]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - tools/testing/selftests/vm/userfaultfd.c
spi: omap-100k: Rely on validations done by spi core
[mirror_ubuntu-zesty-kernel.git] / tools / testing / selftests / vm / userfaultfd.c
1 /*
2 * Stress userfaultfd syscall.
3 *
4 * Copyright (C) 2015 Red Hat, Inc.
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2. See
7 * the COPYING file in the top-level directory.
8 *
9 * This test allocates two virtual areas and bounces the physical
10 * memory across the two virtual areas (from area_src to area_dst)
11 * using userfaultfd.
12 *
13 * There are three threads running per CPU:
14 *
15 * 1) one per-CPU thread takes a per-page pthread_mutex in a random
16 * page of the area_dst (while the physical page may still be in
17 * area_src), and increments a per-page counter in the same page,
18 * and checks its value against a verification region.
19 *
20 * 2) another per-CPU thread handles the userfaults generated by
21 * thread 1 above. userfaultfd blocking reads or poll() modes are
22 * exercised interleaved.
23 *
24 * 3) one last per-CPU thread transfers the memory in the background
25 * at maximum bandwidth (if not already transferred by thread
26 * 2). Each cpu thread takes cares of transferring a portion of the
27 * area.
28 *
29 * When all threads of type 3 completed the transfer, one bounce is
30 * complete. area_src and area_dst are then swapped. All threads are
31 * respawned and so the bounce is immediately restarted in the
32 * opposite direction.
33 *
34 * per-CPU threads 1 by triggering userfaults inside
35 * pthread_mutex_lock will also verify the atomicity of the memory
36 * transfer (UFFDIO_COPY).
37 *
38 * The program takes two parameters: the amounts of physical memory in
39 * megabytes (MiB) of the area and the number of bounces to execute.
40 *
41 * # 100MiB 99999 bounces
42 * ./userfaultfd 100 99999
43 *
44 * # 1GiB 99 bounces
45 * ./userfaultfd 1000 99
46 *
47 * # 10MiB-~6GiB 999 bounces, continue forever unless an error triggers
48 * while ./userfaultfd $[RANDOM % 6000 + 10] 999; do true; done
49 */
50
51 #define _GNU_SOURCE
52 #include <stdio.h>
53 #include <errno.h>
54 #include <unistd.h>
55 #include <stdlib.h>
56 #include <sys/types.h>
57 #include <sys/stat.h>
58 #include <fcntl.h>
59 #include <time.h>
60 #include <signal.h>
61 #include <poll.h>
62 #include <string.h>
63 #include <sys/mman.h>
64 #include <sys/syscall.h>
65 #include <sys/ioctl.h>
66 #include <pthread.h>
67 #include "../../../../include/uapi/linux/userfaultfd.h"
68
69 #ifdef __x86_64__
70 #define __NR_userfaultfd 323
71 #elif defined(__i386__)
72 #define __NR_userfaultfd 374
73 #elif defined(__powewrpc__)
74 #define __NR_userfaultfd 364
75 #else
76 #error "missing __NR_userfaultfd definition"
77 #endif
78
79 static unsigned long nr_cpus, nr_pages, nr_pages_per_cpu, page_size;
80
81 #define BOUNCE_RANDOM (1<<0)
82 #define BOUNCE_RACINGFAULTS (1<<1)
83 #define BOUNCE_VERIFY (1<<2)
84 #define BOUNCE_POLL (1<<3)
85 static int bounces;
86
87 static unsigned long long *count_verify;
88 static int uffd, finished, *pipefd;
89 static char *area_src, *area_dst;
90 static char *zeropage;
91 pthread_attr_t attr;
92
93 /* pthread_mutex_t starts at page offset 0 */
94 #define area_mutex(___area, ___nr) \
95 ((pthread_mutex_t *) ((___area) + (___nr)*page_size))
96 /*
97 * count is placed in the page after pthread_mutex_t naturally aligned
98 * to avoid non alignment faults on non-x86 archs.
99 */
100 #define area_count(___area, ___nr) \
101 ((volatile unsigned long long *) ((unsigned long) \
102 ((___area) + (___nr)*page_size + \
103 sizeof(pthread_mutex_t) + \
104 sizeof(unsigned long long) - 1) & \
105 ~(unsigned long)(sizeof(unsigned long long) \
106 - 1)))
107
108 static int my_bcmp(char *str1, char *str2, size_t n)
109 {
110 unsigned long i;
111 for (i = 0; i < n; i++)
112 if (str1[i] != str2[i])
113 return 1;
114 return 0;
115 }
116
117 static void *locking_thread(void *arg)
118 {
119 unsigned long cpu = (unsigned long) arg;
120 struct random_data rand;
121 unsigned long page_nr = *(&(page_nr)); /* uninitialized warning */
122 int32_t rand_nr;
123 unsigned long long count;
124 char randstate[64];
125 unsigned int seed;
126 time_t start;
127
128 if (bounces & BOUNCE_RANDOM) {
129 seed = (unsigned int) time(NULL) - bounces;
130 if (!(bounces & BOUNCE_RACINGFAULTS))
131 seed += cpu;
132 bzero(&rand, sizeof(rand));
133 bzero(&randstate, sizeof(randstate));
134 if (initstate_r(seed, randstate, sizeof(randstate), &rand))
135 fprintf(stderr, "srandom_r error\n"), exit(1);
136 } else {
137 page_nr = -bounces;
138 if (!(bounces & BOUNCE_RACINGFAULTS))
139 page_nr += cpu * nr_pages_per_cpu;
140 }
141
142 while (!finished) {
143 if (bounces & BOUNCE_RANDOM) {
144 if (random_r(&rand, &rand_nr))
145 fprintf(stderr, "random_r 1 error\n"), exit(1);
146 page_nr = rand_nr;
147 if (sizeof(page_nr) > sizeof(rand_nr)) {
148 if (random_r(&rand, &rand_nr))
149 fprintf(stderr, "random_r 2 error\n"), exit(1);
150 page_nr |= (((unsigned long) rand_nr) << 16) <<
151 16;
152 }
153 } else
154 page_nr += 1;
155 page_nr %= nr_pages;
156
157 start = time(NULL);
158 if (bounces & BOUNCE_VERIFY) {
159 count = *area_count(area_dst, page_nr);
160 if (!count)
161 fprintf(stderr,
162 "page_nr %lu wrong count %Lu %Lu\n",
163 page_nr, count,
164 count_verify[page_nr]), exit(1);
165
166
167 /*
168 * We can't use bcmp (or memcmp) because that
169 * returns 0 erroneously if the memory is
170 * changing under it (even if the end of the
171 * page is never changing and always
172 * different).
173 */
174 #if 1
175 if (!my_bcmp(area_dst + page_nr * page_size, zeropage,
176 page_size))
177 fprintf(stderr,
178 "my_bcmp page_nr %lu wrong count %Lu %Lu\n",
179 page_nr, count,
180 count_verify[page_nr]), exit(1);
181 #else
182 unsigned long loops;
183
184 loops = 0;
185 /* uncomment the below line to test with mutex */
186 /* pthread_mutex_lock(area_mutex(area_dst, page_nr)); */
187 while (!bcmp(area_dst + page_nr * page_size, zeropage,
188 page_size)) {
189 loops += 1;
190 if (loops > 10)
191 break;
192 }
193 /* uncomment below line to test with mutex */
194 /* pthread_mutex_unlock(area_mutex(area_dst, page_nr)); */
195 if (loops) {
196 fprintf(stderr,
197 "page_nr %lu all zero thread %lu %p %lu\n",
198 page_nr, cpu, area_dst + page_nr * page_size,
199 loops);
200 if (loops > 10)
201 exit(1);
202 }
203 #endif
204 }
205
206 pthread_mutex_lock(area_mutex(area_dst, page_nr));
207 count = *area_count(area_dst, page_nr);
208 if (count != count_verify[page_nr]) {
209 fprintf(stderr,
210 "page_nr %lu memory corruption %Lu %Lu\n",
211 page_nr, count,
212 count_verify[page_nr]), exit(1);
213 }
214 count++;
215 *area_count(area_dst, page_nr) = count_verify[page_nr] = count;
216 pthread_mutex_unlock(area_mutex(area_dst, page_nr));
217
218 if (time(NULL) - start > 1)
219 fprintf(stderr,
220 "userfault too slow %ld "
221 "possible false positive with overcommit\n",
222 time(NULL) - start);
223 }
224
225 return NULL;
226 }
227
228 static int copy_page(unsigned long offset)
229 {
230 struct uffdio_copy uffdio_copy;
231
232 if (offset >= nr_pages * page_size)
233 fprintf(stderr, "unexpected offset %lu\n",
234 offset), exit(1);
235 uffdio_copy.dst = (unsigned long) area_dst + offset;
236 uffdio_copy.src = (unsigned long) area_src + offset;
237 uffdio_copy.len = page_size;
238 uffdio_copy.mode = 0;
239 uffdio_copy.copy = 0;
240 if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy)) {
241 /* real retval in ufdio_copy.copy */
242 if (uffdio_copy.copy != -EEXIST)
243 fprintf(stderr, "UFFDIO_COPY error %Ld\n",
244 uffdio_copy.copy), exit(1);
245 } else if (uffdio_copy.copy != page_size) {
246 fprintf(stderr, "UFFDIO_COPY unexpected copy %Ld\n",
247 uffdio_copy.copy), exit(1);
248 } else
249 return 1;
250 return 0;
251 }
252
253 static void *uffd_poll_thread(void *arg)
254 {
255 unsigned long cpu = (unsigned long) arg;
256 struct pollfd pollfd[2];
257 struct uffd_msg msg;
258 int ret;
259 unsigned long offset;
260 char tmp_chr;
261 unsigned long userfaults = 0;
262
263 pollfd[0].fd = uffd;
264 pollfd[0].events = POLLIN;
265 pollfd[1].fd = pipefd[cpu*2];
266 pollfd[1].events = POLLIN;
267
268 for (;;) {
269 ret = poll(pollfd, 2, -1);
270 if (!ret)
271 fprintf(stderr, "poll error %d\n", ret), exit(1);
272 if (ret < 0)
273 perror("poll"), exit(1);
274 if (pollfd[1].revents & POLLIN) {
275 if (read(pollfd[1].fd, &tmp_chr, 1) != 1)
276 fprintf(stderr, "read pipefd error\n"),
277 exit(1);
278 break;
279 }
280 if (!(pollfd[0].revents & POLLIN))
281 fprintf(stderr, "pollfd[0].revents %d\n",
282 pollfd[0].revents), exit(1);
283 ret = read(uffd, &msg, sizeof(msg));
284 if (ret < 0) {
285 if (errno == EAGAIN)
286 continue;
287 perror("nonblocking read error"), exit(1);
288 }
289 if (msg.event != UFFD_EVENT_PAGEFAULT)
290 fprintf(stderr, "unexpected msg event %u\n",
291 msg.event), exit(1);
292 if (msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
293 fprintf(stderr, "unexpected write fault\n"), exit(1);
294 offset = (char *)(unsigned long)msg.arg.pagefault.address -
295 area_dst;
296 offset &= ~(page_size-1);
297 if (copy_page(offset))
298 userfaults++;
299 }
300 return (void *)userfaults;
301 }
302
303 pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER;
304
305 static void *uffd_read_thread(void *arg)
306 {
307 unsigned long *this_cpu_userfaults;
308 struct uffd_msg msg;
309 unsigned long offset;
310 int ret;
311
312 this_cpu_userfaults = (unsigned long *) arg;
313 *this_cpu_userfaults = 0;
314
315 pthread_mutex_unlock(&uffd_read_mutex);
316 /* from here cancellation is ok */
317
318 for (;;) {
319 ret = read(uffd, &msg, sizeof(msg));
320 if (ret != sizeof(msg)) {
321 if (ret < 0)
322 perror("blocking read error"), exit(1);
323 else
324 fprintf(stderr, "short read\n"), exit(1);
325 }
326 if (msg.event != UFFD_EVENT_PAGEFAULT)
327 fprintf(stderr, "unexpected msg event %u\n",
328 msg.event), exit(1);
329 if (bounces & BOUNCE_VERIFY &&
330 msg.arg.pagefault.flags & UFFD_PAGEFAULT_FLAG_WRITE)
331 fprintf(stderr, "unexpected write fault\n"), exit(1);
332 offset = (char *)(unsigned long)msg.arg.pagefault.address -
333 area_dst;
334 offset &= ~(page_size-1);
335 if (copy_page(offset))
336 (*this_cpu_userfaults)++;
337 }
338 return (void *)NULL;
339 }
340
341 static void *background_thread(void *arg)
342 {
343 unsigned long cpu = (unsigned long) arg;
344 unsigned long page_nr;
345
346 for (page_nr = cpu * nr_pages_per_cpu;
347 page_nr < (cpu+1) * nr_pages_per_cpu;
348 page_nr++)
349 copy_page(page_nr * page_size);
350
351 return NULL;
352 }
353
354 static int stress(unsigned long *userfaults)
355 {
356 unsigned long cpu;
357 pthread_t locking_threads[nr_cpus];
358 pthread_t uffd_threads[nr_cpus];
359 pthread_t background_threads[nr_cpus];
360 void **_userfaults = (void **) userfaults;
361
362 finished = 0;
363 for (cpu = 0; cpu < nr_cpus; cpu++) {
364 if (pthread_create(&locking_threads[cpu], &attr,
365 locking_thread, (void *)cpu))
366 return 1;
367 if (bounces & BOUNCE_POLL) {
368 if (pthread_create(&uffd_threads[cpu], &attr,
369 uffd_poll_thread, (void *)cpu))
370 return 1;
371 } else {
372 if (pthread_create(&uffd_threads[cpu], &attr,
373 uffd_read_thread,
374 &_userfaults[cpu]))
375 return 1;
376 pthread_mutex_lock(&uffd_read_mutex);
377 }
378 if (pthread_create(&background_threads[cpu], &attr,
379 background_thread, (void *)cpu))
380 return 1;
381 }
382 for (cpu = 0; cpu < nr_cpus; cpu++)
383 if (pthread_join(background_threads[cpu], NULL))
384 return 1;
385
386 /*
387 * Be strict and immediately zap area_src, the whole area has
388 * been transferred already by the background treads. The
389 * area_src could then be faulted in in a racy way by still
390 * running uffdio_threads reading zeropages after we zapped
391 * area_src (but they're guaranteed to get -EEXIST from
392 * UFFDIO_COPY without writing zero pages into area_dst
393 * because the background threads already completed).
394 */
395 if (madvise(area_src, nr_pages * page_size, MADV_DONTNEED)) {
396 perror("madvise");
397 return 1;
398 }
399
400 for (cpu = 0; cpu < nr_cpus; cpu++) {
401 char c;
402 if (bounces & BOUNCE_POLL) {
403 if (write(pipefd[cpu*2+1], &c, 1) != 1) {
404 fprintf(stderr, "pipefd write error\n");
405 return 1;
406 }
407 if (pthread_join(uffd_threads[cpu], &_userfaults[cpu]))
408 return 1;
409 } else {
410 if (pthread_cancel(uffd_threads[cpu]))
411 return 1;
412 if (pthread_join(uffd_threads[cpu], NULL))
413 return 1;
414 }
415 }
416
417 finished = 1;
418 for (cpu = 0; cpu < nr_cpus; cpu++)
419 if (pthread_join(locking_threads[cpu], NULL))
420 return 1;
421
422 return 0;
423 }
424
425 static int userfaultfd_stress(void)
426 {
427 void *area;
428 char *tmp_area;
429 unsigned long nr;
430 struct uffdio_register uffdio_register;
431 struct uffdio_api uffdio_api;
432 unsigned long cpu;
433 int uffd_flags;
434 unsigned long userfaults[nr_cpus];
435
436 if (posix_memalign(&area, page_size, nr_pages * page_size)) {
437 fprintf(stderr, "out of memory\n");
438 return 1;
439 }
440 area_src = area;
441 if (posix_memalign(&area, page_size, nr_pages * page_size)) {
442 fprintf(stderr, "out of memory\n");
443 return 1;
444 }
445 area_dst = area;
446
447 uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
448 if (uffd < 0) {
449 fprintf(stderr,
450 "userfaultfd syscall not available in this kernel\n");
451 return 1;
452 }
453 uffd_flags = fcntl(uffd, F_GETFD, NULL);
454
455 uffdio_api.api = UFFD_API;
456 uffdio_api.features = 0;
457 if (ioctl(uffd, UFFDIO_API, &uffdio_api)) {
458 fprintf(stderr, "UFFDIO_API\n");
459 return 1;
460 }
461 if (uffdio_api.api != UFFD_API) {
462 fprintf(stderr, "UFFDIO_API error %Lu\n", uffdio_api.api);
463 return 1;
464 }
465
466 count_verify = malloc(nr_pages * sizeof(unsigned long long));
467 if (!count_verify) {
468 perror("count_verify");
469 return 1;
470 }
471
472 for (nr = 0; nr < nr_pages; nr++) {
473 *area_mutex(area_src, nr) = (pthread_mutex_t)
474 PTHREAD_MUTEX_INITIALIZER;
475 count_verify[nr] = *area_count(area_src, nr) = 1;
476 }
477
478 pipefd = malloc(sizeof(int) * nr_cpus * 2);
479 if (!pipefd) {
480 perror("pipefd");
481 return 1;
482 }
483 for (cpu = 0; cpu < nr_cpus; cpu++) {
484 if (pipe2(&pipefd[cpu*2], O_CLOEXEC | O_NONBLOCK)) {
485 perror("pipe");
486 return 1;
487 }
488 }
489
490 if (posix_memalign(&area, page_size, page_size)) {
491 fprintf(stderr, "out of memory\n");
492 return 1;
493 }
494 zeropage = area;
495 bzero(zeropage, page_size);
496
497 pthread_mutex_lock(&uffd_read_mutex);
498
499 pthread_attr_init(&attr);
500 pthread_attr_setstacksize(&attr, 16*1024*1024);
501
502 while (bounces--) {
503 unsigned long expected_ioctls;
504
505 printf("bounces: %d, mode:", bounces);
506 if (bounces & BOUNCE_RANDOM)
507 printf(" rnd");
508 if (bounces & BOUNCE_RACINGFAULTS)
509 printf(" racing");
510 if (bounces & BOUNCE_VERIFY)
511 printf(" ver");
512 if (bounces & BOUNCE_POLL)
513 printf(" poll");
514 printf(", ");
515 fflush(stdout);
516
517 if (bounces & BOUNCE_POLL)
518 fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK);
519 else
520 fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK);
521
522 /* register */
523 uffdio_register.range.start = (unsigned long) area_dst;
524 uffdio_register.range.len = nr_pages * page_size;
525 uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
526 if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register)) {
527 fprintf(stderr, "register failure\n");
528 return 1;
529 }
530 expected_ioctls = (1 << _UFFDIO_WAKE) |
531 (1 << _UFFDIO_COPY) |
532 (1 << _UFFDIO_ZEROPAGE);
533 if ((uffdio_register.ioctls & expected_ioctls) !=
534 expected_ioctls) {
535 fprintf(stderr,
536 "unexpected missing ioctl for anon memory\n");
537 return 1;
538 }
539
540 /*
541 * The madvise done previously isn't enough: some
542 * uffd_thread could have read userfaults (one of
543 * those already resolved by the background thread)
544 * and it may be in the process of calling
545 * UFFDIO_COPY. UFFDIO_COPY will read the zapped
546 * area_src and it would map a zero page in it (of
547 * course such a UFFDIO_COPY is perfectly safe as it'd
548 * return -EEXIST). The problem comes at the next
549 * bounce though: that racing UFFDIO_COPY would
550 * generate zeropages in the area_src, so invalidating
551 * the previous MADV_DONTNEED. Without this additional
552 * MADV_DONTNEED those zeropages leftovers in the
553 * area_src would lead to -EEXIST failure during the
554 * next bounce, effectively leaving a zeropage in the
555 * area_dst.
556 *
557 * Try to comment this out madvise to see the memory
558 * corruption being caught pretty quick.
559 *
560 * khugepaged is also inhibited to collapse THP after
561 * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's
562 * required to MADV_DONTNEED here.
563 */
564 if (madvise(area_dst, nr_pages * page_size, MADV_DONTNEED)) {
565 perror("madvise 2");
566 return 1;
567 }
568
569 /* bounce pass */
570 if (stress(userfaults))
571 return 1;
572
573 /* unregister */
574 if (ioctl(uffd, UFFDIO_UNREGISTER, &uffdio_register.range)) {
575 fprintf(stderr, "register failure\n");
576 return 1;
577 }
578
579 /* verification */
580 if (bounces & BOUNCE_VERIFY) {
581 for (nr = 0; nr < nr_pages; nr++) {
582 if (my_bcmp(area_dst,
583 area_dst + nr * page_size,
584 sizeof(pthread_mutex_t))) {
585 fprintf(stderr,
586 "error mutex 2 %lu\n",
587 nr);
588 bounces = 0;
589 }
590 if (*area_count(area_dst, nr) != count_verify[nr]) {
591 fprintf(stderr,
592 "error area_count %Lu %Lu %lu\n",
593 *area_count(area_src, nr),
594 count_verify[nr],
595 nr);
596 bounces = 0;
597 }
598 }
599 }
600
601 /* prepare next bounce */
602 tmp_area = area_src;
603 area_src = area_dst;
604 area_dst = tmp_area;
605
606 printf("userfaults:");
607 for (cpu = 0; cpu < nr_cpus; cpu++)
608 printf(" %lu", userfaults[cpu]);
609 printf("\n");
610 }
611
612 return 0;
613 }
614
615 int main(int argc, char **argv)
616 {
617 if (argc < 3)
618 fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
619 nr_cpus = sysconf(_SC_NPROCESSORS_ONLN);
620 page_size = sysconf(_SC_PAGE_SIZE);
621 if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) >
622 page_size)
623 fprintf(stderr, "Impossible to run this test\n"), exit(2);
624 nr_pages_per_cpu = atol(argv[1]) * 1024*1024 / page_size /
625 nr_cpus;
626 if (!nr_pages_per_cpu) {
627 fprintf(stderr, "invalid MiB\n");
628 fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
629 }
630 bounces = atoi(argv[2]);
631 if (bounces <= 0) {
632 fprintf(stderr, "invalid bounces\n");
633 fprintf(stderr, "Usage: <MiB> <bounces>\n"), exit(1);
634 }
635 nr_pages = nr_pages_per_cpu * nr_cpus;
636 printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n",
637 nr_pages, nr_pages_per_cpu);
638 return userfaultfd_stress();
639 }