]> git.proxmox.com Git - mirror_qemu.git/blob - translate-all.c
translate-all: Move tcg_handle_interrupt() to -common
[mirror_qemu.git] / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
30
31 #include "config.h"
32
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "trace.h"
37 #include "disas/disas.h"
38 #include "tcg.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
59
60 #include "exec/cputlb.h"
61 #include "exec/tb-hash.h"
62 #include "translate-all.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/timer.h"
65
66 //#define DEBUG_TB_INVALIDATE
67 //#define DEBUG_FLUSH
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70
71 #if !defined(CONFIG_USER_ONLY)
72 /* TB consistency checks only implemented for usermode emulation. */
73 #undef DEBUG_TB_CHECK
74 #endif
75
76 #define SMC_BITMAP_USE_THRESHOLD 10
77
78 typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
84 unsigned long *code_bitmap;
85 #if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87 #endif
88 } PageDesc;
89
90 /* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92 #if !defined(CONFIG_USER_ONLY)
93 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95 #else
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97 #endif
98 #else
99 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100 #endif
101
102 /* Size of the L2 (and L3, etc) page tables. */
103 #define V_L2_BITS 10
104 #define V_L2_SIZE (1 << V_L2_BITS)
105
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
109
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
112 #else
113 #define V_L1_BITS V_L1_BITS_REM
114 #endif
115
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119
120 uintptr_t qemu_real_host_page_size;
121 uintptr_t qemu_real_host_page_mask;
122 uintptr_t qemu_host_page_size;
123 uintptr_t qemu_host_page_mask;
124
125 /* The bottom level has pointers to PageDesc */
126 static void *l1_map[V_L1_SIZE];
127
128 /* code generation context */
129 TCGContext tcg_ctx;
130
131 /* translation block context */
132 #ifdef CONFIG_USER_ONLY
133 __thread int have_tb_lock;
134 #endif
135
136 void tb_lock(void)
137 {
138 #ifdef CONFIG_USER_ONLY
139 assert(!have_tb_lock);
140 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
141 have_tb_lock++;
142 #endif
143 }
144
145 void tb_unlock(void)
146 {
147 #ifdef CONFIG_USER_ONLY
148 assert(have_tb_lock);
149 have_tb_lock--;
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 #endif
152 }
153
154 void tb_lock_reset(void)
155 {
156 #ifdef CONFIG_USER_ONLY
157 if (have_tb_lock) {
158 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
159 have_tb_lock = 0;
160 }
161 #endif
162 }
163
164 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
165 tb_page_addr_t phys_page2);
166 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
167
168 void cpu_gen_init(void)
169 {
170 tcg_context_init(&tcg_ctx);
171 }
172
173 /* return non zero if the very first instruction is invalid so that
174 * the virtual CPU can trigger an exception.
175 *
176 * '*gen_code_size_ptr' contains the size of the generated code (host
177 * code).
178 *
179 * Called with mmap_lock held for user-mode emulation.
180 */
181 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
182 {
183 TCGContext *s = &tcg_ctx;
184 tcg_insn_unit *gen_code_buf;
185 int gen_code_size;
186 #ifdef CONFIG_PROFILER
187 int64_t ti;
188 #endif
189
190 #ifdef CONFIG_PROFILER
191 s->tb_count1++; /* includes aborted translations because of
192 exceptions */
193 ti = profile_getclock();
194 #endif
195 tcg_func_start(s);
196
197 gen_intermediate_code(env, tb);
198
199 trace_translate_block(tb, tb->pc, tb->tc_ptr);
200
201 /* generate machine code */
202 gen_code_buf = tb->tc_ptr;
203 tb->tb_next_offset[0] = 0xffff;
204 tb->tb_next_offset[1] = 0xffff;
205 s->tb_next_offset = tb->tb_next_offset;
206 #ifdef USE_DIRECT_JUMP
207 s->tb_jmp_offset = tb->tb_jmp_offset;
208 s->tb_next = NULL;
209 #else
210 s->tb_jmp_offset = NULL;
211 s->tb_next = tb->tb_next;
212 #endif
213
214 #ifdef CONFIG_PROFILER
215 s->tb_count++;
216 s->interm_time += profile_getclock() - ti;
217 s->code_time -= profile_getclock();
218 #endif
219 gen_code_size = tcg_gen_code(s, gen_code_buf);
220 *gen_code_size_ptr = gen_code_size;
221 #ifdef CONFIG_PROFILER
222 s->code_time += profile_getclock();
223 s->code_in_len += tb->size;
224 s->code_out_len += gen_code_size;
225 #endif
226
227 #ifdef DEBUG_DISAS
228 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
229 qemu_log("OUT: [size=%d]\n", gen_code_size);
230 log_disas(tb->tc_ptr, gen_code_size);
231 qemu_log("\n");
232 qemu_log_flush();
233 }
234 #endif
235 return 0;
236 }
237
238 /* The cpu state corresponding to 'searched_pc' is restored.
239 */
240 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
241 uintptr_t searched_pc)
242 {
243 CPUArchState *env = cpu->env_ptr;
244 TCGContext *s = &tcg_ctx;
245 int j;
246 uintptr_t tc_ptr;
247 #ifdef CONFIG_PROFILER
248 int64_t ti;
249 #endif
250
251 #ifdef CONFIG_PROFILER
252 ti = profile_getclock();
253 #endif
254 tcg_func_start(s);
255
256 gen_intermediate_code_pc(env, tb);
257
258 if (tb->cflags & CF_USE_ICOUNT) {
259 assert(use_icount);
260 /* Reset the cycle counter to the start of the block. */
261 cpu->icount_decr.u16.low += tb->icount;
262 /* Clear the IO flag. */
263 cpu->can_do_io = 0;
264 }
265
266 /* find opc index corresponding to search_pc */
267 tc_ptr = (uintptr_t)tb->tc_ptr;
268 if (searched_pc < tc_ptr)
269 return -1;
270
271 s->tb_next_offset = tb->tb_next_offset;
272 #ifdef USE_DIRECT_JUMP
273 s->tb_jmp_offset = tb->tb_jmp_offset;
274 s->tb_next = NULL;
275 #else
276 s->tb_jmp_offset = NULL;
277 s->tb_next = tb->tb_next;
278 #endif
279 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
280 searched_pc - tc_ptr);
281 if (j < 0)
282 return -1;
283 /* now find start of instruction before */
284 while (s->gen_opc_instr_start[j] == 0) {
285 j--;
286 }
287 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
288
289 restore_state_to_opc(env, tb, j);
290
291 #ifdef CONFIG_PROFILER
292 s->restore_time += profile_getclock() - ti;
293 s->restore_count++;
294 #endif
295 return 0;
296 }
297
298 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
299 {
300 TranslationBlock *tb;
301
302 tb = tb_find_pc(retaddr);
303 if (tb) {
304 cpu_restore_state_from_tb(cpu, tb, retaddr);
305 if (tb->cflags & CF_NOCACHE) {
306 /* one-shot translation, invalidate it immediately */
307 cpu->current_tb = NULL;
308 tb_phys_invalidate(tb, -1);
309 tb_free(tb);
310 }
311 return true;
312 }
313 return false;
314 }
315
316 #ifdef _WIN32
317 static __attribute__((unused)) void map_exec(void *addr, long size)
318 {
319 DWORD old_protect;
320 VirtualProtect(addr, size,
321 PAGE_EXECUTE_READWRITE, &old_protect);
322 }
323 #else
324 static __attribute__((unused)) void map_exec(void *addr, long size)
325 {
326 unsigned long start, end, page_size;
327
328 page_size = getpagesize();
329 start = (unsigned long)addr;
330 start &= ~(page_size - 1);
331
332 end = (unsigned long)addr + size;
333 end += page_size - 1;
334 end &= ~(page_size - 1);
335
336 mprotect((void *)start, end - start,
337 PROT_READ | PROT_WRITE | PROT_EXEC);
338 }
339 #endif
340
341 void page_size_init(void)
342 {
343 /* NOTE: we can always suppose that qemu_host_page_size >=
344 TARGET_PAGE_SIZE */
345 qemu_real_host_page_size = getpagesize();
346 qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
347 if (qemu_host_page_size == 0) {
348 qemu_host_page_size = qemu_real_host_page_size;
349 }
350 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
351 qemu_host_page_size = TARGET_PAGE_SIZE;
352 }
353 qemu_host_page_mask = ~(qemu_host_page_size - 1);
354 }
355
356 static void page_init(void)
357 {
358 page_size_init();
359 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
360 {
361 #ifdef HAVE_KINFO_GETVMMAP
362 struct kinfo_vmentry *freep;
363 int i, cnt;
364
365 freep = kinfo_getvmmap(getpid(), &cnt);
366 if (freep) {
367 mmap_lock();
368 for (i = 0; i < cnt; i++) {
369 unsigned long startaddr, endaddr;
370
371 startaddr = freep[i].kve_start;
372 endaddr = freep[i].kve_end;
373 if (h2g_valid(startaddr)) {
374 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
375
376 if (h2g_valid(endaddr)) {
377 endaddr = h2g(endaddr);
378 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
379 } else {
380 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
381 endaddr = ~0ul;
382 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
383 #endif
384 }
385 }
386 }
387 free(freep);
388 mmap_unlock();
389 }
390 #else
391 FILE *f;
392
393 last_brk = (unsigned long)sbrk(0);
394
395 f = fopen("/compat/linux/proc/self/maps", "r");
396 if (f) {
397 mmap_lock();
398
399 do {
400 unsigned long startaddr, endaddr;
401 int n;
402
403 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
404
405 if (n == 2 && h2g_valid(startaddr)) {
406 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
407
408 if (h2g_valid(endaddr)) {
409 endaddr = h2g(endaddr);
410 } else {
411 endaddr = ~0ul;
412 }
413 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
414 }
415 } while (!feof(f));
416
417 fclose(f);
418 mmap_unlock();
419 }
420 #endif
421 }
422 #endif
423 }
424
425 /* If alloc=1:
426 * Called with mmap_lock held for user-mode emulation.
427 */
428 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
429 {
430 PageDesc *pd;
431 void **lp;
432 int i;
433
434 /* Level 1. Always allocated. */
435 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
436
437 /* Level 2..N-1. */
438 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
439 void **p = atomic_rcu_read(lp);
440
441 if (p == NULL) {
442 if (!alloc) {
443 return NULL;
444 }
445 p = g_new0(void *, V_L2_SIZE);
446 atomic_rcu_set(lp, p);
447 }
448
449 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
450 }
451
452 pd = atomic_rcu_read(lp);
453 if (pd == NULL) {
454 if (!alloc) {
455 return NULL;
456 }
457 pd = g_new0(PageDesc, V_L2_SIZE);
458 atomic_rcu_set(lp, pd);
459 }
460
461 return pd + (index & (V_L2_SIZE - 1));
462 }
463
464 static inline PageDesc *page_find(tb_page_addr_t index)
465 {
466 return page_find_alloc(index, 0);
467 }
468
469 #if defined(CONFIG_USER_ONLY)
470 /* Currently it is not recommended to allocate big chunks of data in
471 user mode. It will change when a dedicated libc will be used. */
472 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
473 region in which the guest needs to run. Revisit this. */
474 #define USE_STATIC_CODE_GEN_BUFFER
475 #endif
476
477 /* ??? Should configure for this, not list operating systems here. */
478 #if (defined(__linux__) \
479 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
480 || defined(__DragonFly__) || defined(__OpenBSD__) \
481 || defined(__NetBSD__))
482 # define USE_MMAP
483 #endif
484
485 /* Minimum size of the code gen buffer. This number is randomly chosen,
486 but not so small that we can't have a fair number of TB's live. */
487 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
488
489 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
490 indicated, this is constrained by the range of direct branches on the
491 host cpu, as used by the TCG implementation of goto_tb. */
492 #if defined(__x86_64__)
493 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
494 #elif defined(__sparc__)
495 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
496 #elif defined(__aarch64__)
497 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
498 #elif defined(__arm__)
499 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
500 #elif defined(__s390x__)
501 /* We have a +- 4GB range on the branches; leave some slop. */
502 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
503 #elif defined(__mips__)
504 /* We have a 256MB branch region, but leave room to make sure the
505 main executable is also within that region. */
506 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
507 #else
508 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
509 #endif
510
511 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
512
513 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
514 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
515 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
516
517 static inline size_t size_code_gen_buffer(size_t tb_size)
518 {
519 /* Size the buffer. */
520 if (tb_size == 0) {
521 #ifdef USE_STATIC_CODE_GEN_BUFFER
522 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
523 #else
524 /* ??? Needs adjustments. */
525 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
526 static buffer, we could size this on RESERVED_VA, on the text
527 segment size of the executable, or continue to use the default. */
528 tb_size = (unsigned long)(ram_size / 4);
529 #endif
530 }
531 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
532 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
533 }
534 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
535 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
536 }
537 tcg_ctx.code_gen_buffer_size = tb_size;
538 return tb_size;
539 }
540
541 #ifdef __mips__
542 /* In order to use J and JAL within the code_gen_buffer, we require
543 that the buffer not cross a 256MB boundary. */
544 static inline bool cross_256mb(void *addr, size_t size)
545 {
546 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
547 }
548
549 /* We weren't able to allocate a buffer without crossing that boundary,
550 so make do with the larger portion of the buffer that doesn't cross.
551 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
552 static inline void *split_cross_256mb(void *buf1, size_t size1)
553 {
554 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
555 size_t size2 = buf1 + size1 - buf2;
556
557 size1 = buf2 - buf1;
558 if (size1 < size2) {
559 size1 = size2;
560 buf1 = buf2;
561 }
562
563 tcg_ctx.code_gen_buffer_size = size1;
564 return buf1;
565 }
566 #endif
567
568 #ifdef USE_STATIC_CODE_GEN_BUFFER
569 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
570 __attribute__((aligned(CODE_GEN_ALIGN)));
571
572 static inline void *alloc_code_gen_buffer(void)
573 {
574 void *buf = static_code_gen_buffer;
575 #ifdef __mips__
576 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
577 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
578 }
579 #endif
580 map_exec(buf, tcg_ctx.code_gen_buffer_size);
581 return buf;
582 }
583 #elif defined(USE_MMAP)
584 static inline void *alloc_code_gen_buffer(void)
585 {
586 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
587 uintptr_t start = 0;
588 void *buf;
589
590 /* Constrain the position of the buffer based on the host cpu.
591 Note that these addresses are chosen in concert with the
592 addresses assigned in the relevant linker script file. */
593 # if defined(__PIE__) || defined(__PIC__)
594 /* Don't bother setting a preferred location if we're building
595 a position-independent executable. We're more likely to get
596 an address near the main executable if we let the kernel
597 choose the address. */
598 # elif defined(__x86_64__) && defined(MAP_32BIT)
599 /* Force the memory down into low memory with the executable.
600 Leave the choice of exact location with the kernel. */
601 flags |= MAP_32BIT;
602 /* Cannot expect to map more than 800MB in low memory. */
603 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
604 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
605 }
606 # elif defined(__sparc__)
607 start = 0x40000000ul;
608 # elif defined(__s390x__)
609 start = 0x90000000ul;
610 # elif defined(__mips__)
611 /* ??? We ought to more explicitly manage layout for softmmu too. */
612 # ifdef CONFIG_USER_ONLY
613 start = 0x68000000ul;
614 # elif _MIPS_SIM == _ABI64
615 start = 0x128000000ul;
616 # else
617 start = 0x08000000ul;
618 # endif
619 # endif
620
621 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
622 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
623 if (buf == MAP_FAILED) {
624 return NULL;
625 }
626
627 #ifdef __mips__
628 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
629 /* Try again, with the original still mapped, to avoid re-acquiring
630 that 256mb crossing. This time don't specify an address. */
631 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
632 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
633 flags, -1, 0);
634 if (buf2 != MAP_FAILED) {
635 if (!cross_256mb(buf2, size1)) {
636 /* Success! Use the new buffer. */
637 munmap(buf, size1);
638 return buf2;
639 }
640 /* Failure. Work with what we had. */
641 munmap(buf2, size1);
642 }
643
644 /* Split the original buffer. Free the smaller half. */
645 buf2 = split_cross_256mb(buf, size1);
646 size2 = tcg_ctx.code_gen_buffer_size;
647 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
648 return buf2;
649 }
650 #endif
651
652 return buf;
653 }
654 #else
655 static inline void *alloc_code_gen_buffer(void)
656 {
657 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
658
659 if (buf == NULL) {
660 return NULL;
661 }
662
663 #ifdef __mips__
664 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
665 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
666 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
667 /* Success! Use the new buffer. */
668 free(buf);
669 buf = buf2;
670 } else {
671 /* Failure. Work with what we had. Since this is malloc
672 and not mmap, we can't free the other half. */
673 free(buf2);
674 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
675 }
676 }
677 #endif
678
679 map_exec(buf, tcg_ctx.code_gen_buffer_size);
680 return buf;
681 }
682 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
683
684 static inline void code_gen_alloc(size_t tb_size)
685 {
686 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
687 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
688 if (tcg_ctx.code_gen_buffer == NULL) {
689 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
690 exit(1);
691 }
692
693 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
694 QEMU_MADV_HUGEPAGE);
695
696 /* Steal room for the prologue at the end of the buffer. This ensures
697 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
698 from TB's to the prologue are going to be in range. It also means
699 that we don't need to mark (additional) portions of the data segment
700 as executable. */
701 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
702 tcg_ctx.code_gen_buffer_size - 1024;
703 tcg_ctx.code_gen_buffer_size -= 1024;
704
705 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
706 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
707 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
708 CODE_GEN_AVG_BLOCK_SIZE;
709 tcg_ctx.tb_ctx.tbs =
710 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
711 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
712 }
713
714 /* Must be called before using the QEMU cpus. 'tb_size' is the size
715 (in bytes) allocated to the translation buffer. Zero means default
716 size. */
717 void tcg_exec_init(unsigned long tb_size)
718 {
719 cpu_gen_init();
720 code_gen_alloc(tb_size);
721 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
722 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
723 page_init();
724 #if defined(CONFIG_SOFTMMU)
725 /* There's no guest base to take into account, so go ahead and
726 initialize the prologue now. */
727 tcg_prologue_init(&tcg_ctx);
728 #endif
729 }
730
731 bool tcg_enabled(void)
732 {
733 return tcg_ctx.code_gen_buffer != NULL;
734 }
735
736 /* Allocate a new translation block. Flush the translation buffer if
737 too many translation blocks or too much generated code. */
738 static TranslationBlock *tb_alloc(target_ulong pc)
739 {
740 TranslationBlock *tb;
741
742 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
743 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
744 tcg_ctx.code_gen_buffer_max_size) {
745 return NULL;
746 }
747 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
748 tb->pc = pc;
749 tb->cflags = 0;
750 return tb;
751 }
752
753 void tb_free(TranslationBlock *tb)
754 {
755 /* In practice this is mostly used for single use temporary TB
756 Ignore the hard cases and just back up if this TB happens to
757 be the last one generated. */
758 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
759 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
760 tcg_ctx.code_gen_ptr = tb->tc_ptr;
761 tcg_ctx.tb_ctx.nb_tbs--;
762 }
763 }
764
765 static inline void invalidate_page_bitmap(PageDesc *p)
766 {
767 g_free(p->code_bitmap);
768 p->code_bitmap = NULL;
769 p->code_write_count = 0;
770 }
771
772 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
773 static void page_flush_tb_1(int level, void **lp)
774 {
775 int i;
776
777 if (*lp == NULL) {
778 return;
779 }
780 if (level == 0) {
781 PageDesc *pd = *lp;
782
783 for (i = 0; i < V_L2_SIZE; ++i) {
784 pd[i].first_tb = NULL;
785 invalidate_page_bitmap(pd + i);
786 }
787 } else {
788 void **pp = *lp;
789
790 for (i = 0; i < V_L2_SIZE; ++i) {
791 page_flush_tb_1(level - 1, pp + i);
792 }
793 }
794 }
795
796 static void page_flush_tb(void)
797 {
798 int i;
799
800 for (i = 0; i < V_L1_SIZE; i++) {
801 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
802 }
803 }
804
805 /* flush all the translation blocks */
806 /* XXX: tb_flush is currently not thread safe */
807 void tb_flush(CPUState *cpu)
808 {
809 #if defined(DEBUG_FLUSH)
810 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
811 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
812 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
813 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
814 tcg_ctx.tb_ctx.nb_tbs : 0);
815 #endif
816 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
817 > tcg_ctx.code_gen_buffer_size) {
818 cpu_abort(cpu, "Internal error: code buffer overflow\n");
819 }
820 tcg_ctx.tb_ctx.nb_tbs = 0;
821
822 CPU_FOREACH(cpu) {
823 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
824 }
825
826 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
827 page_flush_tb();
828
829 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
830 /* XXX: flush processor icache at this point if cache flush is
831 expensive */
832 tcg_ctx.tb_ctx.tb_flush_count++;
833 }
834
835 #ifdef DEBUG_TB_CHECK
836
837 static void tb_invalidate_check(target_ulong address)
838 {
839 TranslationBlock *tb;
840 int i;
841
842 address &= TARGET_PAGE_MASK;
843 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
844 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
845 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
846 address >= tb->pc + tb->size)) {
847 printf("ERROR invalidate: address=" TARGET_FMT_lx
848 " PC=%08lx size=%04x\n",
849 address, (long)tb->pc, tb->size);
850 }
851 }
852 }
853 }
854
855 /* verify that all the pages have correct rights for code */
856 static void tb_page_check(void)
857 {
858 TranslationBlock *tb;
859 int i, flags1, flags2;
860
861 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
862 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
863 tb = tb->phys_hash_next) {
864 flags1 = page_get_flags(tb->pc);
865 flags2 = page_get_flags(tb->pc + tb->size - 1);
866 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
867 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
868 (long)tb->pc, tb->size, flags1, flags2);
869 }
870 }
871 }
872 }
873
874 #endif
875
876 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
877 {
878 TranslationBlock *tb1;
879
880 for (;;) {
881 tb1 = *ptb;
882 if (tb1 == tb) {
883 *ptb = tb1->phys_hash_next;
884 break;
885 }
886 ptb = &tb1->phys_hash_next;
887 }
888 }
889
890 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
891 {
892 TranslationBlock *tb1;
893 unsigned int n1;
894
895 for (;;) {
896 tb1 = *ptb;
897 n1 = (uintptr_t)tb1 & 3;
898 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
899 if (tb1 == tb) {
900 *ptb = tb1->page_next[n1];
901 break;
902 }
903 ptb = &tb1->page_next[n1];
904 }
905 }
906
907 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
908 {
909 TranslationBlock *tb1, **ptb;
910 unsigned int n1;
911
912 ptb = &tb->jmp_next[n];
913 tb1 = *ptb;
914 if (tb1) {
915 /* find tb(n) in circular list */
916 for (;;) {
917 tb1 = *ptb;
918 n1 = (uintptr_t)tb1 & 3;
919 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
920 if (n1 == n && tb1 == tb) {
921 break;
922 }
923 if (n1 == 2) {
924 ptb = &tb1->jmp_first;
925 } else {
926 ptb = &tb1->jmp_next[n1];
927 }
928 }
929 /* now we can suppress tb(n) from the list */
930 *ptb = tb->jmp_next[n];
931
932 tb->jmp_next[n] = NULL;
933 }
934 }
935
936 /* reset the jump entry 'n' of a TB so that it is not chained to
937 another TB */
938 static inline void tb_reset_jump(TranslationBlock *tb, int n)
939 {
940 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
941 }
942
943 /* invalidate one TB */
944 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
945 {
946 CPUState *cpu;
947 PageDesc *p;
948 unsigned int h, n1;
949 tb_page_addr_t phys_pc;
950 TranslationBlock *tb1, *tb2;
951
952 /* remove the TB from the hash list */
953 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
954 h = tb_phys_hash_func(phys_pc);
955 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
956
957 /* remove the TB from the page list */
958 if (tb->page_addr[0] != page_addr) {
959 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
960 tb_page_remove(&p->first_tb, tb);
961 invalidate_page_bitmap(p);
962 }
963 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
964 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
965 tb_page_remove(&p->first_tb, tb);
966 invalidate_page_bitmap(p);
967 }
968
969 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
970
971 /* remove the TB from the hash list */
972 h = tb_jmp_cache_hash_func(tb->pc);
973 CPU_FOREACH(cpu) {
974 if (cpu->tb_jmp_cache[h] == tb) {
975 cpu->tb_jmp_cache[h] = NULL;
976 }
977 }
978
979 /* suppress this TB from the two jump lists */
980 tb_jmp_remove(tb, 0);
981 tb_jmp_remove(tb, 1);
982
983 /* suppress any remaining jumps to this TB */
984 tb1 = tb->jmp_first;
985 for (;;) {
986 n1 = (uintptr_t)tb1 & 3;
987 if (n1 == 2) {
988 break;
989 }
990 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
991 tb2 = tb1->jmp_next[n1];
992 tb_reset_jump(tb1, n1);
993 tb1->jmp_next[n1] = NULL;
994 tb1 = tb2;
995 }
996 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
997
998 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
999 }
1000
1001 static void build_page_bitmap(PageDesc *p)
1002 {
1003 int n, tb_start, tb_end;
1004 TranslationBlock *tb;
1005
1006 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1007
1008 tb = p->first_tb;
1009 while (tb != NULL) {
1010 n = (uintptr_t)tb & 3;
1011 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1012 /* NOTE: this is subtle as a TB may span two physical pages */
1013 if (n == 0) {
1014 /* NOTE: tb_end may be after the end of the page, but
1015 it is not a problem */
1016 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1017 tb_end = tb_start + tb->size;
1018 if (tb_end > TARGET_PAGE_SIZE) {
1019 tb_end = TARGET_PAGE_SIZE;
1020 }
1021 } else {
1022 tb_start = 0;
1023 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1024 }
1025 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1026 tb = tb->page_next[n];
1027 }
1028 }
1029
1030 /* Called with mmap_lock held for user mode emulation. */
1031 TranslationBlock *tb_gen_code(CPUState *cpu,
1032 target_ulong pc, target_ulong cs_base,
1033 int flags, int cflags)
1034 {
1035 CPUArchState *env = cpu->env_ptr;
1036 TranslationBlock *tb;
1037 tb_page_addr_t phys_pc, phys_page2;
1038 target_ulong virt_page2;
1039 int code_gen_size;
1040
1041 phys_pc = get_page_addr_code(env, pc);
1042 if (use_icount) {
1043 cflags |= CF_USE_ICOUNT;
1044 }
1045 tb = tb_alloc(pc);
1046 if (!tb) {
1047 /* flush must be done */
1048 tb_flush(cpu);
1049 /* cannot fail at this point */
1050 tb = tb_alloc(pc);
1051 /* Don't forget to invalidate previous TB info. */
1052 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1053 }
1054 tb->tc_ptr = tcg_ctx.code_gen_ptr;
1055 tb->cs_base = cs_base;
1056 tb->flags = flags;
1057 tb->cflags = cflags;
1058 cpu_gen_code(env, tb, &code_gen_size);
1059 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1060 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1061
1062 /* check next page if needed */
1063 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1064 phys_page2 = -1;
1065 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1066 phys_page2 = get_page_addr_code(env, virt_page2);
1067 }
1068 tb_link_page(tb, phys_pc, phys_page2);
1069 return tb;
1070 }
1071
1072 /*
1073 * Invalidate all TBs which intersect with the target physical address range
1074 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1075 * 'is_cpu_write_access' should be true if called from a real cpu write
1076 * access: the virtual CPU will exit the current TB if code is modified inside
1077 * this TB.
1078 *
1079 * Called with mmap_lock held for user-mode emulation
1080 */
1081 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1082 {
1083 while (start < end) {
1084 tb_invalidate_phys_page_range(start, end, 0);
1085 start &= TARGET_PAGE_MASK;
1086 start += TARGET_PAGE_SIZE;
1087 }
1088 }
1089
1090 /*
1091 * Invalidate all TBs which intersect with the target physical address range
1092 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1093 * 'is_cpu_write_access' should be true if called from a real cpu write
1094 * access: the virtual CPU will exit the current TB if code is modified inside
1095 * this TB.
1096 *
1097 * Called with mmap_lock held for user-mode emulation
1098 */
1099 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1100 int is_cpu_write_access)
1101 {
1102 TranslationBlock *tb, *tb_next, *saved_tb;
1103 CPUState *cpu = current_cpu;
1104 #if defined(TARGET_HAS_PRECISE_SMC)
1105 CPUArchState *env = NULL;
1106 #endif
1107 tb_page_addr_t tb_start, tb_end;
1108 PageDesc *p;
1109 int n;
1110 #ifdef TARGET_HAS_PRECISE_SMC
1111 int current_tb_not_found = is_cpu_write_access;
1112 TranslationBlock *current_tb = NULL;
1113 int current_tb_modified = 0;
1114 target_ulong current_pc = 0;
1115 target_ulong current_cs_base = 0;
1116 int current_flags = 0;
1117 #endif /* TARGET_HAS_PRECISE_SMC */
1118
1119 p = page_find(start >> TARGET_PAGE_BITS);
1120 if (!p) {
1121 return;
1122 }
1123 #if defined(TARGET_HAS_PRECISE_SMC)
1124 if (cpu != NULL) {
1125 env = cpu->env_ptr;
1126 }
1127 #endif
1128
1129 /* we remove all the TBs in the range [start, end[ */
1130 /* XXX: see if in some cases it could be faster to invalidate all
1131 the code */
1132 tb = p->first_tb;
1133 while (tb != NULL) {
1134 n = (uintptr_t)tb & 3;
1135 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1136 tb_next = tb->page_next[n];
1137 /* NOTE: this is subtle as a TB may span two physical pages */
1138 if (n == 0) {
1139 /* NOTE: tb_end may be after the end of the page, but
1140 it is not a problem */
1141 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1142 tb_end = tb_start + tb->size;
1143 } else {
1144 tb_start = tb->page_addr[1];
1145 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1146 }
1147 if (!(tb_end <= start || tb_start >= end)) {
1148 #ifdef TARGET_HAS_PRECISE_SMC
1149 if (current_tb_not_found) {
1150 current_tb_not_found = 0;
1151 current_tb = NULL;
1152 if (cpu->mem_io_pc) {
1153 /* now we have a real cpu fault */
1154 current_tb = tb_find_pc(cpu->mem_io_pc);
1155 }
1156 }
1157 if (current_tb == tb &&
1158 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1159 /* If we are modifying the current TB, we must stop
1160 its execution. We could be more precise by checking
1161 that the modification is after the current PC, but it
1162 would require a specialized function to partially
1163 restore the CPU state */
1164
1165 current_tb_modified = 1;
1166 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1167 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1168 &current_flags);
1169 }
1170 #endif /* TARGET_HAS_PRECISE_SMC */
1171 /* we need to do that to handle the case where a signal
1172 occurs while doing tb_phys_invalidate() */
1173 saved_tb = NULL;
1174 if (cpu != NULL) {
1175 saved_tb = cpu->current_tb;
1176 cpu->current_tb = NULL;
1177 }
1178 tb_phys_invalidate(tb, -1);
1179 if (cpu != NULL) {
1180 cpu->current_tb = saved_tb;
1181 if (cpu->interrupt_request && cpu->current_tb) {
1182 cpu_interrupt(cpu, cpu->interrupt_request);
1183 }
1184 }
1185 }
1186 tb = tb_next;
1187 }
1188 #if !defined(CONFIG_USER_ONLY)
1189 /* if no code remaining, no need to continue to use slow writes */
1190 if (!p->first_tb) {
1191 invalidate_page_bitmap(p);
1192 tlb_unprotect_code(start);
1193 }
1194 #endif
1195 #ifdef TARGET_HAS_PRECISE_SMC
1196 if (current_tb_modified) {
1197 /* we generate a block containing just the instruction
1198 modifying the memory. It will ensure that it cannot modify
1199 itself */
1200 cpu->current_tb = NULL;
1201 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1202 cpu_resume_from_signal(cpu, NULL);
1203 }
1204 #endif
1205 }
1206
1207 /* len must be <= 8 and start must be a multiple of len */
1208 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1209 {
1210 PageDesc *p;
1211
1212 #if 0
1213 if (1) {
1214 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1215 cpu_single_env->mem_io_vaddr, len,
1216 cpu_single_env->eip,
1217 cpu_single_env->eip +
1218 (intptr_t)cpu_single_env->segs[R_CS].base);
1219 }
1220 #endif
1221 p = page_find(start >> TARGET_PAGE_BITS);
1222 if (!p) {
1223 return;
1224 }
1225 if (!p->code_bitmap &&
1226 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1227 /* build code bitmap */
1228 build_page_bitmap(p);
1229 }
1230 if (p->code_bitmap) {
1231 unsigned int nr;
1232 unsigned long b;
1233
1234 nr = start & ~TARGET_PAGE_MASK;
1235 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1236 if (b & ((1 << len) - 1)) {
1237 goto do_invalidate;
1238 }
1239 } else {
1240 do_invalidate:
1241 tb_invalidate_phys_page_range(start, start + len, 1);
1242 }
1243 }
1244
1245 #if !defined(CONFIG_SOFTMMU)
1246 /* Called with mmap_lock held. */
1247 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1248 uintptr_t pc, void *puc,
1249 bool locked)
1250 {
1251 TranslationBlock *tb;
1252 PageDesc *p;
1253 int n;
1254 #ifdef TARGET_HAS_PRECISE_SMC
1255 TranslationBlock *current_tb = NULL;
1256 CPUState *cpu = current_cpu;
1257 CPUArchState *env = NULL;
1258 int current_tb_modified = 0;
1259 target_ulong current_pc = 0;
1260 target_ulong current_cs_base = 0;
1261 int current_flags = 0;
1262 #endif
1263
1264 addr &= TARGET_PAGE_MASK;
1265 p = page_find(addr >> TARGET_PAGE_BITS);
1266 if (!p) {
1267 return;
1268 }
1269 tb = p->first_tb;
1270 #ifdef TARGET_HAS_PRECISE_SMC
1271 if (tb && pc != 0) {
1272 current_tb = tb_find_pc(pc);
1273 }
1274 if (cpu != NULL) {
1275 env = cpu->env_ptr;
1276 }
1277 #endif
1278 while (tb != NULL) {
1279 n = (uintptr_t)tb & 3;
1280 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1281 #ifdef TARGET_HAS_PRECISE_SMC
1282 if (current_tb == tb &&
1283 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1284 /* If we are modifying the current TB, we must stop
1285 its execution. We could be more precise by checking
1286 that the modification is after the current PC, but it
1287 would require a specialized function to partially
1288 restore the CPU state */
1289
1290 current_tb_modified = 1;
1291 cpu_restore_state_from_tb(cpu, current_tb, pc);
1292 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1293 &current_flags);
1294 }
1295 #endif /* TARGET_HAS_PRECISE_SMC */
1296 tb_phys_invalidate(tb, addr);
1297 tb = tb->page_next[n];
1298 }
1299 p->first_tb = NULL;
1300 #ifdef TARGET_HAS_PRECISE_SMC
1301 if (current_tb_modified) {
1302 /* we generate a block containing just the instruction
1303 modifying the memory. It will ensure that it cannot modify
1304 itself */
1305 cpu->current_tb = NULL;
1306 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1307 if (locked) {
1308 mmap_unlock();
1309 }
1310 cpu_resume_from_signal(cpu, puc);
1311 }
1312 #endif
1313 }
1314 #endif
1315
1316 /* add the tb in the target page and protect it if necessary
1317 *
1318 * Called with mmap_lock held for user-mode emulation.
1319 */
1320 static inline void tb_alloc_page(TranslationBlock *tb,
1321 unsigned int n, tb_page_addr_t page_addr)
1322 {
1323 PageDesc *p;
1324 #ifndef CONFIG_USER_ONLY
1325 bool page_already_protected;
1326 #endif
1327
1328 tb->page_addr[n] = page_addr;
1329 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1330 tb->page_next[n] = p->first_tb;
1331 #ifndef CONFIG_USER_ONLY
1332 page_already_protected = p->first_tb != NULL;
1333 #endif
1334 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1335 invalidate_page_bitmap(p);
1336
1337 #if defined(CONFIG_USER_ONLY)
1338 if (p->flags & PAGE_WRITE) {
1339 target_ulong addr;
1340 PageDesc *p2;
1341 int prot;
1342
1343 /* force the host page as non writable (writes will have a
1344 page fault + mprotect overhead) */
1345 page_addr &= qemu_host_page_mask;
1346 prot = 0;
1347 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1348 addr += TARGET_PAGE_SIZE) {
1349
1350 p2 = page_find(addr >> TARGET_PAGE_BITS);
1351 if (!p2) {
1352 continue;
1353 }
1354 prot |= p2->flags;
1355 p2->flags &= ~PAGE_WRITE;
1356 }
1357 mprotect(g2h(page_addr), qemu_host_page_size,
1358 (prot & PAGE_BITS) & ~PAGE_WRITE);
1359 #ifdef DEBUG_TB_INVALIDATE
1360 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1361 page_addr);
1362 #endif
1363 }
1364 #else
1365 /* if some code is already present, then the pages are already
1366 protected. So we handle the case where only the first TB is
1367 allocated in a physical page */
1368 if (!page_already_protected) {
1369 tlb_protect_code(page_addr);
1370 }
1371 #endif
1372 }
1373
1374 /* add a new TB and link it to the physical page tables. phys_page2 is
1375 * (-1) to indicate that only one page contains the TB.
1376 *
1377 * Called with mmap_lock held for user-mode emulation.
1378 */
1379 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1380 tb_page_addr_t phys_page2)
1381 {
1382 unsigned int h;
1383 TranslationBlock **ptb;
1384
1385 /* add in the physical hash table */
1386 h = tb_phys_hash_func(phys_pc);
1387 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1388 tb->phys_hash_next = *ptb;
1389 *ptb = tb;
1390
1391 /* add in the page list */
1392 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1393 if (phys_page2 != -1) {
1394 tb_alloc_page(tb, 1, phys_page2);
1395 } else {
1396 tb->page_addr[1] = -1;
1397 }
1398
1399 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1400 tb->jmp_next[0] = NULL;
1401 tb->jmp_next[1] = NULL;
1402
1403 /* init original jump addresses */
1404 if (tb->tb_next_offset[0] != 0xffff) {
1405 tb_reset_jump(tb, 0);
1406 }
1407 if (tb->tb_next_offset[1] != 0xffff) {
1408 tb_reset_jump(tb, 1);
1409 }
1410
1411 #ifdef DEBUG_TB_CHECK
1412 tb_page_check();
1413 #endif
1414 }
1415
1416 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1417 tb[1].tc_ptr. Return NULL if not found */
1418 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1419 {
1420 int m_min, m_max, m;
1421 uintptr_t v;
1422 TranslationBlock *tb;
1423
1424 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1425 return NULL;
1426 }
1427 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1428 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1429 return NULL;
1430 }
1431 /* binary search (cf Knuth) */
1432 m_min = 0;
1433 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1434 while (m_min <= m_max) {
1435 m = (m_min + m_max) >> 1;
1436 tb = &tcg_ctx.tb_ctx.tbs[m];
1437 v = (uintptr_t)tb->tc_ptr;
1438 if (v == tc_ptr) {
1439 return tb;
1440 } else if (tc_ptr < v) {
1441 m_max = m - 1;
1442 } else {
1443 m_min = m + 1;
1444 }
1445 }
1446 return &tcg_ctx.tb_ctx.tbs[m_max];
1447 }
1448
1449 #if !defined(CONFIG_USER_ONLY)
1450 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1451 {
1452 ram_addr_t ram_addr;
1453 MemoryRegion *mr;
1454 hwaddr l = 1;
1455
1456 rcu_read_lock();
1457 mr = address_space_translate(as, addr, &addr, &l, false);
1458 if (!(memory_region_is_ram(mr)
1459 || memory_region_is_romd(mr))) {
1460 rcu_read_unlock();
1461 return;
1462 }
1463 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1464 + addr;
1465 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1466 rcu_read_unlock();
1467 }
1468 #endif /* !defined(CONFIG_USER_ONLY) */
1469
1470 void tb_check_watchpoint(CPUState *cpu)
1471 {
1472 TranslationBlock *tb;
1473
1474 tb = tb_find_pc(cpu->mem_io_pc);
1475 if (tb) {
1476 /* We can use retranslation to find the PC. */
1477 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1478 tb_phys_invalidate(tb, -1);
1479 } else {
1480 /* The exception probably happened in a helper. The CPU state should
1481 have been saved before calling it. Fetch the PC from there. */
1482 CPUArchState *env = cpu->env_ptr;
1483 target_ulong pc, cs_base;
1484 tb_page_addr_t addr;
1485 int flags;
1486
1487 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1488 addr = get_page_addr_code(env, pc);
1489 tb_invalidate_phys_range(addr, addr + 1);
1490 }
1491 }
1492
1493 #ifndef CONFIG_USER_ONLY
1494 /* in deterministic execution mode, instructions doing device I/Os
1495 must be at the end of the TB */
1496 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1497 {
1498 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1499 CPUArchState *env = cpu->env_ptr;
1500 #endif
1501 TranslationBlock *tb;
1502 uint32_t n, cflags;
1503 target_ulong pc, cs_base;
1504 uint64_t flags;
1505
1506 tb = tb_find_pc(retaddr);
1507 if (!tb) {
1508 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1509 (void *)retaddr);
1510 }
1511 n = cpu->icount_decr.u16.low + tb->icount;
1512 cpu_restore_state_from_tb(cpu, tb, retaddr);
1513 /* Calculate how many instructions had been executed before the fault
1514 occurred. */
1515 n = n - cpu->icount_decr.u16.low;
1516 /* Generate a new TB ending on the I/O insn. */
1517 n++;
1518 /* On MIPS and SH, delay slot instructions can only be restarted if
1519 they were already the first instruction in the TB. If this is not
1520 the first instruction in a TB then re-execute the preceding
1521 branch. */
1522 #if defined(TARGET_MIPS)
1523 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1524 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1525 cpu->icount_decr.u16.low++;
1526 env->hflags &= ~MIPS_HFLAG_BMASK;
1527 }
1528 #elif defined(TARGET_SH4)
1529 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1530 && n > 1) {
1531 env->pc -= 2;
1532 cpu->icount_decr.u16.low++;
1533 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1534 }
1535 #endif
1536 /* This should never happen. */
1537 if (n > CF_COUNT_MASK) {
1538 cpu_abort(cpu, "TB too big during recompile");
1539 }
1540
1541 cflags = n | CF_LAST_IO;
1542 pc = tb->pc;
1543 cs_base = tb->cs_base;
1544 flags = tb->flags;
1545 tb_phys_invalidate(tb, -1);
1546 if (tb->cflags & CF_NOCACHE) {
1547 if (tb->orig_tb) {
1548 /* Invalidate original TB if this TB was generated in
1549 * cpu_exec_nocache() */
1550 tb_phys_invalidate(tb->orig_tb, -1);
1551 }
1552 tb_free(tb);
1553 }
1554 /* FIXME: In theory this could raise an exception. In practice
1555 we have already translated the block once so it's probably ok. */
1556 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1557 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1558 the first in the TB) then we end up generating a whole new TB and
1559 repeating the fault, which is horribly inefficient.
1560 Better would be to execute just this insn uncached, or generate a
1561 second new TB. */
1562 cpu_resume_from_signal(cpu, NULL);
1563 }
1564
1565 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1566 {
1567 unsigned int i;
1568
1569 /* Discard jump cache entries for any tb which might potentially
1570 overlap the flushed page. */
1571 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1572 memset(&cpu->tb_jmp_cache[i], 0,
1573 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1574
1575 i = tb_jmp_cache_hash_page(addr);
1576 memset(&cpu->tb_jmp_cache[i], 0,
1577 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1578 }
1579
1580 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1581 {
1582 int i, target_code_size, max_target_code_size;
1583 int direct_jmp_count, direct_jmp2_count, cross_page;
1584 TranslationBlock *tb;
1585
1586 target_code_size = 0;
1587 max_target_code_size = 0;
1588 cross_page = 0;
1589 direct_jmp_count = 0;
1590 direct_jmp2_count = 0;
1591 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1592 tb = &tcg_ctx.tb_ctx.tbs[i];
1593 target_code_size += tb->size;
1594 if (tb->size > max_target_code_size) {
1595 max_target_code_size = tb->size;
1596 }
1597 if (tb->page_addr[1] != -1) {
1598 cross_page++;
1599 }
1600 if (tb->tb_next_offset[0] != 0xffff) {
1601 direct_jmp_count++;
1602 if (tb->tb_next_offset[1] != 0xffff) {
1603 direct_jmp2_count++;
1604 }
1605 }
1606 }
1607 /* XXX: avoid using doubles ? */
1608 cpu_fprintf(f, "Translation buffer state:\n");
1609 cpu_fprintf(f, "gen code size %td/%zd\n",
1610 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1611 tcg_ctx.code_gen_buffer_max_size);
1612 cpu_fprintf(f, "TB count %d/%d\n",
1613 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1614 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1615 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1616 tcg_ctx.tb_ctx.nb_tbs : 0,
1617 max_target_code_size);
1618 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1619 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1620 tcg_ctx.code_gen_buffer) /
1621 tcg_ctx.tb_ctx.nb_tbs : 0,
1622 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1623 tcg_ctx.code_gen_buffer) /
1624 target_code_size : 0);
1625 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1626 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1627 tcg_ctx.tb_ctx.nb_tbs : 0);
1628 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1629 direct_jmp_count,
1630 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1631 tcg_ctx.tb_ctx.nb_tbs : 0,
1632 direct_jmp2_count,
1633 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1634 tcg_ctx.tb_ctx.nb_tbs : 0);
1635 cpu_fprintf(f, "\nStatistics:\n");
1636 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1637 cpu_fprintf(f, "TB invalidate count %d\n",
1638 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1639 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1640 tcg_dump_info(f, cpu_fprintf);
1641 }
1642
1643 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1644 {
1645 tcg_dump_op_count(f, cpu_fprintf);
1646 }
1647
1648 #else /* CONFIG_USER_ONLY */
1649
1650 void cpu_interrupt(CPUState *cpu, int mask)
1651 {
1652 cpu->interrupt_request |= mask;
1653 cpu->tcg_exit_req = 1;
1654 }
1655
1656 /*
1657 * Walks guest process memory "regions" one by one
1658 * and calls callback function 'fn' for each region.
1659 */
1660 struct walk_memory_regions_data {
1661 walk_memory_regions_fn fn;
1662 void *priv;
1663 target_ulong start;
1664 int prot;
1665 };
1666
1667 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1668 target_ulong end, int new_prot)
1669 {
1670 if (data->start != -1u) {
1671 int rc = data->fn(data->priv, data->start, end, data->prot);
1672 if (rc != 0) {
1673 return rc;
1674 }
1675 }
1676
1677 data->start = (new_prot ? end : -1u);
1678 data->prot = new_prot;
1679
1680 return 0;
1681 }
1682
1683 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1684 target_ulong base, int level, void **lp)
1685 {
1686 target_ulong pa;
1687 int i, rc;
1688
1689 if (*lp == NULL) {
1690 return walk_memory_regions_end(data, base, 0);
1691 }
1692
1693 if (level == 0) {
1694 PageDesc *pd = *lp;
1695
1696 for (i = 0; i < V_L2_SIZE; ++i) {
1697 int prot = pd[i].flags;
1698
1699 pa = base | (i << TARGET_PAGE_BITS);
1700 if (prot != data->prot) {
1701 rc = walk_memory_regions_end(data, pa, prot);
1702 if (rc != 0) {
1703 return rc;
1704 }
1705 }
1706 }
1707 } else {
1708 void **pp = *lp;
1709
1710 for (i = 0; i < V_L2_SIZE; ++i) {
1711 pa = base | ((target_ulong)i <<
1712 (TARGET_PAGE_BITS + V_L2_BITS * level));
1713 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1714 if (rc != 0) {
1715 return rc;
1716 }
1717 }
1718 }
1719
1720 return 0;
1721 }
1722
1723 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1724 {
1725 struct walk_memory_regions_data data;
1726 uintptr_t i;
1727
1728 data.fn = fn;
1729 data.priv = priv;
1730 data.start = -1u;
1731 data.prot = 0;
1732
1733 for (i = 0; i < V_L1_SIZE; i++) {
1734 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1735 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1736 if (rc != 0) {
1737 return rc;
1738 }
1739 }
1740
1741 return walk_memory_regions_end(&data, 0, 0);
1742 }
1743
1744 static int dump_region(void *priv, target_ulong start,
1745 target_ulong end, unsigned long prot)
1746 {
1747 FILE *f = (FILE *)priv;
1748
1749 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1750 " "TARGET_FMT_lx" %c%c%c\n",
1751 start, end, end - start,
1752 ((prot & PAGE_READ) ? 'r' : '-'),
1753 ((prot & PAGE_WRITE) ? 'w' : '-'),
1754 ((prot & PAGE_EXEC) ? 'x' : '-'));
1755
1756 return 0;
1757 }
1758
1759 /* dump memory mappings */
1760 void page_dump(FILE *f)
1761 {
1762 const int length = sizeof(target_ulong) * 2;
1763 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1764 length, "start", length, "end", length, "size", "prot");
1765 walk_memory_regions(f, dump_region);
1766 }
1767
1768 int page_get_flags(target_ulong address)
1769 {
1770 PageDesc *p;
1771
1772 p = page_find(address >> TARGET_PAGE_BITS);
1773 if (!p) {
1774 return 0;
1775 }
1776 return p->flags;
1777 }
1778
1779 /* Modify the flags of a page and invalidate the code if necessary.
1780 The flag PAGE_WRITE_ORG is positioned automatically depending
1781 on PAGE_WRITE. The mmap_lock should already be held. */
1782 void page_set_flags(target_ulong start, target_ulong end, int flags)
1783 {
1784 target_ulong addr, len;
1785
1786 /* This function should never be called with addresses outside the
1787 guest address space. If this assert fires, it probably indicates
1788 a missing call to h2g_valid. */
1789 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1790 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1791 #endif
1792 assert(start < end);
1793
1794 start = start & TARGET_PAGE_MASK;
1795 end = TARGET_PAGE_ALIGN(end);
1796
1797 if (flags & PAGE_WRITE) {
1798 flags |= PAGE_WRITE_ORG;
1799 }
1800
1801 for (addr = start, len = end - start;
1802 len != 0;
1803 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1804 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1805
1806 /* If the write protection bit is set, then we invalidate
1807 the code inside. */
1808 if (!(p->flags & PAGE_WRITE) &&
1809 (flags & PAGE_WRITE) &&
1810 p->first_tb) {
1811 tb_invalidate_phys_page(addr, 0, NULL, false);
1812 }
1813 p->flags = flags;
1814 }
1815 }
1816
1817 int page_check_range(target_ulong start, target_ulong len, int flags)
1818 {
1819 PageDesc *p;
1820 target_ulong end;
1821 target_ulong addr;
1822
1823 /* This function should never be called with addresses outside the
1824 guest address space. If this assert fires, it probably indicates
1825 a missing call to h2g_valid. */
1826 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1827 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1828 #endif
1829
1830 if (len == 0) {
1831 return 0;
1832 }
1833 if (start + len - 1 < start) {
1834 /* We've wrapped around. */
1835 return -1;
1836 }
1837
1838 /* must do before we loose bits in the next step */
1839 end = TARGET_PAGE_ALIGN(start + len);
1840 start = start & TARGET_PAGE_MASK;
1841
1842 for (addr = start, len = end - start;
1843 len != 0;
1844 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1845 p = page_find(addr >> TARGET_PAGE_BITS);
1846 if (!p) {
1847 return -1;
1848 }
1849 if (!(p->flags & PAGE_VALID)) {
1850 return -1;
1851 }
1852
1853 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1854 return -1;
1855 }
1856 if (flags & PAGE_WRITE) {
1857 if (!(p->flags & PAGE_WRITE_ORG)) {
1858 return -1;
1859 }
1860 /* unprotect the page if it was put read-only because it
1861 contains translated code */
1862 if (!(p->flags & PAGE_WRITE)) {
1863 if (!page_unprotect(addr, 0, NULL)) {
1864 return -1;
1865 }
1866 }
1867 }
1868 }
1869 return 0;
1870 }
1871
1872 /* called from signal handler: invalidate the code and unprotect the
1873 page. Return TRUE if the fault was successfully handled. */
1874 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1875 {
1876 unsigned int prot;
1877 PageDesc *p;
1878 target_ulong host_start, host_end, addr;
1879
1880 /* Technically this isn't safe inside a signal handler. However we
1881 know this only ever happens in a synchronous SEGV handler, so in
1882 practice it seems to be ok. */
1883 mmap_lock();
1884
1885 p = page_find(address >> TARGET_PAGE_BITS);
1886 if (!p) {
1887 mmap_unlock();
1888 return 0;
1889 }
1890
1891 /* if the page was really writable, then we change its
1892 protection back to writable */
1893 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1894 host_start = address & qemu_host_page_mask;
1895 host_end = host_start + qemu_host_page_size;
1896
1897 prot = 0;
1898 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1899 p = page_find(addr >> TARGET_PAGE_BITS);
1900 p->flags |= PAGE_WRITE;
1901 prot |= p->flags;
1902
1903 /* and since the content will be modified, we must invalidate
1904 the corresponding translated code. */
1905 tb_invalidate_phys_page(addr, pc, puc, true);
1906 #ifdef DEBUG_TB_CHECK
1907 tb_invalidate_check(addr);
1908 #endif
1909 }
1910 mprotect((void *)g2h(host_start), qemu_host_page_size,
1911 prot & PAGE_BITS);
1912
1913 mmap_unlock();
1914 return 1;
1915 }
1916 mmap_unlock();
1917 return 0;
1918 }
1919 #endif /* CONFIG_USER_ONLY */