]> git.proxmox.com Git - mirror_qemu.git/blob - translate-all.c
apic_common: improve readability of apic_reset_common
[mirror_qemu.git] / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
30
31 #include "config.h"
32
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "trace.h"
37 #include "disas/disas.h"
38 #include "tcg.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
59
60 #include "exec/cputlb.h"
61 #include "translate-all.h"
62 #include "qemu/bitmap.h"
63 #include "qemu/timer.h"
64
65 //#define DEBUG_TB_INVALIDATE
66 //#define DEBUG_FLUSH
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
69
70 #if !defined(CONFIG_USER_ONLY)
71 /* TB consistency checks only implemented for usermode emulation. */
72 #undef DEBUG_TB_CHECK
73 #endif
74
75 #define SMC_BITMAP_USE_THRESHOLD 10
76
77 typedef struct PageDesc {
78 /* list of TBs intersecting this ram page */
79 TranslationBlock *first_tb;
80 /* in order to optimize self modifying code, we count the number
81 of lookups we do to a given page to use a bitmap */
82 unsigned int code_write_count;
83 unsigned long *code_bitmap;
84 #if defined(CONFIG_USER_ONLY)
85 unsigned long flags;
86 #endif
87 } PageDesc;
88
89 /* In system mode we want L1_MAP to be based on ram offsets,
90 while in user mode we want it to be based on virtual addresses. */
91 #if !defined(CONFIG_USER_ONLY)
92 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
93 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
94 #else
95 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
96 #endif
97 #else
98 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
99 #endif
100
101 /* Size of the L2 (and L3, etc) page tables. */
102 #define V_L2_BITS 10
103 #define V_L2_SIZE (1 << V_L2_BITS)
104
105 /* The bits remaining after N lower levels of page tables. */
106 #define V_L1_BITS_REM \
107 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
108
109 #if V_L1_BITS_REM < 4
110 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
111 #else
112 #define V_L1_BITS V_L1_BITS_REM
113 #endif
114
115 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
116
117 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
118
119 uintptr_t qemu_real_host_page_size;
120 uintptr_t qemu_host_page_size;
121 uintptr_t qemu_host_page_mask;
122
123 /* This is a multi-level map on the virtual address space.
124 The bottom level has pointers to PageDesc. */
125 static void *l1_map[V_L1_SIZE];
126
127 /* code generation context */
128 TCGContext tcg_ctx;
129
130 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
131 tb_page_addr_t phys_page2);
132 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
133
134 void cpu_gen_init(void)
135 {
136 tcg_context_init(&tcg_ctx);
137 }
138
139 /* return non zero if the very first instruction is invalid so that
140 the virtual CPU can trigger an exception.
141
142 '*gen_code_size_ptr' contains the size of the generated code (host
143 code).
144 */
145 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
146 {
147 TCGContext *s = &tcg_ctx;
148 tcg_insn_unit *gen_code_buf;
149 int gen_code_size;
150 #ifdef CONFIG_PROFILER
151 int64_t ti;
152 #endif
153
154 #ifdef CONFIG_PROFILER
155 s->tb_count1++; /* includes aborted translations because of
156 exceptions */
157 ti = profile_getclock();
158 #endif
159 tcg_func_start(s);
160
161 gen_intermediate_code(env, tb);
162
163 trace_translate_block(tb, tb->pc, tb->tc_ptr);
164
165 /* generate machine code */
166 gen_code_buf = tb->tc_ptr;
167 tb->tb_next_offset[0] = 0xffff;
168 tb->tb_next_offset[1] = 0xffff;
169 s->tb_next_offset = tb->tb_next_offset;
170 #ifdef USE_DIRECT_JUMP
171 s->tb_jmp_offset = tb->tb_jmp_offset;
172 s->tb_next = NULL;
173 #else
174 s->tb_jmp_offset = NULL;
175 s->tb_next = tb->tb_next;
176 #endif
177
178 #ifdef CONFIG_PROFILER
179 s->tb_count++;
180 s->interm_time += profile_getclock() - ti;
181 s->code_time -= profile_getclock();
182 #endif
183 gen_code_size = tcg_gen_code(s, gen_code_buf);
184 *gen_code_size_ptr = gen_code_size;
185 #ifdef CONFIG_PROFILER
186 s->code_time += profile_getclock();
187 s->code_in_len += tb->size;
188 s->code_out_len += gen_code_size;
189 #endif
190
191 #ifdef DEBUG_DISAS
192 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
193 qemu_log("OUT: [size=%d]\n", gen_code_size);
194 log_disas(tb->tc_ptr, gen_code_size);
195 qemu_log("\n");
196 qemu_log_flush();
197 }
198 #endif
199 return 0;
200 }
201
202 /* The cpu state corresponding to 'searched_pc' is restored.
203 */
204 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
205 uintptr_t searched_pc)
206 {
207 CPUArchState *env = cpu->env_ptr;
208 TCGContext *s = &tcg_ctx;
209 int j;
210 uintptr_t tc_ptr;
211 #ifdef CONFIG_PROFILER
212 int64_t ti;
213 #endif
214
215 #ifdef CONFIG_PROFILER
216 ti = profile_getclock();
217 #endif
218 tcg_func_start(s);
219
220 gen_intermediate_code_pc(env, tb);
221
222 if (tb->cflags & CF_USE_ICOUNT) {
223 /* Reset the cycle counter to the start of the block. */
224 cpu->icount_decr.u16.low += tb->icount;
225 /* Clear the IO flag. */
226 cpu->can_do_io = 0;
227 }
228
229 /* find opc index corresponding to search_pc */
230 tc_ptr = (uintptr_t)tb->tc_ptr;
231 if (searched_pc < tc_ptr)
232 return -1;
233
234 s->tb_next_offset = tb->tb_next_offset;
235 #ifdef USE_DIRECT_JUMP
236 s->tb_jmp_offset = tb->tb_jmp_offset;
237 s->tb_next = NULL;
238 #else
239 s->tb_jmp_offset = NULL;
240 s->tb_next = tb->tb_next;
241 #endif
242 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
243 searched_pc - tc_ptr);
244 if (j < 0)
245 return -1;
246 /* now find start of instruction before */
247 while (s->gen_opc_instr_start[j] == 0) {
248 j--;
249 }
250 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
251
252 restore_state_to_opc(env, tb, j);
253
254 #ifdef CONFIG_PROFILER
255 s->restore_time += profile_getclock() - ti;
256 s->restore_count++;
257 #endif
258 return 0;
259 }
260
261 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
262 {
263 TranslationBlock *tb;
264
265 tb = tb_find_pc(retaddr);
266 if (tb) {
267 cpu_restore_state_from_tb(cpu, tb, retaddr);
268 if (tb->cflags & CF_NOCACHE) {
269 /* one-shot translation, invalidate it immediately */
270 cpu->current_tb = NULL;
271 tb_phys_invalidate(tb, -1);
272 tb_free(tb);
273 }
274 return true;
275 }
276 return false;
277 }
278
279 #ifdef _WIN32
280 static __attribute__((unused)) void map_exec(void *addr, long size)
281 {
282 DWORD old_protect;
283 VirtualProtect(addr, size,
284 PAGE_EXECUTE_READWRITE, &old_protect);
285 }
286 #else
287 static __attribute__((unused)) void map_exec(void *addr, long size)
288 {
289 unsigned long start, end, page_size;
290
291 page_size = getpagesize();
292 start = (unsigned long)addr;
293 start &= ~(page_size - 1);
294
295 end = (unsigned long)addr + size;
296 end += page_size - 1;
297 end &= ~(page_size - 1);
298
299 mprotect((void *)start, end - start,
300 PROT_READ | PROT_WRITE | PROT_EXEC);
301 }
302 #endif
303
304 void page_size_init(void)
305 {
306 /* NOTE: we can always suppose that qemu_host_page_size >=
307 TARGET_PAGE_SIZE */
308 qemu_real_host_page_size = getpagesize();
309 if (qemu_host_page_size == 0) {
310 qemu_host_page_size = qemu_real_host_page_size;
311 }
312 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
313 qemu_host_page_size = TARGET_PAGE_SIZE;
314 }
315 qemu_host_page_mask = ~(qemu_host_page_size - 1);
316 }
317
318 static void page_init(void)
319 {
320 page_size_init();
321 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
322 {
323 #ifdef HAVE_KINFO_GETVMMAP
324 struct kinfo_vmentry *freep;
325 int i, cnt;
326
327 freep = kinfo_getvmmap(getpid(), &cnt);
328 if (freep) {
329 mmap_lock();
330 for (i = 0; i < cnt; i++) {
331 unsigned long startaddr, endaddr;
332
333 startaddr = freep[i].kve_start;
334 endaddr = freep[i].kve_end;
335 if (h2g_valid(startaddr)) {
336 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
337
338 if (h2g_valid(endaddr)) {
339 endaddr = h2g(endaddr);
340 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
341 } else {
342 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
343 endaddr = ~0ul;
344 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
345 #endif
346 }
347 }
348 }
349 free(freep);
350 mmap_unlock();
351 }
352 #else
353 FILE *f;
354
355 last_brk = (unsigned long)sbrk(0);
356
357 f = fopen("/compat/linux/proc/self/maps", "r");
358 if (f) {
359 mmap_lock();
360
361 do {
362 unsigned long startaddr, endaddr;
363 int n;
364
365 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
366
367 if (n == 2 && h2g_valid(startaddr)) {
368 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
369
370 if (h2g_valid(endaddr)) {
371 endaddr = h2g(endaddr);
372 } else {
373 endaddr = ~0ul;
374 }
375 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
376 }
377 } while (!feof(f));
378
379 fclose(f);
380 mmap_unlock();
381 }
382 #endif
383 }
384 #endif
385 }
386
387 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
388 {
389 PageDesc *pd;
390 void **lp;
391 int i;
392
393 /* Level 1. Always allocated. */
394 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
395
396 /* Level 2..N-1. */
397 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
398 void **p = *lp;
399
400 if (p == NULL) {
401 if (!alloc) {
402 return NULL;
403 }
404 p = g_new0(void *, V_L2_SIZE);
405 *lp = p;
406 }
407
408 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
409 }
410
411 pd = *lp;
412 if (pd == NULL) {
413 if (!alloc) {
414 return NULL;
415 }
416 pd = g_new0(PageDesc, V_L2_SIZE);
417 *lp = pd;
418 }
419
420 return pd + (index & (V_L2_SIZE - 1));
421 }
422
423 static inline PageDesc *page_find(tb_page_addr_t index)
424 {
425 return page_find_alloc(index, 0);
426 }
427
428 #if !defined(CONFIG_USER_ONLY)
429 #define mmap_lock() do { } while (0)
430 #define mmap_unlock() do { } while (0)
431 #endif
432
433 #if defined(CONFIG_USER_ONLY)
434 /* Currently it is not recommended to allocate big chunks of data in
435 user mode. It will change when a dedicated libc will be used. */
436 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
437 region in which the guest needs to run. Revisit this. */
438 #define USE_STATIC_CODE_GEN_BUFFER
439 #endif
440
441 /* ??? Should configure for this, not list operating systems here. */
442 #if (defined(__linux__) \
443 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
444 || defined(__DragonFly__) || defined(__OpenBSD__) \
445 || defined(__NetBSD__))
446 # define USE_MMAP
447 #endif
448
449 /* Minimum size of the code gen buffer. This number is randomly chosen,
450 but not so small that we can't have a fair number of TB's live. */
451 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
452
453 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
454 indicated, this is constrained by the range of direct branches on the
455 host cpu, as used by the TCG implementation of goto_tb. */
456 #if defined(__x86_64__)
457 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
458 #elif defined(__sparc__)
459 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
460 #elif defined(__aarch64__)
461 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
462 #elif defined(__arm__)
463 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
464 #elif defined(__s390x__)
465 /* We have a +- 4GB range on the branches; leave some slop. */
466 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
467 #elif defined(__mips__)
468 /* We have a 256MB branch region, but leave room to make sure the
469 main executable is also within that region. */
470 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
471 #else
472 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
473 #endif
474
475 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
476
477 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
478 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
479 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
480
481 static inline size_t size_code_gen_buffer(size_t tb_size)
482 {
483 /* Size the buffer. */
484 if (tb_size == 0) {
485 #ifdef USE_STATIC_CODE_GEN_BUFFER
486 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
487 #else
488 /* ??? Needs adjustments. */
489 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
490 static buffer, we could size this on RESERVED_VA, on the text
491 segment size of the executable, or continue to use the default. */
492 tb_size = (unsigned long)(ram_size / 4);
493 #endif
494 }
495 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
496 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
497 }
498 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
499 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
500 }
501 tcg_ctx.code_gen_buffer_size = tb_size;
502 return tb_size;
503 }
504
505 #ifdef __mips__
506 /* In order to use J and JAL within the code_gen_buffer, we require
507 that the buffer not cross a 256MB boundary. */
508 static inline bool cross_256mb(void *addr, size_t size)
509 {
510 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
511 }
512
513 /* We weren't able to allocate a buffer without crossing that boundary,
514 so make do with the larger portion of the buffer that doesn't cross.
515 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
516 static inline void *split_cross_256mb(void *buf1, size_t size1)
517 {
518 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
519 size_t size2 = buf1 + size1 - buf2;
520
521 size1 = buf2 - buf1;
522 if (size1 < size2) {
523 size1 = size2;
524 buf1 = buf2;
525 }
526
527 tcg_ctx.code_gen_buffer_size = size1;
528 return buf1;
529 }
530 #endif
531
532 #ifdef USE_STATIC_CODE_GEN_BUFFER
533 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
534 __attribute__((aligned(CODE_GEN_ALIGN)));
535
536 static inline void *alloc_code_gen_buffer(void)
537 {
538 void *buf = static_code_gen_buffer;
539 #ifdef __mips__
540 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
541 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
542 }
543 #endif
544 map_exec(buf, tcg_ctx.code_gen_buffer_size);
545 return buf;
546 }
547 #elif defined(USE_MMAP)
548 static inline void *alloc_code_gen_buffer(void)
549 {
550 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
551 uintptr_t start = 0;
552 void *buf;
553
554 /* Constrain the position of the buffer based on the host cpu.
555 Note that these addresses are chosen in concert with the
556 addresses assigned in the relevant linker script file. */
557 # if defined(__PIE__) || defined(__PIC__)
558 /* Don't bother setting a preferred location if we're building
559 a position-independent executable. We're more likely to get
560 an address near the main executable if we let the kernel
561 choose the address. */
562 # elif defined(__x86_64__) && defined(MAP_32BIT)
563 /* Force the memory down into low memory with the executable.
564 Leave the choice of exact location with the kernel. */
565 flags |= MAP_32BIT;
566 /* Cannot expect to map more than 800MB in low memory. */
567 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
568 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
569 }
570 # elif defined(__sparc__)
571 start = 0x40000000ul;
572 # elif defined(__s390x__)
573 start = 0x90000000ul;
574 # elif defined(__mips__)
575 /* ??? We ought to more explicitly manage layout for softmmu too. */
576 # ifdef CONFIG_USER_ONLY
577 start = 0x68000000ul;
578 # elif _MIPS_SIM == _ABI64
579 start = 0x128000000ul;
580 # else
581 start = 0x08000000ul;
582 # endif
583 # endif
584
585 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
586 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
587 if (buf == MAP_FAILED) {
588 return NULL;
589 }
590
591 #ifdef __mips__
592 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
593 /* Try again, with the original still mapped, to avoid re-acquiring
594 that 256mb crossing. This time don't specify an address. */
595 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
596 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
597 flags, -1, 0);
598 if (buf2 != MAP_FAILED) {
599 if (!cross_256mb(buf2, size1)) {
600 /* Success! Use the new buffer. */
601 munmap(buf, size1);
602 return buf2;
603 }
604 /* Failure. Work with what we had. */
605 munmap(buf2, size1);
606 }
607
608 /* Split the original buffer. Free the smaller half. */
609 buf2 = split_cross_256mb(buf, size1);
610 size2 = tcg_ctx.code_gen_buffer_size;
611 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
612 return buf2;
613 }
614 #endif
615
616 return buf;
617 }
618 #else
619 static inline void *alloc_code_gen_buffer(void)
620 {
621 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
622
623 if (buf == NULL) {
624 return NULL;
625 }
626
627 #ifdef __mips__
628 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
629 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
630 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
631 /* Success! Use the new buffer. */
632 free(buf);
633 buf = buf2;
634 } else {
635 /* Failure. Work with what we had. Since this is malloc
636 and not mmap, we can't free the other half. */
637 free(buf2);
638 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
639 }
640 }
641 #endif
642
643 map_exec(buf, tcg_ctx.code_gen_buffer_size);
644 return buf;
645 }
646 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
647
648 static inline void code_gen_alloc(size_t tb_size)
649 {
650 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
651 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
652 if (tcg_ctx.code_gen_buffer == NULL) {
653 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
654 exit(1);
655 }
656
657 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
658 QEMU_MADV_HUGEPAGE);
659
660 /* Steal room for the prologue at the end of the buffer. This ensures
661 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
662 from TB's to the prologue are going to be in range. It also means
663 that we don't need to mark (additional) portions of the data segment
664 as executable. */
665 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
666 tcg_ctx.code_gen_buffer_size - 1024;
667 tcg_ctx.code_gen_buffer_size -= 1024;
668
669 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
670 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
671 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
672 CODE_GEN_AVG_BLOCK_SIZE;
673 tcg_ctx.tb_ctx.tbs =
674 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
675 }
676
677 /* Must be called before using the QEMU cpus. 'tb_size' is the size
678 (in bytes) allocated to the translation buffer. Zero means default
679 size. */
680 void tcg_exec_init(unsigned long tb_size)
681 {
682 cpu_gen_init();
683 code_gen_alloc(tb_size);
684 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
685 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
686 page_init();
687 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
688 /* There's no guest base to take into account, so go ahead and
689 initialize the prologue now. */
690 tcg_prologue_init(&tcg_ctx);
691 #endif
692 }
693
694 bool tcg_enabled(void)
695 {
696 return tcg_ctx.code_gen_buffer != NULL;
697 }
698
699 /* Allocate a new translation block. Flush the translation buffer if
700 too many translation blocks or too much generated code. */
701 static TranslationBlock *tb_alloc(target_ulong pc)
702 {
703 TranslationBlock *tb;
704
705 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
706 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
707 tcg_ctx.code_gen_buffer_max_size) {
708 return NULL;
709 }
710 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
711 tb->pc = pc;
712 tb->cflags = 0;
713 return tb;
714 }
715
716 void tb_free(TranslationBlock *tb)
717 {
718 /* In practice this is mostly used for single use temporary TB
719 Ignore the hard cases and just back up if this TB happens to
720 be the last one generated. */
721 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
722 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
723 tcg_ctx.code_gen_ptr = tb->tc_ptr;
724 tcg_ctx.tb_ctx.nb_tbs--;
725 }
726 }
727
728 static inline void invalidate_page_bitmap(PageDesc *p)
729 {
730 if (p->code_bitmap) {
731 g_free(p->code_bitmap);
732 p->code_bitmap = NULL;
733 }
734 p->code_write_count = 0;
735 }
736
737 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
738 static void page_flush_tb_1(int level, void **lp)
739 {
740 int i;
741
742 if (*lp == NULL) {
743 return;
744 }
745 if (level == 0) {
746 PageDesc *pd = *lp;
747
748 for (i = 0; i < V_L2_SIZE; ++i) {
749 pd[i].first_tb = NULL;
750 invalidate_page_bitmap(pd + i);
751 }
752 } else {
753 void **pp = *lp;
754
755 for (i = 0; i < V_L2_SIZE; ++i) {
756 page_flush_tb_1(level - 1, pp + i);
757 }
758 }
759 }
760
761 static void page_flush_tb(void)
762 {
763 int i;
764
765 for (i = 0; i < V_L1_SIZE; i++) {
766 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
767 }
768 }
769
770 /* flush all the translation blocks */
771 /* XXX: tb_flush is currently not thread safe */
772 void tb_flush(CPUArchState *env1)
773 {
774 CPUState *cpu = ENV_GET_CPU(env1);
775
776 #if defined(DEBUG_FLUSH)
777 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
778 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
779 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
780 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
781 tcg_ctx.tb_ctx.nb_tbs : 0);
782 #endif
783 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
784 > tcg_ctx.code_gen_buffer_size) {
785 cpu_abort(cpu, "Internal error: code buffer overflow\n");
786 }
787 tcg_ctx.tb_ctx.nb_tbs = 0;
788
789 CPU_FOREACH(cpu) {
790 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
791 }
792
793 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
794 page_flush_tb();
795
796 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
797 /* XXX: flush processor icache at this point if cache flush is
798 expensive */
799 tcg_ctx.tb_ctx.tb_flush_count++;
800 }
801
802 #ifdef DEBUG_TB_CHECK
803
804 static void tb_invalidate_check(target_ulong address)
805 {
806 TranslationBlock *tb;
807 int i;
808
809 address &= TARGET_PAGE_MASK;
810 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
811 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
812 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
813 address >= tb->pc + tb->size)) {
814 printf("ERROR invalidate: address=" TARGET_FMT_lx
815 " PC=%08lx size=%04x\n",
816 address, (long)tb->pc, tb->size);
817 }
818 }
819 }
820 }
821
822 /* verify that all the pages have correct rights for code */
823 static void tb_page_check(void)
824 {
825 TranslationBlock *tb;
826 int i, flags1, flags2;
827
828 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
829 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
830 tb = tb->phys_hash_next) {
831 flags1 = page_get_flags(tb->pc);
832 flags2 = page_get_flags(tb->pc + tb->size - 1);
833 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
834 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
835 (long)tb->pc, tb->size, flags1, flags2);
836 }
837 }
838 }
839 }
840
841 #endif
842
843 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
844 {
845 TranslationBlock *tb1;
846
847 for (;;) {
848 tb1 = *ptb;
849 if (tb1 == tb) {
850 *ptb = tb1->phys_hash_next;
851 break;
852 }
853 ptb = &tb1->phys_hash_next;
854 }
855 }
856
857 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
858 {
859 TranslationBlock *tb1;
860 unsigned int n1;
861
862 for (;;) {
863 tb1 = *ptb;
864 n1 = (uintptr_t)tb1 & 3;
865 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
866 if (tb1 == tb) {
867 *ptb = tb1->page_next[n1];
868 break;
869 }
870 ptb = &tb1->page_next[n1];
871 }
872 }
873
874 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
875 {
876 TranslationBlock *tb1, **ptb;
877 unsigned int n1;
878
879 ptb = &tb->jmp_next[n];
880 tb1 = *ptb;
881 if (tb1) {
882 /* find tb(n) in circular list */
883 for (;;) {
884 tb1 = *ptb;
885 n1 = (uintptr_t)tb1 & 3;
886 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
887 if (n1 == n && tb1 == tb) {
888 break;
889 }
890 if (n1 == 2) {
891 ptb = &tb1->jmp_first;
892 } else {
893 ptb = &tb1->jmp_next[n1];
894 }
895 }
896 /* now we can suppress tb(n) from the list */
897 *ptb = tb->jmp_next[n];
898
899 tb->jmp_next[n] = NULL;
900 }
901 }
902
903 /* reset the jump entry 'n' of a TB so that it is not chained to
904 another TB */
905 static inline void tb_reset_jump(TranslationBlock *tb, int n)
906 {
907 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
908 }
909
910 /* invalidate one TB */
911 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
912 {
913 CPUState *cpu;
914 PageDesc *p;
915 unsigned int h, n1;
916 tb_page_addr_t phys_pc;
917 TranslationBlock *tb1, *tb2;
918
919 /* remove the TB from the hash list */
920 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
921 h = tb_phys_hash_func(phys_pc);
922 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
923
924 /* remove the TB from the page list */
925 if (tb->page_addr[0] != page_addr) {
926 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
927 tb_page_remove(&p->first_tb, tb);
928 invalidate_page_bitmap(p);
929 }
930 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
931 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
932 tb_page_remove(&p->first_tb, tb);
933 invalidate_page_bitmap(p);
934 }
935
936 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
937
938 /* remove the TB from the hash list */
939 h = tb_jmp_cache_hash_func(tb->pc);
940 CPU_FOREACH(cpu) {
941 if (cpu->tb_jmp_cache[h] == tb) {
942 cpu->tb_jmp_cache[h] = NULL;
943 }
944 }
945
946 /* suppress this TB from the two jump lists */
947 tb_jmp_remove(tb, 0);
948 tb_jmp_remove(tb, 1);
949
950 /* suppress any remaining jumps to this TB */
951 tb1 = tb->jmp_first;
952 for (;;) {
953 n1 = (uintptr_t)tb1 & 3;
954 if (n1 == 2) {
955 break;
956 }
957 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
958 tb2 = tb1->jmp_next[n1];
959 tb_reset_jump(tb1, n1);
960 tb1->jmp_next[n1] = NULL;
961 tb1 = tb2;
962 }
963 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
964
965 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
966 }
967
968 static void build_page_bitmap(PageDesc *p)
969 {
970 int n, tb_start, tb_end;
971 TranslationBlock *tb;
972
973 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
974
975 tb = p->first_tb;
976 while (tb != NULL) {
977 n = (uintptr_t)tb & 3;
978 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
979 /* NOTE: this is subtle as a TB may span two physical pages */
980 if (n == 0) {
981 /* NOTE: tb_end may be after the end of the page, but
982 it is not a problem */
983 tb_start = tb->pc & ~TARGET_PAGE_MASK;
984 tb_end = tb_start + tb->size;
985 if (tb_end > TARGET_PAGE_SIZE) {
986 tb_end = TARGET_PAGE_SIZE;
987 }
988 } else {
989 tb_start = 0;
990 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
991 }
992 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
993 tb = tb->page_next[n];
994 }
995 }
996
997 TranslationBlock *tb_gen_code(CPUState *cpu,
998 target_ulong pc, target_ulong cs_base,
999 int flags, int cflags)
1000 {
1001 CPUArchState *env = cpu->env_ptr;
1002 TranslationBlock *tb;
1003 tb_page_addr_t phys_pc, phys_page2;
1004 target_ulong virt_page2;
1005 int code_gen_size;
1006
1007 phys_pc = get_page_addr_code(env, pc);
1008 if (use_icount) {
1009 cflags |= CF_USE_ICOUNT;
1010 }
1011 tb = tb_alloc(pc);
1012 if (!tb) {
1013 /* flush must be done */
1014 tb_flush(env);
1015 /* cannot fail at this point */
1016 tb = tb_alloc(pc);
1017 /* Don't forget to invalidate previous TB info. */
1018 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1019 }
1020 tb->tc_ptr = tcg_ctx.code_gen_ptr;
1021 tb->cs_base = cs_base;
1022 tb->flags = flags;
1023 tb->cflags = cflags;
1024 cpu_gen_code(env, tb, &code_gen_size);
1025 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1026 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1027
1028 /* check next page if needed */
1029 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1030 phys_page2 = -1;
1031 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1032 phys_page2 = get_page_addr_code(env, virt_page2);
1033 }
1034 tb_link_page(tb, phys_pc, phys_page2);
1035 return tb;
1036 }
1037
1038 /*
1039 * Invalidate all TBs which intersect with the target physical address range
1040 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1041 * 'is_cpu_write_access' should be true if called from a real cpu write
1042 * access: the virtual CPU will exit the current TB if code is modified inside
1043 * this TB.
1044 */
1045 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1046 int is_cpu_write_access)
1047 {
1048 while (start < end) {
1049 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1050 start &= TARGET_PAGE_MASK;
1051 start += TARGET_PAGE_SIZE;
1052 }
1053 }
1054
1055 /*
1056 * Invalidate all TBs which intersect with the target physical address range
1057 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1058 * 'is_cpu_write_access' should be true if called from a real cpu write
1059 * access: the virtual CPU will exit the current TB if code is modified inside
1060 * this TB.
1061 */
1062 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1063 int is_cpu_write_access)
1064 {
1065 TranslationBlock *tb, *tb_next, *saved_tb;
1066 CPUState *cpu = current_cpu;
1067 #if defined(TARGET_HAS_PRECISE_SMC)
1068 CPUArchState *env = NULL;
1069 #endif
1070 tb_page_addr_t tb_start, tb_end;
1071 PageDesc *p;
1072 int n;
1073 #ifdef TARGET_HAS_PRECISE_SMC
1074 int current_tb_not_found = is_cpu_write_access;
1075 TranslationBlock *current_tb = NULL;
1076 int current_tb_modified = 0;
1077 target_ulong current_pc = 0;
1078 target_ulong current_cs_base = 0;
1079 int current_flags = 0;
1080 #endif /* TARGET_HAS_PRECISE_SMC */
1081
1082 p = page_find(start >> TARGET_PAGE_BITS);
1083 if (!p) {
1084 return;
1085 }
1086 if (!p->code_bitmap &&
1087 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1088 is_cpu_write_access) {
1089 /* build code bitmap */
1090 build_page_bitmap(p);
1091 }
1092 #if defined(TARGET_HAS_PRECISE_SMC)
1093 if (cpu != NULL) {
1094 env = cpu->env_ptr;
1095 }
1096 #endif
1097
1098 /* we remove all the TBs in the range [start, end[ */
1099 /* XXX: see if in some cases it could be faster to invalidate all
1100 the code */
1101 tb = p->first_tb;
1102 while (tb != NULL) {
1103 n = (uintptr_t)tb & 3;
1104 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1105 tb_next = tb->page_next[n];
1106 /* NOTE: this is subtle as a TB may span two physical pages */
1107 if (n == 0) {
1108 /* NOTE: tb_end may be after the end of the page, but
1109 it is not a problem */
1110 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1111 tb_end = tb_start + tb->size;
1112 } else {
1113 tb_start = tb->page_addr[1];
1114 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1115 }
1116 if (!(tb_end <= start || tb_start >= end)) {
1117 #ifdef TARGET_HAS_PRECISE_SMC
1118 if (current_tb_not_found) {
1119 current_tb_not_found = 0;
1120 current_tb = NULL;
1121 if (cpu->mem_io_pc) {
1122 /* now we have a real cpu fault */
1123 current_tb = tb_find_pc(cpu->mem_io_pc);
1124 }
1125 }
1126 if (current_tb == tb &&
1127 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1128 /* If we are modifying the current TB, we must stop
1129 its execution. We could be more precise by checking
1130 that the modification is after the current PC, but it
1131 would require a specialized function to partially
1132 restore the CPU state */
1133
1134 current_tb_modified = 1;
1135 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1136 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1137 &current_flags);
1138 }
1139 #endif /* TARGET_HAS_PRECISE_SMC */
1140 /* we need to do that to handle the case where a signal
1141 occurs while doing tb_phys_invalidate() */
1142 saved_tb = NULL;
1143 if (cpu != NULL) {
1144 saved_tb = cpu->current_tb;
1145 cpu->current_tb = NULL;
1146 }
1147 tb_phys_invalidate(tb, -1);
1148 if (cpu != NULL) {
1149 cpu->current_tb = saved_tb;
1150 if (cpu->interrupt_request && cpu->current_tb) {
1151 cpu_interrupt(cpu, cpu->interrupt_request);
1152 }
1153 }
1154 }
1155 tb = tb_next;
1156 }
1157 #if !defined(CONFIG_USER_ONLY)
1158 /* if no code remaining, no need to continue to use slow writes */
1159 if (!p->first_tb) {
1160 invalidate_page_bitmap(p);
1161 if (is_cpu_write_access) {
1162 tlb_unprotect_code_phys(cpu, start, cpu->mem_io_vaddr);
1163 }
1164 }
1165 #endif
1166 #ifdef TARGET_HAS_PRECISE_SMC
1167 if (current_tb_modified) {
1168 /* we generate a block containing just the instruction
1169 modifying the memory. It will ensure that it cannot modify
1170 itself */
1171 cpu->current_tb = NULL;
1172 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1173 cpu_resume_from_signal(cpu, NULL);
1174 }
1175 #endif
1176 }
1177
1178 /* len must be <= 8 and start must be a multiple of len */
1179 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1180 {
1181 PageDesc *p;
1182
1183 #if 0
1184 if (1) {
1185 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1186 cpu_single_env->mem_io_vaddr, len,
1187 cpu_single_env->eip,
1188 cpu_single_env->eip +
1189 (intptr_t)cpu_single_env->segs[R_CS].base);
1190 }
1191 #endif
1192 p = page_find(start >> TARGET_PAGE_BITS);
1193 if (!p) {
1194 return;
1195 }
1196 if (p->code_bitmap) {
1197 unsigned int nr;
1198 unsigned long b;
1199
1200 nr = start & ~TARGET_PAGE_MASK;
1201 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1202 if (b & ((1 << len) - 1)) {
1203 goto do_invalidate;
1204 }
1205 } else {
1206 do_invalidate:
1207 tb_invalidate_phys_page_range(start, start + len, 1);
1208 }
1209 }
1210
1211 #if !defined(CONFIG_SOFTMMU)
1212 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1213 uintptr_t pc, void *puc,
1214 bool locked)
1215 {
1216 TranslationBlock *tb;
1217 PageDesc *p;
1218 int n;
1219 #ifdef TARGET_HAS_PRECISE_SMC
1220 TranslationBlock *current_tb = NULL;
1221 CPUState *cpu = current_cpu;
1222 CPUArchState *env = NULL;
1223 int current_tb_modified = 0;
1224 target_ulong current_pc = 0;
1225 target_ulong current_cs_base = 0;
1226 int current_flags = 0;
1227 #endif
1228
1229 addr &= TARGET_PAGE_MASK;
1230 p = page_find(addr >> TARGET_PAGE_BITS);
1231 if (!p) {
1232 return;
1233 }
1234 tb = p->first_tb;
1235 #ifdef TARGET_HAS_PRECISE_SMC
1236 if (tb && pc != 0) {
1237 current_tb = tb_find_pc(pc);
1238 }
1239 if (cpu != NULL) {
1240 env = cpu->env_ptr;
1241 }
1242 #endif
1243 while (tb != NULL) {
1244 n = (uintptr_t)tb & 3;
1245 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1246 #ifdef TARGET_HAS_PRECISE_SMC
1247 if (current_tb == tb &&
1248 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1249 /* If we are modifying the current TB, we must stop
1250 its execution. We could be more precise by checking
1251 that the modification is after the current PC, but it
1252 would require a specialized function to partially
1253 restore the CPU state */
1254
1255 current_tb_modified = 1;
1256 cpu_restore_state_from_tb(cpu, current_tb, pc);
1257 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1258 &current_flags);
1259 }
1260 #endif /* TARGET_HAS_PRECISE_SMC */
1261 tb_phys_invalidate(tb, addr);
1262 tb = tb->page_next[n];
1263 }
1264 p->first_tb = NULL;
1265 #ifdef TARGET_HAS_PRECISE_SMC
1266 if (current_tb_modified) {
1267 /* we generate a block containing just the instruction
1268 modifying the memory. It will ensure that it cannot modify
1269 itself */
1270 cpu->current_tb = NULL;
1271 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1272 if (locked) {
1273 mmap_unlock();
1274 }
1275 cpu_resume_from_signal(cpu, puc);
1276 }
1277 #endif
1278 }
1279 #endif
1280
1281 /* add the tb in the target page and protect it if necessary */
1282 static inline void tb_alloc_page(TranslationBlock *tb,
1283 unsigned int n, tb_page_addr_t page_addr)
1284 {
1285 PageDesc *p;
1286 #ifndef CONFIG_USER_ONLY
1287 bool page_already_protected;
1288 #endif
1289
1290 tb->page_addr[n] = page_addr;
1291 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1292 tb->page_next[n] = p->first_tb;
1293 #ifndef CONFIG_USER_ONLY
1294 page_already_protected = p->first_tb != NULL;
1295 #endif
1296 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1297 invalidate_page_bitmap(p);
1298
1299 #if defined(CONFIG_USER_ONLY)
1300 if (p->flags & PAGE_WRITE) {
1301 target_ulong addr;
1302 PageDesc *p2;
1303 int prot;
1304
1305 /* force the host page as non writable (writes will have a
1306 page fault + mprotect overhead) */
1307 page_addr &= qemu_host_page_mask;
1308 prot = 0;
1309 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1310 addr += TARGET_PAGE_SIZE) {
1311
1312 p2 = page_find(addr >> TARGET_PAGE_BITS);
1313 if (!p2) {
1314 continue;
1315 }
1316 prot |= p2->flags;
1317 p2->flags &= ~PAGE_WRITE;
1318 }
1319 mprotect(g2h(page_addr), qemu_host_page_size,
1320 (prot & PAGE_BITS) & ~PAGE_WRITE);
1321 #ifdef DEBUG_TB_INVALIDATE
1322 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1323 page_addr);
1324 #endif
1325 }
1326 #else
1327 /* if some code is already present, then the pages are already
1328 protected. So we handle the case where only the first TB is
1329 allocated in a physical page */
1330 if (!page_already_protected) {
1331 tlb_protect_code(page_addr);
1332 }
1333 #endif
1334 }
1335
1336 /* add a new TB and link it to the physical page tables. phys_page2 is
1337 (-1) to indicate that only one page contains the TB. */
1338 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1339 tb_page_addr_t phys_page2)
1340 {
1341 unsigned int h;
1342 TranslationBlock **ptb;
1343
1344 /* Grab the mmap lock to stop another thread invalidating this TB
1345 before we are done. */
1346 mmap_lock();
1347 /* add in the physical hash table */
1348 h = tb_phys_hash_func(phys_pc);
1349 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1350 tb->phys_hash_next = *ptb;
1351 *ptb = tb;
1352
1353 /* add in the page list */
1354 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1355 if (phys_page2 != -1) {
1356 tb_alloc_page(tb, 1, phys_page2);
1357 } else {
1358 tb->page_addr[1] = -1;
1359 }
1360
1361 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1362 tb->jmp_next[0] = NULL;
1363 tb->jmp_next[1] = NULL;
1364
1365 /* init original jump addresses */
1366 if (tb->tb_next_offset[0] != 0xffff) {
1367 tb_reset_jump(tb, 0);
1368 }
1369 if (tb->tb_next_offset[1] != 0xffff) {
1370 tb_reset_jump(tb, 1);
1371 }
1372
1373 #ifdef DEBUG_TB_CHECK
1374 tb_page_check();
1375 #endif
1376 mmap_unlock();
1377 }
1378
1379 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1380 tb[1].tc_ptr. Return NULL if not found */
1381 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1382 {
1383 int m_min, m_max, m;
1384 uintptr_t v;
1385 TranslationBlock *tb;
1386
1387 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1388 return NULL;
1389 }
1390 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1391 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1392 return NULL;
1393 }
1394 /* binary search (cf Knuth) */
1395 m_min = 0;
1396 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1397 while (m_min <= m_max) {
1398 m = (m_min + m_max) >> 1;
1399 tb = &tcg_ctx.tb_ctx.tbs[m];
1400 v = (uintptr_t)tb->tc_ptr;
1401 if (v == tc_ptr) {
1402 return tb;
1403 } else if (tc_ptr < v) {
1404 m_max = m - 1;
1405 } else {
1406 m_min = m + 1;
1407 }
1408 }
1409 return &tcg_ctx.tb_ctx.tbs[m_max];
1410 }
1411
1412 #if !defined(CONFIG_USER_ONLY)
1413 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1414 {
1415 ram_addr_t ram_addr;
1416 MemoryRegion *mr;
1417 hwaddr l = 1;
1418
1419 mr = address_space_translate(as, addr, &addr, &l, false);
1420 if (!(memory_region_is_ram(mr)
1421 || memory_region_is_romd(mr))) {
1422 return;
1423 }
1424 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1425 + addr;
1426 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1427 }
1428 #endif /* !defined(CONFIG_USER_ONLY) */
1429
1430 void tb_check_watchpoint(CPUState *cpu)
1431 {
1432 TranslationBlock *tb;
1433
1434 tb = tb_find_pc(cpu->mem_io_pc);
1435 if (!tb) {
1436 cpu_abort(cpu, "check_watchpoint: could not find TB for pc=%p",
1437 (void *)cpu->mem_io_pc);
1438 }
1439 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1440 tb_phys_invalidate(tb, -1);
1441 }
1442
1443 #ifndef CONFIG_USER_ONLY
1444 /* mask must never be zero, except for A20 change call */
1445 static void tcg_handle_interrupt(CPUState *cpu, int mask)
1446 {
1447 int old_mask;
1448
1449 old_mask = cpu->interrupt_request;
1450 cpu->interrupt_request |= mask;
1451
1452 /*
1453 * If called from iothread context, wake the target cpu in
1454 * case its halted.
1455 */
1456 if (!qemu_cpu_is_self(cpu)) {
1457 qemu_cpu_kick(cpu);
1458 return;
1459 }
1460
1461 if (use_icount) {
1462 cpu->icount_decr.u16.high = 0xffff;
1463 if (!cpu_can_do_io(cpu)
1464 && (mask & ~old_mask) != 0) {
1465 cpu_abort(cpu, "Raised interrupt while not in I/O function");
1466 }
1467 } else {
1468 cpu->tcg_exit_req = 1;
1469 }
1470 }
1471
1472 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1473
1474 /* in deterministic execution mode, instructions doing device I/Os
1475 must be at the end of the TB */
1476 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1477 {
1478 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1479 CPUArchState *env = cpu->env_ptr;
1480 #endif
1481 TranslationBlock *tb;
1482 uint32_t n, cflags;
1483 target_ulong pc, cs_base;
1484 uint64_t flags;
1485
1486 tb = tb_find_pc(retaddr);
1487 if (!tb) {
1488 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1489 (void *)retaddr);
1490 }
1491 n = cpu->icount_decr.u16.low + tb->icount;
1492 cpu_restore_state_from_tb(cpu, tb, retaddr);
1493 /* Calculate how many instructions had been executed before the fault
1494 occurred. */
1495 n = n - cpu->icount_decr.u16.low;
1496 /* Generate a new TB ending on the I/O insn. */
1497 n++;
1498 /* On MIPS and SH, delay slot instructions can only be restarted if
1499 they were already the first instruction in the TB. If this is not
1500 the first instruction in a TB then re-execute the preceding
1501 branch. */
1502 #if defined(TARGET_MIPS)
1503 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1504 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1505 cpu->icount_decr.u16.low++;
1506 env->hflags &= ~MIPS_HFLAG_BMASK;
1507 }
1508 #elif defined(TARGET_SH4)
1509 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1510 && n > 1) {
1511 env->pc -= 2;
1512 cpu->icount_decr.u16.low++;
1513 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1514 }
1515 #endif
1516 /* This should never happen. */
1517 if (n > CF_COUNT_MASK) {
1518 cpu_abort(cpu, "TB too big during recompile");
1519 }
1520
1521 cflags = n | CF_LAST_IO;
1522 pc = tb->pc;
1523 cs_base = tb->cs_base;
1524 flags = tb->flags;
1525 tb_phys_invalidate(tb, -1);
1526 /* FIXME: In theory this could raise an exception. In practice
1527 we have already translated the block once so it's probably ok. */
1528 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1529 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1530 the first in the TB) then we end up generating a whole new TB and
1531 repeating the fault, which is horribly inefficient.
1532 Better would be to execute just this insn uncached, or generate a
1533 second new TB. */
1534 cpu_resume_from_signal(cpu, NULL);
1535 }
1536
1537 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1538 {
1539 unsigned int i;
1540
1541 /* Discard jump cache entries for any tb which might potentially
1542 overlap the flushed page. */
1543 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1544 memset(&cpu->tb_jmp_cache[i], 0,
1545 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1546
1547 i = tb_jmp_cache_hash_page(addr);
1548 memset(&cpu->tb_jmp_cache[i], 0,
1549 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1550 }
1551
1552 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1553 {
1554 int i, target_code_size, max_target_code_size;
1555 int direct_jmp_count, direct_jmp2_count, cross_page;
1556 TranslationBlock *tb;
1557
1558 target_code_size = 0;
1559 max_target_code_size = 0;
1560 cross_page = 0;
1561 direct_jmp_count = 0;
1562 direct_jmp2_count = 0;
1563 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1564 tb = &tcg_ctx.tb_ctx.tbs[i];
1565 target_code_size += tb->size;
1566 if (tb->size > max_target_code_size) {
1567 max_target_code_size = tb->size;
1568 }
1569 if (tb->page_addr[1] != -1) {
1570 cross_page++;
1571 }
1572 if (tb->tb_next_offset[0] != 0xffff) {
1573 direct_jmp_count++;
1574 if (tb->tb_next_offset[1] != 0xffff) {
1575 direct_jmp2_count++;
1576 }
1577 }
1578 }
1579 /* XXX: avoid using doubles ? */
1580 cpu_fprintf(f, "Translation buffer state:\n");
1581 cpu_fprintf(f, "gen code size %td/%zd\n",
1582 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1583 tcg_ctx.code_gen_buffer_max_size);
1584 cpu_fprintf(f, "TB count %d/%d\n",
1585 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1586 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1587 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1588 tcg_ctx.tb_ctx.nb_tbs : 0,
1589 max_target_code_size);
1590 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1591 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1592 tcg_ctx.code_gen_buffer) /
1593 tcg_ctx.tb_ctx.nb_tbs : 0,
1594 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1595 tcg_ctx.code_gen_buffer) /
1596 target_code_size : 0);
1597 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1598 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1599 tcg_ctx.tb_ctx.nb_tbs : 0);
1600 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1601 direct_jmp_count,
1602 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1603 tcg_ctx.tb_ctx.nb_tbs : 0,
1604 direct_jmp2_count,
1605 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1606 tcg_ctx.tb_ctx.nb_tbs : 0);
1607 cpu_fprintf(f, "\nStatistics:\n");
1608 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1609 cpu_fprintf(f, "TB invalidate count %d\n",
1610 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1611 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1612 tcg_dump_info(f, cpu_fprintf);
1613 }
1614
1615 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1616 {
1617 tcg_dump_op_count(f, cpu_fprintf);
1618 }
1619
1620 #else /* CONFIG_USER_ONLY */
1621
1622 void cpu_interrupt(CPUState *cpu, int mask)
1623 {
1624 cpu->interrupt_request |= mask;
1625 cpu->tcg_exit_req = 1;
1626 }
1627
1628 /*
1629 * Walks guest process memory "regions" one by one
1630 * and calls callback function 'fn' for each region.
1631 */
1632 struct walk_memory_regions_data {
1633 walk_memory_regions_fn fn;
1634 void *priv;
1635 target_ulong start;
1636 int prot;
1637 };
1638
1639 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1640 target_ulong end, int new_prot)
1641 {
1642 if (data->start != -1u) {
1643 int rc = data->fn(data->priv, data->start, end, data->prot);
1644 if (rc != 0) {
1645 return rc;
1646 }
1647 }
1648
1649 data->start = (new_prot ? end : -1u);
1650 data->prot = new_prot;
1651
1652 return 0;
1653 }
1654
1655 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1656 target_ulong base, int level, void **lp)
1657 {
1658 target_ulong pa;
1659 int i, rc;
1660
1661 if (*lp == NULL) {
1662 return walk_memory_regions_end(data, base, 0);
1663 }
1664
1665 if (level == 0) {
1666 PageDesc *pd = *lp;
1667
1668 for (i = 0; i < V_L2_SIZE; ++i) {
1669 int prot = pd[i].flags;
1670
1671 pa = base | (i << TARGET_PAGE_BITS);
1672 if (prot != data->prot) {
1673 rc = walk_memory_regions_end(data, pa, prot);
1674 if (rc != 0) {
1675 return rc;
1676 }
1677 }
1678 }
1679 } else {
1680 void **pp = *lp;
1681
1682 for (i = 0; i < V_L2_SIZE; ++i) {
1683 pa = base | ((target_ulong)i <<
1684 (TARGET_PAGE_BITS + V_L2_BITS * level));
1685 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1686 if (rc != 0) {
1687 return rc;
1688 }
1689 }
1690 }
1691
1692 return 0;
1693 }
1694
1695 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1696 {
1697 struct walk_memory_regions_data data;
1698 uintptr_t i;
1699
1700 data.fn = fn;
1701 data.priv = priv;
1702 data.start = -1u;
1703 data.prot = 0;
1704
1705 for (i = 0; i < V_L1_SIZE; i++) {
1706 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1707 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1708 if (rc != 0) {
1709 return rc;
1710 }
1711 }
1712
1713 return walk_memory_regions_end(&data, 0, 0);
1714 }
1715
1716 static int dump_region(void *priv, target_ulong start,
1717 target_ulong end, unsigned long prot)
1718 {
1719 FILE *f = (FILE *)priv;
1720
1721 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1722 " "TARGET_FMT_lx" %c%c%c\n",
1723 start, end, end - start,
1724 ((prot & PAGE_READ) ? 'r' : '-'),
1725 ((prot & PAGE_WRITE) ? 'w' : '-'),
1726 ((prot & PAGE_EXEC) ? 'x' : '-'));
1727
1728 return 0;
1729 }
1730
1731 /* dump memory mappings */
1732 void page_dump(FILE *f)
1733 {
1734 const int length = sizeof(target_ulong) * 2;
1735 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1736 length, "start", length, "end", length, "size", "prot");
1737 walk_memory_regions(f, dump_region);
1738 }
1739
1740 int page_get_flags(target_ulong address)
1741 {
1742 PageDesc *p;
1743
1744 p = page_find(address >> TARGET_PAGE_BITS);
1745 if (!p) {
1746 return 0;
1747 }
1748 return p->flags;
1749 }
1750
1751 /* Modify the flags of a page and invalidate the code if necessary.
1752 The flag PAGE_WRITE_ORG is positioned automatically depending
1753 on PAGE_WRITE. The mmap_lock should already be held. */
1754 void page_set_flags(target_ulong start, target_ulong end, int flags)
1755 {
1756 target_ulong addr, len;
1757
1758 /* This function should never be called with addresses outside the
1759 guest address space. If this assert fires, it probably indicates
1760 a missing call to h2g_valid. */
1761 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1762 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1763 #endif
1764 assert(start < end);
1765
1766 start = start & TARGET_PAGE_MASK;
1767 end = TARGET_PAGE_ALIGN(end);
1768
1769 if (flags & PAGE_WRITE) {
1770 flags |= PAGE_WRITE_ORG;
1771 }
1772
1773 for (addr = start, len = end - start;
1774 len != 0;
1775 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1776 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1777
1778 /* If the write protection bit is set, then we invalidate
1779 the code inside. */
1780 if (!(p->flags & PAGE_WRITE) &&
1781 (flags & PAGE_WRITE) &&
1782 p->first_tb) {
1783 tb_invalidate_phys_page(addr, 0, NULL, false);
1784 }
1785 p->flags = flags;
1786 }
1787 }
1788
1789 int page_check_range(target_ulong start, target_ulong len, int flags)
1790 {
1791 PageDesc *p;
1792 target_ulong end;
1793 target_ulong addr;
1794
1795 /* This function should never be called with addresses outside the
1796 guest address space. If this assert fires, it probably indicates
1797 a missing call to h2g_valid. */
1798 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1799 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1800 #endif
1801
1802 if (len == 0) {
1803 return 0;
1804 }
1805 if (start + len - 1 < start) {
1806 /* We've wrapped around. */
1807 return -1;
1808 }
1809
1810 /* must do before we loose bits in the next step */
1811 end = TARGET_PAGE_ALIGN(start + len);
1812 start = start & TARGET_PAGE_MASK;
1813
1814 for (addr = start, len = end - start;
1815 len != 0;
1816 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1817 p = page_find(addr >> TARGET_PAGE_BITS);
1818 if (!p) {
1819 return -1;
1820 }
1821 if (!(p->flags & PAGE_VALID)) {
1822 return -1;
1823 }
1824
1825 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1826 return -1;
1827 }
1828 if (flags & PAGE_WRITE) {
1829 if (!(p->flags & PAGE_WRITE_ORG)) {
1830 return -1;
1831 }
1832 /* unprotect the page if it was put read-only because it
1833 contains translated code */
1834 if (!(p->flags & PAGE_WRITE)) {
1835 if (!page_unprotect(addr, 0, NULL)) {
1836 return -1;
1837 }
1838 }
1839 }
1840 }
1841 return 0;
1842 }
1843
1844 /* called from signal handler: invalidate the code and unprotect the
1845 page. Return TRUE if the fault was successfully handled. */
1846 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1847 {
1848 unsigned int prot;
1849 PageDesc *p;
1850 target_ulong host_start, host_end, addr;
1851
1852 /* Technically this isn't safe inside a signal handler. However we
1853 know this only ever happens in a synchronous SEGV handler, so in
1854 practice it seems to be ok. */
1855 mmap_lock();
1856
1857 p = page_find(address >> TARGET_PAGE_BITS);
1858 if (!p) {
1859 mmap_unlock();
1860 return 0;
1861 }
1862
1863 /* if the page was really writable, then we change its
1864 protection back to writable */
1865 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1866 host_start = address & qemu_host_page_mask;
1867 host_end = host_start + qemu_host_page_size;
1868
1869 prot = 0;
1870 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1871 p = page_find(addr >> TARGET_PAGE_BITS);
1872 p->flags |= PAGE_WRITE;
1873 prot |= p->flags;
1874
1875 /* and since the content will be modified, we must invalidate
1876 the corresponding translated code. */
1877 tb_invalidate_phys_page(addr, pc, puc, true);
1878 #ifdef DEBUG_TB_CHECK
1879 tb_invalidate_check(addr);
1880 #endif
1881 }
1882 mprotect((void *)g2h(host_start), qemu_host_page_size,
1883 prot & PAGE_BITS);
1884
1885 mmap_unlock();
1886 return 1;
1887 }
1888 mmap_unlock();
1889 return 0;
1890 }
1891 #endif /* CONFIG_USER_ONLY */