]> git.proxmox.com Git - mirror_qemu.git/blob - translate-all.c
ide: Prohibit RESET on IDE drives
[mirror_qemu.git] / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/mman.h>
23 #endif
24 #include "qemu/osdep.h"
25
26
27 #include "qemu-common.h"
28 #define NO_CPU_IO_DEFS
29 #include "cpu.h"
30 #include "trace.h"
31 #include "disas/disas.h"
32 #include "tcg.h"
33 #if defined(CONFIG_USER_ONLY)
34 #include "qemu.h"
35 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36 #include <sys/param.h>
37 #if __FreeBSD_version >= 700104
38 #define HAVE_KINFO_GETVMMAP
39 #define sigqueue sigqueue_freebsd /* avoid redefinition */
40 #include <sys/proc.h>
41 #include <machine/profile.h>
42 #define _KERNEL
43 #include <sys/user.h>
44 #undef _KERNEL
45 #undef sigqueue
46 #include <libutil.h>
47 #endif
48 #endif
49 #else
50 #include "exec/address-spaces.h"
51 #endif
52
53 #include "exec/cputlb.h"
54 #include "exec/tb-hash.h"
55 #include "translate-all.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/timer.h"
58 #include "exec/log.h"
59
60 //#define DEBUG_TB_INVALIDATE
61 //#define DEBUG_FLUSH
62 /* make various TB consistency checks */
63 //#define DEBUG_TB_CHECK
64
65 #if !defined(CONFIG_USER_ONLY)
66 /* TB consistency checks only implemented for usermode emulation. */
67 #undef DEBUG_TB_CHECK
68 #endif
69
70 #define SMC_BITMAP_USE_THRESHOLD 10
71
72 typedef struct PageDesc {
73 /* list of TBs intersecting this ram page */
74 TranslationBlock *first_tb;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
78 unsigned long *code_bitmap;
79 #if defined(CONFIG_USER_ONLY)
80 unsigned long flags;
81 #endif
82 } PageDesc;
83
84 /* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86 #if !defined(CONFIG_USER_ONLY)
87 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89 #else
90 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91 #endif
92 #else
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94 #endif
95
96 /* Size of the L2 (and L3, etc) page tables. */
97 #define V_L2_BITS 10
98 #define V_L2_SIZE (1 << V_L2_BITS)
99
100 /* The bits remaining after N lower levels of page tables. */
101 #define V_L1_BITS_REM \
102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
103
104 #if V_L1_BITS_REM < 4
105 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
106 #else
107 #define V_L1_BITS V_L1_BITS_REM
108 #endif
109
110 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111
112 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113
114 uintptr_t qemu_host_page_size;
115 intptr_t qemu_host_page_mask;
116
117 /* The bottom level has pointers to PageDesc */
118 static void *l1_map[V_L1_SIZE];
119
120 /* code generation context */
121 TCGContext tcg_ctx;
122
123 /* translation block context */
124 #ifdef CONFIG_USER_ONLY
125 __thread int have_tb_lock;
126 #endif
127
128 void tb_lock(void)
129 {
130 #ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134 #endif
135 }
136
137 void tb_unlock(void)
138 {
139 #ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143 #endif
144 }
145
146 void tb_lock_reset(void)
147 {
148 #ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
152 }
153 #endif
154 }
155
156 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
157 tb_page_addr_t phys_page2);
158 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
159
160 void cpu_gen_init(void)
161 {
162 tcg_context_init(&tcg_ctx);
163 }
164
165 /* Encode VAL as a signed leb128 sequence at P.
166 Return P incremented past the encoded value. */
167 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
168 {
169 int more, byte;
170
171 do {
172 byte = val & 0x7f;
173 val >>= 7;
174 more = !((val == 0 && (byte & 0x40) == 0)
175 || (val == -1 && (byte & 0x40) != 0));
176 if (more) {
177 byte |= 0x80;
178 }
179 *p++ = byte;
180 } while (more);
181
182 return p;
183 }
184
185 /* Decode a signed leb128 sequence at *PP; increment *PP past the
186 decoded value. Return the decoded value. */
187 static target_long decode_sleb128(uint8_t **pp)
188 {
189 uint8_t *p = *pp;
190 target_long val = 0;
191 int byte, shift = 0;
192
193 do {
194 byte = *p++;
195 val |= (target_ulong)(byte & 0x7f) << shift;
196 shift += 7;
197 } while (byte & 0x80);
198 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
199 val |= -(target_ulong)1 << shift;
200 }
201
202 *pp = p;
203 return val;
204 }
205
206 /* Encode the data collected about the instructions while compiling TB.
207 Place the data at BLOCK, and return the number of bytes consumed.
208
209 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
210 which come from the target's insn_start data, followed by a uintptr_t
211 which comes from the host pc of the end of the code implementing the insn.
212
213 Each line of the table is encoded as sleb128 deltas from the previous
214 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
215 That is, the first column is seeded with the guest pc, the last column
216 with the host pc, and the middle columns with zeros. */
217
218 static int encode_search(TranslationBlock *tb, uint8_t *block)
219 {
220 uint8_t *highwater = tcg_ctx.code_gen_highwater;
221 uint8_t *p = block;
222 int i, j, n;
223
224 tb->tc_search = block;
225
226 for (i = 0, n = tb->icount; i < n; ++i) {
227 target_ulong prev;
228
229 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
230 if (i == 0) {
231 prev = (j == 0 ? tb->pc : 0);
232 } else {
233 prev = tcg_ctx.gen_insn_data[i - 1][j];
234 }
235 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
236 }
237 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
238 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
239
240 /* Test for (pending) buffer overflow. The assumption is that any
241 one row beginning below the high water mark cannot overrun
242 the buffer completely. Thus we can test for overflow after
243 encoding a row without having to check during encoding. */
244 if (unlikely(p > highwater)) {
245 return -1;
246 }
247 }
248
249 return p - block;
250 }
251
252 /* The cpu state corresponding to 'searched_pc' is restored. */
253 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
254 uintptr_t searched_pc)
255 {
256 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
257 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
258 CPUArchState *env = cpu->env_ptr;
259 uint8_t *p = tb->tc_search;
260 int i, j, num_insns = tb->icount;
261 #ifdef CONFIG_PROFILER
262 int64_t ti = profile_getclock();
263 #endif
264
265 if (searched_pc < host_pc) {
266 return -1;
267 }
268
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
274 }
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
278 }
279 }
280 return -1;
281
282 found:
283 if (tb->cflags & CF_USE_ICOUNT) {
284 assert(use_icount);
285 /* Reset the cycle counter to the start of the block. */
286 cpu->icount_decr.u16.low += num_insns;
287 /* Clear the IO flag. */
288 cpu->can_do_io = 0;
289 }
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
292
293 #ifdef CONFIG_PROFILER
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
296 #endif
297 return 0;
298 }
299
300 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
301 {
302 TranslationBlock *tb;
303
304 tb = tb_find_pc(retaddr);
305 if (tb) {
306 cpu_restore_state_from_tb(cpu, tb, retaddr);
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
309 cpu->current_tb = NULL;
310 tb_phys_invalidate(tb, -1);
311 tb_free(tb);
312 }
313 return true;
314 }
315 return false;
316 }
317
318 void page_size_init(void)
319 {
320 /* NOTE: we can always suppose that qemu_host_page_size >=
321 TARGET_PAGE_SIZE */
322 qemu_real_host_page_size = getpagesize();
323 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
324 if (qemu_host_page_size == 0) {
325 qemu_host_page_size = qemu_real_host_page_size;
326 }
327 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
328 qemu_host_page_size = TARGET_PAGE_SIZE;
329 }
330 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
331 }
332
333 static void page_init(void)
334 {
335 page_size_init();
336 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
337 {
338 #ifdef HAVE_KINFO_GETVMMAP
339 struct kinfo_vmentry *freep;
340 int i, cnt;
341
342 freep = kinfo_getvmmap(getpid(), &cnt);
343 if (freep) {
344 mmap_lock();
345 for (i = 0; i < cnt; i++) {
346 unsigned long startaddr, endaddr;
347
348 startaddr = freep[i].kve_start;
349 endaddr = freep[i].kve_end;
350 if (h2g_valid(startaddr)) {
351 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
352
353 if (h2g_valid(endaddr)) {
354 endaddr = h2g(endaddr);
355 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
356 } else {
357 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
358 endaddr = ~0ul;
359 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
360 #endif
361 }
362 }
363 }
364 free(freep);
365 mmap_unlock();
366 }
367 #else
368 FILE *f;
369
370 last_brk = (unsigned long)sbrk(0);
371
372 f = fopen("/compat/linux/proc/self/maps", "r");
373 if (f) {
374 mmap_lock();
375
376 do {
377 unsigned long startaddr, endaddr;
378 int n;
379
380 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
381
382 if (n == 2 && h2g_valid(startaddr)) {
383 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
384
385 if (h2g_valid(endaddr)) {
386 endaddr = h2g(endaddr);
387 } else {
388 endaddr = ~0ul;
389 }
390 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
391 }
392 } while (!feof(f));
393
394 fclose(f);
395 mmap_unlock();
396 }
397 #endif
398 }
399 #endif
400 }
401
402 /* If alloc=1:
403 * Called with mmap_lock held for user-mode emulation.
404 */
405 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
406 {
407 PageDesc *pd;
408 void **lp;
409 int i;
410
411 /* Level 1. Always allocated. */
412 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
413
414 /* Level 2..N-1. */
415 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
416 void **p = atomic_rcu_read(lp);
417
418 if (p == NULL) {
419 if (!alloc) {
420 return NULL;
421 }
422 p = g_new0(void *, V_L2_SIZE);
423 atomic_rcu_set(lp, p);
424 }
425
426 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
427 }
428
429 pd = atomic_rcu_read(lp);
430 if (pd == NULL) {
431 if (!alloc) {
432 return NULL;
433 }
434 pd = g_new0(PageDesc, V_L2_SIZE);
435 atomic_rcu_set(lp, pd);
436 }
437
438 return pd + (index & (V_L2_SIZE - 1));
439 }
440
441 static inline PageDesc *page_find(tb_page_addr_t index)
442 {
443 return page_find_alloc(index, 0);
444 }
445
446 #if defined(CONFIG_USER_ONLY)
447 /* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451 #define USE_STATIC_CODE_GEN_BUFFER
452 #endif
453
454 /* Minimum size of the code gen buffer. This number is randomly chosen,
455 but not so small that we can't have a fair number of TB's live. */
456 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
457
458 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
459 indicated, this is constrained by the range of direct branches on the
460 host cpu, as used by the TCG implementation of goto_tb. */
461 #if defined(__x86_64__)
462 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463 #elif defined(__sparc__)
464 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
465 #elif defined(__powerpc64__)
466 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
467 #elif defined(__aarch64__)
468 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
469 #elif defined(__arm__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
471 #elif defined(__s390x__)
472 /* We have a +- 4GB range on the branches; leave some slop. */
473 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
474 #elif defined(__mips__)
475 /* We have a 256MB branch region, but leave room to make sure the
476 main executable is also within that region. */
477 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
478 #else
479 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
480 #endif
481
482 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
483
484 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
485 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
486 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
487
488 static inline size_t size_code_gen_buffer(size_t tb_size)
489 {
490 /* Size the buffer. */
491 if (tb_size == 0) {
492 #ifdef USE_STATIC_CODE_GEN_BUFFER
493 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
494 #else
495 /* ??? Needs adjustments. */
496 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
497 static buffer, we could size this on RESERVED_VA, on the text
498 segment size of the executable, or continue to use the default. */
499 tb_size = (unsigned long)(ram_size / 4);
500 #endif
501 }
502 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
504 }
505 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
506 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
507 }
508 tcg_ctx.code_gen_buffer_size = tb_size;
509 return tb_size;
510 }
511
512 #ifdef __mips__
513 /* In order to use J and JAL within the code_gen_buffer, we require
514 that the buffer not cross a 256MB boundary. */
515 static inline bool cross_256mb(void *addr, size_t size)
516 {
517 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
518 }
519
520 /* We weren't able to allocate a buffer without crossing that boundary,
521 so make do with the larger portion of the buffer that doesn't cross.
522 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
523 static inline void *split_cross_256mb(void *buf1, size_t size1)
524 {
525 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
526 size_t size2 = buf1 + size1 - buf2;
527
528 size1 = buf2 - buf1;
529 if (size1 < size2) {
530 size1 = size2;
531 buf1 = buf2;
532 }
533
534 tcg_ctx.code_gen_buffer_size = size1;
535 return buf1;
536 }
537 #endif
538
539 #ifdef USE_STATIC_CODE_GEN_BUFFER
540 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
541 __attribute__((aligned(CODE_GEN_ALIGN)));
542
543 # ifdef _WIN32
544 static inline void do_protect(void *addr, long size, int prot)
545 {
546 DWORD old_protect;
547 VirtualProtect(addr, size, prot, &old_protect);
548 }
549
550 static inline void map_exec(void *addr, long size)
551 {
552 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
553 }
554
555 static inline void map_none(void *addr, long size)
556 {
557 do_protect(addr, size, PAGE_NOACCESS);
558 }
559 # else
560 static inline void do_protect(void *addr, long size, int prot)
561 {
562 uintptr_t start, end;
563
564 start = (uintptr_t)addr;
565 start &= qemu_real_host_page_mask;
566
567 end = (uintptr_t)addr + size;
568 end = ROUND_UP(end, qemu_real_host_page_size);
569
570 mprotect((void *)start, end - start, prot);
571 }
572
573 static inline void map_exec(void *addr, long size)
574 {
575 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
576 }
577
578 static inline void map_none(void *addr, long size)
579 {
580 do_protect(addr, size, PROT_NONE);
581 }
582 # endif /* WIN32 */
583
584 static inline void *alloc_code_gen_buffer(void)
585 {
586 void *buf = static_code_gen_buffer;
587 size_t full_size, size;
588
589 /* The size of the buffer, rounded down to end on a page boundary. */
590 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
591 & qemu_real_host_page_mask) - (uintptr_t)buf;
592
593 /* Reserve a guard page. */
594 size = full_size - qemu_real_host_page_size;
595
596 /* Honor a command-line option limiting the size of the buffer. */
597 if (size > tcg_ctx.code_gen_buffer_size) {
598 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
599 & qemu_real_host_page_mask) - (uintptr_t)buf;
600 }
601 tcg_ctx.code_gen_buffer_size = size;
602
603 #ifdef __mips__
604 if (cross_256mb(buf, size)) {
605 buf = split_cross_256mb(buf, size);
606 size = tcg_ctx.code_gen_buffer_size;
607 }
608 #endif
609
610 map_exec(buf, size);
611 map_none(buf + size, qemu_real_host_page_size);
612 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
613
614 return buf;
615 }
616 #elif defined(_WIN32)
617 static inline void *alloc_code_gen_buffer(void)
618 {
619 size_t size = tcg_ctx.code_gen_buffer_size;
620 void *buf1, *buf2;
621
622 /* Perform the allocation in two steps, so that the guard page
623 is reserved but uncommitted. */
624 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
625 MEM_RESERVE, PAGE_NOACCESS);
626 if (buf1 != NULL) {
627 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
628 assert(buf1 == buf2);
629 }
630
631 return buf1;
632 }
633 #else
634 static inline void *alloc_code_gen_buffer(void)
635 {
636 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
637 uintptr_t start = 0;
638 size_t size = tcg_ctx.code_gen_buffer_size;
639 void *buf;
640
641 /* Constrain the position of the buffer based on the host cpu.
642 Note that these addresses are chosen in concert with the
643 addresses assigned in the relevant linker script file. */
644 # if defined(__PIE__) || defined(__PIC__)
645 /* Don't bother setting a preferred location if we're building
646 a position-independent executable. We're more likely to get
647 an address near the main executable if we let the kernel
648 choose the address. */
649 # elif defined(__x86_64__) && defined(MAP_32BIT)
650 /* Force the memory down into low memory with the executable.
651 Leave the choice of exact location with the kernel. */
652 flags |= MAP_32BIT;
653 /* Cannot expect to map more than 800MB in low memory. */
654 if (size > 800u * 1024 * 1024) {
655 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
656 }
657 # elif defined(__sparc__)
658 start = 0x40000000ul;
659 # elif defined(__s390x__)
660 start = 0x90000000ul;
661 # elif defined(__mips__)
662 # if _MIPS_SIM == _ABI64
663 start = 0x128000000ul;
664 # else
665 start = 0x08000000ul;
666 # endif
667 # endif
668
669 buf = mmap((void *)start, size + qemu_real_host_page_size,
670 PROT_NONE, flags, -1, 0);
671 if (buf == MAP_FAILED) {
672 return NULL;
673 }
674
675 #ifdef __mips__
676 if (cross_256mb(buf, size)) {
677 /* Try again, with the original still mapped, to avoid re-acquiring
678 that 256mb crossing. This time don't specify an address. */
679 size_t size2;
680 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
681 PROT_NONE, flags, -1, 0);
682 switch (buf2 != MAP_FAILED) {
683 case 1:
684 if (!cross_256mb(buf2, size)) {
685 /* Success! Use the new buffer. */
686 munmap(buf, size);
687 break;
688 }
689 /* Failure. Work with what we had. */
690 munmap(buf2, size);
691 /* fallthru */
692 default:
693 /* Split the original buffer. Free the smaller half. */
694 buf2 = split_cross_256mb(buf, size);
695 size2 = tcg_ctx.code_gen_buffer_size;
696 if (buf == buf2) {
697 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
698 } else {
699 munmap(buf, size - size2);
700 }
701 size = size2;
702 break;
703 }
704 buf = buf2;
705 }
706 #endif
707
708 /* Make the final buffer accessible. The guard page at the end
709 will remain inaccessible with PROT_NONE. */
710 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
711
712 /* Request large pages for the buffer. */
713 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
714
715 return buf;
716 }
717 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
718
719 static inline void code_gen_alloc(size_t tb_size)
720 {
721 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
722 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
723 if (tcg_ctx.code_gen_buffer == NULL) {
724 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
725 exit(1);
726 }
727
728 /* Estimate a good size for the number of TBs we can support. We
729 still haven't deducted the prologue from the buffer size here,
730 but that's minimal and won't affect the estimate much. */
731 tcg_ctx.code_gen_max_blocks
732 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
733 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
734
735 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
736 }
737
738 /* Must be called before using the QEMU cpus. 'tb_size' is the size
739 (in bytes) allocated to the translation buffer. Zero means default
740 size. */
741 void tcg_exec_init(unsigned long tb_size)
742 {
743 cpu_gen_init();
744 page_init();
745 code_gen_alloc(tb_size);
746 #if defined(CONFIG_SOFTMMU)
747 /* There's no guest base to take into account, so go ahead and
748 initialize the prologue now. */
749 tcg_prologue_init(&tcg_ctx);
750 #endif
751 }
752
753 bool tcg_enabled(void)
754 {
755 return tcg_ctx.code_gen_buffer != NULL;
756 }
757
758 /* Allocate a new translation block. Flush the translation buffer if
759 too many translation blocks or too much generated code. */
760 static TranslationBlock *tb_alloc(target_ulong pc)
761 {
762 TranslationBlock *tb;
763
764 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
765 return NULL;
766 }
767 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
768 tb->pc = pc;
769 tb->cflags = 0;
770 return tb;
771 }
772
773 void tb_free(TranslationBlock *tb)
774 {
775 /* In practice this is mostly used for single use temporary TB
776 Ignore the hard cases and just back up if this TB happens to
777 be the last one generated. */
778 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
779 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
780 tcg_ctx.code_gen_ptr = tb->tc_ptr;
781 tcg_ctx.tb_ctx.nb_tbs--;
782 }
783 }
784
785 static inline void invalidate_page_bitmap(PageDesc *p)
786 {
787 g_free(p->code_bitmap);
788 p->code_bitmap = NULL;
789 p->code_write_count = 0;
790 }
791
792 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
793 static void page_flush_tb_1(int level, void **lp)
794 {
795 int i;
796
797 if (*lp == NULL) {
798 return;
799 }
800 if (level == 0) {
801 PageDesc *pd = *lp;
802
803 for (i = 0; i < V_L2_SIZE; ++i) {
804 pd[i].first_tb = NULL;
805 invalidate_page_bitmap(pd + i);
806 }
807 } else {
808 void **pp = *lp;
809
810 for (i = 0; i < V_L2_SIZE; ++i) {
811 page_flush_tb_1(level - 1, pp + i);
812 }
813 }
814 }
815
816 static void page_flush_tb(void)
817 {
818 int i;
819
820 for (i = 0; i < V_L1_SIZE; i++) {
821 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
822 }
823 }
824
825 /* flush all the translation blocks */
826 /* XXX: tb_flush is currently not thread safe */
827 void tb_flush(CPUState *cpu)
828 {
829 #if defined(DEBUG_FLUSH)
830 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
831 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
832 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
833 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
834 tcg_ctx.tb_ctx.nb_tbs : 0);
835 #endif
836 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
837 > tcg_ctx.code_gen_buffer_size) {
838 cpu_abort(cpu, "Internal error: code buffer overflow\n");
839 }
840 tcg_ctx.tb_ctx.nb_tbs = 0;
841
842 CPU_FOREACH(cpu) {
843 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
844 }
845
846 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
847 page_flush_tb();
848
849 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
850 /* XXX: flush processor icache at this point if cache flush is
851 expensive */
852 tcg_ctx.tb_ctx.tb_flush_count++;
853 }
854
855 #ifdef DEBUG_TB_CHECK
856
857 static void tb_invalidate_check(target_ulong address)
858 {
859 TranslationBlock *tb;
860 int i;
861
862 address &= TARGET_PAGE_MASK;
863 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
864 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
865 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
866 address >= tb->pc + tb->size)) {
867 printf("ERROR invalidate: address=" TARGET_FMT_lx
868 " PC=%08lx size=%04x\n",
869 address, (long)tb->pc, tb->size);
870 }
871 }
872 }
873 }
874
875 /* verify that all the pages have correct rights for code */
876 static void tb_page_check(void)
877 {
878 TranslationBlock *tb;
879 int i, flags1, flags2;
880
881 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
882 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
883 tb = tb->phys_hash_next) {
884 flags1 = page_get_flags(tb->pc);
885 flags2 = page_get_flags(tb->pc + tb->size - 1);
886 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
887 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
888 (long)tb->pc, tb->size, flags1, flags2);
889 }
890 }
891 }
892 }
893
894 #endif
895
896 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
897 {
898 TranslationBlock *tb1;
899
900 for (;;) {
901 tb1 = *ptb;
902 if (tb1 == tb) {
903 *ptb = tb1->phys_hash_next;
904 break;
905 }
906 ptb = &tb1->phys_hash_next;
907 }
908 }
909
910 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
911 {
912 TranslationBlock *tb1;
913 unsigned int n1;
914
915 for (;;) {
916 tb1 = *ptb;
917 n1 = (uintptr_t)tb1 & 3;
918 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
919 if (tb1 == tb) {
920 *ptb = tb1->page_next[n1];
921 break;
922 }
923 ptb = &tb1->page_next[n1];
924 }
925 }
926
927 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
928 {
929 TranslationBlock *tb1, **ptb;
930 unsigned int n1;
931
932 ptb = &tb->jmp_next[n];
933 tb1 = *ptb;
934 if (tb1) {
935 /* find tb(n) in circular list */
936 for (;;) {
937 tb1 = *ptb;
938 n1 = (uintptr_t)tb1 & 3;
939 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
940 if (n1 == n && tb1 == tb) {
941 break;
942 }
943 if (n1 == 2) {
944 ptb = &tb1->jmp_first;
945 } else {
946 ptb = &tb1->jmp_next[n1];
947 }
948 }
949 /* now we can suppress tb(n) from the list */
950 *ptb = tb->jmp_next[n];
951
952 tb->jmp_next[n] = NULL;
953 }
954 }
955
956 /* reset the jump entry 'n' of a TB so that it is not chained to
957 another TB */
958 static inline void tb_reset_jump(TranslationBlock *tb, int n)
959 {
960 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
961 }
962
963 /* invalidate one TB */
964 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
965 {
966 CPUState *cpu;
967 PageDesc *p;
968 unsigned int h, n1;
969 tb_page_addr_t phys_pc;
970 TranslationBlock *tb1, *tb2;
971
972 /* remove the TB from the hash list */
973 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
974 h = tb_phys_hash_func(phys_pc);
975 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
976
977 /* remove the TB from the page list */
978 if (tb->page_addr[0] != page_addr) {
979 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
980 tb_page_remove(&p->first_tb, tb);
981 invalidate_page_bitmap(p);
982 }
983 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
984 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
985 tb_page_remove(&p->first_tb, tb);
986 invalidate_page_bitmap(p);
987 }
988
989 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
990
991 /* remove the TB from the hash list */
992 h = tb_jmp_cache_hash_func(tb->pc);
993 CPU_FOREACH(cpu) {
994 if (cpu->tb_jmp_cache[h] == tb) {
995 cpu->tb_jmp_cache[h] = NULL;
996 }
997 }
998
999 /* suppress this TB from the two jump lists */
1000 tb_jmp_remove(tb, 0);
1001 tb_jmp_remove(tb, 1);
1002
1003 /* suppress any remaining jumps to this TB */
1004 tb1 = tb->jmp_first;
1005 for (;;) {
1006 n1 = (uintptr_t)tb1 & 3;
1007 if (n1 == 2) {
1008 break;
1009 }
1010 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1011 tb2 = tb1->jmp_next[n1];
1012 tb_reset_jump(tb1, n1);
1013 tb1->jmp_next[n1] = NULL;
1014 tb1 = tb2;
1015 }
1016 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1017
1018 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1019 }
1020
1021 static void build_page_bitmap(PageDesc *p)
1022 {
1023 int n, tb_start, tb_end;
1024 TranslationBlock *tb;
1025
1026 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1027
1028 tb = p->first_tb;
1029 while (tb != NULL) {
1030 n = (uintptr_t)tb & 3;
1031 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1032 /* NOTE: this is subtle as a TB may span two physical pages */
1033 if (n == 0) {
1034 /* NOTE: tb_end may be after the end of the page, but
1035 it is not a problem */
1036 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1037 tb_end = tb_start + tb->size;
1038 if (tb_end > TARGET_PAGE_SIZE) {
1039 tb_end = TARGET_PAGE_SIZE;
1040 }
1041 } else {
1042 tb_start = 0;
1043 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1044 }
1045 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1046 tb = tb->page_next[n];
1047 }
1048 }
1049
1050 /* Called with mmap_lock held for user mode emulation. */
1051 TranslationBlock *tb_gen_code(CPUState *cpu,
1052 target_ulong pc, target_ulong cs_base,
1053 int flags, int cflags)
1054 {
1055 CPUArchState *env = cpu->env_ptr;
1056 TranslationBlock *tb;
1057 tb_page_addr_t phys_pc, phys_page2;
1058 target_ulong virt_page2;
1059 tcg_insn_unit *gen_code_buf;
1060 int gen_code_size, search_size;
1061 #ifdef CONFIG_PROFILER
1062 int64_t ti;
1063 #endif
1064
1065 phys_pc = get_page_addr_code(env, pc);
1066 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1067 cflags |= CF_USE_ICOUNT;
1068 }
1069
1070 tb = tb_alloc(pc);
1071 if (unlikely(!tb)) {
1072 buffer_overflow:
1073 /* flush must be done */
1074 tb_flush(cpu);
1075 /* cannot fail at this point */
1076 tb = tb_alloc(pc);
1077 assert(tb != NULL);
1078 /* Don't forget to invalidate previous TB info. */
1079 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1080 }
1081
1082 gen_code_buf = tcg_ctx.code_gen_ptr;
1083 tb->tc_ptr = gen_code_buf;
1084 tb->cs_base = cs_base;
1085 tb->flags = flags;
1086 tb->cflags = cflags;
1087
1088 #ifdef CONFIG_PROFILER
1089 tcg_ctx.tb_count1++; /* includes aborted translations because of
1090 exceptions */
1091 ti = profile_getclock();
1092 #endif
1093
1094 tcg_func_start(&tcg_ctx);
1095
1096 gen_intermediate_code(env, tb);
1097
1098 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1099
1100 /* generate machine code */
1101 tb->tb_next_offset[0] = 0xffff;
1102 tb->tb_next_offset[1] = 0xffff;
1103 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1104 #ifdef USE_DIRECT_JUMP
1105 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1106 tcg_ctx.tb_next = NULL;
1107 #else
1108 tcg_ctx.tb_jmp_offset = NULL;
1109 tcg_ctx.tb_next = tb->tb_next;
1110 #endif
1111
1112 #ifdef CONFIG_PROFILER
1113 tcg_ctx.tb_count++;
1114 tcg_ctx.interm_time += profile_getclock() - ti;
1115 tcg_ctx.code_time -= profile_getclock();
1116 #endif
1117
1118 /* ??? Overflow could be handled better here. In particular, we
1119 don't need to re-do gen_intermediate_code, nor should we re-do
1120 the tcg optimization currently hidden inside tcg_gen_code. All
1121 that should be required is to flush the TBs, allocate a new TB,
1122 re-initialize it per above, and re-do the actual code generation. */
1123 gen_code_size = tcg_gen_code(&tcg_ctx, gen_code_buf);
1124 if (unlikely(gen_code_size < 0)) {
1125 goto buffer_overflow;
1126 }
1127 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1128 if (unlikely(search_size < 0)) {
1129 goto buffer_overflow;
1130 }
1131
1132 #ifdef CONFIG_PROFILER
1133 tcg_ctx.code_time += profile_getclock();
1134 tcg_ctx.code_in_len += tb->size;
1135 tcg_ctx.code_out_len += gen_code_size;
1136 tcg_ctx.search_out_len += search_size;
1137 #endif
1138
1139 #ifdef DEBUG_DISAS
1140 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1141 qemu_log("OUT: [size=%d]\n", gen_code_size);
1142 log_disas(tb->tc_ptr, gen_code_size);
1143 qemu_log("\n");
1144 qemu_log_flush();
1145 }
1146 #endif
1147
1148 tcg_ctx.code_gen_ptr = (void *)
1149 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1150 CODE_GEN_ALIGN);
1151
1152 /* check next page if needed */
1153 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1154 phys_page2 = -1;
1155 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1156 phys_page2 = get_page_addr_code(env, virt_page2);
1157 }
1158 tb_link_page(tb, phys_pc, phys_page2);
1159 return tb;
1160 }
1161
1162 /*
1163 * Invalidate all TBs which intersect with the target physical address range
1164 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1165 * 'is_cpu_write_access' should be true if called from a real cpu write
1166 * access: the virtual CPU will exit the current TB if code is modified inside
1167 * this TB.
1168 *
1169 * Called with mmap_lock held for user-mode emulation
1170 */
1171 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1172 {
1173 while (start < end) {
1174 tb_invalidate_phys_page_range(start, end, 0);
1175 start &= TARGET_PAGE_MASK;
1176 start += TARGET_PAGE_SIZE;
1177 }
1178 }
1179
1180 /*
1181 * Invalidate all TBs which intersect with the target physical address range
1182 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1183 * 'is_cpu_write_access' should be true if called from a real cpu write
1184 * access: the virtual CPU will exit the current TB if code is modified inside
1185 * this TB.
1186 *
1187 * Called with mmap_lock held for user-mode emulation
1188 */
1189 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1190 int is_cpu_write_access)
1191 {
1192 TranslationBlock *tb, *tb_next, *saved_tb;
1193 CPUState *cpu = current_cpu;
1194 #if defined(TARGET_HAS_PRECISE_SMC)
1195 CPUArchState *env = NULL;
1196 #endif
1197 tb_page_addr_t tb_start, tb_end;
1198 PageDesc *p;
1199 int n;
1200 #ifdef TARGET_HAS_PRECISE_SMC
1201 int current_tb_not_found = is_cpu_write_access;
1202 TranslationBlock *current_tb = NULL;
1203 int current_tb_modified = 0;
1204 target_ulong current_pc = 0;
1205 target_ulong current_cs_base = 0;
1206 int current_flags = 0;
1207 #endif /* TARGET_HAS_PRECISE_SMC */
1208
1209 p = page_find(start >> TARGET_PAGE_BITS);
1210 if (!p) {
1211 return;
1212 }
1213 #if defined(TARGET_HAS_PRECISE_SMC)
1214 if (cpu != NULL) {
1215 env = cpu->env_ptr;
1216 }
1217 #endif
1218
1219 /* we remove all the TBs in the range [start, end[ */
1220 /* XXX: see if in some cases it could be faster to invalidate all
1221 the code */
1222 tb = p->first_tb;
1223 while (tb != NULL) {
1224 n = (uintptr_t)tb & 3;
1225 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1226 tb_next = tb->page_next[n];
1227 /* NOTE: this is subtle as a TB may span two physical pages */
1228 if (n == 0) {
1229 /* NOTE: tb_end may be after the end of the page, but
1230 it is not a problem */
1231 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1232 tb_end = tb_start + tb->size;
1233 } else {
1234 tb_start = tb->page_addr[1];
1235 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1236 }
1237 if (!(tb_end <= start || tb_start >= end)) {
1238 #ifdef TARGET_HAS_PRECISE_SMC
1239 if (current_tb_not_found) {
1240 current_tb_not_found = 0;
1241 current_tb = NULL;
1242 if (cpu->mem_io_pc) {
1243 /* now we have a real cpu fault */
1244 current_tb = tb_find_pc(cpu->mem_io_pc);
1245 }
1246 }
1247 if (current_tb == tb &&
1248 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1249 /* If we are modifying the current TB, we must stop
1250 its execution. We could be more precise by checking
1251 that the modification is after the current PC, but it
1252 would require a specialized function to partially
1253 restore the CPU state */
1254
1255 current_tb_modified = 1;
1256 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1257 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1258 &current_flags);
1259 }
1260 #endif /* TARGET_HAS_PRECISE_SMC */
1261 /* we need to do that to handle the case where a signal
1262 occurs while doing tb_phys_invalidate() */
1263 saved_tb = NULL;
1264 if (cpu != NULL) {
1265 saved_tb = cpu->current_tb;
1266 cpu->current_tb = NULL;
1267 }
1268 tb_phys_invalidate(tb, -1);
1269 if (cpu != NULL) {
1270 cpu->current_tb = saved_tb;
1271 if (cpu->interrupt_request && cpu->current_tb) {
1272 cpu_interrupt(cpu, cpu->interrupt_request);
1273 }
1274 }
1275 }
1276 tb = tb_next;
1277 }
1278 #if !defined(CONFIG_USER_ONLY)
1279 /* if no code remaining, no need to continue to use slow writes */
1280 if (!p->first_tb) {
1281 invalidate_page_bitmap(p);
1282 tlb_unprotect_code(start);
1283 }
1284 #endif
1285 #ifdef TARGET_HAS_PRECISE_SMC
1286 if (current_tb_modified) {
1287 /* we generate a block containing just the instruction
1288 modifying the memory. It will ensure that it cannot modify
1289 itself */
1290 cpu->current_tb = NULL;
1291 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1292 cpu_resume_from_signal(cpu, NULL);
1293 }
1294 #endif
1295 }
1296
1297 /* len must be <= 8 and start must be a multiple of len */
1298 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1299 {
1300 PageDesc *p;
1301
1302 #if 0
1303 if (1) {
1304 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1305 cpu_single_env->mem_io_vaddr, len,
1306 cpu_single_env->eip,
1307 cpu_single_env->eip +
1308 (intptr_t)cpu_single_env->segs[R_CS].base);
1309 }
1310 #endif
1311 p = page_find(start >> TARGET_PAGE_BITS);
1312 if (!p) {
1313 return;
1314 }
1315 if (!p->code_bitmap &&
1316 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1317 /* build code bitmap */
1318 build_page_bitmap(p);
1319 }
1320 if (p->code_bitmap) {
1321 unsigned int nr;
1322 unsigned long b;
1323
1324 nr = start & ~TARGET_PAGE_MASK;
1325 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1326 if (b & ((1 << len) - 1)) {
1327 goto do_invalidate;
1328 }
1329 } else {
1330 do_invalidate:
1331 tb_invalidate_phys_page_range(start, start + len, 1);
1332 }
1333 }
1334
1335 #if !defined(CONFIG_SOFTMMU)
1336 /* Called with mmap_lock held. */
1337 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1338 uintptr_t pc, void *puc,
1339 bool locked)
1340 {
1341 TranslationBlock *tb;
1342 PageDesc *p;
1343 int n;
1344 #ifdef TARGET_HAS_PRECISE_SMC
1345 TranslationBlock *current_tb = NULL;
1346 CPUState *cpu = current_cpu;
1347 CPUArchState *env = NULL;
1348 int current_tb_modified = 0;
1349 target_ulong current_pc = 0;
1350 target_ulong current_cs_base = 0;
1351 int current_flags = 0;
1352 #endif
1353
1354 addr &= TARGET_PAGE_MASK;
1355 p = page_find(addr >> TARGET_PAGE_BITS);
1356 if (!p) {
1357 return;
1358 }
1359 tb = p->first_tb;
1360 #ifdef TARGET_HAS_PRECISE_SMC
1361 if (tb && pc != 0) {
1362 current_tb = tb_find_pc(pc);
1363 }
1364 if (cpu != NULL) {
1365 env = cpu->env_ptr;
1366 }
1367 #endif
1368 while (tb != NULL) {
1369 n = (uintptr_t)tb & 3;
1370 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1371 #ifdef TARGET_HAS_PRECISE_SMC
1372 if (current_tb == tb &&
1373 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1374 /* If we are modifying the current TB, we must stop
1375 its execution. We could be more precise by checking
1376 that the modification is after the current PC, but it
1377 would require a specialized function to partially
1378 restore the CPU state */
1379
1380 current_tb_modified = 1;
1381 cpu_restore_state_from_tb(cpu, current_tb, pc);
1382 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1383 &current_flags);
1384 }
1385 #endif /* TARGET_HAS_PRECISE_SMC */
1386 tb_phys_invalidate(tb, addr);
1387 tb = tb->page_next[n];
1388 }
1389 p->first_tb = NULL;
1390 #ifdef TARGET_HAS_PRECISE_SMC
1391 if (current_tb_modified) {
1392 /* we generate a block containing just the instruction
1393 modifying the memory. It will ensure that it cannot modify
1394 itself */
1395 cpu->current_tb = NULL;
1396 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1397 if (locked) {
1398 mmap_unlock();
1399 }
1400 cpu_resume_from_signal(cpu, puc);
1401 }
1402 #endif
1403 }
1404 #endif
1405
1406 /* add the tb in the target page and protect it if necessary
1407 *
1408 * Called with mmap_lock held for user-mode emulation.
1409 */
1410 static inline void tb_alloc_page(TranslationBlock *tb,
1411 unsigned int n, tb_page_addr_t page_addr)
1412 {
1413 PageDesc *p;
1414 #ifndef CONFIG_USER_ONLY
1415 bool page_already_protected;
1416 #endif
1417
1418 tb->page_addr[n] = page_addr;
1419 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1420 tb->page_next[n] = p->first_tb;
1421 #ifndef CONFIG_USER_ONLY
1422 page_already_protected = p->first_tb != NULL;
1423 #endif
1424 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1425 invalidate_page_bitmap(p);
1426
1427 #if defined(CONFIG_USER_ONLY)
1428 if (p->flags & PAGE_WRITE) {
1429 target_ulong addr;
1430 PageDesc *p2;
1431 int prot;
1432
1433 /* force the host page as non writable (writes will have a
1434 page fault + mprotect overhead) */
1435 page_addr &= qemu_host_page_mask;
1436 prot = 0;
1437 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1438 addr += TARGET_PAGE_SIZE) {
1439
1440 p2 = page_find(addr >> TARGET_PAGE_BITS);
1441 if (!p2) {
1442 continue;
1443 }
1444 prot |= p2->flags;
1445 p2->flags &= ~PAGE_WRITE;
1446 }
1447 mprotect(g2h(page_addr), qemu_host_page_size,
1448 (prot & PAGE_BITS) & ~PAGE_WRITE);
1449 #ifdef DEBUG_TB_INVALIDATE
1450 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1451 page_addr);
1452 #endif
1453 }
1454 #else
1455 /* if some code is already present, then the pages are already
1456 protected. So we handle the case where only the first TB is
1457 allocated in a physical page */
1458 if (!page_already_protected) {
1459 tlb_protect_code(page_addr);
1460 }
1461 #endif
1462 }
1463
1464 /* add a new TB and link it to the physical page tables. phys_page2 is
1465 * (-1) to indicate that only one page contains the TB.
1466 *
1467 * Called with mmap_lock held for user-mode emulation.
1468 */
1469 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1470 tb_page_addr_t phys_page2)
1471 {
1472 unsigned int h;
1473 TranslationBlock **ptb;
1474
1475 /* add in the physical hash table */
1476 h = tb_phys_hash_func(phys_pc);
1477 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1478 tb->phys_hash_next = *ptb;
1479 *ptb = tb;
1480
1481 /* add in the page list */
1482 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1483 if (phys_page2 != -1) {
1484 tb_alloc_page(tb, 1, phys_page2);
1485 } else {
1486 tb->page_addr[1] = -1;
1487 }
1488
1489 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1490 tb->jmp_next[0] = NULL;
1491 tb->jmp_next[1] = NULL;
1492
1493 /* init original jump addresses */
1494 if (tb->tb_next_offset[0] != 0xffff) {
1495 tb_reset_jump(tb, 0);
1496 }
1497 if (tb->tb_next_offset[1] != 0xffff) {
1498 tb_reset_jump(tb, 1);
1499 }
1500
1501 #ifdef DEBUG_TB_CHECK
1502 tb_page_check();
1503 #endif
1504 }
1505
1506 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1507 tb[1].tc_ptr. Return NULL if not found */
1508 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1509 {
1510 int m_min, m_max, m;
1511 uintptr_t v;
1512 TranslationBlock *tb;
1513
1514 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1515 return NULL;
1516 }
1517 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1518 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1519 return NULL;
1520 }
1521 /* binary search (cf Knuth) */
1522 m_min = 0;
1523 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1524 while (m_min <= m_max) {
1525 m = (m_min + m_max) >> 1;
1526 tb = &tcg_ctx.tb_ctx.tbs[m];
1527 v = (uintptr_t)tb->tc_ptr;
1528 if (v == tc_ptr) {
1529 return tb;
1530 } else if (tc_ptr < v) {
1531 m_max = m - 1;
1532 } else {
1533 m_min = m + 1;
1534 }
1535 }
1536 return &tcg_ctx.tb_ctx.tbs[m_max];
1537 }
1538
1539 #if !defined(CONFIG_USER_ONLY)
1540 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1541 {
1542 ram_addr_t ram_addr;
1543 MemoryRegion *mr;
1544 hwaddr l = 1;
1545
1546 rcu_read_lock();
1547 mr = address_space_translate(as, addr, &addr, &l, false);
1548 if (!(memory_region_is_ram(mr)
1549 || memory_region_is_romd(mr))) {
1550 rcu_read_unlock();
1551 return;
1552 }
1553 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1554 + addr;
1555 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1556 rcu_read_unlock();
1557 }
1558 #endif /* !defined(CONFIG_USER_ONLY) */
1559
1560 void tb_check_watchpoint(CPUState *cpu)
1561 {
1562 TranslationBlock *tb;
1563
1564 tb = tb_find_pc(cpu->mem_io_pc);
1565 if (tb) {
1566 /* We can use retranslation to find the PC. */
1567 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1568 tb_phys_invalidate(tb, -1);
1569 } else {
1570 /* The exception probably happened in a helper. The CPU state should
1571 have been saved before calling it. Fetch the PC from there. */
1572 CPUArchState *env = cpu->env_ptr;
1573 target_ulong pc, cs_base;
1574 tb_page_addr_t addr;
1575 int flags;
1576
1577 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1578 addr = get_page_addr_code(env, pc);
1579 tb_invalidate_phys_range(addr, addr + 1);
1580 }
1581 }
1582
1583 #ifndef CONFIG_USER_ONLY
1584 /* in deterministic execution mode, instructions doing device I/Os
1585 must be at the end of the TB */
1586 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1587 {
1588 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1589 CPUArchState *env = cpu->env_ptr;
1590 #endif
1591 TranslationBlock *tb;
1592 uint32_t n, cflags;
1593 target_ulong pc, cs_base;
1594 uint64_t flags;
1595
1596 tb = tb_find_pc(retaddr);
1597 if (!tb) {
1598 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1599 (void *)retaddr);
1600 }
1601 n = cpu->icount_decr.u16.low + tb->icount;
1602 cpu_restore_state_from_tb(cpu, tb, retaddr);
1603 /* Calculate how many instructions had been executed before the fault
1604 occurred. */
1605 n = n - cpu->icount_decr.u16.low;
1606 /* Generate a new TB ending on the I/O insn. */
1607 n++;
1608 /* On MIPS and SH, delay slot instructions can only be restarted if
1609 they were already the first instruction in the TB. If this is not
1610 the first instruction in a TB then re-execute the preceding
1611 branch. */
1612 #if defined(TARGET_MIPS)
1613 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1614 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1615 cpu->icount_decr.u16.low++;
1616 env->hflags &= ~MIPS_HFLAG_BMASK;
1617 }
1618 #elif defined(TARGET_SH4)
1619 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1620 && n > 1) {
1621 env->pc -= 2;
1622 cpu->icount_decr.u16.low++;
1623 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1624 }
1625 #endif
1626 /* This should never happen. */
1627 if (n > CF_COUNT_MASK) {
1628 cpu_abort(cpu, "TB too big during recompile");
1629 }
1630
1631 cflags = n | CF_LAST_IO;
1632 pc = tb->pc;
1633 cs_base = tb->cs_base;
1634 flags = tb->flags;
1635 tb_phys_invalidate(tb, -1);
1636 if (tb->cflags & CF_NOCACHE) {
1637 if (tb->orig_tb) {
1638 /* Invalidate original TB if this TB was generated in
1639 * cpu_exec_nocache() */
1640 tb_phys_invalidate(tb->orig_tb, -1);
1641 }
1642 tb_free(tb);
1643 }
1644 /* FIXME: In theory this could raise an exception. In practice
1645 we have already translated the block once so it's probably ok. */
1646 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1647 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1648 the first in the TB) then we end up generating a whole new TB and
1649 repeating the fault, which is horribly inefficient.
1650 Better would be to execute just this insn uncached, or generate a
1651 second new TB. */
1652 cpu_resume_from_signal(cpu, NULL);
1653 }
1654
1655 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1656 {
1657 unsigned int i;
1658
1659 /* Discard jump cache entries for any tb which might potentially
1660 overlap the flushed page. */
1661 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1662 memset(&cpu->tb_jmp_cache[i], 0,
1663 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1664
1665 i = tb_jmp_cache_hash_page(addr);
1666 memset(&cpu->tb_jmp_cache[i], 0,
1667 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1668 }
1669
1670 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1671 {
1672 int i, target_code_size, max_target_code_size;
1673 int direct_jmp_count, direct_jmp2_count, cross_page;
1674 TranslationBlock *tb;
1675
1676 target_code_size = 0;
1677 max_target_code_size = 0;
1678 cross_page = 0;
1679 direct_jmp_count = 0;
1680 direct_jmp2_count = 0;
1681 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1682 tb = &tcg_ctx.tb_ctx.tbs[i];
1683 target_code_size += tb->size;
1684 if (tb->size > max_target_code_size) {
1685 max_target_code_size = tb->size;
1686 }
1687 if (tb->page_addr[1] != -1) {
1688 cross_page++;
1689 }
1690 if (tb->tb_next_offset[0] != 0xffff) {
1691 direct_jmp_count++;
1692 if (tb->tb_next_offset[1] != 0xffff) {
1693 direct_jmp2_count++;
1694 }
1695 }
1696 }
1697 /* XXX: avoid using doubles ? */
1698 cpu_fprintf(f, "Translation buffer state:\n");
1699 cpu_fprintf(f, "gen code size %td/%zd\n",
1700 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1701 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1702 cpu_fprintf(f, "TB count %d/%d\n",
1703 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1704 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1705 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1706 tcg_ctx.tb_ctx.nb_tbs : 0,
1707 max_target_code_size);
1708 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1709 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1710 tcg_ctx.code_gen_buffer) /
1711 tcg_ctx.tb_ctx.nb_tbs : 0,
1712 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1713 tcg_ctx.code_gen_buffer) /
1714 target_code_size : 0);
1715 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1716 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1717 tcg_ctx.tb_ctx.nb_tbs : 0);
1718 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1719 direct_jmp_count,
1720 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1721 tcg_ctx.tb_ctx.nb_tbs : 0,
1722 direct_jmp2_count,
1723 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1724 tcg_ctx.tb_ctx.nb_tbs : 0);
1725 cpu_fprintf(f, "\nStatistics:\n");
1726 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1727 cpu_fprintf(f, "TB invalidate count %d\n",
1728 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1729 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1730 tcg_dump_info(f, cpu_fprintf);
1731 }
1732
1733 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1734 {
1735 tcg_dump_op_count(f, cpu_fprintf);
1736 }
1737
1738 #else /* CONFIG_USER_ONLY */
1739
1740 void cpu_interrupt(CPUState *cpu, int mask)
1741 {
1742 cpu->interrupt_request |= mask;
1743 cpu->tcg_exit_req = 1;
1744 }
1745
1746 /*
1747 * Walks guest process memory "regions" one by one
1748 * and calls callback function 'fn' for each region.
1749 */
1750 struct walk_memory_regions_data {
1751 walk_memory_regions_fn fn;
1752 void *priv;
1753 target_ulong start;
1754 int prot;
1755 };
1756
1757 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1758 target_ulong end, int new_prot)
1759 {
1760 if (data->start != -1u) {
1761 int rc = data->fn(data->priv, data->start, end, data->prot);
1762 if (rc != 0) {
1763 return rc;
1764 }
1765 }
1766
1767 data->start = (new_prot ? end : -1u);
1768 data->prot = new_prot;
1769
1770 return 0;
1771 }
1772
1773 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1774 target_ulong base, int level, void **lp)
1775 {
1776 target_ulong pa;
1777 int i, rc;
1778
1779 if (*lp == NULL) {
1780 return walk_memory_regions_end(data, base, 0);
1781 }
1782
1783 if (level == 0) {
1784 PageDesc *pd = *lp;
1785
1786 for (i = 0; i < V_L2_SIZE; ++i) {
1787 int prot = pd[i].flags;
1788
1789 pa = base | (i << TARGET_PAGE_BITS);
1790 if (prot != data->prot) {
1791 rc = walk_memory_regions_end(data, pa, prot);
1792 if (rc != 0) {
1793 return rc;
1794 }
1795 }
1796 }
1797 } else {
1798 void **pp = *lp;
1799
1800 for (i = 0; i < V_L2_SIZE; ++i) {
1801 pa = base | ((target_ulong)i <<
1802 (TARGET_PAGE_BITS + V_L2_BITS * level));
1803 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1804 if (rc != 0) {
1805 return rc;
1806 }
1807 }
1808 }
1809
1810 return 0;
1811 }
1812
1813 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1814 {
1815 struct walk_memory_regions_data data;
1816 uintptr_t i;
1817
1818 data.fn = fn;
1819 data.priv = priv;
1820 data.start = -1u;
1821 data.prot = 0;
1822
1823 for (i = 0; i < V_L1_SIZE; i++) {
1824 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1825 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1826 if (rc != 0) {
1827 return rc;
1828 }
1829 }
1830
1831 return walk_memory_regions_end(&data, 0, 0);
1832 }
1833
1834 static int dump_region(void *priv, target_ulong start,
1835 target_ulong end, unsigned long prot)
1836 {
1837 FILE *f = (FILE *)priv;
1838
1839 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1840 " "TARGET_FMT_lx" %c%c%c\n",
1841 start, end, end - start,
1842 ((prot & PAGE_READ) ? 'r' : '-'),
1843 ((prot & PAGE_WRITE) ? 'w' : '-'),
1844 ((prot & PAGE_EXEC) ? 'x' : '-'));
1845
1846 return 0;
1847 }
1848
1849 /* dump memory mappings */
1850 void page_dump(FILE *f)
1851 {
1852 const int length = sizeof(target_ulong) * 2;
1853 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1854 length, "start", length, "end", length, "size", "prot");
1855 walk_memory_regions(f, dump_region);
1856 }
1857
1858 int page_get_flags(target_ulong address)
1859 {
1860 PageDesc *p;
1861
1862 p = page_find(address >> TARGET_PAGE_BITS);
1863 if (!p) {
1864 return 0;
1865 }
1866 return p->flags;
1867 }
1868
1869 /* Modify the flags of a page and invalidate the code if necessary.
1870 The flag PAGE_WRITE_ORG is positioned automatically depending
1871 on PAGE_WRITE. The mmap_lock should already be held. */
1872 void page_set_flags(target_ulong start, target_ulong end, int flags)
1873 {
1874 target_ulong addr, len;
1875
1876 /* This function should never be called with addresses outside the
1877 guest address space. If this assert fires, it probably indicates
1878 a missing call to h2g_valid. */
1879 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1880 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1881 #endif
1882 assert(start < end);
1883
1884 start = start & TARGET_PAGE_MASK;
1885 end = TARGET_PAGE_ALIGN(end);
1886
1887 if (flags & PAGE_WRITE) {
1888 flags |= PAGE_WRITE_ORG;
1889 }
1890
1891 for (addr = start, len = end - start;
1892 len != 0;
1893 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1894 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1895
1896 /* If the write protection bit is set, then we invalidate
1897 the code inside. */
1898 if (!(p->flags & PAGE_WRITE) &&
1899 (flags & PAGE_WRITE) &&
1900 p->first_tb) {
1901 tb_invalidate_phys_page(addr, 0, NULL, false);
1902 }
1903 p->flags = flags;
1904 }
1905 }
1906
1907 int page_check_range(target_ulong start, target_ulong len, int flags)
1908 {
1909 PageDesc *p;
1910 target_ulong end;
1911 target_ulong addr;
1912
1913 /* This function should never be called with addresses outside the
1914 guest address space. If this assert fires, it probably indicates
1915 a missing call to h2g_valid. */
1916 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1917 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1918 #endif
1919
1920 if (len == 0) {
1921 return 0;
1922 }
1923 if (start + len - 1 < start) {
1924 /* We've wrapped around. */
1925 return -1;
1926 }
1927
1928 /* must do before we loose bits in the next step */
1929 end = TARGET_PAGE_ALIGN(start + len);
1930 start = start & TARGET_PAGE_MASK;
1931
1932 for (addr = start, len = end - start;
1933 len != 0;
1934 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1935 p = page_find(addr >> TARGET_PAGE_BITS);
1936 if (!p) {
1937 return -1;
1938 }
1939 if (!(p->flags & PAGE_VALID)) {
1940 return -1;
1941 }
1942
1943 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1944 return -1;
1945 }
1946 if (flags & PAGE_WRITE) {
1947 if (!(p->flags & PAGE_WRITE_ORG)) {
1948 return -1;
1949 }
1950 /* unprotect the page if it was put read-only because it
1951 contains translated code */
1952 if (!(p->flags & PAGE_WRITE)) {
1953 if (!page_unprotect(addr, 0, NULL)) {
1954 return -1;
1955 }
1956 }
1957 }
1958 }
1959 return 0;
1960 }
1961
1962 /* called from signal handler: invalidate the code and unprotect the
1963 page. Return TRUE if the fault was successfully handled. */
1964 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1965 {
1966 unsigned int prot;
1967 PageDesc *p;
1968 target_ulong host_start, host_end, addr;
1969
1970 /* Technically this isn't safe inside a signal handler. However we
1971 know this only ever happens in a synchronous SEGV handler, so in
1972 practice it seems to be ok. */
1973 mmap_lock();
1974
1975 p = page_find(address >> TARGET_PAGE_BITS);
1976 if (!p) {
1977 mmap_unlock();
1978 return 0;
1979 }
1980
1981 /* if the page was really writable, then we change its
1982 protection back to writable */
1983 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1984 host_start = address & qemu_host_page_mask;
1985 host_end = host_start + qemu_host_page_size;
1986
1987 prot = 0;
1988 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1989 p = page_find(addr >> TARGET_PAGE_BITS);
1990 p->flags |= PAGE_WRITE;
1991 prot |= p->flags;
1992
1993 /* and since the content will be modified, we must invalidate
1994 the corresponding translated code. */
1995 tb_invalidate_phys_page(addr, pc, puc, true);
1996 #ifdef DEBUG_TB_CHECK
1997 tb_invalidate_check(addr);
1998 #endif
1999 }
2000 mprotect((void *)g2h(host_start), qemu_host_page_size,
2001 prot & PAGE_BITS);
2002
2003 mmap_unlock();
2004 return 1;
2005 }
2006 mmap_unlock();
2007 return 0;
2008 }
2009 #endif /* CONFIG_USER_ONLY */