]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - tools/testing/selftests/x86/protection_keys.c
55a4e349a45ed2d8179b7394ba4a442f167d62a0
[mirror_ubuntu-bionic-kernel.git] / tools / testing / selftests / x86 / protection_keys.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Tests x86 Memory Protection Keys (see Documentation/x86/protection-keys.txt)
4 *
5 * There are examples in here of:
6 * * how to set protection keys on memory
7 * * how to set/clear bits in PKRU (the rights register)
8 * * how to handle SEGV_PKRU signals and extract pkey-relevant
9 * information from the siginfo
10 *
11 * Things to add:
12 * make sure KSM and KSM COW breaking works
13 * prefault pages in at malloc, or not
14 * protect MPX bounds tables with protection keys?
15 * make sure VMA splitting/merging is working correctly
16 * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
17 * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
18 * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
19 *
20 * Compile like this:
21 * gcc -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
22 * gcc -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
23 */
24 #define _GNU_SOURCE
25 #include <errno.h>
26 #include <linux/futex.h>
27 #include <sys/time.h>
28 #include <sys/syscall.h>
29 #include <string.h>
30 #include <stdio.h>
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <signal.h>
34 #include <assert.h>
35 #include <stdlib.h>
36 #include <ucontext.h>
37 #include <sys/mman.h>
38 #include <sys/types.h>
39 #include <sys/wait.h>
40 #include <sys/stat.h>
41 #include <fcntl.h>
42 #include <unistd.h>
43 #include <sys/ptrace.h>
44 #include <setjmp.h>
45
46 #include "pkey-helpers.h"
47
48 int iteration_nr = 1;
49 int test_nr;
50
51 unsigned int shadow_pkru;
52
53 #define HPAGE_SIZE (1UL<<21)
54 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(*(x)))
55 #define ALIGN_UP(x, align_to) (((x) + ((align_to)-1)) & ~((align_to)-1))
56 #define ALIGN_DOWN(x, align_to) ((x) & ~((align_to)-1))
57 #define ALIGN_PTR_UP(p, ptr_align_to) ((typeof(p))ALIGN_UP((unsigned long)(p), ptr_align_to))
58 #define ALIGN_PTR_DOWN(p, ptr_align_to) ((typeof(p))ALIGN_DOWN((unsigned long)(p), ptr_align_to))
59 #define __stringify_1(x...) #x
60 #define __stringify(x...) __stringify_1(x)
61
62 #define PTR_ERR_ENOTSUP ((void *)-ENOTSUP)
63
64 int dprint_in_signal;
65 char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
66
67 extern void abort_hooks(void);
68 #define pkey_assert(condition) do { \
69 if (!(condition)) { \
70 dprintf0("assert() at %s::%d test_nr: %d iteration: %d\n", \
71 __FILE__, __LINE__, \
72 test_nr, iteration_nr); \
73 dprintf0("errno at assert: %d", errno); \
74 abort_hooks(); \
75 exit(__LINE__); \
76 } \
77 } while (0)
78
79 void cat_into_file(char *str, char *file)
80 {
81 int fd = open(file, O_RDWR);
82 int ret;
83
84 dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
85 /*
86 * these need to be raw because they are called under
87 * pkey_assert()
88 */
89 if (fd < 0) {
90 fprintf(stderr, "error opening '%s'\n", str);
91 perror("error: ");
92 exit(__LINE__);
93 }
94
95 ret = write(fd, str, strlen(str));
96 if (ret != strlen(str)) {
97 perror("write to file failed");
98 fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
99 exit(__LINE__);
100 }
101 close(fd);
102 }
103
104 #if CONTROL_TRACING > 0
105 static int warned_tracing;
106 int tracing_root_ok(void)
107 {
108 if (geteuid() != 0) {
109 if (!warned_tracing)
110 fprintf(stderr, "WARNING: not run as root, "
111 "can not do tracing control\n");
112 warned_tracing = 1;
113 return 0;
114 }
115 return 1;
116 }
117 #endif
118
119 void tracing_on(void)
120 {
121 #if CONTROL_TRACING > 0
122 #define TRACEDIR "/sys/kernel/debug/tracing"
123 char pidstr[32];
124
125 if (!tracing_root_ok())
126 return;
127
128 sprintf(pidstr, "%d", getpid());
129 cat_into_file("0", TRACEDIR "/tracing_on");
130 cat_into_file("\n", TRACEDIR "/trace");
131 if (1) {
132 cat_into_file("function_graph", TRACEDIR "/current_tracer");
133 cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
134 } else {
135 cat_into_file("nop", TRACEDIR "/current_tracer");
136 }
137 cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
138 cat_into_file("1", TRACEDIR "/tracing_on");
139 dprintf1("enabled tracing\n");
140 #endif
141 }
142
143 void tracing_off(void)
144 {
145 #if CONTROL_TRACING > 0
146 if (!tracing_root_ok())
147 return;
148 cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
149 #endif
150 }
151
152 void abort_hooks(void)
153 {
154 fprintf(stderr, "running %s()...\n", __func__);
155 tracing_off();
156 #ifdef SLEEP_ON_ABORT
157 sleep(SLEEP_ON_ABORT);
158 #endif
159 }
160
161 static inline void __page_o_noops(void)
162 {
163 /* 8-bytes of instruction * 512 bytes = 1 page */
164 asm(".rept 512 ; nopl 0x7eeeeeee(%eax) ; .endr");
165 }
166
167 /*
168 * This attempts to have roughly a page of instructions followed by a few
169 * instructions that do a write, and another page of instructions. That
170 * way, we are pretty sure that the write is in the second page of
171 * instructions and has at least a page of padding behind it.
172 *
173 * *That* lets us be sure to madvise() away the write instruction, which
174 * will then fault, which makes sure that the fault code handles
175 * execute-only memory properly.
176 */
177 __attribute__((__aligned__(PAGE_SIZE)))
178 void lots_o_noops_around_write(int *write_to_me)
179 {
180 dprintf3("running %s()\n", __func__);
181 __page_o_noops();
182 /* Assume this happens in the second page of instructions: */
183 *write_to_me = __LINE__;
184 /* pad out by another page: */
185 __page_o_noops();
186 dprintf3("%s() done\n", __func__);
187 }
188
189 /* Define some kernel-like types */
190 #define u8 uint8_t
191 #define u16 uint16_t
192 #define u32 uint32_t
193 #define u64 uint64_t
194
195 #ifdef __i386__
196
197 #ifndef SYS_mprotect_key
198 # define SYS_mprotect_key 380
199 #endif
200
201 #ifndef SYS_pkey_alloc
202 # define SYS_pkey_alloc 381
203 # define SYS_pkey_free 382
204 #endif
205
206 #define REG_IP_IDX REG_EIP
207 #define si_pkey_offset 0x14
208
209 #else
210
211 #ifndef SYS_mprotect_key
212 # define SYS_mprotect_key 329
213 #endif
214
215 #ifndef SYS_pkey_alloc
216 # define SYS_pkey_alloc 330
217 # define SYS_pkey_free 331
218 #endif
219
220 #define REG_IP_IDX REG_RIP
221 #define si_pkey_offset 0x20
222
223 #endif
224
225 void dump_mem(void *dumpme, int len_bytes)
226 {
227 char *c = (void *)dumpme;
228 int i;
229
230 for (i = 0; i < len_bytes; i += sizeof(u64)) {
231 u64 *ptr = (u64 *)(c + i);
232 dprintf1("dump[%03d][@%p]: %016jx\n", i, ptr, *ptr);
233 }
234 }
235
236 /* Failed address bound checks: */
237 #ifndef SEGV_BNDERR
238 # define SEGV_BNDERR 3
239 #endif
240
241 #ifndef SEGV_PKUERR
242 # define SEGV_PKUERR 4
243 #endif
244
245 static char *si_code_str(int si_code)
246 {
247 if (si_code == SEGV_MAPERR)
248 return "SEGV_MAPERR";
249 if (si_code == SEGV_ACCERR)
250 return "SEGV_ACCERR";
251 if (si_code == SEGV_BNDERR)
252 return "SEGV_BNDERR";
253 if (si_code == SEGV_PKUERR)
254 return "SEGV_PKUERR";
255 return "UNKNOWN";
256 }
257
258 int pkru_faults;
259 int last_si_pkey = -1;
260 void signal_handler(int signum, siginfo_t *si, void *vucontext)
261 {
262 ucontext_t *uctxt = vucontext;
263 int trapno;
264 unsigned long ip;
265 char *fpregs;
266 u32 *pkru_ptr;
267 u64 siginfo_pkey;
268 u32 *si_pkey_ptr;
269 int pkru_offset;
270 fpregset_t fpregset;
271
272 dprint_in_signal = 1;
273 dprintf1(">>>>===============SIGSEGV============================\n");
274 dprintf1("%s()::%d, pkru: 0x%x shadow: %x\n", __func__, __LINE__,
275 __rdpkru(), shadow_pkru);
276
277 trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
278 ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
279 fpregset = uctxt->uc_mcontext.fpregs;
280 fpregs = (void *)fpregset;
281
282 dprintf2("%s() trapno: %d ip: 0x%lx info->si_code: %s/%d\n", __func__,
283 trapno, ip, si_code_str(si->si_code), si->si_code);
284 #ifdef __i386__
285 /*
286 * 32-bit has some extra padding so that userspace can tell whether
287 * the XSTATE header is present in addition to the "legacy" FPU
288 * state. We just assume that it is here.
289 */
290 fpregs += 0x70;
291 #endif
292 pkru_offset = pkru_xstate_offset();
293 pkru_ptr = (void *)(&fpregs[pkru_offset]);
294
295 dprintf1("siginfo: %p\n", si);
296 dprintf1(" fpregs: %p\n", fpregs);
297 /*
298 * If we got a PKRU fault, we *HAVE* to have at least one bit set in
299 * here.
300 */
301 dprintf1("pkru_xstate_offset: %d\n", pkru_xstate_offset());
302 if (DEBUG_LEVEL > 4)
303 dump_mem(pkru_ptr - 128, 256);
304 pkey_assert(*pkru_ptr);
305
306 si_pkey_ptr = (u32 *)(((u8 *)si) + si_pkey_offset);
307 dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
308 dump_mem(si_pkey_ptr - 8, 24);
309 siginfo_pkey = *si_pkey_ptr;
310 pkey_assert(siginfo_pkey < NR_PKEYS);
311 last_si_pkey = siginfo_pkey;
312
313 if ((si->si_code == SEGV_MAPERR) ||
314 (si->si_code == SEGV_ACCERR) ||
315 (si->si_code == SEGV_BNDERR)) {
316 printf("non-PK si_code, exiting...\n");
317 exit(4);
318 }
319
320 dprintf1("signal pkru from xsave: %08x\n", *pkru_ptr);
321 /* need __rdpkru() version so we do not do shadow_pkru checking */
322 dprintf1("signal pkru from pkru: %08x\n", __rdpkru());
323 dprintf1("pkey from siginfo: %jx\n", siginfo_pkey);
324 *(u64 *)pkru_ptr = 0x00000000;
325 dprintf1("WARNING: set PRKU=0 to allow faulting instruction to continue\n");
326 pkru_faults++;
327 dprintf1("<<<<==================================================\n");
328 dprint_in_signal = 0;
329 }
330
331 int wait_all_children(void)
332 {
333 int status;
334 return waitpid(-1, &status, 0);
335 }
336
337 void sig_chld(int x)
338 {
339 dprint_in_signal = 1;
340 dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
341 dprint_in_signal = 0;
342 }
343
344 void setup_sigsegv_handler(void)
345 {
346 int r, rs;
347 struct sigaction newact;
348 struct sigaction oldact;
349
350 /* #PF is mapped to sigsegv */
351 int signum = SIGSEGV;
352
353 newact.sa_handler = 0;
354 newact.sa_sigaction = signal_handler;
355
356 /*sigset_t - signals to block while in the handler */
357 /* get the old signal mask. */
358 rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
359 pkey_assert(rs == 0);
360
361 /* call sa_sigaction, not sa_handler*/
362 newact.sa_flags = SA_SIGINFO;
363
364 newact.sa_restorer = 0; /* void(*)(), obsolete */
365 r = sigaction(signum, &newact, &oldact);
366 r = sigaction(SIGALRM, &newact, &oldact);
367 pkey_assert(r == 0);
368 }
369
370 void setup_handlers(void)
371 {
372 signal(SIGCHLD, &sig_chld);
373 setup_sigsegv_handler();
374 }
375
376 pid_t fork_lazy_child(void)
377 {
378 pid_t forkret;
379
380 forkret = fork();
381 pkey_assert(forkret >= 0);
382 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
383
384 if (!forkret) {
385 /* in the child */
386 while (1) {
387 dprintf1("child sleeping...\n");
388 sleep(30);
389 }
390 }
391 return forkret;
392 }
393
394 #ifndef PKEY_DISABLE_ACCESS
395 # define PKEY_DISABLE_ACCESS 0x1
396 #endif
397
398 #ifndef PKEY_DISABLE_WRITE
399 # define PKEY_DISABLE_WRITE 0x2
400 #endif
401
402 static u32 hw_pkey_get(int pkey, unsigned long flags)
403 {
404 u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
405 u32 pkru = __rdpkru();
406 u32 shifted_pkru;
407 u32 masked_pkru;
408
409 dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
410 __func__, pkey, flags, 0, 0);
411 dprintf2("%s() raw pkru: %x\n", __func__, pkru);
412
413 shifted_pkru = (pkru >> (pkey * PKRU_BITS_PER_PKEY));
414 dprintf2("%s() shifted_pkru: %x\n", __func__, shifted_pkru);
415 masked_pkru = shifted_pkru & mask;
416 dprintf2("%s() masked pkru: %x\n", __func__, masked_pkru);
417 /*
418 * shift down the relevant bits to the lowest two, then
419 * mask off all the other high bits.
420 */
421 return masked_pkru;
422 }
423
424 static int hw_pkey_set(int pkey, unsigned long rights, unsigned long flags)
425 {
426 u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
427 u32 old_pkru = __rdpkru();
428 u32 new_pkru;
429
430 /* make sure that 'rights' only contains the bits we expect: */
431 assert(!(rights & ~mask));
432
433 /* copy old pkru */
434 new_pkru = old_pkru;
435 /* mask out bits from pkey in old value: */
436 new_pkru &= ~(mask << (pkey * PKRU_BITS_PER_PKEY));
437 /* OR in new bits for pkey: */
438 new_pkru |= (rights << (pkey * PKRU_BITS_PER_PKEY));
439
440 __wrpkru(new_pkru);
441
442 dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x pkru now: %x old_pkru: %x\n",
443 __func__, pkey, rights, flags, 0, __rdpkru(), old_pkru);
444 return 0;
445 }
446
447 void pkey_disable_set(int pkey, int flags)
448 {
449 unsigned long syscall_flags = 0;
450 int ret;
451 int pkey_rights;
452 u32 orig_pkru = rdpkru();
453
454 dprintf1("START->%s(%d, 0x%x)\n", __func__,
455 pkey, flags);
456 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
457
458 pkey_rights = hw_pkey_get(pkey, syscall_flags);
459
460 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
461 pkey, pkey, pkey_rights);
462 pkey_assert(pkey_rights >= 0);
463
464 pkey_rights |= flags;
465
466 ret = hw_pkey_set(pkey, pkey_rights, syscall_flags);
467 assert(!ret);
468 /*pkru and flags have the same format */
469 shadow_pkru |= flags << (pkey * 2);
470 dprintf1("%s(%d) shadow: 0x%x\n", __func__, pkey, shadow_pkru);
471
472 pkey_assert(ret >= 0);
473
474 pkey_rights = hw_pkey_get(pkey, syscall_flags);
475 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
476 pkey, pkey, pkey_rights);
477
478 dprintf1("%s(%d) pkru: 0x%x\n", __func__, pkey, rdpkru());
479 if (flags)
480 pkey_assert(rdpkru() > orig_pkru);
481 dprintf1("END<---%s(%d, 0x%x)\n", __func__,
482 pkey, flags);
483 }
484
485 void pkey_disable_clear(int pkey, int flags)
486 {
487 unsigned long syscall_flags = 0;
488 int ret;
489 int pkey_rights = hw_pkey_get(pkey, syscall_flags);
490 u32 orig_pkru = rdpkru();
491
492 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
493
494 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
495 pkey, pkey, pkey_rights);
496 pkey_assert(pkey_rights >= 0);
497
498 pkey_rights |= flags;
499
500 ret = hw_pkey_set(pkey, pkey_rights, 0);
501 /* pkru and flags have the same format */
502 shadow_pkru &= ~(flags << (pkey * 2));
503 pkey_assert(ret >= 0);
504
505 pkey_rights = hw_pkey_get(pkey, syscall_flags);
506 dprintf1("%s(%d) hw_pkey_get(%d): %x\n", __func__,
507 pkey, pkey, pkey_rights);
508
509 dprintf1("%s(%d) pkru: 0x%x\n", __func__, pkey, rdpkru());
510 if (flags)
511 assert(rdpkru() > orig_pkru);
512 }
513
514 void pkey_write_allow(int pkey)
515 {
516 pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
517 }
518 void pkey_write_deny(int pkey)
519 {
520 pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
521 }
522 void pkey_access_allow(int pkey)
523 {
524 pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
525 }
526 void pkey_access_deny(int pkey)
527 {
528 pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
529 }
530
531 int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
532 unsigned long pkey)
533 {
534 int sret;
535
536 dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
537 ptr, size, orig_prot, pkey);
538
539 errno = 0;
540 sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey);
541 if (errno) {
542 dprintf2("SYS_mprotect_key sret: %d\n", sret);
543 dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
544 dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
545 if (DEBUG_LEVEL >= 2)
546 perror("SYS_mprotect_pkey");
547 }
548 return sret;
549 }
550
551 int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
552 {
553 int ret = syscall(SYS_pkey_alloc, flags, init_val);
554 dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
555 __func__, flags, init_val, ret, errno);
556 return ret;
557 }
558
559 int alloc_pkey(void)
560 {
561 int ret;
562 unsigned long init_val = 0x0;
563
564 dprintf1("alloc_pkey()::%d, pkru: 0x%x shadow: %x\n",
565 __LINE__, __rdpkru(), shadow_pkru);
566 ret = sys_pkey_alloc(0, init_val);
567 /*
568 * pkey_alloc() sets PKRU, so we need to reflect it in
569 * shadow_pkru:
570 */
571 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
572 __LINE__, ret, __rdpkru(), shadow_pkru);
573 if (ret) {
574 /* clear both the bits: */
575 shadow_pkru &= ~(0x3 << (ret * 2));
576 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
577 __LINE__, ret, __rdpkru(), shadow_pkru);
578 /*
579 * move the new state in from init_val
580 * (remember, we cheated and init_val == pkru format)
581 */
582 shadow_pkru |= (init_val << (ret * 2));
583 }
584 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
585 __LINE__, ret, __rdpkru(), shadow_pkru);
586 dprintf1("alloc_pkey()::%d errno: %d\n", __LINE__, errno);
587 /* for shadow checking: */
588 rdpkru();
589 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
590 __LINE__, ret, __rdpkru(), shadow_pkru);
591 return ret;
592 }
593
594 int sys_pkey_free(unsigned long pkey)
595 {
596 int ret = syscall(SYS_pkey_free, pkey);
597 dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
598 return ret;
599 }
600
601 /*
602 * I had a bug where pkey bits could be set by mprotect() but
603 * not cleared. This ensures we get lots of random bit sets
604 * and clears on the vma and pte pkey bits.
605 */
606 int alloc_random_pkey(void)
607 {
608 int max_nr_pkey_allocs;
609 int ret;
610 int i;
611 int alloced_pkeys[NR_PKEYS];
612 int nr_alloced = 0;
613 int random_index;
614 memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
615
616 /* allocate every possible key and make a note of which ones we got */
617 max_nr_pkey_allocs = NR_PKEYS;
618 max_nr_pkey_allocs = 1;
619 for (i = 0; i < max_nr_pkey_allocs; i++) {
620 int new_pkey = alloc_pkey();
621 if (new_pkey < 0)
622 break;
623 alloced_pkeys[nr_alloced++] = new_pkey;
624 }
625
626 pkey_assert(nr_alloced > 0);
627 /* select a random one out of the allocated ones */
628 random_index = rand() % nr_alloced;
629 ret = alloced_pkeys[random_index];
630 /* now zero it out so we don't free it next */
631 alloced_pkeys[random_index] = 0;
632
633 /* go through the allocated ones that we did not want and free them */
634 for (i = 0; i < nr_alloced; i++) {
635 int free_ret;
636 if (!alloced_pkeys[i])
637 continue;
638 free_ret = sys_pkey_free(alloced_pkeys[i]);
639 pkey_assert(!free_ret);
640 }
641 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
642 __LINE__, ret, __rdpkru(), shadow_pkru);
643 return ret;
644 }
645
646 int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
647 unsigned long pkey)
648 {
649 int nr_iterations = random() % 100;
650 int ret;
651
652 while (0) {
653 int rpkey = alloc_random_pkey();
654 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
655 dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
656 ptr, size, orig_prot, pkey, ret);
657 if (nr_iterations-- < 0)
658 break;
659
660 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
661 __LINE__, ret, __rdpkru(), shadow_pkru);
662 sys_pkey_free(rpkey);
663 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
664 __LINE__, ret, __rdpkru(), shadow_pkru);
665 }
666 pkey_assert(pkey < NR_PKEYS);
667
668 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
669 dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
670 ptr, size, orig_prot, pkey, ret);
671 pkey_assert(!ret);
672 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
673 __LINE__, ret, __rdpkru(), shadow_pkru);
674 return ret;
675 }
676
677 struct pkey_malloc_record {
678 void *ptr;
679 long size;
680 };
681 struct pkey_malloc_record *pkey_malloc_records;
682 long nr_pkey_malloc_records;
683 void record_pkey_malloc(void *ptr, long size)
684 {
685 long i;
686 struct pkey_malloc_record *rec = NULL;
687
688 for (i = 0; i < nr_pkey_malloc_records; i++) {
689 rec = &pkey_malloc_records[i];
690 /* find a free record */
691 if (rec)
692 break;
693 }
694 if (!rec) {
695 /* every record is full */
696 size_t old_nr_records = nr_pkey_malloc_records;
697 size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
698 size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
699 dprintf2("new_nr_records: %zd\n", new_nr_records);
700 dprintf2("new_size: %zd\n", new_size);
701 pkey_malloc_records = realloc(pkey_malloc_records, new_size);
702 pkey_assert(pkey_malloc_records != NULL);
703 rec = &pkey_malloc_records[nr_pkey_malloc_records];
704 /*
705 * realloc() does not initialize memory, so zero it from
706 * the first new record all the way to the end.
707 */
708 for (i = 0; i < new_nr_records - old_nr_records; i++)
709 memset(rec + i, 0, sizeof(*rec));
710 }
711 dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
712 (int)(rec - pkey_malloc_records), rec, ptr, size);
713 rec->ptr = ptr;
714 rec->size = size;
715 nr_pkey_malloc_records++;
716 }
717
718 void free_pkey_malloc(void *ptr)
719 {
720 long i;
721 int ret;
722 dprintf3("%s(%p)\n", __func__, ptr);
723 for (i = 0; i < nr_pkey_malloc_records; i++) {
724 struct pkey_malloc_record *rec = &pkey_malloc_records[i];
725 dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
726 ptr, i, rec, rec->ptr, rec->size);
727 if ((ptr < rec->ptr) ||
728 (ptr >= rec->ptr + rec->size))
729 continue;
730
731 dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
732 ptr, i, rec, rec->ptr, rec->size);
733 nr_pkey_malloc_records--;
734 ret = munmap(rec->ptr, rec->size);
735 dprintf3("munmap ret: %d\n", ret);
736 pkey_assert(!ret);
737 dprintf3("clearing rec->ptr, rec: %p\n", rec);
738 rec->ptr = NULL;
739 dprintf3("done clearing rec->ptr, rec: %p\n", rec);
740 return;
741 }
742 pkey_assert(false);
743 }
744
745
746 void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
747 {
748 void *ptr;
749 int ret;
750
751 rdpkru();
752 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
753 size, prot, pkey);
754 pkey_assert(pkey < NR_PKEYS);
755 ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
756 pkey_assert(ptr != (void *)-1);
757 ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
758 pkey_assert(!ret);
759 record_pkey_malloc(ptr, size);
760 rdpkru();
761
762 dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
763 return ptr;
764 }
765
766 void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
767 {
768 int ret;
769 void *ptr;
770
771 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
772 size, prot, pkey);
773 /*
774 * Guarantee we can fit at least one huge page in the resulting
775 * allocation by allocating space for 2:
776 */
777 size = ALIGN_UP(size, HPAGE_SIZE * 2);
778 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
779 pkey_assert(ptr != (void *)-1);
780 record_pkey_malloc(ptr, size);
781 mprotect_pkey(ptr, size, prot, pkey);
782
783 dprintf1("unaligned ptr: %p\n", ptr);
784 ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
785 dprintf1(" aligned ptr: %p\n", ptr);
786 ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
787 dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
788 ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
789 dprintf1("MADV_WILLNEED ret: %d\n", ret);
790 memset(ptr, 0, HPAGE_SIZE);
791
792 dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
793 return ptr;
794 }
795
796 int hugetlb_setup_ok;
797 #define GET_NR_HUGE_PAGES 10
798 void setup_hugetlbfs(void)
799 {
800 int err;
801 int fd;
802 char buf[] = "123";
803
804 if (geteuid() != 0) {
805 fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
806 return;
807 }
808
809 cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
810
811 /*
812 * Now go make sure that we got the pages and that they
813 * are 2M pages. Someone might have made 1G the default.
814 */
815 fd = open("/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages", O_RDONLY);
816 if (fd < 0) {
817 perror("opening sysfs 2M hugetlb config");
818 return;
819 }
820
821 /* -1 to guarantee leaving the trailing \0 */
822 err = read(fd, buf, sizeof(buf)-1);
823 close(fd);
824 if (err <= 0) {
825 perror("reading sysfs 2M hugetlb config");
826 return;
827 }
828
829 if (atoi(buf) != GET_NR_HUGE_PAGES) {
830 fprintf(stderr, "could not confirm 2M pages, got: '%s' expected %d\n",
831 buf, GET_NR_HUGE_PAGES);
832 return;
833 }
834
835 hugetlb_setup_ok = 1;
836 }
837
838 void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
839 {
840 void *ptr;
841 int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
842
843 if (!hugetlb_setup_ok)
844 return PTR_ERR_ENOTSUP;
845
846 dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
847 size = ALIGN_UP(size, HPAGE_SIZE * 2);
848 pkey_assert(pkey < NR_PKEYS);
849 ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
850 pkey_assert(ptr != (void *)-1);
851 mprotect_pkey(ptr, size, prot, pkey);
852
853 record_pkey_malloc(ptr, size);
854
855 dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
856 return ptr;
857 }
858
859 void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
860 {
861 void *ptr;
862 int fd;
863
864 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
865 size, prot, pkey);
866 pkey_assert(pkey < NR_PKEYS);
867 fd = open("/dax/foo", O_RDWR);
868 pkey_assert(fd >= 0);
869
870 ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
871 pkey_assert(ptr != (void *)-1);
872
873 mprotect_pkey(ptr, size, prot, pkey);
874
875 record_pkey_malloc(ptr, size);
876
877 dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
878 close(fd);
879 return ptr;
880 }
881
882 void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
883
884 malloc_pkey_with_mprotect,
885 malloc_pkey_anon_huge,
886 malloc_pkey_hugetlb
887 /* can not do direct with the pkey_mprotect() API:
888 malloc_pkey_mmap_direct,
889 malloc_pkey_mmap_dax,
890 */
891 };
892
893 void *malloc_pkey(long size, int prot, u16 pkey)
894 {
895 void *ret;
896 static int malloc_type;
897 int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
898
899 pkey_assert(pkey < NR_PKEYS);
900
901 while (1) {
902 pkey_assert(malloc_type < nr_malloc_types);
903
904 ret = pkey_malloc[malloc_type](size, prot, pkey);
905 pkey_assert(ret != (void *)-1);
906
907 malloc_type++;
908 if (malloc_type >= nr_malloc_types)
909 malloc_type = (random()%nr_malloc_types);
910
911 /* try again if the malloc_type we tried is unsupported */
912 if (ret == PTR_ERR_ENOTSUP)
913 continue;
914
915 break;
916 }
917
918 dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
919 size, prot, pkey, ret);
920 return ret;
921 }
922
923 int last_pkru_faults;
924 #define UNKNOWN_PKEY -2
925 void expected_pk_fault(int pkey)
926 {
927 dprintf2("%s(): last_pkru_faults: %d pkru_faults: %d\n",
928 __func__, last_pkru_faults, pkru_faults);
929 dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
930 pkey_assert(last_pkru_faults + 1 == pkru_faults);
931
932 /*
933 * For exec-only memory, we do not know the pkey in
934 * advance, so skip this check.
935 */
936 if (pkey != UNKNOWN_PKEY)
937 pkey_assert(last_si_pkey == pkey);
938
939 /*
940 * The signal handler shold have cleared out PKRU to let the
941 * test program continue. We now have to restore it.
942 */
943 if (__rdpkru() != 0)
944 pkey_assert(0);
945
946 __wrpkru(shadow_pkru);
947 dprintf1("%s() set PKRU=%x to restore state after signal nuked it\n",
948 __func__, shadow_pkru);
949 last_pkru_faults = pkru_faults;
950 last_si_pkey = -1;
951 }
952
953 #define do_not_expect_pk_fault(msg) do { \
954 if (last_pkru_faults != pkru_faults) \
955 dprintf0("unexpected PK fault: %s\n", msg); \
956 pkey_assert(last_pkru_faults == pkru_faults); \
957 } while (0)
958
959 int test_fds[10] = { -1 };
960 int nr_test_fds;
961 void __save_test_fd(int fd)
962 {
963 pkey_assert(fd >= 0);
964 pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
965 test_fds[nr_test_fds] = fd;
966 nr_test_fds++;
967 }
968
969 int get_test_read_fd(void)
970 {
971 int test_fd = open("/etc/passwd", O_RDONLY);
972 __save_test_fd(test_fd);
973 return test_fd;
974 }
975
976 void close_test_fds(void)
977 {
978 int i;
979
980 for (i = 0; i < nr_test_fds; i++) {
981 if (test_fds[i] < 0)
982 continue;
983 close(test_fds[i]);
984 test_fds[i] = -1;
985 }
986 nr_test_fds = 0;
987 }
988
989 #define barrier() __asm__ __volatile__("": : :"memory")
990 __attribute__((noinline)) int read_ptr(int *ptr)
991 {
992 /*
993 * Keep GCC from optimizing this away somehow
994 */
995 barrier();
996 return *ptr;
997 }
998
999 void test_read_of_write_disabled_region(int *ptr, u16 pkey)
1000 {
1001 int ptr_contents;
1002
1003 dprintf1("disabling write access to PKEY[1], doing read\n");
1004 pkey_write_deny(pkey);
1005 ptr_contents = read_ptr(ptr);
1006 dprintf1("*ptr: %d\n", ptr_contents);
1007 dprintf1("\n");
1008 }
1009 void test_read_of_access_disabled_region(int *ptr, u16 pkey)
1010 {
1011 int ptr_contents;
1012
1013 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
1014 rdpkru();
1015 pkey_access_deny(pkey);
1016 ptr_contents = read_ptr(ptr);
1017 dprintf1("*ptr: %d\n", ptr_contents);
1018 expected_pk_fault(pkey);
1019 }
1020 void test_write_of_write_disabled_region(int *ptr, u16 pkey)
1021 {
1022 dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
1023 pkey_write_deny(pkey);
1024 *ptr = __LINE__;
1025 expected_pk_fault(pkey);
1026 }
1027 void test_write_of_access_disabled_region(int *ptr, u16 pkey)
1028 {
1029 dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
1030 pkey_access_deny(pkey);
1031 *ptr = __LINE__;
1032 expected_pk_fault(pkey);
1033 }
1034 void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
1035 {
1036 int ret;
1037 int test_fd = get_test_read_fd();
1038
1039 dprintf1("disabling access to PKEY[%02d], "
1040 "having kernel read() to buffer\n", pkey);
1041 pkey_access_deny(pkey);
1042 ret = read(test_fd, ptr, 1);
1043 dprintf1("read ret: %d\n", ret);
1044 pkey_assert(ret);
1045 }
1046 void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
1047 {
1048 int ret;
1049 int test_fd = get_test_read_fd();
1050
1051 pkey_write_deny(pkey);
1052 ret = read(test_fd, ptr, 100);
1053 dprintf1("read ret: %d\n", ret);
1054 if (ret < 0 && (DEBUG_LEVEL > 0))
1055 perror("verbose read result (OK for this to be bad)");
1056 pkey_assert(ret);
1057 }
1058
1059 void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
1060 {
1061 int pipe_ret, vmsplice_ret;
1062 struct iovec iov;
1063 int pipe_fds[2];
1064
1065 pipe_ret = pipe(pipe_fds);
1066
1067 pkey_assert(pipe_ret == 0);
1068 dprintf1("disabling access to PKEY[%02d], "
1069 "having kernel vmsplice from buffer\n", pkey);
1070 pkey_access_deny(pkey);
1071 iov.iov_base = ptr;
1072 iov.iov_len = PAGE_SIZE;
1073 vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
1074 dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
1075 pkey_assert(vmsplice_ret == -1);
1076
1077 close(pipe_fds[0]);
1078 close(pipe_fds[1]);
1079 }
1080
1081 void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
1082 {
1083 int ignored = 0xdada;
1084 int futex_ret;
1085 int some_int = __LINE__;
1086
1087 dprintf1("disabling write to PKEY[%02d], "
1088 "doing futex gunk in buffer\n", pkey);
1089 *ptr = some_int;
1090 pkey_write_deny(pkey);
1091 futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
1092 &ignored, ignored);
1093 if (DEBUG_LEVEL > 0)
1094 perror("futex");
1095 dprintf1("futex() ret: %d\n", futex_ret);
1096 }
1097
1098 /* Assumes that all pkeys other than 'pkey' are unallocated */
1099 void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
1100 {
1101 int err;
1102 int i;
1103
1104 /* Note: 0 is the default pkey, so don't mess with it */
1105 for (i = 1; i < NR_PKEYS; i++) {
1106 if (pkey == i)
1107 continue;
1108
1109 dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
1110 err = sys_pkey_free(i);
1111 pkey_assert(err);
1112
1113 err = sys_pkey_free(i);
1114 pkey_assert(err);
1115
1116 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
1117 pkey_assert(err);
1118 }
1119 }
1120
1121 /* Assumes that all pkeys other than 'pkey' are unallocated */
1122 void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
1123 {
1124 int err;
1125 int bad_pkey = NR_PKEYS+99;
1126
1127 /* pass a known-invalid pkey in: */
1128 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
1129 pkey_assert(err);
1130 }
1131
1132 /* Assumes that all pkeys other than 'pkey' are unallocated */
1133 void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
1134 {
1135 int err;
1136 int allocated_pkeys[NR_PKEYS] = {0};
1137 int nr_allocated_pkeys = 0;
1138 int i;
1139
1140 for (i = 0; i < NR_PKEYS*2; i++) {
1141 int new_pkey;
1142 dprintf1("%s() alloc loop: %d\n", __func__, i);
1143 new_pkey = alloc_pkey();
1144 dprintf4("%s()::%d, err: %d pkru: 0x%x shadow: 0x%x\n", __func__,
1145 __LINE__, err, __rdpkru(), shadow_pkru);
1146 rdpkru(); /* for shadow checking */
1147 dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
1148 if ((new_pkey == -1) && (errno == ENOSPC)) {
1149 dprintf2("%s() failed to allocate pkey after %d tries\n",
1150 __func__, nr_allocated_pkeys);
1151 break;
1152 }
1153 pkey_assert(nr_allocated_pkeys < NR_PKEYS);
1154 allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1155 }
1156
1157 dprintf3("%s()::%d\n", __func__, __LINE__);
1158
1159 /*
1160 * ensure it did not reach the end of the loop without
1161 * failure:
1162 */
1163 pkey_assert(i < NR_PKEYS*2);
1164
1165 /*
1166 * There are 16 pkeys supported in hardware. Three are
1167 * allocated by the time we get here:
1168 * 1. The default key (0)
1169 * 2. One possibly consumed by an execute-only mapping.
1170 * 3. One allocated by the test code and passed in via
1171 * 'pkey' to this function.
1172 * Ensure that we can allocate at least another 13 (16-3).
1173 */
1174 pkey_assert(i >= NR_PKEYS-3);
1175
1176 for (i = 0; i < nr_allocated_pkeys; i++) {
1177 err = sys_pkey_free(allocated_pkeys[i]);
1178 pkey_assert(!err);
1179 rdpkru(); /* for shadow checking */
1180 }
1181 }
1182
1183 void test_ptrace_of_child(int *ptr, u16 pkey)
1184 {
1185 __attribute__((__unused__)) int peek_result;
1186 pid_t child_pid;
1187 void *ignored = 0;
1188 long ret;
1189 int status;
1190 /*
1191 * This is the "control" for our little expermient. Make sure
1192 * we can always access it when ptracing.
1193 */
1194 int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
1195 int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
1196
1197 /*
1198 * Fork a child which is an exact copy of this process, of course.
1199 * That means we can do all of our tests via ptrace() and then plain
1200 * memory access and ensure they work differently.
1201 */
1202 child_pid = fork_lazy_child();
1203 dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
1204
1205 ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
1206 if (ret)
1207 perror("attach");
1208 dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
1209 pkey_assert(ret != -1);
1210 ret = waitpid(child_pid, &status, WUNTRACED);
1211 if ((ret != child_pid) || !(WIFSTOPPED(status))) {
1212 fprintf(stderr, "weird waitpid result %ld stat %x\n",
1213 ret, status);
1214 pkey_assert(0);
1215 }
1216 dprintf2("waitpid ret: %ld\n", ret);
1217 dprintf2("waitpid status: %d\n", status);
1218
1219 pkey_access_deny(pkey);
1220 pkey_write_deny(pkey);
1221
1222 /* Write access, untested for now:
1223 ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1224 pkey_assert(ret != -1);
1225 dprintf1("poke at %p: %ld\n", peek_at, ret);
1226 */
1227
1228 /*
1229 * Try to access the pkey-protected "ptr" via ptrace:
1230 */
1231 ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
1232 /* expect it to work, without an error: */
1233 pkey_assert(ret != -1);
1234 /* Now access from the current task, and expect an exception: */
1235 peek_result = read_ptr(ptr);
1236 expected_pk_fault(pkey);
1237
1238 /*
1239 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1240 */
1241 ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
1242 /* expect it to work, without an error: */
1243 pkey_assert(ret != -1);
1244 /* Now access from the current task, and expect NO exception: */
1245 peek_result = read_ptr(plain_ptr);
1246 do_not_expect_pk_fault("read plain pointer after ptrace");
1247
1248 ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
1249 pkey_assert(ret != -1);
1250
1251 ret = kill(child_pid, SIGKILL);
1252 pkey_assert(ret != -1);
1253
1254 wait(&status);
1255
1256 free(plain_ptr_unaligned);
1257 }
1258
1259 void *get_pointer_to_instructions(void)
1260 {
1261 void *p1;
1262
1263 p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
1264 dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
1265 /* lots_o_noops_around_write should be page-aligned already */
1266 assert(p1 == &lots_o_noops_around_write);
1267
1268 /* Point 'p1' at the *second* page of the function: */
1269 p1 += PAGE_SIZE;
1270
1271 /*
1272 * Try to ensure we fault this in on next touch to ensure
1273 * we get an instruction fault as opposed to a data one
1274 */
1275 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1276
1277 return p1;
1278 }
1279
1280 void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
1281 {
1282 void *p1;
1283 int scratch;
1284 int ptr_contents;
1285 int ret;
1286
1287 p1 = get_pointer_to_instructions();
1288 lots_o_noops_around_write(&scratch);
1289 ptr_contents = read_ptr(p1);
1290 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1291
1292 ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
1293 pkey_assert(!ret);
1294 pkey_access_deny(pkey);
1295
1296 dprintf2("pkru: %x\n", rdpkru());
1297
1298 /*
1299 * Make sure this is an *instruction* fault
1300 */
1301 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1302 lots_o_noops_around_write(&scratch);
1303 do_not_expect_pk_fault("executing on PROT_EXEC memory");
1304 ptr_contents = read_ptr(p1);
1305 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1306 expected_pk_fault(pkey);
1307 }
1308
1309 void test_implicit_mprotect_exec_only_memory(int *ptr, u16 pkey)
1310 {
1311 void *p1;
1312 int scratch;
1313 int ptr_contents;
1314 int ret;
1315
1316 dprintf1("%s() start\n", __func__);
1317
1318 p1 = get_pointer_to_instructions();
1319 lots_o_noops_around_write(&scratch);
1320 ptr_contents = read_ptr(p1);
1321 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1322
1323 /* Use a *normal* mprotect(), not mprotect_pkey(): */
1324 ret = mprotect(p1, PAGE_SIZE, PROT_EXEC);
1325 pkey_assert(!ret);
1326
1327 dprintf2("pkru: %x\n", rdpkru());
1328
1329 /* Make sure this is an *instruction* fault */
1330 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1331 lots_o_noops_around_write(&scratch);
1332 do_not_expect_pk_fault("executing on PROT_EXEC memory");
1333 ptr_contents = read_ptr(p1);
1334 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1335 expected_pk_fault(UNKNOWN_PKEY);
1336
1337 /*
1338 * Put the memory back to non-PROT_EXEC. Should clear the
1339 * exec-only pkey off the VMA and allow it to be readable
1340 * again. Go to PROT_NONE first to check for a kernel bug
1341 * that did not clear the pkey when doing PROT_NONE.
1342 */
1343 ret = mprotect(p1, PAGE_SIZE, PROT_NONE);
1344 pkey_assert(!ret);
1345
1346 ret = mprotect(p1, PAGE_SIZE, PROT_READ|PROT_EXEC);
1347 pkey_assert(!ret);
1348 ptr_contents = read_ptr(p1);
1349 do_not_expect_pk_fault("plain read on recently PROT_EXEC area");
1350 }
1351
1352 void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
1353 {
1354 int size = PAGE_SIZE;
1355 int sret;
1356
1357 if (cpu_has_pku()) {
1358 dprintf1("SKIP: %s: no CPU support\n", __func__);
1359 return;
1360 }
1361
1362 sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey);
1363 pkey_assert(sret < 0);
1364 }
1365
1366 void (*pkey_tests[])(int *ptr, u16 pkey) = {
1367 test_read_of_write_disabled_region,
1368 test_read_of_access_disabled_region,
1369 test_write_of_write_disabled_region,
1370 test_write_of_access_disabled_region,
1371 test_kernel_write_of_access_disabled_region,
1372 test_kernel_write_of_write_disabled_region,
1373 test_kernel_gup_of_access_disabled_region,
1374 test_kernel_gup_write_to_write_disabled_region,
1375 test_executing_on_unreadable_memory,
1376 test_implicit_mprotect_exec_only_memory,
1377 test_ptrace_of_child,
1378 test_pkey_syscalls_on_non_allocated_pkey,
1379 test_pkey_syscalls_bad_args,
1380 test_pkey_alloc_exhaust,
1381 };
1382
1383 void run_tests_once(void)
1384 {
1385 int *ptr;
1386 int prot = PROT_READ|PROT_WRITE;
1387
1388 for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
1389 int pkey;
1390 int orig_pkru_faults = pkru_faults;
1391
1392 dprintf1("======================\n");
1393 dprintf1("test %d preparing...\n", test_nr);
1394
1395 tracing_on();
1396 pkey = alloc_random_pkey();
1397 dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
1398 ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
1399 dprintf1("test %d starting...\n", test_nr);
1400 pkey_tests[test_nr](ptr, pkey);
1401 dprintf1("freeing test memory: %p\n", ptr);
1402 free_pkey_malloc(ptr);
1403 sys_pkey_free(pkey);
1404
1405 dprintf1("pkru_faults: %d\n", pkru_faults);
1406 dprintf1("orig_pkru_faults: %d\n", orig_pkru_faults);
1407
1408 tracing_off();
1409 close_test_fds();
1410
1411 printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
1412 dprintf1("======================\n\n");
1413 }
1414 iteration_nr++;
1415 }
1416
1417 void pkey_setup_shadow(void)
1418 {
1419 shadow_pkru = __rdpkru();
1420 }
1421
1422 int main(void)
1423 {
1424 int nr_iterations = 22;
1425
1426 setup_handlers();
1427
1428 printf("has pku: %d\n", cpu_has_pku());
1429
1430 if (!cpu_has_pku()) {
1431 int size = PAGE_SIZE;
1432 int *ptr;
1433
1434 printf("running PKEY tests for unsupported CPU/OS\n");
1435
1436 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1437 assert(ptr != (void *)-1);
1438 test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
1439 exit(0);
1440 }
1441
1442 pkey_setup_shadow();
1443 printf("startup pkru: %x\n", rdpkru());
1444 setup_hugetlbfs();
1445
1446 while (nr_iterations-- > 0)
1447 run_tests_once();
1448
1449 printf("done (all tests OK)\n");
1450 return 0;
1451 }