_SK_LOOKUP(func) \
285 /* struct bpf_sock_tuple tuple = {} */ \
286 BPF_MOV64_IMM(BPF_REG_2, 0), \
287 BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_2, -8), \
288 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -16), \
289 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -24), \
290 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -32), \
291 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -40), \
292 BPF_STX_MEM(BPF_DW, BPF_REG_10, BPF_REG_2, -48), \
293 /* sk = func(ctx, &tuple, sizeof tuple, 0, 0) */ \
294 BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), \
295 BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -48), \
296 BPF_MOV64_IMM(BPF_REG_3, sizeof(struct bpf_sock_tuple)), \
297 BPF_MOV64_IMM(BPF_REG_4, 0), \
298 BPF_MOV64_IMM(BPF_REG_5, 0), \
299 BPF_EMIT_CALL(BPF_FUNC_ ## func)
300
301 /* BPF_DIRECT_PKT_R2 contains 7 instructions, it initializes default return
302 * value into 0 and does necessary preparation for direct packet access
303 * through r2. The allowed access range is 8 bytes.
304 */
305 #define BPF_DIRECT_PKT_R2 \
306 BPF_MOV64_IMM(BPF_REG_0, 0), \
307 BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \
308 offsetof(struct __sk_buff, data)), \
309 BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \
310 offsetof(struct __sk_buff, data_end)), \
311 BPF_MOV64_REG(BPF_REG_4, BPF_REG_2), \
312 BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 8), \
313 BPF_JMP_REG(BPF_JLE, BPF_REG_4, BPF_REG_3, 1), \
314 BPF_EXIT_INSN()
315
316 /* BPF_RAND_UEXT_R7 contains 4 instructions, it initializes R7 into a random
317 * positive u32, and zero-extend it into 64-bit.
318 */
319 #define BPF_RAND_UEXT_R7 \
320 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
321 BPF_FUNC_get_prandom_u32), \
322 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
323 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 33), \
324 BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 33)
325
326 /* BPF_RAND_SEXT_R7 contains 5 instructions, it initializes R7 into a random
327 * negative u32, and sign-extend it into 64-bit.
328 */
329 #define BPF_RAND_SEXT_R7 \
330 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, \
331 BPF_FUNC_get_prandom_u32), \
332 BPF_MOV64_REG(BPF_REG_7, BPF_REG_0), \
333 BPF_ALU64_IMM(BPF_OR, BPF_REG_7, 0x80000000), \
334 BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 32), \
335 BPF_ALU64_IMM(BPF_ARSH, BPF_REG_7, 32)
336
337 static struct bpf_test tests[] = {
338 #define FILL_ARRAY
339 #include <verifier/tests.h>
340 #undef FILL_ARRAY
341 };
342
343 static int probe_filter_length(const struct bpf_insn *fp)
344 {
345 int len;
346
347 for (len = MAX_INSNS - 1; len > 0; --len)
348 if (fp[len].code != 0 || fp[len].imm != 0)
349 break;
350 return len + 1;
351 }
352
353 static bool skip_unsupported_map(enum bpf_map_type map_type)
354 {
355 if (!bpf_probe_map_type(map_type, 0)) {
356 printf("SKIP (unsupported map type %d)\n", map_type);
357 skips++;
358 return true;
359 }
360 return false;
361 }
362
363 static int __create_map(uint32_t type, uint32_t size_key,
364 uint32_t size_value, uint32_t max_elem,
365 uint32_t extra_flags)
366 {
367 int fd;
368
369 fd = bpf_create_map(type, size_key, size_value, max_elem,
370 (type == BPF_MAP_TYPE_HASH ?
371 BPF_F_NO_PREALLOC : 0) | extra_flags);
372 if (fd < 0) {
373 if (skip_unsupported_map(type))
374 return -1;
375 printf("Failed to create hash map '%s'!\n", strerror(errno));
376 }
377
378 return fd;
379 }
380
381 static int create_map(uint32_t type, uint32_t size_key,
382 uint32_t size_value, uint32_t max_elem)
383 {
384 return __create_map(type, size_key, size_value, max_elem, 0);
385 }
386
387 static void update_map(int fd, int index)
388 {
389 struct test_val value = {
390 .index = (6 + 1) * sizeof(int),
391 .foo[6] = 0xabcdef12,
392 };
393
394 assert(!bpf_map_update_elem(fd, &index, &value, 0));
395 }
396
397 static int create_prog_dummy1(enum bpf_prog_type prog_type)
398 {
399 struct bpf_insn prog[] = {
400 BPF_MOV64_IMM(BPF_REG_0, 42),
401 BPF_EXIT_INSN(),
402 };
403
404 return bpf_load_program(prog_type, prog,
405 ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
406 }
407
408 static int create_prog_dummy2(enum bpf_prog_type prog_type, int mfd, int idx)
409 {
410 struct bpf_insn prog[] = {
411 BPF_MOV64_IMM(BPF_REG_3, idx),
412 BPF_LD_MAP_FD(BPF_REG_2, mfd),
413 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
414 BPF_FUNC_tail_call),
415 BPF_MOV64_IMM(BPF_REG_0, 41),
416 BPF_EXIT_INSN(),
417 };
418
419 return bpf_load_program(prog_type, prog,
420 ARRAY_SIZE(prog), "GPL", 0, NULL, 0);
421 }
422
423 static int create_prog_array(enum bpf_prog_type prog_type, uint32_t max_elem,
424 int p1key)
425 {
426 int p2key = 1;
427 int mfd, p1fd, p2fd;
428
429 mfd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, sizeof(int),
430 sizeof(int), max_elem, 0);
431 if (mfd < 0) {
432 if (skip_unsupported_map(BPF_MAP_TYPE_PROG_ARRAY))
433 return -1;
434 printf("Failed to create prog array '%s'!\n", strerror(errno));
435 return -1;
436 }
437
438 p1fd = create_prog_dummy1(prog_type);
439 p2fd = create_prog_dummy2(prog_type, mfd, p2key);
440 if (p1fd < 0 || p2fd < 0)
441 goto out;
442 if (bpf_map_update_elem(mfd, &p1key, &p1fd, BPF_ANY) < 0)
443 goto out;
444 if (bpf_map_update_elem(mfd, &p2key, &p2fd, BPF_ANY) < 0)
445 goto out;
446 close(p2fd);
447 close(p1fd);
448
449 return mfd;
450 out:
451 close(p2fd);
452 close(p1fd);
453 close(mfd);
454 return -1;
455 }
456
457 static int create_map_in_map(void)
458 {
459 int inner_map_fd, outer_map_fd;
460
461 inner_map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
462 sizeof(int), 1, 0);
463 if (inner_map_fd < 0) {
464 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY))
465 return -1;
466 printf("Failed to create array '%s'!\n", strerror(errno));
467 return inner_map_fd;
468 }
469
470 outer_map_fd = bpf_create_map_in_map(BPF_MAP_TYPE_ARRAY_OF_MAPS, NULL,
471 sizeof(int), inner_map_fd, 1, 0);
472 if (outer_map_fd < 0) {
473 if (skip_unsupported_map(BPF_MAP_TYPE_ARRAY_OF_MAPS))
474 return -1;
475 printf("Failed to create array of maps '%s'!\n",
476 strerror(errno));
477 }
478
479 close(inner_map_fd);
480
481 return outer_map_fd;
482 }
483
484 static int create_cgroup_storage(bool percpu)
485 {
486 enum bpf_map_type type = percpu ? BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE :
487 BPF_MAP_TYPE_CGROUP_STORAGE;
488 int fd;
489
490 fd = bpf_create_map(type, sizeof(struct bpf_cgroup_storage_key),
491 TEST_DATA_LEN, 0, 0);
492 if (fd < 0) {
493 if (skip_unsupported_map(type))
494 return -1;
495 printf("Failed to create cgroup storage '%s'!\n",
496 strerror(errno));
497 }
498
499 return fd;
500 }
501
502 /* struct bpf_spin_lock {
503 * int val;
504 * };
505 * struct val {
506 * int cnt;
507 * struct bpf_spin_lock l;
508 * };
509 */
510 static const char btf_str_sec[] = "\0bpf_spin_lock\0val\0cnt\0l";
511 static __u32 btf_raw_types[] = {
512 /* int */
513 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
514 /* struct bpf_spin_lock */ /* [2] */
515 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 1), 4),
516 BTF_MEMBER_ENC(15, 1, 0), /* int val; */
517 /* struct val */ /* [3] */
518 BTF_TYPE_ENC(15, BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 2), 8),
519 BTF_MEMBER_ENC(19, 1, 0), /* int cnt; */
520 BTF_MEMBER_ENC(23, 2, 32),/* struct bpf_spin_lock l; */
521 };
522
523 static int load_btf(void)
524 {
525 struct btf_header hdr = {
526 .magic = BTF_MAGIC,
527 .version = BTF_VERSION,
528 .hdr_len = sizeof(struct btf_header),
529 .type_len = sizeof(btf_raw_types),
530 .str_off = sizeof(btf_raw_types),
531 .str_len = sizeof(btf_str_sec),
532 };
533 void *ptr, *raw_btf;
534 int btf_fd;
535
536 ptr = raw_btf = malloc(sizeof(hdr) + sizeof(btf_raw_types) +
537 sizeof(btf_str_sec));
538
539 memcpy(ptr, &hdr, sizeof(hdr));
540 ptr += sizeof(hdr);
541 memcpy(ptr, btf_raw_types, hdr.type_len);
542 ptr += hdr.type_len;
543 memcpy(ptr, btf_str_sec, hdr.str_len);
544 ptr += hdr.str_len;
545
546 btf_fd = bpf_load_btf(raw_btf, ptr - raw_btf, 0, 0, 0);
547 free(raw_btf);
548 if (btf_fd < 0)
549 return -1;
550 return btf_fd;
551 }
552
553 static int create_map_spin_lock(void)
554 {
555 struct bpf_create_map_attr attr = {
556 .name = "test_map",
557 .map_type = BPF_MAP_TYPE_ARRAY,
558 .key_size = 4,
559 .value_size = 8,
560 .max_entries = 1,
561 .btf_key_type_id = 1,
562 .btf_value_type_id = 3,
563 };
564 int fd, btf_fd;
565
566 btf_fd = load_btf();
567 if (btf_fd < 0)
568 return -1;
569 attr.btf_fd = btf_fd;
570 fd = bpf_create_map_xattr(&attr);
571 if (fd < 0)
572 printf("Failed to create map with spin_lock\n");
573 return fd;
574 }
575
576 static int create_sk_storage_map(void)
577 {
578 struct bpf_create_map_attr attr = {
579 .name = "test_map",
580 .map_type = BPF_MAP_TYPE_SK_STORAGE,
581 .key_size = 4,
582 .value_size = 8,
583 .max_entries = 0,
584 .map_flags = BPF_F_NO_PREALLOC,
585 .btf_key_type_id = 1,
586 .btf_value_type_id = 3,
587 };
588 int fd, btf_fd;
589
590 btf_fd = load_btf();
591 if (btf_fd < 0)
592 return -1;
593 attr.btf_fd = btf_fd;
594 fd = bpf_create_map_xattr(&attr);
595 close(attr.btf_fd);
596 if (fd < 0)
597 printf("Failed to create sk_storage_map\n");
598 return fd;
599 }
600
601 static char bpf_vlog[UINT_MAX >> 8];
602
603 static void do_test_fixup(struct bpf_test *test, enum bpf_prog_type prog_type,
604 struct bpf_insn *prog, int *map_fds)
605 {
606 int *fixup_map_hash_8b = test->fixup_map_hash_8b;
607 int *fixup_map_hash_48b = test->fixup_map_hash_48b;
608 int *fixup_map_hash_16b = test->fixup_map_hash_16b;
609 int *fixup_map_array_48b = test->fixup_map_array_48b;
610 int *fixup_map_sockmap = test->fixup_map_sockmap;
611 int *fixup_map_sockhash = test->fixup_map_sockhash;
612 int *fixup_map_xskmap = test->fixup_map_xskmap;
613 int *fixup_map_stacktrace = test->fixup_map_stacktrace;
614 int *fixup_prog1 = test->fixup_prog1;
615 int *fixup_prog2 = test->fixup_prog2;
616 int *fixup_map_in_map = test->fixup_map_in_map;
617 int *fixup_cgroup_storage = test->fixup_cgroup_storage;
618 int *fixup_percpu_cgroup_storage = test->fixup_percpu_cgroup_storage;
619 int *fixup_map_spin_lock = test->fixup_map_spin_lock;
620 int *fixup_map_array_ro = test->fixup_map_array_ro;
621 int *fixup_map_array_wo = test->fixup_map_array_wo;
622 int *fixup_map_array_small = test->fixup_map_array_small;
623 int *fixup_sk_storage_map = test->fixup_sk_storage_map;
624
625 if (test->fill_helper) {
626 test->fill_insns = calloc(MAX_TEST_INSNS, sizeof(struct bpf_insn));
627 test->fill_helper(test);
628 }
629
630 /* Allocating HTs with 1 elem is fine here, since we only test
631 * for verifier and not do a runtime lookup, so the only thing
632 * that really matters is value size in this case.
633 */
634 if (*fixup_map_hash_8b) {
635 map_fds[0] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
636 sizeof(long long), 1);
637 do {
638 prog[*fixup_map_hash_8b].imm = map_fds[0];
639 fixup_map_hash_8b++;
640 } while (*fixup_map_hash_8b);
641 }
642
643 if (*fixup_map_hash_48b) {
644 map_fds[1] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
645 sizeof(struct test_val), 1);
646 do {
647 prog[*fixup_map_hash_48b].imm = map_fds[1];
648 fixup_map_hash_48b++;
649 } while (*fixup_map_hash_48b);
650 }
651
652 if (*fixup_map_hash_16b) {
653 map_fds[2] = create_map(BPF_MAP_TYPE_HASH, sizeof(long long),
654 sizeof(struct other_val), 1);
655 do {
656 prog[*fixup_map_hash_16b].imm = map_fds[2];
657 fixup_map_hash_16b++;
658 } while (*fixup_map_hash_16b);
659 }
660
661 if (*fixup_map_array_48b) {
662 map_fds[3] = create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
663 sizeof(struct test_val), 1);
664 update_map(map_fds[3], 0);
665 do {
666 prog[*fixup_map_array_48b].imm = map_fds[3];
667 fixup_map_array_48b++;
668 } while (*fixup_map_array_48b);
669 }
670
671 if (*fixup_prog1) {
672 map_fds[4] = create_prog_array(prog_type, 4, 0);
673 do {
674 prog[*fixup_prog1].imm = map_fds[4];
675 fixup_prog1++;
676 } while (*fixup_prog1);
677 }
678
679 if (*fixup_prog2) {
680 map_fds[5] = create_prog_array(prog_type, 8, 7);
681 do {
682 prog[*fixup_prog2].imm = map_fds[5];
683 fixup_prog2++;
684 } while (*fixup_prog2);
685 }
686
687 if (*fixup_map_in_map) {
688 map_fds[6] = create_map_in_map();
689 do {
690 prog[*fixup_map_in_map].imm = map_fds[6];
691 fixup_map_in_map++;
692 } while (*fixup_map_in_map);
693 }
694
695 if (*fixup_cgroup_storage) {
696 map_fds[7] = create_cgroup_storage(false);
697 do {
698 prog[*fixup_cgroup_storage].imm = map_fds[7];
699 fixup_cgroup_storage++;
700 } while (*fixup_cgroup_storage);
701 }
702
703 if (*fixup_percpu_cgroup_storage) {
704 map_fds[8] = create_cgroup_storage(true);
705 do {
706 prog[*fixup_percpu_cgroup_storage].imm = map_fds[8];
707 fixup_percpu_cgroup_storage++;
708 } while (*fixup_percpu_cgroup_storage);
709 }
710 if (*fixup_map_sockmap) {
711 map_fds[9] = create_map(BPF_MAP_TYPE_SOCKMAP, sizeof(int),
712 sizeof(int), 1);
713 do {
714 prog[*fixup_map_sockmap].imm = map_fds[9];
715 fixup_map_sockmap++;
716 } while (*fixup_map_sockmap);
717 }
718 if (*fixup_map_sockhash) {
719 map_fds[10] = create_map(BPF_MAP_TYPE_SOCKHASH, sizeof(int),
720 sizeof(int), 1);
721 do {
722 prog[*fixup_map_sockhash].imm = map_fds[10];
723 fixup_map_sockhash++;
724 } while (*fixup_map_sockhash);
725 }
726 if (*fixup_map_xskmap) {
727 map_fds[11] = create_map(BPF_MAP_TYPE_XSKMAP, sizeof(int),
728 sizeof(int), 1);
729 do {
730 prog[*fixup_map_xskmap].imm = map_fds[11];
731 fixup_map_xskmap++;
732 } while (*fixup_map_xskmap);
733 }
734 if (*fixup_map_stacktrace) {
735 map_fds[12] = create_map(BPF_MAP_TYPE_STACK_TRACE, sizeof(u32),
736 sizeof(u64), 1);
737 do {
738 prog[*fixup_map_stacktrace].imm = map_fds[12];
739 fixup_map_stacktrace++;
740 } while (*fixup_map_stacktrace);
741 }
742 if (*fixup_map_spin_lock) {
743 map_fds[13] = create_map_spin_lock();
744 do {
745 prog[*fixup_map_spin_lock].imm = map_fds[13];
746 fixup_map_spin_lock++;
747 } while (*fixup_map_spin_lock);
748 }
749 if (*fixup_map_array_ro) {
750 map_fds[14] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
751 sizeof(struct test_val), 1,
752 BPF_F_RDONLY_PROG);
753 update_map(map_fds[14], 0);
754 do {
755 prog[*fixup_map_array_ro].imm = map_fds[14];
756 fixup_map_array_ro++;
757 } while (*fixup_map_array_ro);
758 }
759 if (*fixup_map_array_wo) {
760 map_fds[15] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
761 sizeof(struct test_val), 1,
762 BPF_F_WRONLY_PROG);
763 update_map(map_fds[15], 0);
764 do {
765 prog[*fixup_map_array_wo].imm = map_fds[15];
766 fixup_map_array_wo++;
767 } while (*fixup_map_array_wo);
768 }
769 if (*fixup_map_array_small) {
770 map_fds[16] = __create_map(BPF_MAP_TYPE_ARRAY, sizeof(int),
771 1, 1, 0);
772 update_map(map_fds[16], 0);
773 do {
774 prog[*fixup_map_array_small].imm = map_fds[16];
775 fixup_map_array_small++;
776 } while (*fixup_map_array_small);
777 }
778 if (*fixup_sk_storage_map) {
779 map_fds[17] = create_sk_storage_map();
780 do {
781 prog[*fixup_sk_storage_map].imm = map_fds[17];
782 fixup_sk_storage_map++;
783 } while (*fixup_sk_storage_map);
784 }
785 }
786
787 static int set_admin(bool admin)
788 {
789 cap_t caps;
790 const cap_value_t cap_val = CAP_SYS_ADMIN;
791 int ret = -1;
792
793 caps = cap_get_proc();
794 if (!caps) {
795 perror("cap_get_proc");
796 return -1;
797 }
798 if (cap_set_flag(caps, CAP_EFFECTIVE, 1, &cap_val,
799 admin ? CAP_SET : CAP_CLEAR)) {
800 perror("cap_set_flag");
801 goto out;
802 }
803 if (cap_set_proc(caps)) {
804 perror("cap_set_proc");
805 goto out;
806 }
807 ret = 0;
808 out:
809 if (cap_free(caps))
810 perror("cap_free");
811 return ret;
812 }
813
814 static int do_prog_test_run(int fd_prog, bool unpriv, uint32_t expected_val,
815 void *data, size_t size_data)
816 {
817 __u8 tmp[TEST_DATA_LEN << 2];
818 __u32 size_tmp = sizeof(tmp);
819 uint32_t retval;
820 int err;
821
822 if (unpriv)
823 set_admin(true);
824 err = bpf_prog_test_run(fd_prog, 1, data, size_data,
825 tmp, &size_tmp, &retval, NULL);
826 if (unpriv)
827 set_admin(false);
828 if (err && errno != 524/*ENOTSUPP*/ && errno != EPERM) {
829 printf("Unexpected bpf_prog_test_run error ");
830 return err;
831 }
832 if (!err && retval != expected_val &&
833 expected_val != POINTER_VALUE) {
834 printf("FAIL retval %d != %d ", retval, expected_val);
835 return 1;
836 }
837
838 return 0;
839 }
840
841 static void do_test_single(struct bpf_test *test, bool unpriv,
842 int *passes, int *errors)
843 {
844 int fd_prog, expected_ret, alignment_prevented_execution;
845 int prog_len, prog_type = test->prog_type;
846 struct bpf_insn *prog = test->insns;
847 int run_errs, run_successes;
848 int map_fds[MAX_NR_MAPS];
849 const char *expected_err;
850 int fixup_skips;
851 __u32 pflags;
852 int i, err;
853
854 for (i = 0; i < MAX_NR_MAPS; i++)
855 map_fds[i] = -1;
856
857 if (!prog_type)
858 prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
859 fixup_skips = skips;
860 do_test_fixup(test, prog_type, prog, map_fds);
861 if (test->fill_insns) {
862 prog = test->fill_insns;
863 prog_len = test->prog_len;
864 } else {
865 prog_len = probe_filter_length(prog);
866 }
867 /* If there were some map skips during fixup due to missing bpf
868 * features, skip this test.
869 */
870 if (fixup_skips != skips)
871 return;
872
873 pflags = 0;
874 if (test->flags & F_LOAD_WITH_STRICT_ALIGNMENT)
875 pflags |= BPF_F_STRICT_ALIGNMENT;
876 if (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS)
877 pflags |= BPF_F_ANY_ALIGNMENT;
878 fd_prog = bpf_verify_program(prog_type, prog, prog_len, pflags,
879 "GPL", 0, bpf_vlog, sizeof(bpf_vlog), 4);
880 if (fd_prog < 0 && !bpf_probe_prog_type(prog_type, 0)) {
881 printf("SKIP (unsupported program type %d)\n", prog_type);
882 skips++;
883 goto close_fds;
884 }
885
886 expected_ret = unpriv && test->result_unpriv != UNDEF ?
887 test->result_unpriv : test->result;
888 expected_err = unpriv && test->errstr_unpriv ?
889 test->errstr_unpriv : test->errstr;
890
891 alignment_prevented_execution = 0;
892
893 if (expected_ret == ACCEPT) {
894 if (fd_prog < 0) {
895 printf("FAIL\nFailed to load prog '%s'!\n",
896 strerror(errno));
897 goto fail_log;
898 }
899 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
900 if (fd_prog >= 0 &&
901 (test->flags & F_NEEDS_EFFICIENT_UNALIGNED_ACCESS))
902 alignment_prevented_execution = 1;
903 #endif
904 } else {
905 if (fd_prog >= 0) {
906 printf("FAIL\nUnexpected success to load!\n");
907 goto fail_log;
908 }
909 if (!strstr(bpf_vlog, expected_err)) {
910 printf("FAIL\nUnexpected error message!\n\tEXP: %s\n\tRES: %s\n",
911 expected_err, bpf_vlog);
912 goto fail_log;
913 }
914 }
915
916 if (test->insn_processed) {
917 uint32_t insn_processed;
918 char *proc;
919
920 proc = strstr(bpf_vlog, "processed ");
921 insn_processed = atoi(proc + 10);
922 if (test->insn_processed != insn_processed) {
923 printf("FAIL\nUnexpected insn_processed %u vs %u\n",
924 insn_processed, test->insn_processed);
925 goto fail_log;
926 }
927 }
928
929 run_errs = 0;
930 run_successes = 0;
931 if (!alignment_prevented_execution && fd_prog >= 0) {
932 uint32_t expected_val;
933 int i;
934
935 if (!test->runs) {
936 expected_val = unpriv && test->retval_unpriv ?
937 test->retval_unpriv : test->retval;
938
939 err = do_prog_test_run(fd_prog, unpriv, expected_val,
940 test->data, sizeof(test->data));
941 if (err)
942 run_errs++;
943 else
944 run_successes++;
945 }
946
947 for (i = 0; i < test->runs; i++) {
948 if (unpriv && test->retvals[i].retval_unpriv)
949 expected_val = test->retvals[i].retval_unpriv;
950 else
951 expected_val = test->retvals[i].retval;
952
953 err = do_prog_test_run(fd_prog, unpriv, expected_val,
954 test->retvals[i].data,
955 sizeof(test->retvals[i].data));
956 if (err) {
957 printf("(run %d/%d) ", i + 1, test->runs);
958 run_errs++;
959 } else {
960 run_successes++;
961 }
962 }
963 }
964
965 if (!run_errs) {
966 (*passes)++;
967 if (run_successes > 1)
968 printf("%d cases ", run_successes);
969 printf("OK");
970 if (alignment_prevented_execution)
971 printf(" (NOTE: not executed due to unknown alignment)");
972 printf("\n");
973 } else {
974 printf("\n");
975 goto fail_log;
976 }
977 close_fds:
978 if (test->fill_insns)
979 free(test->fill_insns);
980 close(fd_prog);
981 for (i = 0; i < MAX_NR_MAPS; i++)
982 close(map_fds[i]);
983 sched_yield();
984 return;
985 fail_log:
986 (*errors)++;
987 printf("%s", bpf_vlog);
988 goto close_fds;
989 }
990
991 static bool is_admin(void)
992 {
993 cap_t caps;
994 cap_flag_value_t sysadmin = CAP_CLEAR;
995 const cap_value_t cap_val = CAP_SYS_ADMIN;
996
997 #ifdef CAP_IS_SUPPORTED
998 if (!CAP_IS_SUPPORTED(CAP_SETFCAP)) {
999 perror("cap_get_flag");
1000 return false;
1001 }
1002 #endif
1003 caps = cap_get_proc();
1004 if (!caps) {
1005 perror("cap_get_proc");
1006 return false;
1007 }
1008 if (cap_get_flag(caps, cap_val, CAP_EFFECTIVE, &sysadmin))
1009 perror("cap_get_flag");
1010 if (cap_free(caps))
1011 perror("cap_free");
1012 return (sysadmin == CAP_SET);
1013 }
1014
1015 static void get_unpriv_disabled()
1016 {
1017 char buf[2];
1018 FILE *fd;
1019
1020 fd = fopen("/proc/sys/"UNPRIV_SYSCTL, "r");
1021 if (!fd) {
1022 perror("fopen /proc/sys/"UNPRIV_SYSCTL);
1023 unpriv_disabled = true;
1024 return;
1025 }
1026 if (fgets(buf, 2, fd) == buf && atoi(buf))
1027 unpriv_disabled = true;
1028 fclose(fd);
1029 }
1030
1031 static bool test_as_unpriv(struct bpf_test *test)
1032 {
1033 return !test->prog_type ||
1034 test->prog_type == BPF_PROG_TYPE_SOCKET_FILTER ||
1035 test->prog_type == BPF_PROG_TYPE_CGROUP_SKB;
1036 }
1037
1038 static int do_test(bool unpriv, unsigned int from, unsigned int to)
1039 {
1040 int i, passes = 0, errors = 0;
1041
1042 for (i = from; i < to; i++) {
1043 struct bpf_test *test = &tests[i];
1044
1045 /* Program types that are not supported by non-root we
1046 * skip right away.
1047 */
1048 if (test_as_unpriv(test) && unpriv_disabled) {
1049 printf("#%d/u %s SKIP\n", i, test->descr);
1050 skips++;
1051 } else if (test_as_unpriv(test)) {
1052 if (!unpriv)
1053 set_admin(false);
1054 printf("#%d/u %s ", i, test->descr);
1055 do_test_single(test, true, &passes, &errors);
1056 if (!unpriv)
1057 set_admin(true);
1058 }
1059
1060 if (unpriv) {
1061 printf("#%d/p %s SKIP\n", i, test->descr);
1062 skips++;
1063 } else {
1064 printf("#%d/p %s ", i, test->descr);
1065 do_test_single(test, false, &passes, &errors);
1066 }
1067 }
1068
1069 printf("Summary: %d PASSED, %d SKIPPED, %d FAILED\n", passes,
1070 skips, errors);
1071 return errors ? EXIT_FAILURE : EXIT_SUCCESS;
1072 }
1073
1074 int main(int argc, char **argv)
1075 {
1076 unsigned int from = 0, to = ARRAY_SIZE(tests);
1077 bool unpriv = !is_admin();
1078
1079 if (argc == 3) {
1080 unsigned int l = atoi(argv[argc - 2]);
1081 unsigned int u = atoi(argv[argc - 1]);
1082
1083 if (l < to && u < to) {
1084 from = l;
1085 to = u + 1;
1086 }
1087 } else if (argc == 2) {
1088 unsigned int t = atoi(argv[argc - 1]);
1089
1090 if (t < to) {
1091 from = t;
1092 to = t + 1;
1093 }
1094 }
1095
1096 get_unpriv_disabled();
1097 if (unpriv && unpriv_disabled) {
1098 printf("Cannot run as unprivileged user with sysctl %s.\n",
1099 UNPRIV_SYSCTL);
1100 return EXIT_FAILURE;
1101 }
1102
1103 bpf_semi_rand_init();
1104 return do_test(unpriv, from, to);
1105 }