]> git.proxmox.com Git - mirror_qemu.git/blob - translate-all.c
s390x/kvm: fix build against qemu_uuid
[mirror_qemu.git] / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifdef _WIN32
20 #include <windows.h>
21 #endif
22 #include "qemu/osdep.h"
23
24
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
27 #include "cpu.h"
28 #include "trace.h"
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
31 #include "tcg.h"
32 #if defined(CONFIG_USER_ONLY)
33 #include "qemu.h"
34 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
35 #include <sys/param.h>
36 #if __FreeBSD_version >= 700104
37 #define HAVE_KINFO_GETVMMAP
38 #define sigqueue sigqueue_freebsd /* avoid redefinition */
39 #include <sys/proc.h>
40 #include <machine/profile.h>
41 #define _KERNEL
42 #include <sys/user.h>
43 #undef _KERNEL
44 #undef sigqueue
45 #include <libutil.h>
46 #endif
47 #endif
48 #else
49 #include "exec/address-spaces.h"
50 #endif
51
52 #include "exec/cputlb.h"
53 #include "exec/tb-hash.h"
54 #include "translate-all.h"
55 #include "qemu/bitmap.h"
56 #include "qemu/timer.h"
57 #include "exec/log.h"
58
59 //#define DEBUG_TB_INVALIDATE
60 //#define DEBUG_FLUSH
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63
64 #if !defined(CONFIG_USER_ONLY)
65 /* TB consistency checks only implemented for usermode emulation. */
66 #undef DEBUG_TB_CHECK
67 #endif
68
69 #define SMC_BITMAP_USE_THRESHOLD 10
70
71 typedef struct PageDesc {
72 /* list of TBs intersecting this ram page */
73 TranslationBlock *first_tb;
74 #ifdef CONFIG_SOFTMMU
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
78 unsigned long *code_bitmap;
79 #else
80 unsigned long flags;
81 #endif
82 } PageDesc;
83
84 /* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86 #if !defined(CONFIG_USER_ONLY)
87 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89 #else
90 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91 #endif
92 #else
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94 #endif
95
96 /* Size of the L2 (and L3, etc) page tables. */
97 #define V_L2_BITS 10
98 #define V_L2_SIZE (1 << V_L2_BITS)
99
100 /* The bits remaining after N lower levels of page tables. */
101 #define V_L1_BITS_REM \
102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
103
104 #if V_L1_BITS_REM < 4
105 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
106 #else
107 #define V_L1_BITS V_L1_BITS_REM
108 #endif
109
110 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111
112 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113
114 uintptr_t qemu_host_page_size;
115 intptr_t qemu_host_page_mask;
116
117 /* The bottom level has pointers to PageDesc */
118 static void *l1_map[V_L1_SIZE];
119
120 /* code generation context */
121 TCGContext tcg_ctx;
122
123 /* translation block context */
124 #ifdef CONFIG_USER_ONLY
125 __thread int have_tb_lock;
126 #endif
127
128 void tb_lock(void)
129 {
130 #ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134 #endif
135 }
136
137 void tb_unlock(void)
138 {
139 #ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143 #endif
144 }
145
146 void tb_lock_reset(void)
147 {
148 #ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
152 }
153 #endif
154 }
155
156 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
157
158 void cpu_gen_init(void)
159 {
160 tcg_context_init(&tcg_ctx);
161 }
162
163 /* Encode VAL as a signed leb128 sequence at P.
164 Return P incremented past the encoded value. */
165 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
166 {
167 int more, byte;
168
169 do {
170 byte = val & 0x7f;
171 val >>= 7;
172 more = !((val == 0 && (byte & 0x40) == 0)
173 || (val == -1 && (byte & 0x40) != 0));
174 if (more) {
175 byte |= 0x80;
176 }
177 *p++ = byte;
178 } while (more);
179
180 return p;
181 }
182
183 /* Decode a signed leb128 sequence at *PP; increment *PP past the
184 decoded value. Return the decoded value. */
185 static target_long decode_sleb128(uint8_t **pp)
186 {
187 uint8_t *p = *pp;
188 target_long val = 0;
189 int byte, shift = 0;
190
191 do {
192 byte = *p++;
193 val |= (target_ulong)(byte & 0x7f) << shift;
194 shift += 7;
195 } while (byte & 0x80);
196 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
197 val |= -(target_ulong)1 << shift;
198 }
199
200 *pp = p;
201 return val;
202 }
203
204 /* Encode the data collected about the instructions while compiling TB.
205 Place the data at BLOCK, and return the number of bytes consumed.
206
207 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
208 which come from the target's insn_start data, followed by a uintptr_t
209 which comes from the host pc of the end of the code implementing the insn.
210
211 Each line of the table is encoded as sleb128 deltas from the previous
212 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
213 That is, the first column is seeded with the guest pc, the last column
214 with the host pc, and the middle columns with zeros. */
215
216 static int encode_search(TranslationBlock *tb, uint8_t *block)
217 {
218 uint8_t *highwater = tcg_ctx.code_gen_highwater;
219 uint8_t *p = block;
220 int i, j, n;
221
222 tb->tc_search = block;
223
224 for (i = 0, n = tb->icount; i < n; ++i) {
225 target_ulong prev;
226
227 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
228 if (i == 0) {
229 prev = (j == 0 ? tb->pc : 0);
230 } else {
231 prev = tcg_ctx.gen_insn_data[i - 1][j];
232 }
233 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
234 }
235 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
236 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
237
238 /* Test for (pending) buffer overflow. The assumption is that any
239 one row beginning below the high water mark cannot overrun
240 the buffer completely. Thus we can test for overflow after
241 encoding a row without having to check during encoding. */
242 if (unlikely(p > highwater)) {
243 return -1;
244 }
245 }
246
247 return p - block;
248 }
249
250 /* The cpu state corresponding to 'searched_pc' is restored. */
251 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
252 uintptr_t searched_pc)
253 {
254 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
255 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
256 CPUArchState *env = cpu->env_ptr;
257 uint8_t *p = tb->tc_search;
258 int i, j, num_insns = tb->icount;
259 #ifdef CONFIG_PROFILER
260 int64_t ti = profile_getclock();
261 #endif
262
263 searched_pc -= GETPC_ADJ;
264
265 if (searched_pc < host_pc) {
266 return -1;
267 }
268
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
274 }
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
278 }
279 }
280 return -1;
281
282 found:
283 if (tb->cflags & CF_USE_ICOUNT) {
284 assert(use_icount);
285 /* Reset the cycle counter to the start of the block. */
286 cpu->icount_decr.u16.low += num_insns;
287 /* Clear the IO flag. */
288 cpu->can_do_io = 0;
289 }
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
292
293 #ifdef CONFIG_PROFILER
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
296 #endif
297 return 0;
298 }
299
300 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
301 {
302 TranslationBlock *tb;
303
304 tb = tb_find_pc(retaddr);
305 if (tb) {
306 cpu_restore_state_from_tb(cpu, tb, retaddr);
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
309 tb_phys_invalidate(tb, -1);
310 tb_free(tb);
311 }
312 return true;
313 }
314 return false;
315 }
316
317 void page_size_init(void)
318 {
319 /* NOTE: we can always suppose that qemu_host_page_size >=
320 TARGET_PAGE_SIZE */
321 qemu_real_host_page_size = getpagesize();
322 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
323 if (qemu_host_page_size == 0) {
324 qemu_host_page_size = qemu_real_host_page_size;
325 }
326 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
327 qemu_host_page_size = TARGET_PAGE_SIZE;
328 }
329 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
330 }
331
332 static void page_init(void)
333 {
334 page_size_init();
335 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
336 {
337 #ifdef HAVE_KINFO_GETVMMAP
338 struct kinfo_vmentry *freep;
339 int i, cnt;
340
341 freep = kinfo_getvmmap(getpid(), &cnt);
342 if (freep) {
343 mmap_lock();
344 for (i = 0; i < cnt; i++) {
345 unsigned long startaddr, endaddr;
346
347 startaddr = freep[i].kve_start;
348 endaddr = freep[i].kve_end;
349 if (h2g_valid(startaddr)) {
350 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
351
352 if (h2g_valid(endaddr)) {
353 endaddr = h2g(endaddr);
354 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
355 } else {
356 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
357 endaddr = ~0ul;
358 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
359 #endif
360 }
361 }
362 }
363 free(freep);
364 mmap_unlock();
365 }
366 #else
367 FILE *f;
368
369 last_brk = (unsigned long)sbrk(0);
370
371 f = fopen("/compat/linux/proc/self/maps", "r");
372 if (f) {
373 mmap_lock();
374
375 do {
376 unsigned long startaddr, endaddr;
377 int n;
378
379 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
380
381 if (n == 2 && h2g_valid(startaddr)) {
382 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
383
384 if (h2g_valid(endaddr)) {
385 endaddr = h2g(endaddr);
386 } else {
387 endaddr = ~0ul;
388 }
389 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
390 }
391 } while (!feof(f));
392
393 fclose(f);
394 mmap_unlock();
395 }
396 #endif
397 }
398 #endif
399 }
400
401 /* If alloc=1:
402 * Called with mmap_lock held for user-mode emulation.
403 */
404 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
405 {
406 PageDesc *pd;
407 void **lp;
408 int i;
409
410 /* Level 1. Always allocated. */
411 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
412
413 /* Level 2..N-1. */
414 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
415 void **p = atomic_rcu_read(lp);
416
417 if (p == NULL) {
418 if (!alloc) {
419 return NULL;
420 }
421 p = g_new0(void *, V_L2_SIZE);
422 atomic_rcu_set(lp, p);
423 }
424
425 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
426 }
427
428 pd = atomic_rcu_read(lp);
429 if (pd == NULL) {
430 if (!alloc) {
431 return NULL;
432 }
433 pd = g_new0(PageDesc, V_L2_SIZE);
434 atomic_rcu_set(lp, pd);
435 }
436
437 return pd + (index & (V_L2_SIZE - 1));
438 }
439
440 static inline PageDesc *page_find(tb_page_addr_t index)
441 {
442 return page_find_alloc(index, 0);
443 }
444
445 #if defined(CONFIG_USER_ONLY)
446 /* Currently it is not recommended to allocate big chunks of data in
447 user mode. It will change when a dedicated libc will be used. */
448 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
449 region in which the guest needs to run. Revisit this. */
450 #define USE_STATIC_CODE_GEN_BUFFER
451 #endif
452
453 /* Minimum size of the code gen buffer. This number is randomly chosen,
454 but not so small that we can't have a fair number of TB's live. */
455 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
456
457 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
458 indicated, this is constrained by the range of direct branches on the
459 host cpu, as used by the TCG implementation of goto_tb. */
460 #if defined(__x86_64__)
461 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
462 #elif defined(__sparc__)
463 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
464 #elif defined(__powerpc64__)
465 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
466 #elif defined(__powerpc__)
467 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
468 #elif defined(__aarch64__)
469 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
470 #elif defined(__arm__)
471 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
472 #elif defined(__s390x__)
473 /* We have a +- 4GB range on the branches; leave some slop. */
474 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
475 #elif defined(__mips__)
476 /* We have a 256MB branch region, but leave room to make sure the
477 main executable is also within that region. */
478 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
479 #else
480 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
481 #endif
482
483 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
484
485 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
486 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
487 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
488
489 static inline size_t size_code_gen_buffer(size_t tb_size)
490 {
491 /* Size the buffer. */
492 if (tb_size == 0) {
493 #ifdef USE_STATIC_CODE_GEN_BUFFER
494 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
495 #else
496 /* ??? Needs adjustments. */
497 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
498 static buffer, we could size this on RESERVED_VA, on the text
499 segment size of the executable, or continue to use the default. */
500 tb_size = (unsigned long)(ram_size / 4);
501 #endif
502 }
503 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
504 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
505 }
506 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
507 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
508 }
509 return tb_size;
510 }
511
512 #ifdef __mips__
513 /* In order to use J and JAL within the code_gen_buffer, we require
514 that the buffer not cross a 256MB boundary. */
515 static inline bool cross_256mb(void *addr, size_t size)
516 {
517 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
518 }
519
520 /* We weren't able to allocate a buffer without crossing that boundary,
521 so make do with the larger portion of the buffer that doesn't cross.
522 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
523 static inline void *split_cross_256mb(void *buf1, size_t size1)
524 {
525 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
526 size_t size2 = buf1 + size1 - buf2;
527
528 size1 = buf2 - buf1;
529 if (size1 < size2) {
530 size1 = size2;
531 buf1 = buf2;
532 }
533
534 tcg_ctx.code_gen_buffer_size = size1;
535 return buf1;
536 }
537 #endif
538
539 #ifdef USE_STATIC_CODE_GEN_BUFFER
540 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
541 __attribute__((aligned(CODE_GEN_ALIGN)));
542
543 # ifdef _WIN32
544 static inline void do_protect(void *addr, long size, int prot)
545 {
546 DWORD old_protect;
547 VirtualProtect(addr, size, prot, &old_protect);
548 }
549
550 static inline void map_exec(void *addr, long size)
551 {
552 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
553 }
554
555 static inline void map_none(void *addr, long size)
556 {
557 do_protect(addr, size, PAGE_NOACCESS);
558 }
559 # else
560 static inline void do_protect(void *addr, long size, int prot)
561 {
562 uintptr_t start, end;
563
564 start = (uintptr_t)addr;
565 start &= qemu_real_host_page_mask;
566
567 end = (uintptr_t)addr + size;
568 end = ROUND_UP(end, qemu_real_host_page_size);
569
570 mprotect((void *)start, end - start, prot);
571 }
572
573 static inline void map_exec(void *addr, long size)
574 {
575 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
576 }
577
578 static inline void map_none(void *addr, long size)
579 {
580 do_protect(addr, size, PROT_NONE);
581 }
582 # endif /* WIN32 */
583
584 static inline void *alloc_code_gen_buffer(void)
585 {
586 void *buf = static_code_gen_buffer;
587 size_t full_size, size;
588
589 /* The size of the buffer, rounded down to end on a page boundary. */
590 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
591 & qemu_real_host_page_mask) - (uintptr_t)buf;
592
593 /* Reserve a guard page. */
594 size = full_size - qemu_real_host_page_size;
595
596 /* Honor a command-line option limiting the size of the buffer. */
597 if (size > tcg_ctx.code_gen_buffer_size) {
598 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
599 & qemu_real_host_page_mask) - (uintptr_t)buf;
600 }
601 tcg_ctx.code_gen_buffer_size = size;
602
603 #ifdef __mips__
604 if (cross_256mb(buf, size)) {
605 buf = split_cross_256mb(buf, size);
606 size = tcg_ctx.code_gen_buffer_size;
607 }
608 #endif
609
610 map_exec(buf, size);
611 map_none(buf + size, qemu_real_host_page_size);
612 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
613
614 return buf;
615 }
616 #elif defined(_WIN32)
617 static inline void *alloc_code_gen_buffer(void)
618 {
619 size_t size = tcg_ctx.code_gen_buffer_size;
620 void *buf1, *buf2;
621
622 /* Perform the allocation in two steps, so that the guard page
623 is reserved but uncommitted. */
624 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
625 MEM_RESERVE, PAGE_NOACCESS);
626 if (buf1 != NULL) {
627 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
628 assert(buf1 == buf2);
629 }
630
631 return buf1;
632 }
633 #else
634 static inline void *alloc_code_gen_buffer(void)
635 {
636 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
637 uintptr_t start = 0;
638 size_t size = tcg_ctx.code_gen_buffer_size;
639 void *buf;
640
641 /* Constrain the position of the buffer based on the host cpu.
642 Note that these addresses are chosen in concert with the
643 addresses assigned in the relevant linker script file. */
644 # if defined(__PIE__) || defined(__PIC__)
645 /* Don't bother setting a preferred location if we're building
646 a position-independent executable. We're more likely to get
647 an address near the main executable if we let the kernel
648 choose the address. */
649 # elif defined(__x86_64__) && defined(MAP_32BIT)
650 /* Force the memory down into low memory with the executable.
651 Leave the choice of exact location with the kernel. */
652 flags |= MAP_32BIT;
653 /* Cannot expect to map more than 800MB in low memory. */
654 if (size > 800u * 1024 * 1024) {
655 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
656 }
657 # elif defined(__sparc__)
658 start = 0x40000000ul;
659 # elif defined(__s390x__)
660 start = 0x90000000ul;
661 # elif defined(__mips__)
662 # if _MIPS_SIM == _ABI64
663 start = 0x128000000ul;
664 # else
665 start = 0x08000000ul;
666 # endif
667 # endif
668
669 buf = mmap((void *)start, size + qemu_real_host_page_size,
670 PROT_NONE, flags, -1, 0);
671 if (buf == MAP_FAILED) {
672 return NULL;
673 }
674
675 #ifdef __mips__
676 if (cross_256mb(buf, size)) {
677 /* Try again, with the original still mapped, to avoid re-acquiring
678 that 256mb crossing. This time don't specify an address. */
679 size_t size2;
680 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
681 PROT_NONE, flags, -1, 0);
682 switch (buf2 != MAP_FAILED) {
683 case 1:
684 if (!cross_256mb(buf2, size)) {
685 /* Success! Use the new buffer. */
686 munmap(buf, size + qemu_real_host_page_size);
687 break;
688 }
689 /* Failure. Work with what we had. */
690 munmap(buf2, size + qemu_real_host_page_size);
691 /* fallthru */
692 default:
693 /* Split the original buffer. Free the smaller half. */
694 buf2 = split_cross_256mb(buf, size);
695 size2 = tcg_ctx.code_gen_buffer_size;
696 if (buf == buf2) {
697 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
698 } else {
699 munmap(buf, size - size2);
700 }
701 size = size2;
702 break;
703 }
704 buf = buf2;
705 }
706 #endif
707
708 /* Make the final buffer accessible. The guard page at the end
709 will remain inaccessible with PROT_NONE. */
710 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
711
712 /* Request large pages for the buffer. */
713 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
714
715 return buf;
716 }
717 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
718
719 static inline void code_gen_alloc(size_t tb_size)
720 {
721 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
722 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
723 if (tcg_ctx.code_gen_buffer == NULL) {
724 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
725 exit(1);
726 }
727
728 /* Estimate a good size for the number of TBs we can support. We
729 still haven't deducted the prologue from the buffer size here,
730 but that's minimal and won't affect the estimate much. */
731 tcg_ctx.code_gen_max_blocks
732 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
733 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
734
735 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
736 }
737
738 static void tb_htable_init(void)
739 {
740 unsigned int mode = QHT_MODE_AUTO_RESIZE;
741
742 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
743 }
744
745 /* Must be called before using the QEMU cpus. 'tb_size' is the size
746 (in bytes) allocated to the translation buffer. Zero means default
747 size. */
748 void tcg_exec_init(unsigned long tb_size)
749 {
750 cpu_gen_init();
751 page_init();
752 tb_htable_init();
753 code_gen_alloc(tb_size);
754 #if defined(CONFIG_SOFTMMU)
755 /* There's no guest base to take into account, so go ahead and
756 initialize the prologue now. */
757 tcg_prologue_init(&tcg_ctx);
758 #endif
759 }
760
761 bool tcg_enabled(void)
762 {
763 return tcg_ctx.code_gen_buffer != NULL;
764 }
765
766 /* Allocate a new translation block. Flush the translation buffer if
767 too many translation blocks or too much generated code. */
768 static TranslationBlock *tb_alloc(target_ulong pc)
769 {
770 TranslationBlock *tb;
771
772 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
773 return NULL;
774 }
775 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
776 tb->pc = pc;
777 tb->cflags = 0;
778 tb->invalid = false;
779 return tb;
780 }
781
782 void tb_free(TranslationBlock *tb)
783 {
784 /* In practice this is mostly used for single use temporary TB
785 Ignore the hard cases and just back up if this TB happens to
786 be the last one generated. */
787 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
788 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
789 tcg_ctx.code_gen_ptr = tb->tc_ptr;
790 tcg_ctx.tb_ctx.nb_tbs--;
791 }
792 }
793
794 static inline void invalidate_page_bitmap(PageDesc *p)
795 {
796 #ifdef CONFIG_SOFTMMU
797 g_free(p->code_bitmap);
798 p->code_bitmap = NULL;
799 p->code_write_count = 0;
800 #endif
801 }
802
803 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
804 static void page_flush_tb_1(int level, void **lp)
805 {
806 int i;
807
808 if (*lp == NULL) {
809 return;
810 }
811 if (level == 0) {
812 PageDesc *pd = *lp;
813
814 for (i = 0; i < V_L2_SIZE; ++i) {
815 pd[i].first_tb = NULL;
816 invalidate_page_bitmap(pd + i);
817 }
818 } else {
819 void **pp = *lp;
820
821 for (i = 0; i < V_L2_SIZE; ++i) {
822 page_flush_tb_1(level - 1, pp + i);
823 }
824 }
825 }
826
827 static void page_flush_tb(void)
828 {
829 int i;
830
831 for (i = 0; i < V_L1_SIZE; i++) {
832 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
833 }
834 }
835
836 /* flush all the translation blocks */
837 /* XXX: tb_flush is currently not thread safe */
838 void tb_flush(CPUState *cpu)
839 {
840 if (!tcg_enabled()) {
841 return;
842 }
843 #if defined(DEBUG_FLUSH)
844 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
845 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
846 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
847 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
848 tcg_ctx.tb_ctx.nb_tbs : 0);
849 #endif
850 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
851 > tcg_ctx.code_gen_buffer_size) {
852 cpu_abort(cpu, "Internal error: code buffer overflow\n");
853 }
854
855 CPU_FOREACH(cpu) {
856 int i;
857
858 for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
859 atomic_set(&cpu->tb_jmp_cache[i], NULL);
860 }
861 atomic_mb_set(&cpu->tb_flushed, true);
862 }
863
864 tcg_ctx.tb_ctx.nb_tbs = 0;
865 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
866 page_flush_tb();
867
868 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
869 /* XXX: flush processor icache at this point if cache flush is
870 expensive */
871 tcg_ctx.tb_ctx.tb_flush_count++;
872 }
873
874 #ifdef DEBUG_TB_CHECK
875
876 static void
877 do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
878 {
879 TranslationBlock *tb = p;
880 target_ulong addr = *(target_ulong *)userp;
881
882 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
883 printf("ERROR invalidate: address=" TARGET_FMT_lx
884 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
885 }
886 }
887
888 static void tb_invalidate_check(target_ulong address)
889 {
890 address &= TARGET_PAGE_MASK;
891 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
892 }
893
894 static void
895 do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
896 {
897 TranslationBlock *tb = p;
898 int flags1, flags2;
899
900 flags1 = page_get_flags(tb->pc);
901 flags2 = page_get_flags(tb->pc + tb->size - 1);
902 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
903 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
904 (long)tb->pc, tb->size, flags1, flags2);
905 }
906 }
907
908 /* verify that all the pages have correct rights for code */
909 static void tb_page_check(void)
910 {
911 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
912 }
913
914 #endif
915
916 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
917 {
918 TranslationBlock *tb1;
919 unsigned int n1;
920
921 for (;;) {
922 tb1 = *ptb;
923 n1 = (uintptr_t)tb1 & 3;
924 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
925 if (tb1 == tb) {
926 *ptb = tb1->page_next[n1];
927 break;
928 }
929 ptb = &tb1->page_next[n1];
930 }
931 }
932
933 /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
934 static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
935 {
936 TranslationBlock *tb1;
937 uintptr_t *ptb, ntb;
938 unsigned int n1;
939
940 ptb = &tb->jmp_list_next[n];
941 if (*ptb) {
942 /* find tb(n) in circular list */
943 for (;;) {
944 ntb = *ptb;
945 n1 = ntb & 3;
946 tb1 = (TranslationBlock *)(ntb & ~3);
947 if (n1 == n && tb1 == tb) {
948 break;
949 }
950 if (n1 == 2) {
951 ptb = &tb1->jmp_list_first;
952 } else {
953 ptb = &tb1->jmp_list_next[n1];
954 }
955 }
956 /* now we can suppress tb(n) from the list */
957 *ptb = tb->jmp_list_next[n];
958
959 tb->jmp_list_next[n] = (uintptr_t)NULL;
960 }
961 }
962
963 /* reset the jump entry 'n' of a TB so that it is not chained to
964 another TB */
965 static inline void tb_reset_jump(TranslationBlock *tb, int n)
966 {
967 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
968 tb_set_jmp_target(tb, n, addr);
969 }
970
971 /* remove any jumps to the TB */
972 static inline void tb_jmp_unlink(TranslationBlock *tb)
973 {
974 TranslationBlock *tb1;
975 uintptr_t *ptb, ntb;
976 unsigned int n1;
977
978 ptb = &tb->jmp_list_first;
979 for (;;) {
980 ntb = *ptb;
981 n1 = ntb & 3;
982 tb1 = (TranslationBlock *)(ntb & ~3);
983 if (n1 == 2) {
984 break;
985 }
986 tb_reset_jump(tb1, n1);
987 *ptb = tb1->jmp_list_next[n1];
988 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
989 }
990 }
991
992 /* invalidate one TB */
993 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
994 {
995 CPUState *cpu;
996 PageDesc *p;
997 uint32_t h;
998 tb_page_addr_t phys_pc;
999
1000 atomic_set(&tb->invalid, true);
1001
1002 /* remove the TB from the hash list */
1003 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1004 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1005 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
1006
1007 /* remove the TB from the page list */
1008 if (tb->page_addr[0] != page_addr) {
1009 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1010 tb_page_remove(&p->first_tb, tb);
1011 invalidate_page_bitmap(p);
1012 }
1013 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1014 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1015 tb_page_remove(&p->first_tb, tb);
1016 invalidate_page_bitmap(p);
1017 }
1018
1019 /* remove the TB from the hash list */
1020 h = tb_jmp_cache_hash_func(tb->pc);
1021 CPU_FOREACH(cpu) {
1022 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1023 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1024 }
1025 }
1026
1027 /* suppress this TB from the two jump lists */
1028 tb_remove_from_jmp_list(tb, 0);
1029 tb_remove_from_jmp_list(tb, 1);
1030
1031 /* suppress any remaining jumps to this TB */
1032 tb_jmp_unlink(tb);
1033
1034 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1035 }
1036
1037 #ifdef CONFIG_SOFTMMU
1038 static void build_page_bitmap(PageDesc *p)
1039 {
1040 int n, tb_start, tb_end;
1041 TranslationBlock *tb;
1042
1043 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1044
1045 tb = p->first_tb;
1046 while (tb != NULL) {
1047 n = (uintptr_t)tb & 3;
1048 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1049 /* NOTE: this is subtle as a TB may span two physical pages */
1050 if (n == 0) {
1051 /* NOTE: tb_end may be after the end of the page, but
1052 it is not a problem */
1053 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1054 tb_end = tb_start + tb->size;
1055 if (tb_end > TARGET_PAGE_SIZE) {
1056 tb_end = TARGET_PAGE_SIZE;
1057 }
1058 } else {
1059 tb_start = 0;
1060 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1061 }
1062 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1063 tb = tb->page_next[n];
1064 }
1065 }
1066 #endif
1067
1068 /* add the tb in the target page and protect it if necessary
1069 *
1070 * Called with mmap_lock held for user-mode emulation.
1071 */
1072 static inline void tb_alloc_page(TranslationBlock *tb,
1073 unsigned int n, tb_page_addr_t page_addr)
1074 {
1075 PageDesc *p;
1076 #ifndef CONFIG_USER_ONLY
1077 bool page_already_protected;
1078 #endif
1079
1080 tb->page_addr[n] = page_addr;
1081 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1082 tb->page_next[n] = p->first_tb;
1083 #ifndef CONFIG_USER_ONLY
1084 page_already_protected = p->first_tb != NULL;
1085 #endif
1086 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1087 invalidate_page_bitmap(p);
1088
1089 #if defined(CONFIG_USER_ONLY)
1090 if (p->flags & PAGE_WRITE) {
1091 target_ulong addr;
1092 PageDesc *p2;
1093 int prot;
1094
1095 /* force the host page as non writable (writes will have a
1096 page fault + mprotect overhead) */
1097 page_addr &= qemu_host_page_mask;
1098 prot = 0;
1099 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1100 addr += TARGET_PAGE_SIZE) {
1101
1102 p2 = page_find(addr >> TARGET_PAGE_BITS);
1103 if (!p2) {
1104 continue;
1105 }
1106 prot |= p2->flags;
1107 p2->flags &= ~PAGE_WRITE;
1108 }
1109 mprotect(g2h(page_addr), qemu_host_page_size,
1110 (prot & PAGE_BITS) & ~PAGE_WRITE);
1111 #ifdef DEBUG_TB_INVALIDATE
1112 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1113 page_addr);
1114 #endif
1115 }
1116 #else
1117 /* if some code is already present, then the pages are already
1118 protected. So we handle the case where only the first TB is
1119 allocated in a physical page */
1120 if (!page_already_protected) {
1121 tlb_protect_code(page_addr);
1122 }
1123 #endif
1124 }
1125
1126 /* add a new TB and link it to the physical page tables. phys_page2 is
1127 * (-1) to indicate that only one page contains the TB.
1128 *
1129 * Called with mmap_lock held for user-mode emulation.
1130 */
1131 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1132 tb_page_addr_t phys_page2)
1133 {
1134 uint32_t h;
1135
1136 /* add in the page list */
1137 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1138 if (phys_page2 != -1) {
1139 tb_alloc_page(tb, 1, phys_page2);
1140 } else {
1141 tb->page_addr[1] = -1;
1142 }
1143
1144 /* add in the hash table */
1145 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1146 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1147
1148 #ifdef DEBUG_TB_CHECK
1149 tb_page_check();
1150 #endif
1151 }
1152
1153 /* Called with mmap_lock held for user mode emulation. */
1154 TranslationBlock *tb_gen_code(CPUState *cpu,
1155 target_ulong pc, target_ulong cs_base,
1156 uint32_t flags, int cflags)
1157 {
1158 CPUArchState *env = cpu->env_ptr;
1159 TranslationBlock *tb;
1160 tb_page_addr_t phys_pc, phys_page2;
1161 target_ulong virt_page2;
1162 tcg_insn_unit *gen_code_buf;
1163 int gen_code_size, search_size;
1164 #ifdef CONFIG_PROFILER
1165 int64_t ti;
1166 #endif
1167
1168 phys_pc = get_page_addr_code(env, pc);
1169 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1170 cflags |= CF_USE_ICOUNT;
1171 }
1172
1173 tb = tb_alloc(pc);
1174 if (unlikely(!tb)) {
1175 buffer_overflow:
1176 /* flush must be done */
1177 tb_flush(cpu);
1178 /* cannot fail at this point */
1179 tb = tb_alloc(pc);
1180 assert(tb != NULL);
1181 }
1182
1183 gen_code_buf = tcg_ctx.code_gen_ptr;
1184 tb->tc_ptr = gen_code_buf;
1185 tb->cs_base = cs_base;
1186 tb->flags = flags;
1187 tb->cflags = cflags;
1188
1189 #ifdef CONFIG_PROFILER
1190 tcg_ctx.tb_count1++; /* includes aborted translations because of
1191 exceptions */
1192 ti = profile_getclock();
1193 #endif
1194
1195 tcg_func_start(&tcg_ctx);
1196
1197 tcg_ctx.cpu = ENV_GET_CPU(env);
1198 gen_intermediate_code(env, tb);
1199 tcg_ctx.cpu = NULL;
1200
1201 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1202
1203 /* generate machine code */
1204 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1205 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1206 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1207 #ifdef USE_DIRECT_JUMP
1208 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1209 tcg_ctx.tb_jmp_target_addr = NULL;
1210 #else
1211 tcg_ctx.tb_jmp_insn_offset = NULL;
1212 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1213 #endif
1214
1215 #ifdef CONFIG_PROFILER
1216 tcg_ctx.tb_count++;
1217 tcg_ctx.interm_time += profile_getclock() - ti;
1218 tcg_ctx.code_time -= profile_getclock();
1219 #endif
1220
1221 /* ??? Overflow could be handled better here. In particular, we
1222 don't need to re-do gen_intermediate_code, nor should we re-do
1223 the tcg optimization currently hidden inside tcg_gen_code. All
1224 that should be required is to flush the TBs, allocate a new TB,
1225 re-initialize it per above, and re-do the actual code generation. */
1226 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1227 if (unlikely(gen_code_size < 0)) {
1228 goto buffer_overflow;
1229 }
1230 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1231 if (unlikely(search_size < 0)) {
1232 goto buffer_overflow;
1233 }
1234
1235 #ifdef CONFIG_PROFILER
1236 tcg_ctx.code_time += profile_getclock();
1237 tcg_ctx.code_in_len += tb->size;
1238 tcg_ctx.code_out_len += gen_code_size;
1239 tcg_ctx.search_out_len += search_size;
1240 #endif
1241
1242 #ifdef DEBUG_DISAS
1243 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1244 qemu_log_in_addr_range(tb->pc)) {
1245 qemu_log("OUT: [size=%d]\n", gen_code_size);
1246 log_disas(tb->tc_ptr, gen_code_size);
1247 qemu_log("\n");
1248 qemu_log_flush();
1249 }
1250 #endif
1251
1252 tcg_ctx.code_gen_ptr = (void *)
1253 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1254 CODE_GEN_ALIGN);
1255
1256 /* init jump list */
1257 assert(((uintptr_t)tb & 3) == 0);
1258 tb->jmp_list_first = (uintptr_t)tb | 2;
1259 tb->jmp_list_next[0] = (uintptr_t)NULL;
1260 tb->jmp_list_next[1] = (uintptr_t)NULL;
1261
1262 /* init original jump addresses wich has been set during tcg_gen_code() */
1263 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1264 tb_reset_jump(tb, 0);
1265 }
1266 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1267 tb_reset_jump(tb, 1);
1268 }
1269
1270 /* check next page if needed */
1271 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1272 phys_page2 = -1;
1273 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1274 phys_page2 = get_page_addr_code(env, virt_page2);
1275 }
1276 /* As long as consistency of the TB stuff is provided by tb_lock in user
1277 * mode and is implicit in single-threaded softmmu emulation, no explicit
1278 * memory barrier is required before tb_link_page() makes the TB visible
1279 * through the physical hash table and physical page list.
1280 */
1281 tb_link_page(tb, phys_pc, phys_page2);
1282 return tb;
1283 }
1284
1285 /*
1286 * Invalidate all TBs which intersect with the target physical address range
1287 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1288 * 'is_cpu_write_access' should be true if called from a real cpu write
1289 * access: the virtual CPU will exit the current TB if code is modified inside
1290 * this TB.
1291 *
1292 * Called with mmap_lock held for user-mode emulation
1293 */
1294 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1295 {
1296 while (start < end) {
1297 tb_invalidate_phys_page_range(start, end, 0);
1298 start &= TARGET_PAGE_MASK;
1299 start += TARGET_PAGE_SIZE;
1300 }
1301 }
1302
1303 /*
1304 * Invalidate all TBs which intersect with the target physical address range
1305 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1306 * 'is_cpu_write_access' should be true if called from a real cpu write
1307 * access: the virtual CPU will exit the current TB if code is modified inside
1308 * this TB.
1309 *
1310 * Called with mmap_lock held for user-mode emulation
1311 */
1312 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1313 int is_cpu_write_access)
1314 {
1315 TranslationBlock *tb, *tb_next;
1316 #if defined(TARGET_HAS_PRECISE_SMC)
1317 CPUState *cpu = current_cpu;
1318 CPUArchState *env = NULL;
1319 #endif
1320 tb_page_addr_t tb_start, tb_end;
1321 PageDesc *p;
1322 int n;
1323 #ifdef TARGET_HAS_PRECISE_SMC
1324 int current_tb_not_found = is_cpu_write_access;
1325 TranslationBlock *current_tb = NULL;
1326 int current_tb_modified = 0;
1327 target_ulong current_pc = 0;
1328 target_ulong current_cs_base = 0;
1329 uint32_t current_flags = 0;
1330 #endif /* TARGET_HAS_PRECISE_SMC */
1331
1332 p = page_find(start >> TARGET_PAGE_BITS);
1333 if (!p) {
1334 return;
1335 }
1336 #if defined(TARGET_HAS_PRECISE_SMC)
1337 if (cpu != NULL) {
1338 env = cpu->env_ptr;
1339 }
1340 #endif
1341
1342 /* we remove all the TBs in the range [start, end[ */
1343 /* XXX: see if in some cases it could be faster to invalidate all
1344 the code */
1345 tb = p->first_tb;
1346 while (tb != NULL) {
1347 n = (uintptr_t)tb & 3;
1348 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1349 tb_next = tb->page_next[n];
1350 /* NOTE: this is subtle as a TB may span two physical pages */
1351 if (n == 0) {
1352 /* NOTE: tb_end may be after the end of the page, but
1353 it is not a problem */
1354 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1355 tb_end = tb_start + tb->size;
1356 } else {
1357 tb_start = tb->page_addr[1];
1358 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1359 }
1360 if (!(tb_end <= start || tb_start >= end)) {
1361 #ifdef TARGET_HAS_PRECISE_SMC
1362 if (current_tb_not_found) {
1363 current_tb_not_found = 0;
1364 current_tb = NULL;
1365 if (cpu->mem_io_pc) {
1366 /* now we have a real cpu fault */
1367 current_tb = tb_find_pc(cpu->mem_io_pc);
1368 }
1369 }
1370 if (current_tb == tb &&
1371 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1372 /* If we are modifying the current TB, we must stop
1373 its execution. We could be more precise by checking
1374 that the modification is after the current PC, but it
1375 would require a specialized function to partially
1376 restore the CPU state */
1377
1378 current_tb_modified = 1;
1379 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1380 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1381 &current_flags);
1382 }
1383 #endif /* TARGET_HAS_PRECISE_SMC */
1384 tb_phys_invalidate(tb, -1);
1385 }
1386 tb = tb_next;
1387 }
1388 #if !defined(CONFIG_USER_ONLY)
1389 /* if no code remaining, no need to continue to use slow writes */
1390 if (!p->first_tb) {
1391 invalidate_page_bitmap(p);
1392 tlb_unprotect_code(start);
1393 }
1394 #endif
1395 #ifdef TARGET_HAS_PRECISE_SMC
1396 if (current_tb_modified) {
1397 /* we generate a block containing just the instruction
1398 modifying the memory. It will ensure that it cannot modify
1399 itself */
1400 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1401 cpu_loop_exit_noexc(cpu);
1402 }
1403 #endif
1404 }
1405
1406 #ifdef CONFIG_SOFTMMU
1407 /* len must be <= 8 and start must be a multiple of len */
1408 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1409 {
1410 PageDesc *p;
1411
1412 #if 0
1413 if (1) {
1414 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1415 cpu_single_env->mem_io_vaddr, len,
1416 cpu_single_env->eip,
1417 cpu_single_env->eip +
1418 (intptr_t)cpu_single_env->segs[R_CS].base);
1419 }
1420 #endif
1421 p = page_find(start >> TARGET_PAGE_BITS);
1422 if (!p) {
1423 return;
1424 }
1425 if (!p->code_bitmap &&
1426 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1427 /* build code bitmap */
1428 build_page_bitmap(p);
1429 }
1430 if (p->code_bitmap) {
1431 unsigned int nr;
1432 unsigned long b;
1433
1434 nr = start & ~TARGET_PAGE_MASK;
1435 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1436 if (b & ((1 << len) - 1)) {
1437 goto do_invalidate;
1438 }
1439 } else {
1440 do_invalidate:
1441 tb_invalidate_phys_page_range(start, start + len, 1);
1442 }
1443 }
1444 #else
1445 /* Called with mmap_lock held. If pc is not 0 then it indicates the
1446 * host PC of the faulting store instruction that caused this invalidate.
1447 * Returns true if the caller needs to abort execution of the current
1448 * TB (because it was modified by this store and the guest CPU has
1449 * precise-SMC semantics).
1450 */
1451 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1452 {
1453 TranslationBlock *tb;
1454 PageDesc *p;
1455 int n;
1456 #ifdef TARGET_HAS_PRECISE_SMC
1457 TranslationBlock *current_tb = NULL;
1458 CPUState *cpu = current_cpu;
1459 CPUArchState *env = NULL;
1460 int current_tb_modified = 0;
1461 target_ulong current_pc = 0;
1462 target_ulong current_cs_base = 0;
1463 uint32_t current_flags = 0;
1464 #endif
1465
1466 addr &= TARGET_PAGE_MASK;
1467 p = page_find(addr >> TARGET_PAGE_BITS);
1468 if (!p) {
1469 return false;
1470 }
1471 tb = p->first_tb;
1472 #ifdef TARGET_HAS_PRECISE_SMC
1473 if (tb && pc != 0) {
1474 current_tb = tb_find_pc(pc);
1475 }
1476 if (cpu != NULL) {
1477 env = cpu->env_ptr;
1478 }
1479 #endif
1480 while (tb != NULL) {
1481 n = (uintptr_t)tb & 3;
1482 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1483 #ifdef TARGET_HAS_PRECISE_SMC
1484 if (current_tb == tb &&
1485 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1486 /* If we are modifying the current TB, we must stop
1487 its execution. We could be more precise by checking
1488 that the modification is after the current PC, but it
1489 would require a specialized function to partially
1490 restore the CPU state */
1491
1492 current_tb_modified = 1;
1493 cpu_restore_state_from_tb(cpu, current_tb, pc);
1494 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1495 &current_flags);
1496 }
1497 #endif /* TARGET_HAS_PRECISE_SMC */
1498 tb_phys_invalidate(tb, addr);
1499 tb = tb->page_next[n];
1500 }
1501 p->first_tb = NULL;
1502 #ifdef TARGET_HAS_PRECISE_SMC
1503 if (current_tb_modified) {
1504 /* we generate a block containing just the instruction
1505 modifying the memory. It will ensure that it cannot modify
1506 itself */
1507 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1508 return true;
1509 }
1510 #endif
1511 return false;
1512 }
1513 #endif
1514
1515 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1516 tb[1].tc_ptr. Return NULL if not found */
1517 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1518 {
1519 int m_min, m_max, m;
1520 uintptr_t v;
1521 TranslationBlock *tb;
1522
1523 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1524 return NULL;
1525 }
1526 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1527 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1528 return NULL;
1529 }
1530 /* binary search (cf Knuth) */
1531 m_min = 0;
1532 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1533 while (m_min <= m_max) {
1534 m = (m_min + m_max) >> 1;
1535 tb = &tcg_ctx.tb_ctx.tbs[m];
1536 v = (uintptr_t)tb->tc_ptr;
1537 if (v == tc_ptr) {
1538 return tb;
1539 } else if (tc_ptr < v) {
1540 m_max = m - 1;
1541 } else {
1542 m_min = m + 1;
1543 }
1544 }
1545 return &tcg_ctx.tb_ctx.tbs[m_max];
1546 }
1547
1548 #if !defined(CONFIG_USER_ONLY)
1549 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1550 {
1551 ram_addr_t ram_addr;
1552 MemoryRegion *mr;
1553 hwaddr l = 1;
1554
1555 rcu_read_lock();
1556 mr = address_space_translate(as, addr, &addr, &l, false);
1557 if (!(memory_region_is_ram(mr)
1558 || memory_region_is_romd(mr))) {
1559 rcu_read_unlock();
1560 return;
1561 }
1562 ram_addr = memory_region_get_ram_addr(mr) + addr;
1563 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1564 rcu_read_unlock();
1565 }
1566 #endif /* !defined(CONFIG_USER_ONLY) */
1567
1568 void tb_check_watchpoint(CPUState *cpu)
1569 {
1570 TranslationBlock *tb;
1571
1572 tb = tb_find_pc(cpu->mem_io_pc);
1573 if (tb) {
1574 /* We can use retranslation to find the PC. */
1575 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1576 tb_phys_invalidate(tb, -1);
1577 } else {
1578 /* The exception probably happened in a helper. The CPU state should
1579 have been saved before calling it. Fetch the PC from there. */
1580 CPUArchState *env = cpu->env_ptr;
1581 target_ulong pc, cs_base;
1582 tb_page_addr_t addr;
1583 uint32_t flags;
1584
1585 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1586 addr = get_page_addr_code(env, pc);
1587 tb_invalidate_phys_range(addr, addr + 1);
1588 }
1589 }
1590
1591 #ifndef CONFIG_USER_ONLY
1592 /* in deterministic execution mode, instructions doing device I/Os
1593 must be at the end of the TB */
1594 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1595 {
1596 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1597 CPUArchState *env = cpu->env_ptr;
1598 #endif
1599 TranslationBlock *tb;
1600 uint32_t n, cflags;
1601 target_ulong pc, cs_base;
1602 uint32_t flags;
1603
1604 tb = tb_find_pc(retaddr);
1605 if (!tb) {
1606 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1607 (void *)retaddr);
1608 }
1609 n = cpu->icount_decr.u16.low + tb->icount;
1610 cpu_restore_state_from_tb(cpu, tb, retaddr);
1611 /* Calculate how many instructions had been executed before the fault
1612 occurred. */
1613 n = n - cpu->icount_decr.u16.low;
1614 /* Generate a new TB ending on the I/O insn. */
1615 n++;
1616 /* On MIPS and SH, delay slot instructions can only be restarted if
1617 they were already the first instruction in the TB. If this is not
1618 the first instruction in a TB then re-execute the preceding
1619 branch. */
1620 #if defined(TARGET_MIPS)
1621 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1622 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1623 cpu->icount_decr.u16.low++;
1624 env->hflags &= ~MIPS_HFLAG_BMASK;
1625 }
1626 #elif defined(TARGET_SH4)
1627 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1628 && n > 1) {
1629 env->pc -= 2;
1630 cpu->icount_decr.u16.low++;
1631 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1632 }
1633 #endif
1634 /* This should never happen. */
1635 if (n > CF_COUNT_MASK) {
1636 cpu_abort(cpu, "TB too big during recompile");
1637 }
1638
1639 cflags = n | CF_LAST_IO;
1640 pc = tb->pc;
1641 cs_base = tb->cs_base;
1642 flags = tb->flags;
1643 tb_phys_invalidate(tb, -1);
1644 if (tb->cflags & CF_NOCACHE) {
1645 if (tb->orig_tb) {
1646 /* Invalidate original TB if this TB was generated in
1647 * cpu_exec_nocache() */
1648 tb_phys_invalidate(tb->orig_tb, -1);
1649 }
1650 tb_free(tb);
1651 }
1652 /* FIXME: In theory this could raise an exception. In practice
1653 we have already translated the block once so it's probably ok. */
1654 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1655 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1656 the first in the TB) then we end up generating a whole new TB and
1657 repeating the fault, which is horribly inefficient.
1658 Better would be to execute just this insn uncached, or generate a
1659 second new TB. */
1660 cpu_loop_exit_noexc(cpu);
1661 }
1662
1663 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1664 {
1665 unsigned int i;
1666
1667 /* Discard jump cache entries for any tb which might potentially
1668 overlap the flushed page. */
1669 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1670 memset(&cpu->tb_jmp_cache[i], 0,
1671 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1672
1673 i = tb_jmp_cache_hash_page(addr);
1674 memset(&cpu->tb_jmp_cache[i], 0,
1675 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1676 }
1677
1678 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1679 struct qht_stats hst)
1680 {
1681 uint32_t hgram_opts;
1682 size_t hgram_bins;
1683 char *hgram;
1684
1685 if (!hst.head_buckets) {
1686 return;
1687 }
1688 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1689 hst.used_head_buckets, hst.head_buckets,
1690 (double)hst.used_head_buckets / hst.head_buckets * 100);
1691
1692 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1693 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1694 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1695 hgram_opts |= QDIST_PR_NODECIMAL;
1696 }
1697 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1698 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1699 qdist_avg(&hst.occupancy) * 100, hgram);
1700 g_free(hgram);
1701
1702 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1703 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1704 if (hgram_bins > 10) {
1705 hgram_bins = 10;
1706 } else {
1707 hgram_bins = 0;
1708 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1709 }
1710 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1711 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1712 qdist_avg(&hst.chain), hgram);
1713 g_free(hgram);
1714 }
1715
1716 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1717 {
1718 int i, target_code_size, max_target_code_size;
1719 int direct_jmp_count, direct_jmp2_count, cross_page;
1720 TranslationBlock *tb;
1721 struct qht_stats hst;
1722
1723 target_code_size = 0;
1724 max_target_code_size = 0;
1725 cross_page = 0;
1726 direct_jmp_count = 0;
1727 direct_jmp2_count = 0;
1728 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1729 tb = &tcg_ctx.tb_ctx.tbs[i];
1730 target_code_size += tb->size;
1731 if (tb->size > max_target_code_size) {
1732 max_target_code_size = tb->size;
1733 }
1734 if (tb->page_addr[1] != -1) {
1735 cross_page++;
1736 }
1737 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1738 direct_jmp_count++;
1739 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1740 direct_jmp2_count++;
1741 }
1742 }
1743 }
1744 /* XXX: avoid using doubles ? */
1745 cpu_fprintf(f, "Translation buffer state:\n");
1746 cpu_fprintf(f, "gen code size %td/%zd\n",
1747 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1748 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1749 cpu_fprintf(f, "TB count %d/%d\n",
1750 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1751 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1752 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1753 tcg_ctx.tb_ctx.nb_tbs : 0,
1754 max_target_code_size);
1755 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1756 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1757 tcg_ctx.code_gen_buffer) /
1758 tcg_ctx.tb_ctx.nb_tbs : 0,
1759 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1760 tcg_ctx.code_gen_buffer) /
1761 target_code_size : 0);
1762 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1763 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1764 tcg_ctx.tb_ctx.nb_tbs : 0);
1765 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1766 direct_jmp_count,
1767 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1768 tcg_ctx.tb_ctx.nb_tbs : 0,
1769 direct_jmp2_count,
1770 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1771 tcg_ctx.tb_ctx.nb_tbs : 0);
1772
1773 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1774 print_qht_statistics(f, cpu_fprintf, hst);
1775 qht_statistics_destroy(&hst);
1776
1777 cpu_fprintf(f, "\nStatistics:\n");
1778 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1779 cpu_fprintf(f, "TB invalidate count %d\n",
1780 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1781 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1782 tcg_dump_info(f, cpu_fprintf);
1783 }
1784
1785 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1786 {
1787 tcg_dump_op_count(f, cpu_fprintf);
1788 }
1789
1790 #else /* CONFIG_USER_ONLY */
1791
1792 void cpu_interrupt(CPUState *cpu, int mask)
1793 {
1794 cpu->interrupt_request |= mask;
1795 cpu->tcg_exit_req = 1;
1796 }
1797
1798 /*
1799 * Walks guest process memory "regions" one by one
1800 * and calls callback function 'fn' for each region.
1801 */
1802 struct walk_memory_regions_data {
1803 walk_memory_regions_fn fn;
1804 void *priv;
1805 target_ulong start;
1806 int prot;
1807 };
1808
1809 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1810 target_ulong end, int new_prot)
1811 {
1812 if (data->start != -1u) {
1813 int rc = data->fn(data->priv, data->start, end, data->prot);
1814 if (rc != 0) {
1815 return rc;
1816 }
1817 }
1818
1819 data->start = (new_prot ? end : -1u);
1820 data->prot = new_prot;
1821
1822 return 0;
1823 }
1824
1825 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1826 target_ulong base, int level, void **lp)
1827 {
1828 target_ulong pa;
1829 int i, rc;
1830
1831 if (*lp == NULL) {
1832 return walk_memory_regions_end(data, base, 0);
1833 }
1834
1835 if (level == 0) {
1836 PageDesc *pd = *lp;
1837
1838 for (i = 0; i < V_L2_SIZE; ++i) {
1839 int prot = pd[i].flags;
1840
1841 pa = base | (i << TARGET_PAGE_BITS);
1842 if (prot != data->prot) {
1843 rc = walk_memory_regions_end(data, pa, prot);
1844 if (rc != 0) {
1845 return rc;
1846 }
1847 }
1848 }
1849 } else {
1850 void **pp = *lp;
1851
1852 for (i = 0; i < V_L2_SIZE; ++i) {
1853 pa = base | ((target_ulong)i <<
1854 (TARGET_PAGE_BITS + V_L2_BITS * level));
1855 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1856 if (rc != 0) {
1857 return rc;
1858 }
1859 }
1860 }
1861
1862 return 0;
1863 }
1864
1865 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1866 {
1867 struct walk_memory_regions_data data;
1868 uintptr_t i;
1869
1870 data.fn = fn;
1871 data.priv = priv;
1872 data.start = -1u;
1873 data.prot = 0;
1874
1875 for (i = 0; i < V_L1_SIZE; i++) {
1876 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1877 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1878 if (rc != 0) {
1879 return rc;
1880 }
1881 }
1882
1883 return walk_memory_regions_end(&data, 0, 0);
1884 }
1885
1886 static int dump_region(void *priv, target_ulong start,
1887 target_ulong end, unsigned long prot)
1888 {
1889 FILE *f = (FILE *)priv;
1890
1891 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1892 " "TARGET_FMT_lx" %c%c%c\n",
1893 start, end, end - start,
1894 ((prot & PAGE_READ) ? 'r' : '-'),
1895 ((prot & PAGE_WRITE) ? 'w' : '-'),
1896 ((prot & PAGE_EXEC) ? 'x' : '-'));
1897
1898 return 0;
1899 }
1900
1901 /* dump memory mappings */
1902 void page_dump(FILE *f)
1903 {
1904 const int length = sizeof(target_ulong) * 2;
1905 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1906 length, "start", length, "end", length, "size", "prot");
1907 walk_memory_regions(f, dump_region);
1908 }
1909
1910 int page_get_flags(target_ulong address)
1911 {
1912 PageDesc *p;
1913
1914 p = page_find(address >> TARGET_PAGE_BITS);
1915 if (!p) {
1916 return 0;
1917 }
1918 return p->flags;
1919 }
1920
1921 /* Modify the flags of a page and invalidate the code if necessary.
1922 The flag PAGE_WRITE_ORG is positioned automatically depending
1923 on PAGE_WRITE. The mmap_lock should already be held. */
1924 void page_set_flags(target_ulong start, target_ulong end, int flags)
1925 {
1926 target_ulong addr, len;
1927
1928 /* This function should never be called with addresses outside the
1929 guest address space. If this assert fires, it probably indicates
1930 a missing call to h2g_valid. */
1931 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1932 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1933 #endif
1934 assert(start < end);
1935
1936 start = start & TARGET_PAGE_MASK;
1937 end = TARGET_PAGE_ALIGN(end);
1938
1939 if (flags & PAGE_WRITE) {
1940 flags |= PAGE_WRITE_ORG;
1941 }
1942
1943 for (addr = start, len = end - start;
1944 len != 0;
1945 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1946 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1947
1948 /* If the write protection bit is set, then we invalidate
1949 the code inside. */
1950 if (!(p->flags & PAGE_WRITE) &&
1951 (flags & PAGE_WRITE) &&
1952 p->first_tb) {
1953 tb_invalidate_phys_page(addr, 0);
1954 }
1955 p->flags = flags;
1956 }
1957 }
1958
1959 int page_check_range(target_ulong start, target_ulong len, int flags)
1960 {
1961 PageDesc *p;
1962 target_ulong end;
1963 target_ulong addr;
1964
1965 /* This function should never be called with addresses outside the
1966 guest address space. If this assert fires, it probably indicates
1967 a missing call to h2g_valid. */
1968 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1969 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1970 #endif
1971
1972 if (len == 0) {
1973 return 0;
1974 }
1975 if (start + len - 1 < start) {
1976 /* We've wrapped around. */
1977 return -1;
1978 }
1979
1980 /* must do before we loose bits in the next step */
1981 end = TARGET_PAGE_ALIGN(start + len);
1982 start = start & TARGET_PAGE_MASK;
1983
1984 for (addr = start, len = end - start;
1985 len != 0;
1986 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1987 p = page_find(addr >> TARGET_PAGE_BITS);
1988 if (!p) {
1989 return -1;
1990 }
1991 if (!(p->flags & PAGE_VALID)) {
1992 return -1;
1993 }
1994
1995 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1996 return -1;
1997 }
1998 if (flags & PAGE_WRITE) {
1999 if (!(p->flags & PAGE_WRITE_ORG)) {
2000 return -1;
2001 }
2002 /* unprotect the page if it was put read-only because it
2003 contains translated code */
2004 if (!(p->flags & PAGE_WRITE)) {
2005 if (!page_unprotect(addr, 0)) {
2006 return -1;
2007 }
2008 }
2009 }
2010 }
2011 return 0;
2012 }
2013
2014 /* called from signal handler: invalidate the code and unprotect the
2015 * page. Return 0 if the fault was not handled, 1 if it was handled,
2016 * and 2 if it was handled but the caller must cause the TB to be
2017 * immediately exited. (We can only return 2 if the 'pc' argument is
2018 * non-zero.)
2019 */
2020 int page_unprotect(target_ulong address, uintptr_t pc)
2021 {
2022 unsigned int prot;
2023 bool current_tb_invalidated;
2024 PageDesc *p;
2025 target_ulong host_start, host_end, addr;
2026
2027 /* Technically this isn't safe inside a signal handler. However we
2028 know this only ever happens in a synchronous SEGV handler, so in
2029 practice it seems to be ok. */
2030 mmap_lock();
2031
2032 p = page_find(address >> TARGET_PAGE_BITS);
2033 if (!p) {
2034 mmap_unlock();
2035 return 0;
2036 }
2037
2038 /* if the page was really writable, then we change its
2039 protection back to writable */
2040 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2041 host_start = address & qemu_host_page_mask;
2042 host_end = host_start + qemu_host_page_size;
2043
2044 prot = 0;
2045 current_tb_invalidated = false;
2046 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2047 p = page_find(addr >> TARGET_PAGE_BITS);
2048 p->flags |= PAGE_WRITE;
2049 prot |= p->flags;
2050
2051 /* and since the content will be modified, we must invalidate
2052 the corresponding translated code. */
2053 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2054 #ifdef DEBUG_TB_CHECK
2055 tb_invalidate_check(addr);
2056 #endif
2057 }
2058 mprotect((void *)g2h(host_start), qemu_host_page_size,
2059 prot & PAGE_BITS);
2060
2061 mmap_unlock();
2062 /* If current TB was invalidated return to main loop */
2063 return current_tb_invalidated ? 2 : 1;
2064 }
2065 mmap_unlock();
2066 return 0;
2067 }
2068 #endif /* CONFIG_USER_ONLY */