]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - tools/testing/selftests/kvm/lib/kvm_util.c
selftests: KVM: avoid failures due to reserved HyperTransport region
[mirror_ubuntu-jammy-kernel.git] / tools / testing / selftests / kvm / lib / kvm_util.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 #include "processor.h"
13
14 #include <assert.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20
21 #define KVM_UTIL_MIN_PFN 2
22
23 static int vcpu_mmap_sz(void);
24
25 /* Aligns x up to the next multiple of size. Size must be a power of 2. */
26 static void *align(void *x, size_t size)
27 {
28 size_t mask = size - 1;
29 TEST_ASSERT(size != 0 && !(size & (size - 1)),
30 "size not a power of 2: %lu", size);
31 return (void *) (((size_t) x + mask) & ~mask);
32 }
33
34 /*
35 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
36 *
37 * Input Args:
38 * flags - The flags to pass when opening KVM_DEV_PATH.
39 *
40 * Return:
41 * The opened file descriptor of /dev/kvm.
42 */
43 static int _open_kvm_dev_path_or_exit(int flags)
44 {
45 int fd;
46
47 fd = open(KVM_DEV_PATH, flags);
48 if (fd < 0) {
49 print_skip("%s not available, is KVM loaded? (errno: %d)",
50 KVM_DEV_PATH, errno);
51 exit(KSFT_SKIP);
52 }
53
54 return fd;
55 }
56
57 int open_kvm_dev_path_or_exit(void)
58 {
59 return _open_kvm_dev_path_or_exit(O_RDONLY);
60 }
61
62 /*
63 * Capability
64 *
65 * Input Args:
66 * cap - Capability
67 *
68 * Output Args: None
69 *
70 * Return:
71 * On success, the Value corresponding to the capability (KVM_CAP_*)
72 * specified by the value of cap. On failure a TEST_ASSERT failure
73 * is produced.
74 *
75 * Looks up and returns the value corresponding to the capability
76 * (KVM_CAP_*) given by cap.
77 */
78 int kvm_check_cap(long cap)
79 {
80 int ret;
81 int kvm_fd;
82
83 kvm_fd = open_kvm_dev_path_or_exit();
84 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
85 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
86 " rc: %i errno: %i", ret, errno);
87
88 close(kvm_fd);
89
90 return ret;
91 }
92
93 /* VM Enable Capability
94 *
95 * Input Args:
96 * vm - Virtual Machine
97 * cap - Capability
98 *
99 * Output Args: None
100 *
101 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
102 *
103 * Enables a capability (KVM_CAP_*) on the VM.
104 */
105 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
106 {
107 int ret;
108
109 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
110 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
111 " rc: %i errno: %i", ret, errno);
112
113 return ret;
114 }
115
116 /* VCPU Enable Capability
117 *
118 * Input Args:
119 * vm - Virtual Machine
120 * vcpu_id - VCPU
121 * cap - Capability
122 *
123 * Output Args: None
124 *
125 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
126 *
127 * Enables a capability (KVM_CAP_*) on the VCPU.
128 */
129 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
130 struct kvm_enable_cap *cap)
131 {
132 struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
133 int r;
134
135 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
136
137 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
138 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
139 " rc: %i, errno: %i", r, errno);
140
141 return r;
142 }
143
144 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
145 {
146 struct kvm_enable_cap cap = { 0 };
147
148 cap.cap = KVM_CAP_DIRTY_LOG_RING;
149 cap.args[0] = ring_size;
150 vm_enable_cap(vm, &cap);
151 vm->dirty_ring_size = ring_size;
152 }
153
154 static void vm_open(struct kvm_vm *vm, int perm)
155 {
156 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm);
157
158 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
159 print_skip("immediate_exit not available");
160 exit(KSFT_SKIP);
161 }
162
163 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
164 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
165 "rc: %i errno: %i", vm->fd, errno);
166 }
167
168 const char *vm_guest_mode_string(uint32_t i)
169 {
170 static const char * const strings[] = {
171 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
172 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
173 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
174 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
175 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
176 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
177 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
178 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
179 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
180 };
181 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
182 "Missing new mode strings?");
183
184 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
185
186 return strings[i];
187 }
188
189 const struct vm_guest_mode_params vm_guest_mode_params[] = {
190 { 52, 48, 0x1000, 12 },
191 { 52, 48, 0x10000, 16 },
192 { 48, 48, 0x1000, 12 },
193 { 48, 48, 0x10000, 16 },
194 { 40, 48, 0x1000, 12 },
195 { 40, 48, 0x10000, 16 },
196 { 0, 0, 0x1000, 12 },
197 { 47, 64, 0x1000, 12 },
198 { 44, 64, 0x1000, 12 },
199 };
200 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
201 "Missing new mode params?");
202
203 /*
204 * VM Create
205 *
206 * Input Args:
207 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
208 * phy_pages - Physical memory pages
209 * perm - permission
210 *
211 * Output Args: None
212 *
213 * Return:
214 * Pointer to opaque structure that describes the created VM.
215 *
216 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
217 * When phy_pages is non-zero, a memory region of phy_pages physical pages
218 * is created and mapped starting at guest physical address 0. The file
219 * descriptor to control the created VM is created with the permissions
220 * given by perm (e.g. O_RDWR).
221 */
222 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
223 {
224 struct kvm_vm *vm;
225
226 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
227 vm_guest_mode_string(mode), phy_pages, perm);
228
229 vm = calloc(1, sizeof(*vm));
230 TEST_ASSERT(vm != NULL, "Insufficient Memory");
231
232 INIT_LIST_HEAD(&vm->vcpus);
233 vm->regions.gpa_tree = RB_ROOT;
234 vm->regions.hva_tree = RB_ROOT;
235 hash_init(vm->regions.slot_hash);
236
237 vm->mode = mode;
238 vm->type = 0;
239
240 vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
241 vm->va_bits = vm_guest_mode_params[mode].va_bits;
242 vm->page_size = vm_guest_mode_params[mode].page_size;
243 vm->page_shift = vm_guest_mode_params[mode].page_shift;
244
245 /* Setup mode specific traits. */
246 switch (vm->mode) {
247 case VM_MODE_P52V48_4K:
248 vm->pgtable_levels = 4;
249 break;
250 case VM_MODE_P52V48_64K:
251 vm->pgtable_levels = 3;
252 break;
253 case VM_MODE_P48V48_4K:
254 vm->pgtable_levels = 4;
255 break;
256 case VM_MODE_P48V48_64K:
257 vm->pgtable_levels = 3;
258 break;
259 case VM_MODE_P40V48_4K:
260 vm->pgtable_levels = 4;
261 break;
262 case VM_MODE_P40V48_64K:
263 vm->pgtable_levels = 3;
264 break;
265 case VM_MODE_PXXV48_4K:
266 #ifdef __x86_64__
267 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
268 /*
269 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
270 * it doesn't take effect unless a CR4.LA57 is set, which it
271 * isn't for this VM_MODE.
272 */
273 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
274 "Linear address width (%d bits) not supported",
275 vm->va_bits);
276 pr_debug("Guest physical address width detected: %d\n",
277 vm->pa_bits);
278 vm->pgtable_levels = 4;
279 vm->va_bits = 48;
280 #else
281 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
282 #endif
283 break;
284 case VM_MODE_P47V64_4K:
285 vm->pgtable_levels = 5;
286 break;
287 case VM_MODE_P44V64_4K:
288 vm->pgtable_levels = 5;
289 break;
290 default:
291 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
292 }
293
294 #ifdef __aarch64__
295 if (vm->pa_bits != 40)
296 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
297 #endif
298
299 vm_open(vm, perm);
300
301 /* Limit to VA-bit canonical virtual addresses. */
302 vm->vpages_valid = sparsebit_alloc();
303 sparsebit_set_num(vm->vpages_valid,
304 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
305 sparsebit_set_num(vm->vpages_valid,
306 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
307 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
308
309 /* Limit physical addresses to PA-bits. */
310 vm->max_gfn = vm_compute_max_gfn(vm);
311
312 /* Allocate and setup memory for guest. */
313 vm->vpages_mapped = sparsebit_alloc();
314 if (phy_pages != 0)
315 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
316 0, 0, phy_pages, 0);
317
318 return vm;
319 }
320
321 /*
322 * VM Create with customized parameters
323 *
324 * Input Args:
325 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
326 * nr_vcpus - VCPU count
327 * slot0_mem_pages - Slot0 physical memory size
328 * extra_mem_pages - Non-slot0 physical memory total size
329 * num_percpu_pages - Per-cpu physical memory pages
330 * guest_code - Guest entry point
331 * vcpuids - VCPU IDs
332 *
333 * Output Args: None
334 *
335 * Return:
336 * Pointer to opaque structure that describes the created VM.
337 *
338 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K),
339 * with customized slot0 memory size, at least 512 pages currently.
340 * extra_mem_pages is only used to calculate the maximum page table size,
341 * no real memory allocation for non-slot0 memory in this function.
342 */
343 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
344 uint64_t slot0_mem_pages, uint64_t extra_mem_pages,
345 uint32_t num_percpu_pages, void *guest_code,
346 uint32_t vcpuids[])
347 {
348 uint64_t vcpu_pages, extra_pg_pages, pages;
349 struct kvm_vm *vm;
350 int i;
351
352 /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */
353 if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES)
354 slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES;
355
356 /* The maximum page table size for a memory region will be when the
357 * smallest pages are used. Considering each page contains x page
358 * table descriptors, the total extra size for page tables (for extra
359 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
360 * than N/x*2.
361 */
362 vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
363 extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
364 pages = slot0_mem_pages + vcpu_pages + extra_pg_pages;
365
366 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
367 "nr_vcpus = %d too large for host, max-vcpus = %d",
368 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
369
370 pages = vm_adjust_num_guest_pages(mode, pages);
371 vm = vm_create(mode, pages, O_RDWR);
372
373 kvm_vm_elf_load(vm, program_invocation_name);
374
375 #ifdef __x86_64__
376 vm_create_irqchip(vm);
377 #endif
378
379 for (i = 0; i < nr_vcpus; ++i) {
380 uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
381
382 vm_vcpu_add_default(vm, vcpuid, guest_code);
383 }
384
385 return vm;
386 }
387
388 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
389 uint32_t num_percpu_pages, void *guest_code,
390 uint32_t vcpuids[])
391 {
392 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
393 extra_mem_pages, num_percpu_pages, guest_code, vcpuids);
394 }
395
396 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
397 void *guest_code)
398 {
399 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
400 (uint32_t []){ vcpuid });
401 }
402
403 /*
404 * VM Restart
405 *
406 * Input Args:
407 * vm - VM that has been released before
408 * perm - permission
409 *
410 * Output Args: None
411 *
412 * Reopens the file descriptors associated to the VM and reinstates the
413 * global state, such as the irqchip and the memory regions that are mapped
414 * into the guest.
415 */
416 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
417 {
418 int ctr;
419 struct userspace_mem_region *region;
420
421 vm_open(vmp, perm);
422 if (vmp->has_irqchip)
423 vm_create_irqchip(vmp);
424
425 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
426 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
427 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
428 " rc: %i errno: %i\n"
429 " slot: %u flags: 0x%x\n"
430 " guest_phys_addr: 0x%llx size: 0x%llx",
431 ret, errno, region->region.slot,
432 region->region.flags,
433 region->region.guest_phys_addr,
434 region->region.memory_size);
435 }
436 }
437
438 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
439 {
440 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
441 int ret;
442
443 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
444 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
445 __func__, strerror(-ret));
446 }
447
448 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
449 uint64_t first_page, uint32_t num_pages)
450 {
451 struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
452 .first_page = first_page,
453 .num_pages = num_pages };
454 int ret;
455
456 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
457 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
458 __func__, strerror(-ret));
459 }
460
461 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
462 {
463 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
464 }
465
466 /*
467 * Userspace Memory Region Find
468 *
469 * Input Args:
470 * vm - Virtual Machine
471 * start - Starting VM physical address
472 * end - Ending VM physical address, inclusive.
473 *
474 * Output Args: None
475 *
476 * Return:
477 * Pointer to overlapping region, NULL if no such region.
478 *
479 * Searches for a region with any physical memory that overlaps with
480 * any portion of the guest physical addresses from start to end
481 * inclusive. If multiple overlapping regions exist, a pointer to any
482 * of the regions is returned. Null is returned only when no overlapping
483 * region exists.
484 */
485 static struct userspace_mem_region *
486 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
487 {
488 struct rb_node *node;
489
490 for (node = vm->regions.gpa_tree.rb_node; node; ) {
491 struct userspace_mem_region *region =
492 container_of(node, struct userspace_mem_region, gpa_node);
493 uint64_t existing_start = region->region.guest_phys_addr;
494 uint64_t existing_end = region->region.guest_phys_addr
495 + region->region.memory_size - 1;
496 if (start <= existing_end && end >= existing_start)
497 return region;
498
499 if (start < existing_start)
500 node = node->rb_left;
501 else
502 node = node->rb_right;
503 }
504
505 return NULL;
506 }
507
508 /*
509 * KVM Userspace Memory Region Find
510 *
511 * Input Args:
512 * vm - Virtual Machine
513 * start - Starting VM physical address
514 * end - Ending VM physical address, inclusive.
515 *
516 * Output Args: None
517 *
518 * Return:
519 * Pointer to overlapping region, NULL if no such region.
520 *
521 * Public interface to userspace_mem_region_find. Allows tests to look up
522 * the memslot datastructure for a given range of guest physical memory.
523 */
524 struct kvm_userspace_memory_region *
525 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
526 uint64_t end)
527 {
528 struct userspace_mem_region *region;
529
530 region = userspace_mem_region_find(vm, start, end);
531 if (!region)
532 return NULL;
533
534 return &region->region;
535 }
536
537 /*
538 * VCPU Find
539 *
540 * Input Args:
541 * vm - Virtual Machine
542 * vcpuid - VCPU ID
543 *
544 * Output Args: None
545 *
546 * Return:
547 * Pointer to VCPU structure
548 *
549 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
550 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
551 * for the specified vcpuid.
552 */
553 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
554 {
555 struct vcpu *vcpu;
556
557 list_for_each_entry(vcpu, &vm->vcpus, list) {
558 if (vcpu->id == vcpuid)
559 return vcpu;
560 }
561
562 return NULL;
563 }
564
565 /*
566 * VM VCPU Remove
567 *
568 * Input Args:
569 * vcpu - VCPU to remove
570 *
571 * Output Args: None
572 *
573 * Return: None, TEST_ASSERT failures for all error conditions
574 *
575 * Removes a vCPU from a VM and frees its resources.
576 */
577 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
578 {
579 int ret;
580
581 if (vcpu->dirty_gfns) {
582 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
583 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
584 "rc: %i errno: %i", ret, errno);
585 vcpu->dirty_gfns = NULL;
586 }
587
588 ret = munmap(vcpu->state, vcpu_mmap_sz());
589 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
590 "errno: %i", ret, errno);
591 ret = close(vcpu->fd);
592 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
593 "errno: %i", ret, errno);
594
595 list_del(&vcpu->list);
596 free(vcpu);
597 }
598
599 void kvm_vm_release(struct kvm_vm *vmp)
600 {
601 struct vcpu *vcpu, *tmp;
602 int ret;
603
604 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
605 vm_vcpu_rm(vmp, vcpu);
606
607 ret = close(vmp->fd);
608 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
609 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
610
611 ret = close(vmp->kvm_fd);
612 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
613 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
614 }
615
616 static void __vm_mem_region_delete(struct kvm_vm *vm,
617 struct userspace_mem_region *region,
618 bool unlink)
619 {
620 int ret;
621
622 if (unlink) {
623 rb_erase(&region->gpa_node, &vm->regions.gpa_tree);
624 rb_erase(&region->hva_node, &vm->regions.hva_tree);
625 hash_del(&region->slot_node);
626 }
627
628 region->region.memory_size = 0;
629 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
630 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
631 "rc: %i errno: %i", ret, errno);
632
633 sparsebit_free(&region->unused_phy_pages);
634 ret = munmap(region->mmap_start, region->mmap_size);
635 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
636
637 free(region);
638 }
639
640 /*
641 * Destroys and frees the VM pointed to by vmp.
642 */
643 void kvm_vm_free(struct kvm_vm *vmp)
644 {
645 int ctr;
646 struct hlist_node *node;
647 struct userspace_mem_region *region;
648
649 if (vmp == NULL)
650 return;
651
652 /* Free userspace_mem_regions. */
653 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
654 __vm_mem_region_delete(vmp, region, false);
655
656 /* Free sparsebit arrays. */
657 sparsebit_free(&vmp->vpages_valid);
658 sparsebit_free(&vmp->vpages_mapped);
659
660 kvm_vm_release(vmp);
661
662 /* Free the structure describing the VM. */
663 free(vmp);
664 }
665
666 /*
667 * Memory Compare, host virtual to guest virtual
668 *
669 * Input Args:
670 * hva - Starting host virtual address
671 * vm - Virtual Machine
672 * gva - Starting guest virtual address
673 * len - number of bytes to compare
674 *
675 * Output Args: None
676 *
677 * Input/Output Args: None
678 *
679 * Return:
680 * Returns 0 if the bytes starting at hva for a length of len
681 * are equal the guest virtual bytes starting at gva. Returns
682 * a value < 0, if bytes at hva are less than those at gva.
683 * Otherwise a value > 0 is returned.
684 *
685 * Compares the bytes starting at the host virtual address hva, for
686 * a length of len, to the guest bytes starting at the guest virtual
687 * address given by gva.
688 */
689 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
690 {
691 size_t amt;
692
693 /*
694 * Compare a batch of bytes until either a match is found
695 * or all the bytes have been compared.
696 */
697 for (uintptr_t offset = 0; offset < len; offset += amt) {
698 uintptr_t ptr1 = (uintptr_t)hva + offset;
699
700 /*
701 * Determine host address for guest virtual address
702 * at offset.
703 */
704 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
705
706 /*
707 * Determine amount to compare on this pass.
708 * Don't allow the comparsion to cross a page boundary.
709 */
710 amt = len - offset;
711 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
712 amt = vm->page_size - (ptr1 % vm->page_size);
713 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
714 amt = vm->page_size - (ptr2 % vm->page_size);
715
716 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
717 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
718
719 /*
720 * Perform the comparison. If there is a difference
721 * return that result to the caller, otherwise need
722 * to continue on looking for a mismatch.
723 */
724 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
725 if (ret != 0)
726 return ret;
727 }
728
729 /*
730 * No mismatch found. Let the caller know the two memory
731 * areas are equal.
732 */
733 return 0;
734 }
735
736 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
737 struct userspace_mem_region *region)
738 {
739 struct rb_node **cur, *parent;
740
741 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
742 struct userspace_mem_region *cregion;
743
744 cregion = container_of(*cur, typeof(*cregion), gpa_node);
745 parent = *cur;
746 if (region->region.guest_phys_addr <
747 cregion->region.guest_phys_addr)
748 cur = &(*cur)->rb_left;
749 else {
750 TEST_ASSERT(region->region.guest_phys_addr !=
751 cregion->region.guest_phys_addr,
752 "Duplicate GPA in region tree");
753
754 cur = &(*cur)->rb_right;
755 }
756 }
757
758 rb_link_node(&region->gpa_node, parent, cur);
759 rb_insert_color(&region->gpa_node, gpa_tree);
760 }
761
762 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
763 struct userspace_mem_region *region)
764 {
765 struct rb_node **cur, *parent;
766
767 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
768 struct userspace_mem_region *cregion;
769
770 cregion = container_of(*cur, typeof(*cregion), hva_node);
771 parent = *cur;
772 if (region->host_mem < cregion->host_mem)
773 cur = &(*cur)->rb_left;
774 else {
775 TEST_ASSERT(region->host_mem !=
776 cregion->host_mem,
777 "Duplicate HVA in region tree");
778
779 cur = &(*cur)->rb_right;
780 }
781 }
782
783 rb_link_node(&region->hva_node, parent, cur);
784 rb_insert_color(&region->hva_node, hva_tree);
785 }
786
787 /*
788 * VM Userspace Memory Region Add
789 *
790 * Input Args:
791 * vm - Virtual Machine
792 * src_type - Storage source for this region.
793 * NULL to use anonymous memory.
794 * guest_paddr - Starting guest physical address
795 * slot - KVM region slot
796 * npages - Number of physical pages
797 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
798 *
799 * Output Args: None
800 *
801 * Return: None
802 *
803 * Allocates a memory area of the number of pages specified by npages
804 * and maps it to the VM specified by vm, at a starting physical address
805 * given by guest_paddr. The region is created with a KVM region slot
806 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
807 * region is created with the flags given by flags.
808 */
809 void vm_userspace_mem_region_add(struct kvm_vm *vm,
810 enum vm_mem_backing_src_type src_type,
811 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
812 uint32_t flags)
813 {
814 int ret;
815 struct userspace_mem_region *region;
816 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
817 size_t alignment;
818
819 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
820 "Number of guest pages is not compatible with the host. "
821 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
822
823 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
824 "address not on a page boundary.\n"
825 " guest_paddr: 0x%lx vm->page_size: 0x%x",
826 guest_paddr, vm->page_size);
827 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
828 <= vm->max_gfn, "Physical range beyond maximum "
829 "supported physical address,\n"
830 " guest_paddr: 0x%lx npages: 0x%lx\n"
831 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
832 guest_paddr, npages, vm->max_gfn, vm->page_size);
833
834 /*
835 * Confirm a mem region with an overlapping address doesn't
836 * already exist.
837 */
838 region = (struct userspace_mem_region *) userspace_mem_region_find(
839 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
840 if (region != NULL)
841 TEST_FAIL("overlapping userspace_mem_region already "
842 "exists\n"
843 " requested guest_paddr: 0x%lx npages: 0x%lx "
844 "page_size: 0x%x\n"
845 " existing guest_paddr: 0x%lx size: 0x%lx",
846 guest_paddr, npages, vm->page_size,
847 (uint64_t) region->region.guest_phys_addr,
848 (uint64_t) region->region.memory_size);
849
850 /* Confirm no region with the requested slot already exists. */
851 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
852 slot) {
853 if (region->region.slot != slot)
854 continue;
855
856 TEST_FAIL("A mem region with the requested slot "
857 "already exists.\n"
858 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
859 " existing slot: %u paddr: 0x%lx size: 0x%lx",
860 slot, guest_paddr, npages,
861 region->region.slot,
862 (uint64_t) region->region.guest_phys_addr,
863 (uint64_t) region->region.memory_size);
864 }
865
866 /* Allocate and initialize new mem region structure. */
867 region = calloc(1, sizeof(*region));
868 TEST_ASSERT(region != NULL, "Insufficient Memory");
869 region->mmap_size = npages * vm->page_size;
870
871 #ifdef __s390x__
872 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
873 alignment = 0x100000;
874 #else
875 alignment = 1;
876 #endif
877
878 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
879 alignment = max(backing_src_pagesz, alignment);
880
881 /* Add enough memory to align up if necessary */
882 if (alignment > 1)
883 region->mmap_size += alignment;
884
885 region->fd = -1;
886 if (backing_src_is_shared(src_type)) {
887 int memfd_flags = MFD_CLOEXEC;
888
889 if (src_type == VM_MEM_SRC_SHARED_HUGETLB)
890 memfd_flags |= MFD_HUGETLB;
891
892 region->fd = memfd_create("kvm_selftest", memfd_flags);
893 TEST_ASSERT(region->fd != -1,
894 "memfd_create failed, errno: %i", errno);
895
896 ret = ftruncate(region->fd, region->mmap_size);
897 TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno);
898
899 ret = fallocate(region->fd,
900 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0,
901 region->mmap_size);
902 TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno);
903 }
904
905 region->mmap_start = mmap(NULL, region->mmap_size,
906 PROT_READ | PROT_WRITE,
907 vm_mem_backing_src_alias(src_type)->flag,
908 region->fd, 0);
909 TEST_ASSERT(region->mmap_start != MAP_FAILED,
910 "test_malloc failed, mmap_start: %p errno: %i",
911 region->mmap_start, errno);
912
913 /* Align host address */
914 region->host_mem = align(region->mmap_start, alignment);
915
916 /* As needed perform madvise */
917 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
918 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
919 ret = madvise(region->host_mem, npages * vm->page_size,
920 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
921 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
922 region->host_mem, npages * vm->page_size,
923 vm_mem_backing_src_alias(src_type)->name);
924 }
925
926 region->unused_phy_pages = sparsebit_alloc();
927 sparsebit_set_num(region->unused_phy_pages,
928 guest_paddr >> vm->page_shift, npages);
929 region->region.slot = slot;
930 region->region.flags = flags;
931 region->region.guest_phys_addr = guest_paddr;
932 region->region.memory_size = npages * vm->page_size;
933 region->region.userspace_addr = (uintptr_t) region->host_mem;
934 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
935 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
936 " rc: %i errno: %i\n"
937 " slot: %u flags: 0x%x\n"
938 " guest_phys_addr: 0x%lx size: 0x%lx",
939 ret, errno, slot, flags,
940 guest_paddr, (uint64_t) region->region.memory_size);
941
942 /* Add to quick lookup data structures */
943 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
944 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
945 hash_add(vm->regions.slot_hash, &region->slot_node, slot);
946
947 /* If shared memory, create an alias. */
948 if (region->fd >= 0) {
949 region->mmap_alias = mmap(NULL, region->mmap_size,
950 PROT_READ | PROT_WRITE,
951 vm_mem_backing_src_alias(src_type)->flag,
952 region->fd, 0);
953 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
954 "mmap of alias failed, errno: %i", errno);
955
956 /* Align host alias address */
957 region->host_alias = align(region->mmap_alias, alignment);
958 }
959 }
960
961 /*
962 * Memslot to region
963 *
964 * Input Args:
965 * vm - Virtual Machine
966 * memslot - KVM memory slot ID
967 *
968 * Output Args: None
969 *
970 * Return:
971 * Pointer to memory region structure that describe memory region
972 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
973 * on error (e.g. currently no memory region using memslot as a KVM
974 * memory slot ID).
975 */
976 struct userspace_mem_region *
977 memslot2region(struct kvm_vm *vm, uint32_t memslot)
978 {
979 struct userspace_mem_region *region;
980
981 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
982 memslot)
983 if (region->region.slot == memslot)
984 return region;
985
986 fprintf(stderr, "No mem region with the requested slot found,\n"
987 " requested slot: %u\n", memslot);
988 fputs("---- vm dump ----\n", stderr);
989 vm_dump(stderr, vm, 2);
990 TEST_FAIL("Mem region not found");
991 return NULL;
992 }
993
994 /*
995 * VM Memory Region Flags Set
996 *
997 * Input Args:
998 * vm - Virtual Machine
999 * flags - Starting guest physical address
1000 *
1001 * Output Args: None
1002 *
1003 * Return: None
1004 *
1005 * Sets the flags of the memory region specified by the value of slot,
1006 * to the values given by flags.
1007 */
1008 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1009 {
1010 int ret;
1011 struct userspace_mem_region *region;
1012
1013 region = memslot2region(vm, slot);
1014
1015 region->region.flags = flags;
1016
1017 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1018
1019 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1020 " rc: %i errno: %i slot: %u flags: 0x%x",
1021 ret, errno, slot, flags);
1022 }
1023
1024 /*
1025 * VM Memory Region Move
1026 *
1027 * Input Args:
1028 * vm - Virtual Machine
1029 * slot - Slot of the memory region to move
1030 * new_gpa - Starting guest physical address
1031 *
1032 * Output Args: None
1033 *
1034 * Return: None
1035 *
1036 * Change the gpa of a memory region.
1037 */
1038 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1039 {
1040 struct userspace_mem_region *region;
1041 int ret;
1042
1043 region = memslot2region(vm, slot);
1044
1045 region->region.guest_phys_addr = new_gpa;
1046
1047 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, &region->region);
1048
1049 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1050 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1051 ret, errno, slot, new_gpa);
1052 }
1053
1054 /*
1055 * VM Memory Region Delete
1056 *
1057 * Input Args:
1058 * vm - Virtual Machine
1059 * slot - Slot of the memory region to delete
1060 *
1061 * Output Args: None
1062 *
1063 * Return: None
1064 *
1065 * Delete a memory region.
1066 */
1067 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1068 {
1069 __vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1070 }
1071
1072 /*
1073 * VCPU mmap Size
1074 *
1075 * Input Args: None
1076 *
1077 * Output Args: None
1078 *
1079 * Return:
1080 * Size of VCPU state
1081 *
1082 * Returns the size of the structure pointed to by the return value
1083 * of vcpu_state().
1084 */
1085 static int vcpu_mmap_sz(void)
1086 {
1087 int dev_fd, ret;
1088
1089 dev_fd = open_kvm_dev_path_or_exit();
1090
1091 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1092 TEST_ASSERT(ret >= sizeof(struct kvm_run),
1093 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
1094 __func__, ret, errno);
1095
1096 close(dev_fd);
1097
1098 return ret;
1099 }
1100
1101 /*
1102 * VM VCPU Add
1103 *
1104 * Input Args:
1105 * vm - Virtual Machine
1106 * vcpuid - VCPU ID
1107 *
1108 * Output Args: None
1109 *
1110 * Return: None
1111 *
1112 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
1113 * No additional VCPU setup is done.
1114 */
1115 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
1116 {
1117 struct vcpu *vcpu;
1118
1119 /* Confirm a vcpu with the specified id doesn't already exist. */
1120 vcpu = vcpu_find(vm, vcpuid);
1121 if (vcpu != NULL)
1122 TEST_FAIL("vcpu with the specified id "
1123 "already exists,\n"
1124 " requested vcpuid: %u\n"
1125 " existing vcpuid: %u state: %p",
1126 vcpuid, vcpu->id, vcpu->state);
1127
1128 /* Allocate and initialize new vcpu structure. */
1129 vcpu = calloc(1, sizeof(*vcpu));
1130 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1131 vcpu->id = vcpuid;
1132 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
1133 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
1134 vcpu->fd, errno);
1135
1136 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
1137 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1138 vcpu_mmap_sz(), sizeof(*vcpu->state));
1139 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1140 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1141 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
1142 "vcpu id: %u errno: %i", vcpuid, errno);
1143
1144 /* Add to linked-list of VCPUs. */
1145 list_add(&vcpu->list, &vm->vcpus);
1146 }
1147
1148 /*
1149 * VM Virtual Address Unused Gap
1150 *
1151 * Input Args:
1152 * vm - Virtual Machine
1153 * sz - Size (bytes)
1154 * vaddr_min - Minimum Virtual Address
1155 *
1156 * Output Args: None
1157 *
1158 * Return:
1159 * Lowest virtual address at or below vaddr_min, with at least
1160 * sz unused bytes. TEST_ASSERT failure if no area of at least
1161 * size sz is available.
1162 *
1163 * Within the VM specified by vm, locates the lowest starting virtual
1164 * address >= vaddr_min, that has at least sz unallocated bytes. A
1165 * TEST_ASSERT failure occurs for invalid input or no area of at least
1166 * sz unallocated bytes >= vaddr_min is available.
1167 */
1168 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1169 vm_vaddr_t vaddr_min)
1170 {
1171 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1172
1173 /* Determine lowest permitted virtual page index. */
1174 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1175 if ((pgidx_start * vm->page_size) < vaddr_min)
1176 goto no_va_found;
1177
1178 /* Loop over section with enough valid virtual page indexes. */
1179 if (!sparsebit_is_set_num(vm->vpages_valid,
1180 pgidx_start, pages))
1181 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1182 pgidx_start, pages);
1183 do {
1184 /*
1185 * Are there enough unused virtual pages available at
1186 * the currently proposed starting virtual page index.
1187 * If not, adjust proposed starting index to next
1188 * possible.
1189 */
1190 if (sparsebit_is_clear_num(vm->vpages_mapped,
1191 pgidx_start, pages))
1192 goto va_found;
1193 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1194 pgidx_start, pages);
1195 if (pgidx_start == 0)
1196 goto no_va_found;
1197
1198 /*
1199 * If needed, adjust proposed starting virtual address,
1200 * to next range of valid virtual addresses.
1201 */
1202 if (!sparsebit_is_set_num(vm->vpages_valid,
1203 pgidx_start, pages)) {
1204 pgidx_start = sparsebit_next_set_num(
1205 vm->vpages_valid, pgidx_start, pages);
1206 if (pgidx_start == 0)
1207 goto no_va_found;
1208 }
1209 } while (pgidx_start != 0);
1210
1211 no_va_found:
1212 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1213
1214 /* NOT REACHED */
1215 return -1;
1216
1217 va_found:
1218 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1219 pgidx_start, pages),
1220 "Unexpected, invalid virtual page index range,\n"
1221 " pgidx_start: 0x%lx\n"
1222 " pages: 0x%lx",
1223 pgidx_start, pages);
1224 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1225 pgidx_start, pages),
1226 "Unexpected, pages already mapped,\n"
1227 " pgidx_start: 0x%lx\n"
1228 " pages: 0x%lx",
1229 pgidx_start, pages);
1230
1231 return pgidx_start * vm->page_size;
1232 }
1233
1234 /*
1235 * VM Virtual Address Allocate
1236 *
1237 * Input Args:
1238 * vm - Virtual Machine
1239 * sz - Size in bytes
1240 * vaddr_min - Minimum starting virtual address
1241 * data_memslot - Memory region slot for data pages
1242 * pgd_memslot - Memory region slot for new virtual translation tables
1243 *
1244 * Output Args: None
1245 *
1246 * Return:
1247 * Starting guest virtual address
1248 *
1249 * Allocates at least sz bytes within the virtual address space of the vm
1250 * given by vm. The allocated bytes are mapped to a virtual address >=
1251 * the address given by vaddr_min. Note that each allocation uses a
1252 * a unique set of pages, with the minimum real allocation being at least
1253 * a page.
1254 */
1255 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1256 {
1257 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1258
1259 virt_pgd_alloc(vm);
1260 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1261 KVM_UTIL_MIN_PFN * vm->page_size, 0);
1262
1263 /*
1264 * Find an unused range of virtual page addresses of at least
1265 * pages in length.
1266 */
1267 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1268
1269 /* Map the virtual pages. */
1270 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1271 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1272
1273 virt_pg_map(vm, vaddr, paddr);
1274
1275 sparsebit_set(vm->vpages_mapped,
1276 vaddr >> vm->page_shift);
1277 }
1278
1279 return vaddr_start;
1280 }
1281
1282 /*
1283 * VM Virtual Address Allocate Pages
1284 *
1285 * Input Args:
1286 * vm - Virtual Machine
1287 *
1288 * Output Args: None
1289 *
1290 * Return:
1291 * Starting guest virtual address
1292 *
1293 * Allocates at least N system pages worth of bytes within the virtual address
1294 * space of the vm.
1295 */
1296 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1297 {
1298 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1299 }
1300
1301 /*
1302 * VM Virtual Address Allocate Page
1303 *
1304 * Input Args:
1305 * vm - Virtual Machine
1306 *
1307 * Output Args: None
1308 *
1309 * Return:
1310 * Starting guest virtual address
1311 *
1312 * Allocates at least one system page worth of bytes within the virtual address
1313 * space of the vm.
1314 */
1315 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1316 {
1317 return vm_vaddr_alloc_pages(vm, 1);
1318 }
1319
1320 /*
1321 * Map a range of VM virtual address to the VM's physical address
1322 *
1323 * Input Args:
1324 * vm - Virtual Machine
1325 * vaddr - Virtuall address to map
1326 * paddr - VM Physical Address
1327 * npages - The number of pages to map
1328 * pgd_memslot - Memory region slot for new virtual translation tables
1329 *
1330 * Output Args: None
1331 *
1332 * Return: None
1333 *
1334 * Within the VM given by @vm, creates a virtual translation for
1335 * @npages starting at @vaddr to the page range starting at @paddr.
1336 */
1337 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1338 unsigned int npages)
1339 {
1340 size_t page_size = vm->page_size;
1341 size_t size = npages * page_size;
1342
1343 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1344 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1345
1346 while (npages--) {
1347 virt_pg_map(vm, vaddr, paddr);
1348 vaddr += page_size;
1349 paddr += page_size;
1350 }
1351 }
1352
1353 /*
1354 * Address VM Physical to Host Virtual
1355 *
1356 * Input Args:
1357 * vm - Virtual Machine
1358 * gpa - VM physical address
1359 *
1360 * Output Args: None
1361 *
1362 * Return:
1363 * Equivalent host virtual address
1364 *
1365 * Locates the memory region containing the VM physical address given
1366 * by gpa, within the VM given by vm. When found, the host virtual
1367 * address providing the memory to the vm physical address is returned.
1368 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1369 */
1370 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1371 {
1372 struct userspace_mem_region *region;
1373
1374 region = userspace_mem_region_find(vm, gpa, gpa);
1375 if (!region) {
1376 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1377 return NULL;
1378 }
1379
1380 return (void *)((uintptr_t)region->host_mem
1381 + (gpa - region->region.guest_phys_addr));
1382 }
1383
1384 /*
1385 * Address Host Virtual to VM Physical
1386 *
1387 * Input Args:
1388 * vm - Virtual Machine
1389 * hva - Host virtual address
1390 *
1391 * Output Args: None
1392 *
1393 * Return:
1394 * Equivalent VM physical address
1395 *
1396 * Locates the memory region containing the host virtual address given
1397 * by hva, within the VM given by vm. When found, the equivalent
1398 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1399 * region containing hva exists.
1400 */
1401 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1402 {
1403 struct rb_node *node;
1404
1405 for (node = vm->regions.hva_tree.rb_node; node; ) {
1406 struct userspace_mem_region *region =
1407 container_of(node, struct userspace_mem_region, hva_node);
1408
1409 if (hva >= region->host_mem) {
1410 if (hva <= (region->host_mem
1411 + region->region.memory_size - 1))
1412 return (vm_paddr_t)((uintptr_t)
1413 region->region.guest_phys_addr
1414 + (hva - (uintptr_t)region->host_mem));
1415
1416 node = node->rb_right;
1417 } else
1418 node = node->rb_left;
1419 }
1420
1421 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1422 return -1;
1423 }
1424
1425 /*
1426 * Address VM physical to Host Virtual *alias*.
1427 *
1428 * Input Args:
1429 * vm - Virtual Machine
1430 * gpa - VM physical address
1431 *
1432 * Output Args: None
1433 *
1434 * Return:
1435 * Equivalent address within the host virtual *alias* area, or NULL
1436 * (without failing the test) if the guest memory is not shared (so
1437 * no alias exists).
1438 *
1439 * When vm_create() and related functions are called with a shared memory
1440 * src_type, we also create a writable, shared alias mapping of the
1441 * underlying guest memory. This allows the host to manipulate guest memory
1442 * without mapping that memory in the guest's address space. And, for
1443 * userfaultfd-based demand paging, we can do so without triggering userfaults.
1444 */
1445 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1446 {
1447 struct userspace_mem_region *region;
1448 uintptr_t offset;
1449
1450 region = userspace_mem_region_find(vm, gpa, gpa);
1451 if (!region)
1452 return NULL;
1453
1454 if (!region->host_alias)
1455 return NULL;
1456
1457 offset = gpa - region->region.guest_phys_addr;
1458 return (void *) ((uintptr_t) region->host_alias + offset);
1459 }
1460
1461 /*
1462 * VM Create IRQ Chip
1463 *
1464 * Input Args:
1465 * vm - Virtual Machine
1466 *
1467 * Output Args: None
1468 *
1469 * Return: None
1470 *
1471 * Creates an interrupt controller chip for the VM specified by vm.
1472 */
1473 void vm_create_irqchip(struct kvm_vm *vm)
1474 {
1475 int ret;
1476
1477 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1478 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1479 "rc: %i errno: %i", ret, errno);
1480
1481 vm->has_irqchip = true;
1482 }
1483
1484 /*
1485 * VM VCPU State
1486 *
1487 * Input Args:
1488 * vm - Virtual Machine
1489 * vcpuid - VCPU ID
1490 *
1491 * Output Args: None
1492 *
1493 * Return:
1494 * Pointer to structure that describes the state of the VCPU.
1495 *
1496 * Locates and returns a pointer to a structure that describes the
1497 * state of the VCPU with the given vcpuid.
1498 */
1499 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1500 {
1501 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1502 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1503
1504 return vcpu->state;
1505 }
1506
1507 /*
1508 * VM VCPU Run
1509 *
1510 * Input Args:
1511 * vm - Virtual Machine
1512 * vcpuid - VCPU ID
1513 *
1514 * Output Args: None
1515 *
1516 * Return: None
1517 *
1518 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1519 * given by vm.
1520 */
1521 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1522 {
1523 int ret = _vcpu_run(vm, vcpuid);
1524 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1525 "rc: %i errno: %i", ret, errno);
1526 }
1527
1528 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1529 {
1530 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1531 int rc;
1532
1533 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1534 do {
1535 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1536 } while (rc == -1 && errno == EINTR);
1537
1538 assert_on_unhandled_exception(vm, vcpuid);
1539
1540 return rc;
1541 }
1542
1543 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1544 {
1545 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1546
1547 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1548
1549 return vcpu->fd;
1550 }
1551
1552 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1553 {
1554 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1555 int ret;
1556
1557 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1558
1559 vcpu->state->immediate_exit = 1;
1560 ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1561 vcpu->state->immediate_exit = 0;
1562
1563 TEST_ASSERT(ret == -1 && errno == EINTR,
1564 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1565 ret, errno);
1566 }
1567
1568 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1569 struct kvm_guest_debug *debug)
1570 {
1571 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1572 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1573
1574 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1575 }
1576
1577 /*
1578 * VM VCPU Set MP State
1579 *
1580 * Input Args:
1581 * vm - Virtual Machine
1582 * vcpuid - VCPU ID
1583 * mp_state - mp_state to be set
1584 *
1585 * Output Args: None
1586 *
1587 * Return: None
1588 *
1589 * Sets the MP state of the VCPU given by vcpuid, to the state given
1590 * by mp_state.
1591 */
1592 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1593 struct kvm_mp_state *mp_state)
1594 {
1595 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1596 int ret;
1597
1598 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1599
1600 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1601 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1602 "rc: %i errno: %i", ret, errno);
1603 }
1604
1605 /*
1606 * VM VCPU Get Reg List
1607 *
1608 * Input Args:
1609 * vm - Virtual Machine
1610 * vcpuid - VCPU ID
1611 *
1612 * Output Args:
1613 * None
1614 *
1615 * Return:
1616 * A pointer to an allocated struct kvm_reg_list
1617 *
1618 * Get the list of guest registers which are supported for
1619 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1620 */
1621 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1622 {
1623 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1624 int ret;
1625
1626 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, &reg_list_n);
1627 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1628 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1629 reg_list->n = reg_list_n.n;
1630 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1631 return reg_list;
1632 }
1633
1634 /*
1635 * VM VCPU Regs Get
1636 *
1637 * Input Args:
1638 * vm - Virtual Machine
1639 * vcpuid - VCPU ID
1640 *
1641 * Output Args:
1642 * regs - current state of VCPU regs
1643 *
1644 * Return: None
1645 *
1646 * Obtains the current register state for the VCPU specified by vcpuid
1647 * and stores it at the location given by regs.
1648 */
1649 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1650 {
1651 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1652 int ret;
1653
1654 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1655
1656 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1657 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1658 ret, errno);
1659 }
1660
1661 /*
1662 * VM VCPU Regs Set
1663 *
1664 * Input Args:
1665 * vm - Virtual Machine
1666 * vcpuid - VCPU ID
1667 * regs - Values to set VCPU regs to
1668 *
1669 * Output Args: None
1670 *
1671 * Return: None
1672 *
1673 * Sets the regs of the VCPU specified by vcpuid to the values
1674 * given by regs.
1675 */
1676 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1677 {
1678 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1679 int ret;
1680
1681 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1682
1683 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1684 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1685 ret, errno);
1686 }
1687
1688 #ifdef __KVM_HAVE_VCPU_EVENTS
1689 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1690 struct kvm_vcpu_events *events)
1691 {
1692 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1693 int ret;
1694
1695 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1696
1697 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1698 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1699 ret, errno);
1700 }
1701
1702 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1703 struct kvm_vcpu_events *events)
1704 {
1705 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1706 int ret;
1707
1708 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1709
1710 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1711 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1712 ret, errno);
1713 }
1714 #endif
1715
1716 #ifdef __x86_64__
1717 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1718 struct kvm_nested_state *state)
1719 {
1720 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1721 int ret;
1722
1723 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1724
1725 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1726 TEST_ASSERT(ret == 0,
1727 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1728 ret, errno);
1729 }
1730
1731 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1732 struct kvm_nested_state *state, bool ignore_error)
1733 {
1734 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1735 int ret;
1736
1737 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1738
1739 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1740 if (!ignore_error) {
1741 TEST_ASSERT(ret == 0,
1742 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1743 ret, errno);
1744 }
1745
1746 return ret;
1747 }
1748 #endif
1749
1750 /*
1751 * VM VCPU System Regs Get
1752 *
1753 * Input Args:
1754 * vm - Virtual Machine
1755 * vcpuid - VCPU ID
1756 *
1757 * Output Args:
1758 * sregs - current state of VCPU system regs
1759 *
1760 * Return: None
1761 *
1762 * Obtains the current system register state for the VCPU specified by
1763 * vcpuid and stores it at the location given by sregs.
1764 */
1765 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1766 {
1767 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1768 int ret;
1769
1770 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1771
1772 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1773 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1774 ret, errno);
1775 }
1776
1777 /*
1778 * VM VCPU System Regs Set
1779 *
1780 * Input Args:
1781 * vm - Virtual Machine
1782 * vcpuid - VCPU ID
1783 * sregs - Values to set VCPU system regs to
1784 *
1785 * Output Args: None
1786 *
1787 * Return: None
1788 *
1789 * Sets the system regs of the VCPU specified by vcpuid to the values
1790 * given by sregs.
1791 */
1792 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1793 {
1794 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1795 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1796 "rc: %i errno: %i", ret, errno);
1797 }
1798
1799 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1800 {
1801 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1802
1803 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1804
1805 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1806 }
1807
1808 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1809 {
1810 int ret;
1811
1812 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1813 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1814 ret, errno, strerror(errno));
1815 }
1816
1817 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1818 {
1819 int ret;
1820
1821 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1822 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1823 ret, errno, strerror(errno));
1824 }
1825
1826 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1827 {
1828 int ret;
1829
1830 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1831 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1832 ret, errno, strerror(errno));
1833 }
1834
1835 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1836 {
1837 int ret;
1838
1839 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1840 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1841 ret, errno, strerror(errno));
1842 }
1843
1844 /*
1845 * VCPU Ioctl
1846 *
1847 * Input Args:
1848 * vm - Virtual Machine
1849 * vcpuid - VCPU ID
1850 * cmd - Ioctl number
1851 * arg - Argument to pass to the ioctl
1852 *
1853 * Return: None
1854 *
1855 * Issues an arbitrary ioctl on a VCPU fd.
1856 */
1857 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1858 unsigned long cmd, void *arg)
1859 {
1860 int ret;
1861
1862 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1863 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1864 cmd, ret, errno, strerror(errno));
1865 }
1866
1867 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1868 unsigned long cmd, void *arg)
1869 {
1870 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1871 int ret;
1872
1873 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1874
1875 ret = ioctl(vcpu->fd, cmd, arg);
1876
1877 return ret;
1878 }
1879
1880 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1881 {
1882 struct vcpu *vcpu;
1883 uint32_t size = vm->dirty_ring_size;
1884
1885 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1886
1887 vcpu = vcpu_find(vm, vcpuid);
1888
1889 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1890
1891 if (!vcpu->dirty_gfns) {
1892 void *addr;
1893
1894 addr = mmap(NULL, size, PROT_READ,
1895 MAP_PRIVATE, vcpu->fd,
1896 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1897 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1898
1899 addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1900 MAP_PRIVATE, vcpu->fd,
1901 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1902 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1903
1904 addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
1905 MAP_SHARED, vcpu->fd,
1906 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1907 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1908
1909 vcpu->dirty_gfns = addr;
1910 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1911 }
1912
1913 return vcpu->dirty_gfns;
1914 }
1915
1916 /*
1917 * VM Ioctl
1918 *
1919 * Input Args:
1920 * vm - Virtual Machine
1921 * cmd - Ioctl number
1922 * arg - Argument to pass to the ioctl
1923 *
1924 * Return: None
1925 *
1926 * Issues an arbitrary ioctl on a VM fd.
1927 */
1928 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1929 {
1930 int ret;
1931
1932 ret = _vm_ioctl(vm, cmd, arg);
1933 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1934 cmd, ret, errno, strerror(errno));
1935 }
1936
1937 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1938 {
1939 return ioctl(vm->fd, cmd, arg);
1940 }
1941
1942 /*
1943 * KVM system ioctl
1944 *
1945 * Input Args:
1946 * vm - Virtual Machine
1947 * cmd - Ioctl number
1948 * arg - Argument to pass to the ioctl
1949 *
1950 * Return: None
1951 *
1952 * Issues an arbitrary ioctl on a KVM fd.
1953 */
1954 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1955 {
1956 int ret;
1957
1958 ret = ioctl(vm->kvm_fd, cmd, arg);
1959 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
1960 cmd, ret, errno, strerror(errno));
1961 }
1962
1963 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1964 {
1965 return ioctl(vm->kvm_fd, cmd, arg);
1966 }
1967
1968 /*
1969 * Device Ioctl
1970 */
1971
1972 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
1973 {
1974 struct kvm_device_attr attribute = {
1975 .group = group,
1976 .attr = attr,
1977 .flags = 0,
1978 };
1979
1980 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1981 }
1982
1983 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
1984 {
1985 int ret = _kvm_device_check_attr(dev_fd, group, attr);
1986
1987 TEST_ASSERT(ret >= 0, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
1988 return ret;
1989 }
1990
1991 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd)
1992 {
1993 struct kvm_create_device create_dev;
1994 int ret;
1995
1996 create_dev.type = type;
1997 create_dev.fd = -1;
1998 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
1999 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev);
2000 *fd = create_dev.fd;
2001 return ret;
2002 }
2003
2004 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test)
2005 {
2006 int fd, ret;
2007
2008 ret = _kvm_create_device(vm, type, test, &fd);
2009
2010 if (!test) {
2011 TEST_ASSERT(ret >= 0,
2012 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno);
2013 return fd;
2014 }
2015 return ret;
2016 }
2017
2018 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2019 void *val, bool write)
2020 {
2021 struct kvm_device_attr kvmattr = {
2022 .group = group,
2023 .attr = attr,
2024 .flags = 0,
2025 .addr = (uintptr_t)val,
2026 };
2027 int ret;
2028
2029 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2030 &kvmattr);
2031 return ret;
2032 }
2033
2034 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2035 void *val, bool write)
2036 {
2037 int ret = _kvm_device_access(dev_fd, group, attr, val, write);
2038
2039 TEST_ASSERT(ret >= 0, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2040 return ret;
2041 }
2042
2043 /*
2044 * VM Dump
2045 *
2046 * Input Args:
2047 * vm - Virtual Machine
2048 * indent - Left margin indent amount
2049 *
2050 * Output Args:
2051 * stream - Output FILE stream
2052 *
2053 * Return: None
2054 *
2055 * Dumps the current state of the VM given by vm, to the FILE stream
2056 * given by stream.
2057 */
2058 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
2059 {
2060 int ctr;
2061 struct userspace_mem_region *region;
2062 struct vcpu *vcpu;
2063
2064 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
2065 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
2066 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
2067 fprintf(stream, "%*sMem Regions:\n", indent, "");
2068 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
2069 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
2070 "host_virt: %p\n", indent + 2, "",
2071 (uint64_t) region->region.guest_phys_addr,
2072 (uint64_t) region->region.memory_size,
2073 region->host_mem);
2074 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2075 sparsebit_dump(stream, region->unused_phy_pages, 0);
2076 }
2077 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2078 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2079 fprintf(stream, "%*spgd_created: %u\n", indent, "",
2080 vm->pgd_created);
2081 if (vm->pgd_created) {
2082 fprintf(stream, "%*sVirtual Translation Tables:\n",
2083 indent + 2, "");
2084 virt_dump(stream, vm, indent + 4);
2085 }
2086 fprintf(stream, "%*sVCPUs:\n", indent, "");
2087 list_for_each_entry(vcpu, &vm->vcpus, list)
2088 vcpu_dump(stream, vm, vcpu->id, indent + 2);
2089 }
2090
2091 /* Known KVM exit reasons */
2092 static struct exit_reason {
2093 unsigned int reason;
2094 const char *name;
2095 } exit_reasons_known[] = {
2096 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
2097 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
2098 {KVM_EXIT_IO, "IO"},
2099 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
2100 {KVM_EXIT_DEBUG, "DEBUG"},
2101 {KVM_EXIT_HLT, "HLT"},
2102 {KVM_EXIT_MMIO, "MMIO"},
2103 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
2104 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
2105 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
2106 {KVM_EXIT_INTR, "INTR"},
2107 {KVM_EXIT_SET_TPR, "SET_TPR"},
2108 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
2109 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
2110 {KVM_EXIT_S390_RESET, "S390_RESET"},
2111 {KVM_EXIT_DCR, "DCR"},
2112 {KVM_EXIT_NMI, "NMI"},
2113 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
2114 {KVM_EXIT_OSI, "OSI"},
2115 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
2116 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
2117 {KVM_EXIT_X86_RDMSR, "RDMSR"},
2118 {KVM_EXIT_X86_WRMSR, "WRMSR"},
2119 {KVM_EXIT_XEN, "XEN"},
2120 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2121 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
2122 #endif
2123 };
2124
2125 /*
2126 * Exit Reason String
2127 *
2128 * Input Args:
2129 * exit_reason - Exit reason
2130 *
2131 * Output Args: None
2132 *
2133 * Return:
2134 * Constant string pointer describing the exit reason.
2135 *
2136 * Locates and returns a constant string that describes the KVM exit
2137 * reason given by exit_reason. If no such string is found, a constant
2138 * string of "Unknown" is returned.
2139 */
2140 const char *exit_reason_str(unsigned int exit_reason)
2141 {
2142 unsigned int n1;
2143
2144 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2145 if (exit_reason == exit_reasons_known[n1].reason)
2146 return exit_reasons_known[n1].name;
2147 }
2148
2149 return "Unknown";
2150 }
2151
2152 /*
2153 * Physical Contiguous Page Allocator
2154 *
2155 * Input Args:
2156 * vm - Virtual Machine
2157 * num - number of pages
2158 * paddr_min - Physical address minimum
2159 * memslot - Memory region to allocate page from
2160 *
2161 * Output Args: None
2162 *
2163 * Return:
2164 * Starting physical address
2165 *
2166 * Within the VM specified by vm, locates a range of available physical
2167 * pages at or above paddr_min. If found, the pages are marked as in use
2168 * and their base address is returned. A TEST_ASSERT failure occurs if
2169 * not enough pages are available at or above paddr_min.
2170 */
2171 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2172 vm_paddr_t paddr_min, uint32_t memslot)
2173 {
2174 struct userspace_mem_region *region;
2175 sparsebit_idx_t pg, base;
2176
2177 TEST_ASSERT(num > 0, "Must allocate at least one page");
2178
2179 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2180 "not divisible by page size.\n"
2181 " paddr_min: 0x%lx page_size: 0x%x",
2182 paddr_min, vm->page_size);
2183
2184 region = memslot2region(vm, memslot);
2185 base = pg = paddr_min >> vm->page_shift;
2186
2187 do {
2188 for (; pg < base + num; ++pg) {
2189 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2190 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2191 break;
2192 }
2193 }
2194 } while (pg && pg != base + num);
2195
2196 if (pg == 0) {
2197 fprintf(stderr, "No guest physical page available, "
2198 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2199 paddr_min, vm->page_size, memslot);
2200 fputs("---- vm dump ----\n", stderr);
2201 vm_dump(stderr, vm, 2);
2202 abort();
2203 }
2204
2205 for (pg = base; pg < base + num; ++pg)
2206 sparsebit_clear(region->unused_phy_pages, pg);
2207
2208 return base * vm->page_size;
2209 }
2210
2211 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2212 uint32_t memslot)
2213 {
2214 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2215 }
2216
2217 /* Arbitrary minimum physical address used for virtual translation tables. */
2218 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
2219
2220 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2221 {
2222 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
2223 }
2224
2225 /*
2226 * Address Guest Virtual to Host Virtual
2227 *
2228 * Input Args:
2229 * vm - Virtual Machine
2230 * gva - VM virtual address
2231 *
2232 * Output Args: None
2233 *
2234 * Return:
2235 * Equivalent host virtual address
2236 */
2237 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2238 {
2239 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2240 }
2241
2242 /*
2243 * Is Unrestricted Guest
2244 *
2245 * Input Args:
2246 * vm - Virtual Machine
2247 *
2248 * Output Args: None
2249 *
2250 * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
2251 *
2252 * Check if the unrestricted guest flag is enabled.
2253 */
2254 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
2255 {
2256 char val = 'N';
2257 size_t count;
2258 FILE *f;
2259
2260 if (vm == NULL) {
2261 /* Ensure that the KVM vendor-specific module is loaded. */
2262 close(open_kvm_dev_path_or_exit());
2263 }
2264
2265 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
2266 if (f) {
2267 count = fread(&val, sizeof(char), 1, f);
2268 TEST_ASSERT(count == 1, "Unable to read from param file.");
2269 fclose(f);
2270 }
2271
2272 return val == 'Y';
2273 }
2274
2275 unsigned int vm_get_page_size(struct kvm_vm *vm)
2276 {
2277 return vm->page_size;
2278 }
2279
2280 unsigned int vm_get_page_shift(struct kvm_vm *vm)
2281 {
2282 return vm->page_shift;
2283 }
2284
2285 uint64_t vm_get_max_gfn(struct kvm_vm *vm)
2286 {
2287 return vm->max_gfn;
2288 }
2289
2290 int vm_get_fd(struct kvm_vm *vm)
2291 {
2292 return vm->fd;
2293 }
2294
2295 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2296 unsigned int page_shift,
2297 unsigned int new_page_shift,
2298 bool ceil)
2299 {
2300 unsigned int n = 1 << (new_page_shift - page_shift);
2301
2302 if (page_shift >= new_page_shift)
2303 return num_pages * (1 << (page_shift - new_page_shift));
2304
2305 return num_pages / n + !!(ceil && num_pages % n);
2306 }
2307
2308 static inline int getpageshift(void)
2309 {
2310 return __builtin_ffs(getpagesize()) - 1;
2311 }
2312
2313 unsigned int
2314 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2315 {
2316 return vm_calc_num_pages(num_guest_pages,
2317 vm_guest_mode_params[mode].page_shift,
2318 getpageshift(), true);
2319 }
2320
2321 unsigned int
2322 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2323 {
2324 return vm_calc_num_pages(num_host_pages, getpageshift(),
2325 vm_guest_mode_params[mode].page_shift, false);
2326 }
2327
2328 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2329 {
2330 unsigned int n;
2331 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2332 return vm_adjust_num_guest_pages(mode, n);
2333 }
2334
2335 int vm_get_stats_fd(struct kvm_vm *vm)
2336 {
2337 return ioctl(vm->fd, KVM_GET_STATS_FD, NULL);
2338 }
2339
2340 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid)
2341 {
2342 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2343
2344 return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL);
2345 }