]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - tools/testing/selftests/x86/protection_keys.c
f15aa5a76fe3457e96e438c15e7ad40d3c7fbce0
[mirror_ubuntu-bionic-kernel.git] / tools / testing / selftests / x86 / protection_keys.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Tests x86 Memory Protection Keys (see Documentation/x86/protection-keys.txt)
4 *
5 * There are examples in here of:
6 * * how to set protection keys on memory
7 * * how to set/clear bits in PKRU (the rights register)
8 * * how to handle SEGV_PKRU signals and extract pkey-relevant
9 * information from the siginfo
10 *
11 * Things to add:
12 * make sure KSM and KSM COW breaking works
13 * prefault pages in at malloc, or not
14 * protect MPX bounds tables with protection keys?
15 * make sure VMA splitting/merging is working correctly
16 * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys
17 * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel
18 * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks
19 *
20 * Compile like this:
21 * gcc -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
22 * gcc -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm
23 */
24 #define _GNU_SOURCE
25 #include <errno.h>
26 #include <linux/futex.h>
27 #include <sys/time.h>
28 #include <sys/syscall.h>
29 #include <string.h>
30 #include <stdio.h>
31 #include <stdint.h>
32 #include <stdbool.h>
33 #include <signal.h>
34 #include <assert.h>
35 #include <stdlib.h>
36 #include <ucontext.h>
37 #include <sys/mman.h>
38 #include <sys/types.h>
39 #include <sys/wait.h>
40 #include <sys/stat.h>
41 #include <fcntl.h>
42 #include <unistd.h>
43 #include <sys/ptrace.h>
44 #include <setjmp.h>
45
46 #include "pkey-helpers.h"
47
48 int iteration_nr = 1;
49 int test_nr;
50
51 unsigned int shadow_pkru;
52
53 #define HPAGE_SIZE (1UL<<21)
54 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(*(x)))
55 #define ALIGN_UP(x, align_to) (((x) + ((align_to)-1)) & ~((align_to)-1))
56 #define ALIGN_DOWN(x, align_to) ((x) & ~((align_to)-1))
57 #define ALIGN_PTR_UP(p, ptr_align_to) ((typeof(p))ALIGN_UP((unsigned long)(p), ptr_align_to))
58 #define ALIGN_PTR_DOWN(p, ptr_align_to) ((typeof(p))ALIGN_DOWN((unsigned long)(p), ptr_align_to))
59 #define __stringify_1(x...) #x
60 #define __stringify(x...) __stringify_1(x)
61
62 #define PTR_ERR_ENOTSUP ((void *)-ENOTSUP)
63
64 int dprint_in_signal;
65 char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE];
66
67 extern void abort_hooks(void);
68 #define pkey_assert(condition) do { \
69 if (!(condition)) { \
70 dprintf0("assert() at %s::%d test_nr: %d iteration: %d\n", \
71 __FILE__, __LINE__, \
72 test_nr, iteration_nr); \
73 dprintf0("errno at assert: %d", errno); \
74 abort_hooks(); \
75 assert(condition); \
76 } \
77 } while (0)
78 #define raw_assert(cond) assert(cond)
79
80 void cat_into_file(char *str, char *file)
81 {
82 int fd = open(file, O_RDWR);
83 int ret;
84
85 dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file);
86 /*
87 * these need to be raw because they are called under
88 * pkey_assert()
89 */
90 raw_assert(fd >= 0);
91 ret = write(fd, str, strlen(str));
92 if (ret != strlen(str)) {
93 perror("write to file failed");
94 fprintf(stderr, "filename: '%s' str: '%s'\n", file, str);
95 raw_assert(0);
96 }
97 close(fd);
98 }
99
100 #if CONTROL_TRACING > 0
101 static int warned_tracing;
102 int tracing_root_ok(void)
103 {
104 if (geteuid() != 0) {
105 if (!warned_tracing)
106 fprintf(stderr, "WARNING: not run as root, "
107 "can not do tracing control\n");
108 warned_tracing = 1;
109 return 0;
110 }
111 return 1;
112 }
113 #endif
114
115 void tracing_on(void)
116 {
117 #if CONTROL_TRACING > 0
118 #define TRACEDIR "/sys/kernel/debug/tracing"
119 char pidstr[32];
120
121 if (!tracing_root_ok())
122 return;
123
124 sprintf(pidstr, "%d", getpid());
125 cat_into_file("0", TRACEDIR "/tracing_on");
126 cat_into_file("\n", TRACEDIR "/trace");
127 if (1) {
128 cat_into_file("function_graph", TRACEDIR "/current_tracer");
129 cat_into_file("1", TRACEDIR "/options/funcgraph-proc");
130 } else {
131 cat_into_file("nop", TRACEDIR "/current_tracer");
132 }
133 cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid");
134 cat_into_file("1", TRACEDIR "/tracing_on");
135 dprintf1("enabled tracing\n");
136 #endif
137 }
138
139 void tracing_off(void)
140 {
141 #if CONTROL_TRACING > 0
142 if (!tracing_root_ok())
143 return;
144 cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on");
145 #endif
146 }
147
148 void abort_hooks(void)
149 {
150 fprintf(stderr, "running %s()...\n", __func__);
151 tracing_off();
152 #ifdef SLEEP_ON_ABORT
153 sleep(SLEEP_ON_ABORT);
154 #endif
155 }
156
157 static inline void __page_o_noops(void)
158 {
159 /* 8-bytes of instruction * 512 bytes = 1 page */
160 asm(".rept 512 ; nopl 0x7eeeeeee(%eax) ; .endr");
161 }
162
163 /*
164 * This attempts to have roughly a page of instructions followed by a few
165 * instructions that do a write, and another page of instructions. That
166 * way, we are pretty sure that the write is in the second page of
167 * instructions and has at least a page of padding behind it.
168 *
169 * *That* lets us be sure to madvise() away the write instruction, which
170 * will then fault, which makes sure that the fault code handles
171 * execute-only memory properly.
172 */
173 __attribute__((__aligned__(PAGE_SIZE)))
174 void lots_o_noops_around_write(int *write_to_me)
175 {
176 dprintf3("running %s()\n", __func__);
177 __page_o_noops();
178 /* Assume this happens in the second page of instructions: */
179 *write_to_me = __LINE__;
180 /* pad out by another page: */
181 __page_o_noops();
182 dprintf3("%s() done\n", __func__);
183 }
184
185 /* Define some kernel-like types */
186 #define u8 uint8_t
187 #define u16 uint16_t
188 #define u32 uint32_t
189 #define u64 uint64_t
190
191 #ifdef __i386__
192
193 #ifndef SYS_mprotect_key
194 # define SYS_mprotect_key 380
195 #endif
196 #ifndef SYS_pkey_alloc
197 # define SYS_pkey_alloc 381
198 # define SYS_pkey_free 382
199 #endif
200 #define REG_IP_IDX REG_EIP
201 #define si_pkey_offset 0x14
202
203 #else
204
205 #ifndef SYS_mprotect_key
206 # define SYS_mprotect_key 329
207 #endif
208 #ifndef SYS_pkey_alloc
209 # define SYS_pkey_alloc 330
210 # define SYS_pkey_free 331
211 #endif
212 #define REG_IP_IDX REG_RIP
213 #define si_pkey_offset 0x20
214
215 #endif
216
217 void dump_mem(void *dumpme, int len_bytes)
218 {
219 char *c = (void *)dumpme;
220 int i;
221
222 for (i = 0; i < len_bytes; i += sizeof(u64)) {
223 u64 *ptr = (u64 *)(c + i);
224 dprintf1("dump[%03d][@%p]: %016jx\n", i, ptr, *ptr);
225 }
226 }
227
228 #define SEGV_BNDERR 3 /* failed address bound checks */
229 #define SEGV_PKUERR 4
230
231 static char *si_code_str(int si_code)
232 {
233 if (si_code == SEGV_MAPERR)
234 return "SEGV_MAPERR";
235 if (si_code == SEGV_ACCERR)
236 return "SEGV_ACCERR";
237 if (si_code == SEGV_BNDERR)
238 return "SEGV_BNDERR";
239 if (si_code == SEGV_PKUERR)
240 return "SEGV_PKUERR";
241 return "UNKNOWN";
242 }
243
244 int pkru_faults;
245 int last_si_pkey = -1;
246 void signal_handler(int signum, siginfo_t *si, void *vucontext)
247 {
248 ucontext_t *uctxt = vucontext;
249 int trapno;
250 unsigned long ip;
251 char *fpregs;
252 u32 *pkru_ptr;
253 u64 siginfo_pkey;
254 u32 *si_pkey_ptr;
255 int pkru_offset;
256 fpregset_t fpregset;
257
258 dprint_in_signal = 1;
259 dprintf1(">>>>===============SIGSEGV============================\n");
260 dprintf1("%s()::%d, pkru: 0x%x shadow: %x\n", __func__, __LINE__,
261 __rdpkru(), shadow_pkru);
262
263 trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO];
264 ip = uctxt->uc_mcontext.gregs[REG_IP_IDX];
265 fpregset = uctxt->uc_mcontext.fpregs;
266 fpregs = (void *)fpregset;
267
268 dprintf2("%s() trapno: %d ip: 0x%lx info->si_code: %s/%d\n", __func__,
269 trapno, ip, si_code_str(si->si_code), si->si_code);
270 #ifdef __i386__
271 /*
272 * 32-bit has some extra padding so that userspace can tell whether
273 * the XSTATE header is present in addition to the "legacy" FPU
274 * state. We just assume that it is here.
275 */
276 fpregs += 0x70;
277 #endif
278 pkru_offset = pkru_xstate_offset();
279 pkru_ptr = (void *)(&fpregs[pkru_offset]);
280
281 dprintf1("siginfo: %p\n", si);
282 dprintf1(" fpregs: %p\n", fpregs);
283 /*
284 * If we got a PKRU fault, we *HAVE* to have at least one bit set in
285 * here.
286 */
287 dprintf1("pkru_xstate_offset: %d\n", pkru_xstate_offset());
288 if (DEBUG_LEVEL > 4)
289 dump_mem(pkru_ptr - 128, 256);
290 pkey_assert(*pkru_ptr);
291
292 si_pkey_ptr = (u32 *)(((u8 *)si) + si_pkey_offset);
293 dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr);
294 dump_mem(si_pkey_ptr - 8, 24);
295 siginfo_pkey = *si_pkey_ptr;
296 pkey_assert(siginfo_pkey < NR_PKEYS);
297 last_si_pkey = siginfo_pkey;
298
299 if ((si->si_code == SEGV_MAPERR) ||
300 (si->si_code == SEGV_ACCERR) ||
301 (si->si_code == SEGV_BNDERR)) {
302 printf("non-PK si_code, exiting...\n");
303 exit(4);
304 }
305
306 dprintf1("signal pkru from xsave: %08x\n", *pkru_ptr);
307 /* need __rdpkru() version so we do not do shadow_pkru checking */
308 dprintf1("signal pkru from pkru: %08x\n", __rdpkru());
309 dprintf1("pkey from siginfo: %jx\n", siginfo_pkey);
310 *(u64 *)pkru_ptr = 0x00000000;
311 dprintf1("WARNING: set PRKU=0 to allow faulting instruction to continue\n");
312 pkru_faults++;
313 dprintf1("<<<<==================================================\n");
314 return;
315 if (trapno == 14) {
316 fprintf(stderr,
317 "ERROR: In signal handler, page fault, trapno = %d, ip = %016lx\n",
318 trapno, ip);
319 fprintf(stderr, "si_addr %p\n", si->si_addr);
320 fprintf(stderr, "REG_ERR: %lx\n",
321 (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]);
322 exit(1);
323 } else {
324 fprintf(stderr, "unexpected trap %d! at 0x%lx\n", trapno, ip);
325 fprintf(stderr, "si_addr %p\n", si->si_addr);
326 fprintf(stderr, "REG_ERR: %lx\n",
327 (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]);
328 exit(2);
329 }
330 dprint_in_signal = 0;
331 }
332
333 int wait_all_children(void)
334 {
335 int status;
336 return waitpid(-1, &status, 0);
337 }
338
339 void sig_chld(int x)
340 {
341 dprint_in_signal = 1;
342 dprintf2("[%d] SIGCHLD: %d\n", getpid(), x);
343 dprint_in_signal = 0;
344 }
345
346 void setup_sigsegv_handler(void)
347 {
348 int r, rs;
349 struct sigaction newact;
350 struct sigaction oldact;
351
352 /* #PF is mapped to sigsegv */
353 int signum = SIGSEGV;
354
355 newact.sa_handler = 0;
356 newact.sa_sigaction = signal_handler;
357
358 /*sigset_t - signals to block while in the handler */
359 /* get the old signal mask. */
360 rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask);
361 pkey_assert(rs == 0);
362
363 /* call sa_sigaction, not sa_handler*/
364 newact.sa_flags = SA_SIGINFO;
365
366 newact.sa_restorer = 0; /* void(*)(), obsolete */
367 r = sigaction(signum, &newact, &oldact);
368 r = sigaction(SIGALRM, &newact, &oldact);
369 pkey_assert(r == 0);
370 }
371
372 void setup_handlers(void)
373 {
374 signal(SIGCHLD, &sig_chld);
375 setup_sigsegv_handler();
376 }
377
378 pid_t fork_lazy_child(void)
379 {
380 pid_t forkret;
381
382 forkret = fork();
383 pkey_assert(forkret >= 0);
384 dprintf3("[%d] fork() ret: %d\n", getpid(), forkret);
385
386 if (!forkret) {
387 /* in the child */
388 while (1) {
389 dprintf1("child sleeping...\n");
390 sleep(30);
391 }
392 }
393 return forkret;
394 }
395
396 #define PKEY_DISABLE_ACCESS 0x1
397 #define PKEY_DISABLE_WRITE 0x2
398
399 u32 pkey_get(int pkey, unsigned long flags)
400 {
401 u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
402 u32 pkru = __rdpkru();
403 u32 shifted_pkru;
404 u32 masked_pkru;
405
406 dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n",
407 __func__, pkey, flags, 0, 0);
408 dprintf2("%s() raw pkru: %x\n", __func__, pkru);
409
410 shifted_pkru = (pkru >> (pkey * PKRU_BITS_PER_PKEY));
411 dprintf2("%s() shifted_pkru: %x\n", __func__, shifted_pkru);
412 masked_pkru = shifted_pkru & mask;
413 dprintf2("%s() masked pkru: %x\n", __func__, masked_pkru);
414 /*
415 * shift down the relevant bits to the lowest two, then
416 * mask off all the other high bits.
417 */
418 return masked_pkru;
419 }
420
421 int pkey_set(int pkey, unsigned long rights, unsigned long flags)
422 {
423 u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE);
424 u32 old_pkru = __rdpkru();
425 u32 new_pkru;
426
427 /* make sure that 'rights' only contains the bits we expect: */
428 assert(!(rights & ~mask));
429
430 /* copy old pkru */
431 new_pkru = old_pkru;
432 /* mask out bits from pkey in old value: */
433 new_pkru &= ~(mask << (pkey * PKRU_BITS_PER_PKEY));
434 /* OR in new bits for pkey: */
435 new_pkru |= (rights << (pkey * PKRU_BITS_PER_PKEY));
436
437 __wrpkru(new_pkru);
438
439 dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x pkru now: %x old_pkru: %x\n",
440 __func__, pkey, rights, flags, 0, __rdpkru(), old_pkru);
441 return 0;
442 }
443
444 void pkey_disable_set(int pkey, int flags)
445 {
446 unsigned long syscall_flags = 0;
447 int ret;
448 int pkey_rights;
449 u32 orig_pkru = rdpkru();
450
451 dprintf1("START->%s(%d, 0x%x)\n", __func__,
452 pkey, flags);
453 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
454
455 pkey_rights = pkey_get(pkey, syscall_flags);
456
457 dprintf1("%s(%d) pkey_get(%d): %x\n", __func__,
458 pkey, pkey, pkey_rights);
459 pkey_assert(pkey_rights >= 0);
460
461 pkey_rights |= flags;
462
463 ret = pkey_set(pkey, pkey_rights, syscall_flags);
464 assert(!ret);
465 /*pkru and flags have the same format */
466 shadow_pkru |= flags << (pkey * 2);
467 dprintf1("%s(%d) shadow: 0x%x\n", __func__, pkey, shadow_pkru);
468
469 pkey_assert(ret >= 0);
470
471 pkey_rights = pkey_get(pkey, syscall_flags);
472 dprintf1("%s(%d) pkey_get(%d): %x\n", __func__,
473 pkey, pkey, pkey_rights);
474
475 dprintf1("%s(%d) pkru: 0x%x\n", __func__, pkey, rdpkru());
476 if (flags)
477 pkey_assert(rdpkru() > orig_pkru);
478 dprintf1("END<---%s(%d, 0x%x)\n", __func__,
479 pkey, flags);
480 }
481
482 void pkey_disable_clear(int pkey, int flags)
483 {
484 unsigned long syscall_flags = 0;
485 int ret;
486 int pkey_rights = pkey_get(pkey, syscall_flags);
487 u32 orig_pkru = rdpkru();
488
489 pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE));
490
491 dprintf1("%s(%d) pkey_get(%d): %x\n", __func__,
492 pkey, pkey, pkey_rights);
493 pkey_assert(pkey_rights >= 0);
494
495 pkey_rights |= flags;
496
497 ret = pkey_set(pkey, pkey_rights, 0);
498 /* pkru and flags have the same format */
499 shadow_pkru &= ~(flags << (pkey * 2));
500 pkey_assert(ret >= 0);
501
502 pkey_rights = pkey_get(pkey, syscall_flags);
503 dprintf1("%s(%d) pkey_get(%d): %x\n", __func__,
504 pkey, pkey, pkey_rights);
505
506 dprintf1("%s(%d) pkru: 0x%x\n", __func__, pkey, rdpkru());
507 if (flags)
508 assert(rdpkru() > orig_pkru);
509 }
510
511 void pkey_write_allow(int pkey)
512 {
513 pkey_disable_clear(pkey, PKEY_DISABLE_WRITE);
514 }
515 void pkey_write_deny(int pkey)
516 {
517 pkey_disable_set(pkey, PKEY_DISABLE_WRITE);
518 }
519 void pkey_access_allow(int pkey)
520 {
521 pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS);
522 }
523 void pkey_access_deny(int pkey)
524 {
525 pkey_disable_set(pkey, PKEY_DISABLE_ACCESS);
526 }
527
528 int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
529 unsigned long pkey)
530 {
531 int sret;
532
533 dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__,
534 ptr, size, orig_prot, pkey);
535
536 errno = 0;
537 sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey);
538 if (errno) {
539 dprintf2("SYS_mprotect_key sret: %d\n", sret);
540 dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot);
541 dprintf2("SYS_mprotect_key failed, errno: %d\n", errno);
542 if (DEBUG_LEVEL >= 2)
543 perror("SYS_mprotect_pkey");
544 }
545 return sret;
546 }
547
548 int sys_pkey_alloc(unsigned long flags, unsigned long init_val)
549 {
550 int ret = syscall(SYS_pkey_alloc, flags, init_val);
551 dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n",
552 __func__, flags, init_val, ret, errno);
553 return ret;
554 }
555
556 int alloc_pkey(void)
557 {
558 int ret;
559 unsigned long init_val = 0x0;
560
561 dprintf1("alloc_pkey()::%d, pkru: 0x%x shadow: %x\n",
562 __LINE__, __rdpkru(), shadow_pkru);
563 ret = sys_pkey_alloc(0, init_val);
564 /*
565 * pkey_alloc() sets PKRU, so we need to reflect it in
566 * shadow_pkru:
567 */
568 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
569 __LINE__, ret, __rdpkru(), shadow_pkru);
570 if (ret) {
571 /* clear both the bits: */
572 shadow_pkru &= ~(0x3 << (ret * 2));
573 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
574 __LINE__, ret, __rdpkru(), shadow_pkru);
575 /*
576 * move the new state in from init_val
577 * (remember, we cheated and init_val == pkru format)
578 */
579 shadow_pkru |= (init_val << (ret * 2));
580 }
581 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
582 __LINE__, ret, __rdpkru(), shadow_pkru);
583 dprintf1("alloc_pkey()::%d errno: %d\n", __LINE__, errno);
584 /* for shadow checking: */
585 rdpkru();
586 dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n",
587 __LINE__, ret, __rdpkru(), shadow_pkru);
588 return ret;
589 }
590
591 int sys_pkey_free(unsigned long pkey)
592 {
593 int ret = syscall(SYS_pkey_free, pkey);
594 dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret);
595 return ret;
596 }
597
598 /*
599 * I had a bug where pkey bits could be set by mprotect() but
600 * not cleared. This ensures we get lots of random bit sets
601 * and clears on the vma and pte pkey bits.
602 */
603 int alloc_random_pkey(void)
604 {
605 int max_nr_pkey_allocs;
606 int ret;
607 int i;
608 int alloced_pkeys[NR_PKEYS];
609 int nr_alloced = 0;
610 int random_index;
611 memset(alloced_pkeys, 0, sizeof(alloced_pkeys));
612
613 /* allocate every possible key and make a note of which ones we got */
614 max_nr_pkey_allocs = NR_PKEYS;
615 max_nr_pkey_allocs = 1;
616 for (i = 0; i < max_nr_pkey_allocs; i++) {
617 int new_pkey = alloc_pkey();
618 if (new_pkey < 0)
619 break;
620 alloced_pkeys[nr_alloced++] = new_pkey;
621 }
622
623 pkey_assert(nr_alloced > 0);
624 /* select a random one out of the allocated ones */
625 random_index = rand() % nr_alloced;
626 ret = alloced_pkeys[random_index];
627 /* now zero it out so we don't free it next */
628 alloced_pkeys[random_index] = 0;
629
630 /* go through the allocated ones that we did not want and free them */
631 for (i = 0; i < nr_alloced; i++) {
632 int free_ret;
633 if (!alloced_pkeys[i])
634 continue;
635 free_ret = sys_pkey_free(alloced_pkeys[i]);
636 pkey_assert(!free_ret);
637 }
638 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
639 __LINE__, ret, __rdpkru(), shadow_pkru);
640 return ret;
641 }
642
643 int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot,
644 unsigned long pkey)
645 {
646 int nr_iterations = random() % 100;
647 int ret;
648
649 while (0) {
650 int rpkey = alloc_random_pkey();
651 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
652 dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
653 ptr, size, orig_prot, pkey, ret);
654 if (nr_iterations-- < 0)
655 break;
656
657 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
658 __LINE__, ret, __rdpkru(), shadow_pkru);
659 sys_pkey_free(rpkey);
660 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
661 __LINE__, ret, __rdpkru(), shadow_pkru);
662 }
663 pkey_assert(pkey < NR_PKEYS);
664
665 ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey);
666 dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n",
667 ptr, size, orig_prot, pkey, ret);
668 pkey_assert(!ret);
669 dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__,
670 __LINE__, ret, __rdpkru(), shadow_pkru);
671 return ret;
672 }
673
674 struct pkey_malloc_record {
675 void *ptr;
676 long size;
677 };
678 struct pkey_malloc_record *pkey_malloc_records;
679 long nr_pkey_malloc_records;
680 void record_pkey_malloc(void *ptr, long size)
681 {
682 long i;
683 struct pkey_malloc_record *rec = NULL;
684
685 for (i = 0; i < nr_pkey_malloc_records; i++) {
686 rec = &pkey_malloc_records[i];
687 /* find a free record */
688 if (rec)
689 break;
690 }
691 if (!rec) {
692 /* every record is full */
693 size_t old_nr_records = nr_pkey_malloc_records;
694 size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1);
695 size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record);
696 dprintf2("new_nr_records: %zd\n", new_nr_records);
697 dprintf2("new_size: %zd\n", new_size);
698 pkey_malloc_records = realloc(pkey_malloc_records, new_size);
699 pkey_assert(pkey_malloc_records != NULL);
700 rec = &pkey_malloc_records[nr_pkey_malloc_records];
701 /*
702 * realloc() does not initialize memory, so zero it from
703 * the first new record all the way to the end.
704 */
705 for (i = 0; i < new_nr_records - old_nr_records; i++)
706 memset(rec + i, 0, sizeof(*rec));
707 }
708 dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n",
709 (int)(rec - pkey_malloc_records), rec, ptr, size);
710 rec->ptr = ptr;
711 rec->size = size;
712 nr_pkey_malloc_records++;
713 }
714
715 void free_pkey_malloc(void *ptr)
716 {
717 long i;
718 int ret;
719 dprintf3("%s(%p)\n", __func__, ptr);
720 for (i = 0; i < nr_pkey_malloc_records; i++) {
721 struct pkey_malloc_record *rec = &pkey_malloc_records[i];
722 dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n",
723 ptr, i, rec, rec->ptr, rec->size);
724 if ((ptr < rec->ptr) ||
725 (ptr >= rec->ptr + rec->size))
726 continue;
727
728 dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n",
729 ptr, i, rec, rec->ptr, rec->size);
730 nr_pkey_malloc_records--;
731 ret = munmap(rec->ptr, rec->size);
732 dprintf3("munmap ret: %d\n", ret);
733 pkey_assert(!ret);
734 dprintf3("clearing rec->ptr, rec: %p\n", rec);
735 rec->ptr = NULL;
736 dprintf3("done clearing rec->ptr, rec: %p\n", rec);
737 return;
738 }
739 pkey_assert(false);
740 }
741
742
743 void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey)
744 {
745 void *ptr;
746 int ret;
747
748 rdpkru();
749 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
750 size, prot, pkey);
751 pkey_assert(pkey < NR_PKEYS);
752 ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
753 pkey_assert(ptr != (void *)-1);
754 ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey);
755 pkey_assert(!ret);
756 record_pkey_malloc(ptr, size);
757 rdpkru();
758
759 dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr);
760 return ptr;
761 }
762
763 void *malloc_pkey_anon_huge(long size, int prot, u16 pkey)
764 {
765 int ret;
766 void *ptr;
767
768 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
769 size, prot, pkey);
770 /*
771 * Guarantee we can fit at least one huge page in the resulting
772 * allocation by allocating space for 2:
773 */
774 size = ALIGN_UP(size, HPAGE_SIZE * 2);
775 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
776 pkey_assert(ptr != (void *)-1);
777 record_pkey_malloc(ptr, size);
778 mprotect_pkey(ptr, size, prot, pkey);
779
780 dprintf1("unaligned ptr: %p\n", ptr);
781 ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE);
782 dprintf1(" aligned ptr: %p\n", ptr);
783 ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE);
784 dprintf1("MADV_HUGEPAGE ret: %d\n", ret);
785 ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED);
786 dprintf1("MADV_WILLNEED ret: %d\n", ret);
787 memset(ptr, 0, HPAGE_SIZE);
788
789 dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr);
790 return ptr;
791 }
792
793 int hugetlb_setup_ok;
794 #define GET_NR_HUGE_PAGES 10
795 void setup_hugetlbfs(void)
796 {
797 int err;
798 int fd;
799 char buf[] = "123";
800
801 if (geteuid() != 0) {
802 fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n");
803 return;
804 }
805
806 cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages");
807
808 /*
809 * Now go make sure that we got the pages and that they
810 * are 2M pages. Someone might have made 1G the default.
811 */
812 fd = open("/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages", O_RDONLY);
813 if (fd < 0) {
814 perror("opening sysfs 2M hugetlb config");
815 return;
816 }
817
818 /* -1 to guarantee leaving the trailing \0 */
819 err = read(fd, buf, sizeof(buf)-1);
820 close(fd);
821 if (err <= 0) {
822 perror("reading sysfs 2M hugetlb config");
823 return;
824 }
825
826 if (atoi(buf) != GET_NR_HUGE_PAGES) {
827 fprintf(stderr, "could not confirm 2M pages, got: '%s' expected %d\n",
828 buf, GET_NR_HUGE_PAGES);
829 return;
830 }
831
832 hugetlb_setup_ok = 1;
833 }
834
835 void *malloc_pkey_hugetlb(long size, int prot, u16 pkey)
836 {
837 void *ptr;
838 int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB;
839
840 if (!hugetlb_setup_ok)
841 return PTR_ERR_ENOTSUP;
842
843 dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey);
844 size = ALIGN_UP(size, HPAGE_SIZE * 2);
845 pkey_assert(pkey < NR_PKEYS);
846 ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0);
847 pkey_assert(ptr != (void *)-1);
848 mprotect_pkey(ptr, size, prot, pkey);
849
850 record_pkey_malloc(ptr, size);
851
852 dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr);
853 return ptr;
854 }
855
856 void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey)
857 {
858 void *ptr;
859 int fd;
860
861 dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__,
862 size, prot, pkey);
863 pkey_assert(pkey < NR_PKEYS);
864 fd = open("/dax/foo", O_RDWR);
865 pkey_assert(fd >= 0);
866
867 ptr = mmap(0, size, prot, MAP_SHARED, fd, 0);
868 pkey_assert(ptr != (void *)-1);
869
870 mprotect_pkey(ptr, size, prot, pkey);
871
872 record_pkey_malloc(ptr, size);
873
874 dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr);
875 close(fd);
876 return ptr;
877 }
878
879 void *(*pkey_malloc[])(long size, int prot, u16 pkey) = {
880
881 malloc_pkey_with_mprotect,
882 malloc_pkey_anon_huge,
883 malloc_pkey_hugetlb
884 /* can not do direct with the pkey_mprotect() API:
885 malloc_pkey_mmap_direct,
886 malloc_pkey_mmap_dax,
887 */
888 };
889
890 void *malloc_pkey(long size, int prot, u16 pkey)
891 {
892 void *ret;
893 static int malloc_type;
894 int nr_malloc_types = ARRAY_SIZE(pkey_malloc);
895
896 pkey_assert(pkey < NR_PKEYS);
897
898 while (1) {
899 pkey_assert(malloc_type < nr_malloc_types);
900
901 ret = pkey_malloc[malloc_type](size, prot, pkey);
902 pkey_assert(ret != (void *)-1);
903
904 malloc_type++;
905 if (malloc_type >= nr_malloc_types)
906 malloc_type = (random()%nr_malloc_types);
907
908 /* try again if the malloc_type we tried is unsupported */
909 if (ret == PTR_ERR_ENOTSUP)
910 continue;
911
912 break;
913 }
914
915 dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__,
916 size, prot, pkey, ret);
917 return ret;
918 }
919
920 int last_pkru_faults;
921 void expected_pk_fault(int pkey)
922 {
923 dprintf2("%s(): last_pkru_faults: %d pkru_faults: %d\n",
924 __func__, last_pkru_faults, pkru_faults);
925 dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey);
926 pkey_assert(last_pkru_faults + 1 == pkru_faults);
927 pkey_assert(last_si_pkey == pkey);
928 /*
929 * The signal handler shold have cleared out PKRU to let the
930 * test program continue. We now have to restore it.
931 */
932 if (__rdpkru() != 0)
933 pkey_assert(0);
934
935 __wrpkru(shadow_pkru);
936 dprintf1("%s() set PKRU=%x to restore state after signal nuked it\n",
937 __func__, shadow_pkru);
938 last_pkru_faults = pkru_faults;
939 last_si_pkey = -1;
940 }
941
942 void do_not_expect_pk_fault(void)
943 {
944 pkey_assert(last_pkru_faults == pkru_faults);
945 }
946
947 int test_fds[10] = { -1 };
948 int nr_test_fds;
949 void __save_test_fd(int fd)
950 {
951 pkey_assert(fd >= 0);
952 pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds));
953 test_fds[nr_test_fds] = fd;
954 nr_test_fds++;
955 }
956
957 int get_test_read_fd(void)
958 {
959 int test_fd = open("/etc/passwd", O_RDONLY);
960 __save_test_fd(test_fd);
961 return test_fd;
962 }
963
964 void close_test_fds(void)
965 {
966 int i;
967
968 for (i = 0; i < nr_test_fds; i++) {
969 if (test_fds[i] < 0)
970 continue;
971 close(test_fds[i]);
972 test_fds[i] = -1;
973 }
974 nr_test_fds = 0;
975 }
976
977 #define barrier() __asm__ __volatile__("": : :"memory")
978 __attribute__((noinline)) int read_ptr(int *ptr)
979 {
980 /*
981 * Keep GCC from optimizing this away somehow
982 */
983 barrier();
984 return *ptr;
985 }
986
987 void test_read_of_write_disabled_region(int *ptr, u16 pkey)
988 {
989 int ptr_contents;
990
991 dprintf1("disabling write access to PKEY[1], doing read\n");
992 pkey_write_deny(pkey);
993 ptr_contents = read_ptr(ptr);
994 dprintf1("*ptr: %d\n", ptr_contents);
995 dprintf1("\n");
996 }
997 void test_read_of_access_disabled_region(int *ptr, u16 pkey)
998 {
999 int ptr_contents;
1000
1001 dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr);
1002 rdpkru();
1003 pkey_access_deny(pkey);
1004 ptr_contents = read_ptr(ptr);
1005 dprintf1("*ptr: %d\n", ptr_contents);
1006 expected_pk_fault(pkey);
1007 }
1008 void test_write_of_write_disabled_region(int *ptr, u16 pkey)
1009 {
1010 dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey);
1011 pkey_write_deny(pkey);
1012 *ptr = __LINE__;
1013 expected_pk_fault(pkey);
1014 }
1015 void test_write_of_access_disabled_region(int *ptr, u16 pkey)
1016 {
1017 dprintf1("disabling access to PKEY[%02d], doing write\n", pkey);
1018 pkey_access_deny(pkey);
1019 *ptr = __LINE__;
1020 expected_pk_fault(pkey);
1021 }
1022 void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey)
1023 {
1024 int ret;
1025 int test_fd = get_test_read_fd();
1026
1027 dprintf1("disabling access to PKEY[%02d], "
1028 "having kernel read() to buffer\n", pkey);
1029 pkey_access_deny(pkey);
1030 ret = read(test_fd, ptr, 1);
1031 dprintf1("read ret: %d\n", ret);
1032 pkey_assert(ret);
1033 }
1034 void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey)
1035 {
1036 int ret;
1037 int test_fd = get_test_read_fd();
1038
1039 pkey_write_deny(pkey);
1040 ret = read(test_fd, ptr, 100);
1041 dprintf1("read ret: %d\n", ret);
1042 if (ret < 0 && (DEBUG_LEVEL > 0))
1043 perror("verbose read result (OK for this to be bad)");
1044 pkey_assert(ret);
1045 }
1046
1047 void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey)
1048 {
1049 int pipe_ret, vmsplice_ret;
1050 struct iovec iov;
1051 int pipe_fds[2];
1052
1053 pipe_ret = pipe(pipe_fds);
1054
1055 pkey_assert(pipe_ret == 0);
1056 dprintf1("disabling access to PKEY[%02d], "
1057 "having kernel vmsplice from buffer\n", pkey);
1058 pkey_access_deny(pkey);
1059 iov.iov_base = ptr;
1060 iov.iov_len = PAGE_SIZE;
1061 vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT);
1062 dprintf1("vmsplice() ret: %d\n", vmsplice_ret);
1063 pkey_assert(vmsplice_ret == -1);
1064
1065 close(pipe_fds[0]);
1066 close(pipe_fds[1]);
1067 }
1068
1069 void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey)
1070 {
1071 int ignored = 0xdada;
1072 int futex_ret;
1073 int some_int = __LINE__;
1074
1075 dprintf1("disabling write to PKEY[%02d], "
1076 "doing futex gunk in buffer\n", pkey);
1077 *ptr = some_int;
1078 pkey_write_deny(pkey);
1079 futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL,
1080 &ignored, ignored);
1081 if (DEBUG_LEVEL > 0)
1082 perror("futex");
1083 dprintf1("futex() ret: %d\n", futex_ret);
1084 }
1085
1086 /* Assumes that all pkeys other than 'pkey' are unallocated */
1087 void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey)
1088 {
1089 int err;
1090 int i;
1091
1092 /* Note: 0 is the default pkey, so don't mess with it */
1093 for (i = 1; i < NR_PKEYS; i++) {
1094 if (pkey == i)
1095 continue;
1096
1097 dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i);
1098 err = sys_pkey_free(i);
1099 pkey_assert(err);
1100
1101 err = sys_pkey_free(i);
1102 pkey_assert(err);
1103
1104 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i);
1105 pkey_assert(err);
1106 }
1107 }
1108
1109 /* Assumes that all pkeys other than 'pkey' are unallocated */
1110 void test_pkey_syscalls_bad_args(int *ptr, u16 pkey)
1111 {
1112 int err;
1113 int bad_pkey = NR_PKEYS+99;
1114
1115 /* pass a known-invalid pkey in: */
1116 err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey);
1117 pkey_assert(err);
1118 }
1119
1120 /* Assumes that all pkeys other than 'pkey' are unallocated */
1121 void test_pkey_alloc_exhaust(int *ptr, u16 pkey)
1122 {
1123 int err;
1124 int allocated_pkeys[NR_PKEYS] = {0};
1125 int nr_allocated_pkeys = 0;
1126 int i;
1127
1128 for (i = 0; i < NR_PKEYS*2; i++) {
1129 int new_pkey;
1130 dprintf1("%s() alloc loop: %d\n", __func__, i);
1131 new_pkey = alloc_pkey();
1132 dprintf4("%s()::%d, err: %d pkru: 0x%x shadow: 0x%x\n", __func__,
1133 __LINE__, err, __rdpkru(), shadow_pkru);
1134 rdpkru(); /* for shadow checking */
1135 dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC);
1136 if ((new_pkey == -1) && (errno == ENOSPC)) {
1137 dprintf2("%s() failed to allocate pkey after %d tries\n",
1138 __func__, nr_allocated_pkeys);
1139 break;
1140 }
1141 pkey_assert(nr_allocated_pkeys < NR_PKEYS);
1142 allocated_pkeys[nr_allocated_pkeys++] = new_pkey;
1143 }
1144
1145 dprintf3("%s()::%d\n", __func__, __LINE__);
1146
1147 /*
1148 * ensure it did not reach the end of the loop without
1149 * failure:
1150 */
1151 pkey_assert(i < NR_PKEYS*2);
1152
1153 /*
1154 * There are 16 pkeys supported in hardware. One is taken
1155 * up for the default (0) and another can be taken up by
1156 * an execute-only mapping. Ensure that we can allocate
1157 * at least 14 (16-2).
1158 */
1159 pkey_assert(i >= NR_PKEYS-2);
1160
1161 for (i = 0; i < nr_allocated_pkeys; i++) {
1162 err = sys_pkey_free(allocated_pkeys[i]);
1163 pkey_assert(!err);
1164 rdpkru(); /* for shadow checking */
1165 }
1166 }
1167
1168 void test_ptrace_of_child(int *ptr, u16 pkey)
1169 {
1170 __attribute__((__unused__)) int peek_result;
1171 pid_t child_pid;
1172 void *ignored = 0;
1173 long ret;
1174 int status;
1175 /*
1176 * This is the "control" for our little expermient. Make sure
1177 * we can always access it when ptracing.
1178 */
1179 int *plain_ptr_unaligned = malloc(HPAGE_SIZE);
1180 int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE);
1181
1182 /*
1183 * Fork a child which is an exact copy of this process, of course.
1184 * That means we can do all of our tests via ptrace() and then plain
1185 * memory access and ensure they work differently.
1186 */
1187 child_pid = fork_lazy_child();
1188 dprintf1("[%d] child pid: %d\n", getpid(), child_pid);
1189
1190 ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored);
1191 if (ret)
1192 perror("attach");
1193 dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__);
1194 pkey_assert(ret != -1);
1195 ret = waitpid(child_pid, &status, WUNTRACED);
1196 if ((ret != child_pid) || !(WIFSTOPPED(status))) {
1197 fprintf(stderr, "weird waitpid result %ld stat %x\n",
1198 ret, status);
1199 pkey_assert(0);
1200 }
1201 dprintf2("waitpid ret: %ld\n", ret);
1202 dprintf2("waitpid status: %d\n", status);
1203
1204 pkey_access_deny(pkey);
1205 pkey_write_deny(pkey);
1206
1207 /* Write access, untested for now:
1208 ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data);
1209 pkey_assert(ret != -1);
1210 dprintf1("poke at %p: %ld\n", peek_at, ret);
1211 */
1212
1213 /*
1214 * Try to access the pkey-protected "ptr" via ptrace:
1215 */
1216 ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored);
1217 /* expect it to work, without an error: */
1218 pkey_assert(ret != -1);
1219 /* Now access from the current task, and expect an exception: */
1220 peek_result = read_ptr(ptr);
1221 expected_pk_fault(pkey);
1222
1223 /*
1224 * Try to access the NON-pkey-protected "plain_ptr" via ptrace:
1225 */
1226 ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored);
1227 /* expect it to work, without an error: */
1228 pkey_assert(ret != -1);
1229 /* Now access from the current task, and expect NO exception: */
1230 peek_result = read_ptr(plain_ptr);
1231 do_not_expect_pk_fault();
1232
1233 ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0);
1234 pkey_assert(ret != -1);
1235
1236 ret = kill(child_pid, SIGKILL);
1237 pkey_assert(ret != -1);
1238
1239 wait(&status);
1240
1241 free(plain_ptr_unaligned);
1242 }
1243
1244 void test_executing_on_unreadable_memory(int *ptr, u16 pkey)
1245 {
1246 void *p1;
1247 int scratch;
1248 int ptr_contents;
1249 int ret;
1250
1251 p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE);
1252 dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write);
1253 /* lots_o_noops_around_write should be page-aligned already */
1254 assert(p1 == &lots_o_noops_around_write);
1255
1256 /* Point 'p1' at the *second* page of the function: */
1257 p1 += PAGE_SIZE;
1258
1259 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1260 lots_o_noops_around_write(&scratch);
1261 ptr_contents = read_ptr(p1);
1262 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1263
1264 ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey);
1265 pkey_assert(!ret);
1266 pkey_access_deny(pkey);
1267
1268 dprintf2("pkru: %x\n", rdpkru());
1269
1270 /*
1271 * Make sure this is an *instruction* fault
1272 */
1273 madvise(p1, PAGE_SIZE, MADV_DONTNEED);
1274 lots_o_noops_around_write(&scratch);
1275 do_not_expect_pk_fault();
1276 ptr_contents = read_ptr(p1);
1277 dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents);
1278 expected_pk_fault(pkey);
1279 }
1280
1281 void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey)
1282 {
1283 int size = PAGE_SIZE;
1284 int sret;
1285
1286 if (cpu_has_pku()) {
1287 dprintf1("SKIP: %s: no CPU support\n", __func__);
1288 return;
1289 }
1290
1291 sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey);
1292 pkey_assert(sret < 0);
1293 }
1294
1295 void (*pkey_tests[])(int *ptr, u16 pkey) = {
1296 test_read_of_write_disabled_region,
1297 test_read_of_access_disabled_region,
1298 test_write_of_write_disabled_region,
1299 test_write_of_access_disabled_region,
1300 test_kernel_write_of_access_disabled_region,
1301 test_kernel_write_of_write_disabled_region,
1302 test_kernel_gup_of_access_disabled_region,
1303 test_kernel_gup_write_to_write_disabled_region,
1304 test_executing_on_unreadable_memory,
1305 test_ptrace_of_child,
1306 test_pkey_syscalls_on_non_allocated_pkey,
1307 test_pkey_syscalls_bad_args,
1308 test_pkey_alloc_exhaust,
1309 };
1310
1311 void run_tests_once(void)
1312 {
1313 int *ptr;
1314 int prot = PROT_READ|PROT_WRITE;
1315
1316 for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) {
1317 int pkey;
1318 int orig_pkru_faults = pkru_faults;
1319
1320 dprintf1("======================\n");
1321 dprintf1("test %d preparing...\n", test_nr);
1322
1323 tracing_on();
1324 pkey = alloc_random_pkey();
1325 dprintf1("test %d starting with pkey: %d\n", test_nr, pkey);
1326 ptr = malloc_pkey(PAGE_SIZE, prot, pkey);
1327 dprintf1("test %d starting...\n", test_nr);
1328 pkey_tests[test_nr](ptr, pkey);
1329 dprintf1("freeing test memory: %p\n", ptr);
1330 free_pkey_malloc(ptr);
1331 sys_pkey_free(pkey);
1332
1333 dprintf1("pkru_faults: %d\n", pkru_faults);
1334 dprintf1("orig_pkru_faults: %d\n", orig_pkru_faults);
1335
1336 tracing_off();
1337 close_test_fds();
1338
1339 printf("test %2d PASSED (iteration %d)\n", test_nr, iteration_nr);
1340 dprintf1("======================\n\n");
1341 }
1342 iteration_nr++;
1343 }
1344
1345 void pkey_setup_shadow(void)
1346 {
1347 shadow_pkru = __rdpkru();
1348 }
1349
1350 int main(void)
1351 {
1352 int nr_iterations = 22;
1353
1354 setup_handlers();
1355
1356 printf("has pku: %d\n", cpu_has_pku());
1357
1358 if (!cpu_has_pku()) {
1359 int size = PAGE_SIZE;
1360 int *ptr;
1361
1362 printf("running PKEY tests for unsupported CPU/OS\n");
1363
1364 ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
1365 assert(ptr != (void *)-1);
1366 test_mprotect_pkey_on_unsupported_cpu(ptr, 1);
1367 exit(0);
1368 }
1369
1370 pkey_setup_shadow();
1371 printf("startup pkru: %x\n", rdpkru());
1372 setup_hugetlbfs();
1373
1374 while (nr_iterations-- > 0)
1375 run_tests_once();
1376
1377 printf("done (all tests OK)\n");
1378 return 0;
1379 }