]> git.proxmox.com Git - mirror_qemu.git/blob - translate-all.c
Merge remote-tracking branch 'remotes/mst/tags/for_upstream' into staging
[mirror_qemu.git] / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/mman.h>
23 #endif
24 #include "qemu/osdep.h"
25
26
27 #include "qemu-common.h"
28 #define NO_CPU_IO_DEFS
29 #include "cpu.h"
30 #include "trace.h"
31 #include "disas/disas.h"
32 #include "tcg.h"
33 #if defined(CONFIG_USER_ONLY)
34 #include "qemu.h"
35 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36 #include <sys/param.h>
37 #if __FreeBSD_version >= 700104
38 #define HAVE_KINFO_GETVMMAP
39 #define sigqueue sigqueue_freebsd /* avoid redefinition */
40 #include <sys/proc.h>
41 #include <machine/profile.h>
42 #define _KERNEL
43 #include <sys/user.h>
44 #undef _KERNEL
45 #undef sigqueue
46 #include <libutil.h>
47 #endif
48 #endif
49 #else
50 #include "exec/address-spaces.h"
51 #endif
52
53 #include "exec/cputlb.h"
54 #include "exec/tb-hash.h"
55 #include "translate-all.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/timer.h"
58 #include "exec/log.h"
59
60 //#define DEBUG_TB_INVALIDATE
61 //#define DEBUG_FLUSH
62 /* make various TB consistency checks */
63 //#define DEBUG_TB_CHECK
64
65 #if !defined(CONFIG_USER_ONLY)
66 /* TB consistency checks only implemented for usermode emulation. */
67 #undef DEBUG_TB_CHECK
68 #endif
69
70 #define SMC_BITMAP_USE_THRESHOLD 10
71
72 typedef struct PageDesc {
73 /* list of TBs intersecting this ram page */
74 TranslationBlock *first_tb;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
78 unsigned long *code_bitmap;
79 #if defined(CONFIG_USER_ONLY)
80 unsigned long flags;
81 #endif
82 } PageDesc;
83
84 /* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86 #if !defined(CONFIG_USER_ONLY)
87 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89 #else
90 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91 #endif
92 #else
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94 #endif
95
96 /* Size of the L2 (and L3, etc) page tables. */
97 #define V_L2_BITS 10
98 #define V_L2_SIZE (1 << V_L2_BITS)
99
100 /* The bits remaining after N lower levels of page tables. */
101 #define V_L1_BITS_REM \
102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
103
104 #if V_L1_BITS_REM < 4
105 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
106 #else
107 #define V_L1_BITS V_L1_BITS_REM
108 #endif
109
110 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111
112 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113
114 uintptr_t qemu_host_page_size;
115 intptr_t qemu_host_page_mask;
116
117 /* The bottom level has pointers to PageDesc */
118 static void *l1_map[V_L1_SIZE];
119
120 /* code generation context */
121 TCGContext tcg_ctx;
122
123 /* translation block context */
124 #ifdef CONFIG_USER_ONLY
125 __thread int have_tb_lock;
126 #endif
127
128 void tb_lock(void)
129 {
130 #ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134 #endif
135 }
136
137 void tb_unlock(void)
138 {
139 #ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143 #endif
144 }
145
146 void tb_lock_reset(void)
147 {
148 #ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
152 }
153 #endif
154 }
155
156 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
157 tb_page_addr_t phys_page2);
158 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
159
160 void cpu_gen_init(void)
161 {
162 tcg_context_init(&tcg_ctx);
163 }
164
165 /* Encode VAL as a signed leb128 sequence at P.
166 Return P incremented past the encoded value. */
167 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
168 {
169 int more, byte;
170
171 do {
172 byte = val & 0x7f;
173 val >>= 7;
174 more = !((val == 0 && (byte & 0x40) == 0)
175 || (val == -1 && (byte & 0x40) != 0));
176 if (more) {
177 byte |= 0x80;
178 }
179 *p++ = byte;
180 } while (more);
181
182 return p;
183 }
184
185 /* Decode a signed leb128 sequence at *PP; increment *PP past the
186 decoded value. Return the decoded value. */
187 static target_long decode_sleb128(uint8_t **pp)
188 {
189 uint8_t *p = *pp;
190 target_long val = 0;
191 int byte, shift = 0;
192
193 do {
194 byte = *p++;
195 val |= (target_ulong)(byte & 0x7f) << shift;
196 shift += 7;
197 } while (byte & 0x80);
198 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
199 val |= -(target_ulong)1 << shift;
200 }
201
202 *pp = p;
203 return val;
204 }
205
206 /* Encode the data collected about the instructions while compiling TB.
207 Place the data at BLOCK, and return the number of bytes consumed.
208
209 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
210 which come from the target's insn_start data, followed by a uintptr_t
211 which comes from the host pc of the end of the code implementing the insn.
212
213 Each line of the table is encoded as sleb128 deltas from the previous
214 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
215 That is, the first column is seeded with the guest pc, the last column
216 with the host pc, and the middle columns with zeros. */
217
218 static int encode_search(TranslationBlock *tb, uint8_t *block)
219 {
220 uint8_t *highwater = tcg_ctx.code_gen_highwater;
221 uint8_t *p = block;
222 int i, j, n;
223
224 tb->tc_search = block;
225
226 for (i = 0, n = tb->icount; i < n; ++i) {
227 target_ulong prev;
228
229 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
230 if (i == 0) {
231 prev = (j == 0 ? tb->pc : 0);
232 } else {
233 prev = tcg_ctx.gen_insn_data[i - 1][j];
234 }
235 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
236 }
237 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
238 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
239
240 /* Test for (pending) buffer overflow. The assumption is that any
241 one row beginning below the high water mark cannot overrun
242 the buffer completely. Thus we can test for overflow after
243 encoding a row without having to check during encoding. */
244 if (unlikely(p > highwater)) {
245 return -1;
246 }
247 }
248
249 return p - block;
250 }
251
252 /* The cpu state corresponding to 'searched_pc' is restored. */
253 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
254 uintptr_t searched_pc)
255 {
256 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
257 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
258 CPUArchState *env = cpu->env_ptr;
259 uint8_t *p = tb->tc_search;
260 int i, j, num_insns = tb->icount;
261 #ifdef CONFIG_PROFILER
262 int64_t ti = profile_getclock();
263 #endif
264
265 if (searched_pc < host_pc) {
266 return -1;
267 }
268
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
274 }
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
278 }
279 }
280 return -1;
281
282 found:
283 if (tb->cflags & CF_USE_ICOUNT) {
284 assert(use_icount);
285 /* Reset the cycle counter to the start of the block. */
286 cpu->icount_decr.u16.low += num_insns;
287 /* Clear the IO flag. */
288 cpu->can_do_io = 0;
289 }
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
292
293 #ifdef CONFIG_PROFILER
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
296 #endif
297 return 0;
298 }
299
300 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
301 {
302 TranslationBlock *tb;
303
304 tb = tb_find_pc(retaddr);
305 if (tb) {
306 cpu_restore_state_from_tb(cpu, tb, retaddr);
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
309 cpu->current_tb = NULL;
310 tb_phys_invalidate(tb, -1);
311 tb_free(tb);
312 }
313 return true;
314 }
315 return false;
316 }
317
318 void page_size_init(void)
319 {
320 /* NOTE: we can always suppose that qemu_host_page_size >=
321 TARGET_PAGE_SIZE */
322 qemu_real_host_page_size = getpagesize();
323 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
324 if (qemu_host_page_size == 0) {
325 qemu_host_page_size = qemu_real_host_page_size;
326 }
327 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
328 qemu_host_page_size = TARGET_PAGE_SIZE;
329 }
330 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
331 }
332
333 static void page_init(void)
334 {
335 page_size_init();
336 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
337 {
338 #ifdef HAVE_KINFO_GETVMMAP
339 struct kinfo_vmentry *freep;
340 int i, cnt;
341
342 freep = kinfo_getvmmap(getpid(), &cnt);
343 if (freep) {
344 mmap_lock();
345 for (i = 0; i < cnt; i++) {
346 unsigned long startaddr, endaddr;
347
348 startaddr = freep[i].kve_start;
349 endaddr = freep[i].kve_end;
350 if (h2g_valid(startaddr)) {
351 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
352
353 if (h2g_valid(endaddr)) {
354 endaddr = h2g(endaddr);
355 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
356 } else {
357 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
358 endaddr = ~0ul;
359 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
360 #endif
361 }
362 }
363 }
364 free(freep);
365 mmap_unlock();
366 }
367 #else
368 FILE *f;
369
370 last_brk = (unsigned long)sbrk(0);
371
372 f = fopen("/compat/linux/proc/self/maps", "r");
373 if (f) {
374 mmap_lock();
375
376 do {
377 unsigned long startaddr, endaddr;
378 int n;
379
380 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
381
382 if (n == 2 && h2g_valid(startaddr)) {
383 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
384
385 if (h2g_valid(endaddr)) {
386 endaddr = h2g(endaddr);
387 } else {
388 endaddr = ~0ul;
389 }
390 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
391 }
392 } while (!feof(f));
393
394 fclose(f);
395 mmap_unlock();
396 }
397 #endif
398 }
399 #endif
400 }
401
402 /* If alloc=1:
403 * Called with mmap_lock held for user-mode emulation.
404 */
405 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
406 {
407 PageDesc *pd;
408 void **lp;
409 int i;
410
411 /* Level 1. Always allocated. */
412 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
413
414 /* Level 2..N-1. */
415 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
416 void **p = atomic_rcu_read(lp);
417
418 if (p == NULL) {
419 if (!alloc) {
420 return NULL;
421 }
422 p = g_new0(void *, V_L2_SIZE);
423 atomic_rcu_set(lp, p);
424 }
425
426 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
427 }
428
429 pd = atomic_rcu_read(lp);
430 if (pd == NULL) {
431 if (!alloc) {
432 return NULL;
433 }
434 pd = g_new0(PageDesc, V_L2_SIZE);
435 atomic_rcu_set(lp, pd);
436 }
437
438 return pd + (index & (V_L2_SIZE - 1));
439 }
440
441 static inline PageDesc *page_find(tb_page_addr_t index)
442 {
443 return page_find_alloc(index, 0);
444 }
445
446 #if defined(CONFIG_USER_ONLY)
447 /* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451 #define USE_STATIC_CODE_GEN_BUFFER
452 #endif
453
454 /* Minimum size of the code gen buffer. This number is randomly chosen,
455 but not so small that we can't have a fair number of TB's live. */
456 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
457
458 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
459 indicated, this is constrained by the range of direct branches on the
460 host cpu, as used by the TCG implementation of goto_tb. */
461 #if defined(__x86_64__)
462 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463 #elif defined(__sparc__)
464 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
465 #elif defined(__powerpc64__)
466 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
467 #elif defined(__aarch64__)
468 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
469 #elif defined(__arm__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
471 #elif defined(__s390x__)
472 /* We have a +- 4GB range on the branches; leave some slop. */
473 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
474 #elif defined(__mips__)
475 /* We have a 256MB branch region, but leave room to make sure the
476 main executable is also within that region. */
477 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
478 #else
479 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
480 #endif
481
482 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
483
484 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
485 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
486 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
487
488 static inline size_t size_code_gen_buffer(size_t tb_size)
489 {
490 /* Size the buffer. */
491 if (tb_size == 0) {
492 #ifdef USE_STATIC_CODE_GEN_BUFFER
493 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
494 #else
495 /* ??? Needs adjustments. */
496 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
497 static buffer, we could size this on RESERVED_VA, on the text
498 segment size of the executable, or continue to use the default. */
499 tb_size = (unsigned long)(ram_size / 4);
500 #endif
501 }
502 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
503 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
504 }
505 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
506 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
507 }
508 tcg_ctx.code_gen_buffer_size = tb_size;
509 return tb_size;
510 }
511
512 #ifdef __mips__
513 /* In order to use J and JAL within the code_gen_buffer, we require
514 that the buffer not cross a 256MB boundary. */
515 static inline bool cross_256mb(void *addr, size_t size)
516 {
517 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
518 }
519
520 /* We weren't able to allocate a buffer without crossing that boundary,
521 so make do with the larger portion of the buffer that doesn't cross.
522 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
523 static inline void *split_cross_256mb(void *buf1, size_t size1)
524 {
525 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
526 size_t size2 = buf1 + size1 - buf2;
527
528 size1 = buf2 - buf1;
529 if (size1 < size2) {
530 size1 = size2;
531 buf1 = buf2;
532 }
533
534 tcg_ctx.code_gen_buffer_size = size1;
535 return buf1;
536 }
537 #endif
538
539 #ifdef USE_STATIC_CODE_GEN_BUFFER
540 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
541 __attribute__((aligned(CODE_GEN_ALIGN)));
542
543 # ifdef _WIN32
544 static inline void do_protect(void *addr, long size, int prot)
545 {
546 DWORD old_protect;
547 VirtualProtect(addr, size, prot, &old_protect);
548 }
549
550 static inline void map_exec(void *addr, long size)
551 {
552 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
553 }
554
555 static inline void map_none(void *addr, long size)
556 {
557 do_protect(addr, size, PAGE_NOACCESS);
558 }
559 # else
560 static inline void do_protect(void *addr, long size, int prot)
561 {
562 uintptr_t start, end;
563
564 start = (uintptr_t)addr;
565 start &= qemu_real_host_page_mask;
566
567 end = (uintptr_t)addr + size;
568 end = ROUND_UP(end, qemu_real_host_page_size);
569
570 mprotect((void *)start, end - start, prot);
571 }
572
573 static inline void map_exec(void *addr, long size)
574 {
575 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
576 }
577
578 static inline void map_none(void *addr, long size)
579 {
580 do_protect(addr, size, PROT_NONE);
581 }
582 # endif /* WIN32 */
583
584 static inline void *alloc_code_gen_buffer(void)
585 {
586 void *buf = static_code_gen_buffer;
587 size_t full_size, size;
588
589 /* The size of the buffer, rounded down to end on a page boundary. */
590 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
591 & qemu_real_host_page_mask) - (uintptr_t)buf;
592
593 /* Reserve a guard page. */
594 size = full_size - qemu_real_host_page_size;
595
596 /* Honor a command-line option limiting the size of the buffer. */
597 if (size > tcg_ctx.code_gen_buffer_size) {
598 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
599 & qemu_real_host_page_mask) - (uintptr_t)buf;
600 }
601 tcg_ctx.code_gen_buffer_size = size;
602
603 #ifdef __mips__
604 if (cross_256mb(buf, size)) {
605 buf = split_cross_256mb(buf, size);
606 size = tcg_ctx.code_gen_buffer_size;
607 }
608 #endif
609
610 map_exec(buf, size);
611 map_none(buf + size, qemu_real_host_page_size);
612 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
613
614 return buf;
615 }
616 #elif defined(_WIN32)
617 static inline void *alloc_code_gen_buffer(void)
618 {
619 size_t size = tcg_ctx.code_gen_buffer_size;
620 void *buf1, *buf2;
621
622 /* Perform the allocation in two steps, so that the guard page
623 is reserved but uncommitted. */
624 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
625 MEM_RESERVE, PAGE_NOACCESS);
626 if (buf1 != NULL) {
627 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
628 assert(buf1 == buf2);
629 }
630
631 return buf1;
632 }
633 #else
634 static inline void *alloc_code_gen_buffer(void)
635 {
636 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
637 uintptr_t start = 0;
638 size_t size = tcg_ctx.code_gen_buffer_size;
639 void *buf;
640
641 /* Constrain the position of the buffer based on the host cpu.
642 Note that these addresses are chosen in concert with the
643 addresses assigned in the relevant linker script file. */
644 # if defined(__PIE__) || defined(__PIC__)
645 /* Don't bother setting a preferred location if we're building
646 a position-independent executable. We're more likely to get
647 an address near the main executable if we let the kernel
648 choose the address. */
649 # elif defined(__x86_64__) && defined(MAP_32BIT)
650 /* Force the memory down into low memory with the executable.
651 Leave the choice of exact location with the kernel. */
652 flags |= MAP_32BIT;
653 /* Cannot expect to map more than 800MB in low memory. */
654 if (size > 800u * 1024 * 1024) {
655 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
656 }
657 # elif defined(__sparc__)
658 start = 0x40000000ul;
659 # elif defined(__s390x__)
660 start = 0x90000000ul;
661 # elif defined(__mips__)
662 # if _MIPS_SIM == _ABI64
663 start = 0x128000000ul;
664 # else
665 start = 0x08000000ul;
666 # endif
667 # endif
668
669 buf = mmap((void *)start, size + qemu_real_host_page_size,
670 PROT_NONE, flags, -1, 0);
671 if (buf == MAP_FAILED) {
672 return NULL;
673 }
674
675 #ifdef __mips__
676 if (cross_256mb(buf, size)) {
677 /* Try again, with the original still mapped, to avoid re-acquiring
678 that 256mb crossing. This time don't specify an address. */
679 size_t size2;
680 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
681 PROT_NONE, flags, -1, 0);
682 switch (buf2 != MAP_FAILED) {
683 case 1:
684 if (!cross_256mb(buf2, size)) {
685 /* Success! Use the new buffer. */
686 munmap(buf, size);
687 break;
688 }
689 /* Failure. Work with what we had. */
690 munmap(buf2, size);
691 /* fallthru */
692 default:
693 /* Split the original buffer. Free the smaller half. */
694 buf2 = split_cross_256mb(buf, size);
695 size2 = tcg_ctx.code_gen_buffer_size;
696 if (buf == buf2) {
697 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
698 } else {
699 munmap(buf, size - size2);
700 }
701 size = size2;
702 break;
703 }
704 buf = buf2;
705 }
706 #endif
707
708 /* Make the final buffer accessible. The guard page at the end
709 will remain inaccessible with PROT_NONE. */
710 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
711
712 /* Request large pages for the buffer. */
713 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
714
715 return buf;
716 }
717 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
718
719 static inline void code_gen_alloc(size_t tb_size)
720 {
721 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
722 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
723 if (tcg_ctx.code_gen_buffer == NULL) {
724 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
725 exit(1);
726 }
727
728 /* Estimate a good size for the number of TBs we can support. We
729 still haven't deducted the prologue from the buffer size here,
730 but that's minimal and won't affect the estimate much. */
731 tcg_ctx.code_gen_max_blocks
732 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
733 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
734
735 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
736 }
737
738 /* Must be called before using the QEMU cpus. 'tb_size' is the size
739 (in bytes) allocated to the translation buffer. Zero means default
740 size. */
741 void tcg_exec_init(unsigned long tb_size)
742 {
743 cpu_gen_init();
744 page_init();
745 code_gen_alloc(tb_size);
746 #if defined(CONFIG_SOFTMMU)
747 /* There's no guest base to take into account, so go ahead and
748 initialize the prologue now. */
749 tcg_prologue_init(&tcg_ctx);
750 #endif
751 }
752
753 bool tcg_enabled(void)
754 {
755 return tcg_ctx.code_gen_buffer != NULL;
756 }
757
758 /* Allocate a new translation block. Flush the translation buffer if
759 too many translation blocks or too much generated code. */
760 static TranslationBlock *tb_alloc(target_ulong pc)
761 {
762 TranslationBlock *tb;
763
764 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
765 return NULL;
766 }
767 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
768 tb->pc = pc;
769 tb->cflags = 0;
770 return tb;
771 }
772
773 void tb_free(TranslationBlock *tb)
774 {
775 /* In practice this is mostly used for single use temporary TB
776 Ignore the hard cases and just back up if this TB happens to
777 be the last one generated. */
778 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
779 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
780 tcg_ctx.code_gen_ptr = tb->tc_ptr;
781 tcg_ctx.tb_ctx.nb_tbs--;
782 }
783 }
784
785 static inline void invalidate_page_bitmap(PageDesc *p)
786 {
787 g_free(p->code_bitmap);
788 p->code_bitmap = NULL;
789 p->code_write_count = 0;
790 }
791
792 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
793 static void page_flush_tb_1(int level, void **lp)
794 {
795 int i;
796
797 if (*lp == NULL) {
798 return;
799 }
800 if (level == 0) {
801 PageDesc *pd = *lp;
802
803 for (i = 0; i < V_L2_SIZE; ++i) {
804 pd[i].first_tb = NULL;
805 invalidate_page_bitmap(pd + i);
806 }
807 } else {
808 void **pp = *lp;
809
810 for (i = 0; i < V_L2_SIZE; ++i) {
811 page_flush_tb_1(level - 1, pp + i);
812 }
813 }
814 }
815
816 static void page_flush_tb(void)
817 {
818 int i;
819
820 for (i = 0; i < V_L1_SIZE; i++) {
821 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
822 }
823 }
824
825 /* flush all the translation blocks */
826 /* XXX: tb_flush is currently not thread safe */
827 void tb_flush(CPUState *cpu)
828 {
829 #if defined(DEBUG_FLUSH)
830 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
831 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
832 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
833 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
834 tcg_ctx.tb_ctx.nb_tbs : 0);
835 #endif
836 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
837 > tcg_ctx.code_gen_buffer_size) {
838 cpu_abort(cpu, "Internal error: code buffer overflow\n");
839 }
840 tcg_ctx.tb_ctx.nb_tbs = 0;
841
842 CPU_FOREACH(cpu) {
843 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
844 }
845
846 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
847 page_flush_tb();
848
849 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
850 /* XXX: flush processor icache at this point if cache flush is
851 expensive */
852 tcg_ctx.tb_ctx.tb_flush_count++;
853 }
854
855 #ifdef DEBUG_TB_CHECK
856
857 static void tb_invalidate_check(target_ulong address)
858 {
859 TranslationBlock *tb;
860 int i;
861
862 address &= TARGET_PAGE_MASK;
863 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
864 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
865 tb = tb->phys_hash_next) {
866 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
867 address >= tb->pc + tb->size)) {
868 printf("ERROR invalidate: address=" TARGET_FMT_lx
869 " PC=%08lx size=%04x\n",
870 address, (long)tb->pc, tb->size);
871 }
872 }
873 }
874 }
875
876 /* verify that all the pages have correct rights for code */
877 static void tb_page_check(void)
878 {
879 TranslationBlock *tb;
880 int i, flags1, flags2;
881
882 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
883 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
884 tb = tb->phys_hash_next) {
885 flags1 = page_get_flags(tb->pc);
886 flags2 = page_get_flags(tb->pc + tb->size - 1);
887 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
888 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
889 (long)tb->pc, tb->size, flags1, flags2);
890 }
891 }
892 }
893 }
894
895 #endif
896
897 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
898 {
899 TranslationBlock *tb1;
900
901 for (;;) {
902 tb1 = *ptb;
903 if (tb1 == tb) {
904 *ptb = tb1->phys_hash_next;
905 break;
906 }
907 ptb = &tb1->phys_hash_next;
908 }
909 }
910
911 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
912 {
913 TranslationBlock *tb1;
914 unsigned int n1;
915
916 for (;;) {
917 tb1 = *ptb;
918 n1 = (uintptr_t)tb1 & 3;
919 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
920 if (tb1 == tb) {
921 *ptb = tb1->page_next[n1];
922 break;
923 }
924 ptb = &tb1->page_next[n1];
925 }
926 }
927
928 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
929 {
930 TranslationBlock *tb1, **ptb;
931 unsigned int n1;
932
933 ptb = &tb->jmp_next[n];
934 tb1 = *ptb;
935 if (tb1) {
936 /* find tb(n) in circular list */
937 for (;;) {
938 tb1 = *ptb;
939 n1 = (uintptr_t)tb1 & 3;
940 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
941 if (n1 == n && tb1 == tb) {
942 break;
943 }
944 if (n1 == 2) {
945 ptb = &tb1->jmp_first;
946 } else {
947 ptb = &tb1->jmp_next[n1];
948 }
949 }
950 /* now we can suppress tb(n) from the list */
951 *ptb = tb->jmp_next[n];
952
953 tb->jmp_next[n] = NULL;
954 }
955 }
956
957 /* reset the jump entry 'n' of a TB so that it is not chained to
958 another TB */
959 static inline void tb_reset_jump(TranslationBlock *tb, int n)
960 {
961 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
962 }
963
964 /* invalidate one TB */
965 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
966 {
967 CPUState *cpu;
968 PageDesc *p;
969 unsigned int h, n1;
970 tb_page_addr_t phys_pc;
971 TranslationBlock *tb1, *tb2;
972
973 /* remove the TB from the hash list */
974 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
975 h = tb_phys_hash_func(phys_pc);
976 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
977
978 /* remove the TB from the page list */
979 if (tb->page_addr[0] != page_addr) {
980 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
981 tb_page_remove(&p->first_tb, tb);
982 invalidate_page_bitmap(p);
983 }
984 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
985 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
986 tb_page_remove(&p->first_tb, tb);
987 invalidate_page_bitmap(p);
988 }
989
990 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
991
992 /* remove the TB from the hash list */
993 h = tb_jmp_cache_hash_func(tb->pc);
994 CPU_FOREACH(cpu) {
995 if (cpu->tb_jmp_cache[h] == tb) {
996 cpu->tb_jmp_cache[h] = NULL;
997 }
998 }
999
1000 /* suppress this TB from the two jump lists */
1001 tb_jmp_remove(tb, 0);
1002 tb_jmp_remove(tb, 1);
1003
1004 /* suppress any remaining jumps to this TB */
1005 tb1 = tb->jmp_first;
1006 for (;;) {
1007 n1 = (uintptr_t)tb1 & 3;
1008 if (n1 == 2) {
1009 break;
1010 }
1011 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1012 tb2 = tb1->jmp_next[n1];
1013 tb_reset_jump(tb1, n1);
1014 tb1->jmp_next[n1] = NULL;
1015 tb1 = tb2;
1016 }
1017 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1018
1019 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1020 }
1021
1022 static void build_page_bitmap(PageDesc *p)
1023 {
1024 int n, tb_start, tb_end;
1025 TranslationBlock *tb;
1026
1027 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1028
1029 tb = p->first_tb;
1030 while (tb != NULL) {
1031 n = (uintptr_t)tb & 3;
1032 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1033 /* NOTE: this is subtle as a TB may span two physical pages */
1034 if (n == 0) {
1035 /* NOTE: tb_end may be after the end of the page, but
1036 it is not a problem */
1037 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1038 tb_end = tb_start + tb->size;
1039 if (tb_end > TARGET_PAGE_SIZE) {
1040 tb_end = TARGET_PAGE_SIZE;
1041 }
1042 } else {
1043 tb_start = 0;
1044 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1045 }
1046 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1047 tb = tb->page_next[n];
1048 }
1049 }
1050
1051 /* Called with mmap_lock held for user mode emulation. */
1052 TranslationBlock *tb_gen_code(CPUState *cpu,
1053 target_ulong pc, target_ulong cs_base,
1054 int flags, int cflags)
1055 {
1056 CPUArchState *env = cpu->env_ptr;
1057 TranslationBlock *tb;
1058 tb_page_addr_t phys_pc, phys_page2;
1059 target_ulong virt_page2;
1060 tcg_insn_unit *gen_code_buf;
1061 int gen_code_size, search_size;
1062 #ifdef CONFIG_PROFILER
1063 int64_t ti;
1064 #endif
1065
1066 phys_pc = get_page_addr_code(env, pc);
1067 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1068 cflags |= CF_USE_ICOUNT;
1069 }
1070
1071 tb = tb_alloc(pc);
1072 if (unlikely(!tb)) {
1073 buffer_overflow:
1074 /* flush must be done */
1075 tb_flush(cpu);
1076 /* cannot fail at this point */
1077 tb = tb_alloc(pc);
1078 assert(tb != NULL);
1079 /* Don't forget to invalidate previous TB info. */
1080 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1081 }
1082
1083 gen_code_buf = tcg_ctx.code_gen_ptr;
1084 tb->tc_ptr = gen_code_buf;
1085 tb->cs_base = cs_base;
1086 tb->flags = flags;
1087 tb->cflags = cflags;
1088
1089 #ifdef CONFIG_PROFILER
1090 tcg_ctx.tb_count1++; /* includes aborted translations because of
1091 exceptions */
1092 ti = profile_getclock();
1093 #endif
1094
1095 tcg_func_start(&tcg_ctx);
1096
1097 gen_intermediate_code(env, tb);
1098
1099 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1100
1101 /* generate machine code */
1102 tb->tb_next_offset[0] = 0xffff;
1103 tb->tb_next_offset[1] = 0xffff;
1104 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1105 #ifdef USE_DIRECT_JUMP
1106 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1107 tcg_ctx.tb_next = NULL;
1108 #else
1109 tcg_ctx.tb_jmp_offset = NULL;
1110 tcg_ctx.tb_next = tb->tb_next;
1111 #endif
1112
1113 #ifdef CONFIG_PROFILER
1114 tcg_ctx.tb_count++;
1115 tcg_ctx.interm_time += profile_getclock() - ti;
1116 tcg_ctx.code_time -= profile_getclock();
1117 #endif
1118
1119 /* ??? Overflow could be handled better here. In particular, we
1120 don't need to re-do gen_intermediate_code, nor should we re-do
1121 the tcg optimization currently hidden inside tcg_gen_code. All
1122 that should be required is to flush the TBs, allocate a new TB,
1123 re-initialize it per above, and re-do the actual code generation. */
1124 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1125 if (unlikely(gen_code_size < 0)) {
1126 goto buffer_overflow;
1127 }
1128 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1129 if (unlikely(search_size < 0)) {
1130 goto buffer_overflow;
1131 }
1132
1133 #ifdef CONFIG_PROFILER
1134 tcg_ctx.code_time += profile_getclock();
1135 tcg_ctx.code_in_len += tb->size;
1136 tcg_ctx.code_out_len += gen_code_size;
1137 tcg_ctx.search_out_len += search_size;
1138 #endif
1139
1140 #ifdef DEBUG_DISAS
1141 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1142 qemu_log_in_addr_range(tb->pc)) {
1143 qemu_log("OUT: [size=%d]\n", gen_code_size);
1144 log_disas(tb->tc_ptr, gen_code_size);
1145 qemu_log("\n");
1146 qemu_log_flush();
1147 }
1148 #endif
1149
1150 tcg_ctx.code_gen_ptr = (void *)
1151 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1152 CODE_GEN_ALIGN);
1153
1154 /* check next page if needed */
1155 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1156 phys_page2 = -1;
1157 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1158 phys_page2 = get_page_addr_code(env, virt_page2);
1159 }
1160 tb_link_page(tb, phys_pc, phys_page2);
1161 return tb;
1162 }
1163
1164 /*
1165 * Invalidate all TBs which intersect with the target physical address range
1166 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1167 * 'is_cpu_write_access' should be true if called from a real cpu write
1168 * access: the virtual CPU will exit the current TB if code is modified inside
1169 * this TB.
1170 *
1171 * Called with mmap_lock held for user-mode emulation
1172 */
1173 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1174 {
1175 while (start < end) {
1176 tb_invalidate_phys_page_range(start, end, 0);
1177 start &= TARGET_PAGE_MASK;
1178 start += TARGET_PAGE_SIZE;
1179 }
1180 }
1181
1182 /*
1183 * Invalidate all TBs which intersect with the target physical address range
1184 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1185 * 'is_cpu_write_access' should be true if called from a real cpu write
1186 * access: the virtual CPU will exit the current TB if code is modified inside
1187 * this TB.
1188 *
1189 * Called with mmap_lock held for user-mode emulation
1190 */
1191 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1192 int is_cpu_write_access)
1193 {
1194 TranslationBlock *tb, *tb_next, *saved_tb;
1195 CPUState *cpu = current_cpu;
1196 #if defined(TARGET_HAS_PRECISE_SMC)
1197 CPUArchState *env = NULL;
1198 #endif
1199 tb_page_addr_t tb_start, tb_end;
1200 PageDesc *p;
1201 int n;
1202 #ifdef TARGET_HAS_PRECISE_SMC
1203 int current_tb_not_found = is_cpu_write_access;
1204 TranslationBlock *current_tb = NULL;
1205 int current_tb_modified = 0;
1206 target_ulong current_pc = 0;
1207 target_ulong current_cs_base = 0;
1208 int current_flags = 0;
1209 #endif /* TARGET_HAS_PRECISE_SMC */
1210
1211 p = page_find(start >> TARGET_PAGE_BITS);
1212 if (!p) {
1213 return;
1214 }
1215 #if defined(TARGET_HAS_PRECISE_SMC)
1216 if (cpu != NULL) {
1217 env = cpu->env_ptr;
1218 }
1219 #endif
1220
1221 /* we remove all the TBs in the range [start, end[ */
1222 /* XXX: see if in some cases it could be faster to invalidate all
1223 the code */
1224 tb = p->first_tb;
1225 while (tb != NULL) {
1226 n = (uintptr_t)tb & 3;
1227 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1228 tb_next = tb->page_next[n];
1229 /* NOTE: this is subtle as a TB may span two physical pages */
1230 if (n == 0) {
1231 /* NOTE: tb_end may be after the end of the page, but
1232 it is not a problem */
1233 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1234 tb_end = tb_start + tb->size;
1235 } else {
1236 tb_start = tb->page_addr[1];
1237 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1238 }
1239 if (!(tb_end <= start || tb_start >= end)) {
1240 #ifdef TARGET_HAS_PRECISE_SMC
1241 if (current_tb_not_found) {
1242 current_tb_not_found = 0;
1243 current_tb = NULL;
1244 if (cpu->mem_io_pc) {
1245 /* now we have a real cpu fault */
1246 current_tb = tb_find_pc(cpu->mem_io_pc);
1247 }
1248 }
1249 if (current_tb == tb &&
1250 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1251 /* If we are modifying the current TB, we must stop
1252 its execution. We could be more precise by checking
1253 that the modification is after the current PC, but it
1254 would require a specialized function to partially
1255 restore the CPU state */
1256
1257 current_tb_modified = 1;
1258 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1259 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1260 &current_flags);
1261 }
1262 #endif /* TARGET_HAS_PRECISE_SMC */
1263 /* we need to do that to handle the case where a signal
1264 occurs while doing tb_phys_invalidate() */
1265 saved_tb = NULL;
1266 if (cpu != NULL) {
1267 saved_tb = cpu->current_tb;
1268 cpu->current_tb = NULL;
1269 }
1270 tb_phys_invalidate(tb, -1);
1271 if (cpu != NULL) {
1272 cpu->current_tb = saved_tb;
1273 if (cpu->interrupt_request && cpu->current_tb) {
1274 cpu_interrupt(cpu, cpu->interrupt_request);
1275 }
1276 }
1277 }
1278 tb = tb_next;
1279 }
1280 #if !defined(CONFIG_USER_ONLY)
1281 /* if no code remaining, no need to continue to use slow writes */
1282 if (!p->first_tb) {
1283 invalidate_page_bitmap(p);
1284 tlb_unprotect_code(start);
1285 }
1286 #endif
1287 #ifdef TARGET_HAS_PRECISE_SMC
1288 if (current_tb_modified) {
1289 /* we generate a block containing just the instruction
1290 modifying the memory. It will ensure that it cannot modify
1291 itself */
1292 cpu->current_tb = NULL;
1293 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1294 cpu_resume_from_signal(cpu, NULL);
1295 }
1296 #endif
1297 }
1298
1299 /* len must be <= 8 and start must be a multiple of len */
1300 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1301 {
1302 PageDesc *p;
1303
1304 #if 0
1305 if (1) {
1306 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1307 cpu_single_env->mem_io_vaddr, len,
1308 cpu_single_env->eip,
1309 cpu_single_env->eip +
1310 (intptr_t)cpu_single_env->segs[R_CS].base);
1311 }
1312 #endif
1313 p = page_find(start >> TARGET_PAGE_BITS);
1314 if (!p) {
1315 return;
1316 }
1317 if (!p->code_bitmap &&
1318 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1319 /* build code bitmap */
1320 build_page_bitmap(p);
1321 }
1322 if (p->code_bitmap) {
1323 unsigned int nr;
1324 unsigned long b;
1325
1326 nr = start & ~TARGET_PAGE_MASK;
1327 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1328 if (b & ((1 << len) - 1)) {
1329 goto do_invalidate;
1330 }
1331 } else {
1332 do_invalidate:
1333 tb_invalidate_phys_page_range(start, start + len, 1);
1334 }
1335 }
1336
1337 #if !defined(CONFIG_SOFTMMU)
1338 /* Called with mmap_lock held. */
1339 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1340 uintptr_t pc, void *puc,
1341 bool locked)
1342 {
1343 TranslationBlock *tb;
1344 PageDesc *p;
1345 int n;
1346 #ifdef TARGET_HAS_PRECISE_SMC
1347 TranslationBlock *current_tb = NULL;
1348 CPUState *cpu = current_cpu;
1349 CPUArchState *env = NULL;
1350 int current_tb_modified = 0;
1351 target_ulong current_pc = 0;
1352 target_ulong current_cs_base = 0;
1353 int current_flags = 0;
1354 #endif
1355
1356 addr &= TARGET_PAGE_MASK;
1357 p = page_find(addr >> TARGET_PAGE_BITS);
1358 if (!p) {
1359 return;
1360 }
1361 tb = p->first_tb;
1362 #ifdef TARGET_HAS_PRECISE_SMC
1363 if (tb && pc != 0) {
1364 current_tb = tb_find_pc(pc);
1365 }
1366 if (cpu != NULL) {
1367 env = cpu->env_ptr;
1368 }
1369 #endif
1370 while (tb != NULL) {
1371 n = (uintptr_t)tb & 3;
1372 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1373 #ifdef TARGET_HAS_PRECISE_SMC
1374 if (current_tb == tb &&
1375 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1376 /* If we are modifying the current TB, we must stop
1377 its execution. We could be more precise by checking
1378 that the modification is after the current PC, but it
1379 would require a specialized function to partially
1380 restore the CPU state */
1381
1382 current_tb_modified = 1;
1383 cpu_restore_state_from_tb(cpu, current_tb, pc);
1384 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1385 &current_flags);
1386 }
1387 #endif /* TARGET_HAS_PRECISE_SMC */
1388 tb_phys_invalidate(tb, addr);
1389 tb = tb->page_next[n];
1390 }
1391 p->first_tb = NULL;
1392 #ifdef TARGET_HAS_PRECISE_SMC
1393 if (current_tb_modified) {
1394 /* we generate a block containing just the instruction
1395 modifying the memory. It will ensure that it cannot modify
1396 itself */
1397 cpu->current_tb = NULL;
1398 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1399 if (locked) {
1400 mmap_unlock();
1401 }
1402 cpu_resume_from_signal(cpu, puc);
1403 }
1404 #endif
1405 }
1406 #endif
1407
1408 /* add the tb in the target page and protect it if necessary
1409 *
1410 * Called with mmap_lock held for user-mode emulation.
1411 */
1412 static inline void tb_alloc_page(TranslationBlock *tb,
1413 unsigned int n, tb_page_addr_t page_addr)
1414 {
1415 PageDesc *p;
1416 #ifndef CONFIG_USER_ONLY
1417 bool page_already_protected;
1418 #endif
1419
1420 tb->page_addr[n] = page_addr;
1421 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1422 tb->page_next[n] = p->first_tb;
1423 #ifndef CONFIG_USER_ONLY
1424 page_already_protected = p->first_tb != NULL;
1425 #endif
1426 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1427 invalidate_page_bitmap(p);
1428
1429 #if defined(CONFIG_USER_ONLY)
1430 if (p->flags & PAGE_WRITE) {
1431 target_ulong addr;
1432 PageDesc *p2;
1433 int prot;
1434
1435 /* force the host page as non writable (writes will have a
1436 page fault + mprotect overhead) */
1437 page_addr &= qemu_host_page_mask;
1438 prot = 0;
1439 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1440 addr += TARGET_PAGE_SIZE) {
1441
1442 p2 = page_find(addr >> TARGET_PAGE_BITS);
1443 if (!p2) {
1444 continue;
1445 }
1446 prot |= p2->flags;
1447 p2->flags &= ~PAGE_WRITE;
1448 }
1449 mprotect(g2h(page_addr), qemu_host_page_size,
1450 (prot & PAGE_BITS) & ~PAGE_WRITE);
1451 #ifdef DEBUG_TB_INVALIDATE
1452 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1453 page_addr);
1454 #endif
1455 }
1456 #else
1457 /* if some code is already present, then the pages are already
1458 protected. So we handle the case where only the first TB is
1459 allocated in a physical page */
1460 if (!page_already_protected) {
1461 tlb_protect_code(page_addr);
1462 }
1463 #endif
1464 }
1465
1466 /* add a new TB and link it to the physical page tables. phys_page2 is
1467 * (-1) to indicate that only one page contains the TB.
1468 *
1469 * Called with mmap_lock held for user-mode emulation.
1470 */
1471 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1472 tb_page_addr_t phys_page2)
1473 {
1474 unsigned int h;
1475 TranslationBlock **ptb;
1476
1477 /* add in the physical hash table */
1478 h = tb_phys_hash_func(phys_pc);
1479 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1480 tb->phys_hash_next = *ptb;
1481 *ptb = tb;
1482
1483 /* add in the page list */
1484 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1485 if (phys_page2 != -1) {
1486 tb_alloc_page(tb, 1, phys_page2);
1487 } else {
1488 tb->page_addr[1] = -1;
1489 }
1490
1491 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1492 tb->jmp_next[0] = NULL;
1493 tb->jmp_next[1] = NULL;
1494
1495 /* init original jump addresses */
1496 if (tb->tb_next_offset[0] != 0xffff) {
1497 tb_reset_jump(tb, 0);
1498 }
1499 if (tb->tb_next_offset[1] != 0xffff) {
1500 tb_reset_jump(tb, 1);
1501 }
1502
1503 #ifdef DEBUG_TB_CHECK
1504 tb_page_check();
1505 #endif
1506 }
1507
1508 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1509 tb[1].tc_ptr. Return NULL if not found */
1510 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1511 {
1512 int m_min, m_max, m;
1513 uintptr_t v;
1514 TranslationBlock *tb;
1515
1516 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1517 return NULL;
1518 }
1519 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1520 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1521 return NULL;
1522 }
1523 /* binary search (cf Knuth) */
1524 m_min = 0;
1525 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1526 while (m_min <= m_max) {
1527 m = (m_min + m_max) >> 1;
1528 tb = &tcg_ctx.tb_ctx.tbs[m];
1529 v = (uintptr_t)tb->tc_ptr;
1530 if (v == tc_ptr) {
1531 return tb;
1532 } else if (tc_ptr < v) {
1533 m_max = m - 1;
1534 } else {
1535 m_min = m + 1;
1536 }
1537 }
1538 return &tcg_ctx.tb_ctx.tbs[m_max];
1539 }
1540
1541 #if !defined(CONFIG_USER_ONLY)
1542 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1543 {
1544 ram_addr_t ram_addr;
1545 MemoryRegion *mr;
1546 hwaddr l = 1;
1547
1548 rcu_read_lock();
1549 mr = address_space_translate(as, addr, &addr, &l, false);
1550 if (!(memory_region_is_ram(mr)
1551 || memory_region_is_romd(mr))) {
1552 rcu_read_unlock();
1553 return;
1554 }
1555 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1556 + addr;
1557 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1558 rcu_read_unlock();
1559 }
1560 #endif /* !defined(CONFIG_USER_ONLY) */
1561
1562 void tb_check_watchpoint(CPUState *cpu)
1563 {
1564 TranslationBlock *tb;
1565
1566 tb = tb_find_pc(cpu->mem_io_pc);
1567 if (tb) {
1568 /* We can use retranslation to find the PC. */
1569 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1570 tb_phys_invalidate(tb, -1);
1571 } else {
1572 /* The exception probably happened in a helper. The CPU state should
1573 have been saved before calling it. Fetch the PC from there. */
1574 CPUArchState *env = cpu->env_ptr;
1575 target_ulong pc, cs_base;
1576 tb_page_addr_t addr;
1577 int flags;
1578
1579 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1580 addr = get_page_addr_code(env, pc);
1581 tb_invalidate_phys_range(addr, addr + 1);
1582 }
1583 }
1584
1585 #ifndef CONFIG_USER_ONLY
1586 /* in deterministic execution mode, instructions doing device I/Os
1587 must be at the end of the TB */
1588 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1589 {
1590 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1591 CPUArchState *env = cpu->env_ptr;
1592 #endif
1593 TranslationBlock *tb;
1594 uint32_t n, cflags;
1595 target_ulong pc, cs_base;
1596 uint64_t flags;
1597
1598 tb = tb_find_pc(retaddr);
1599 if (!tb) {
1600 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1601 (void *)retaddr);
1602 }
1603 n = cpu->icount_decr.u16.low + tb->icount;
1604 cpu_restore_state_from_tb(cpu, tb, retaddr);
1605 /* Calculate how many instructions had been executed before the fault
1606 occurred. */
1607 n = n - cpu->icount_decr.u16.low;
1608 /* Generate a new TB ending on the I/O insn. */
1609 n++;
1610 /* On MIPS and SH, delay slot instructions can only be restarted if
1611 they were already the first instruction in the TB. If this is not
1612 the first instruction in a TB then re-execute the preceding
1613 branch. */
1614 #if defined(TARGET_MIPS)
1615 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1616 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1617 cpu->icount_decr.u16.low++;
1618 env->hflags &= ~MIPS_HFLAG_BMASK;
1619 }
1620 #elif defined(TARGET_SH4)
1621 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1622 && n > 1) {
1623 env->pc -= 2;
1624 cpu->icount_decr.u16.low++;
1625 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1626 }
1627 #endif
1628 /* This should never happen. */
1629 if (n > CF_COUNT_MASK) {
1630 cpu_abort(cpu, "TB too big during recompile");
1631 }
1632
1633 cflags = n | CF_LAST_IO;
1634 pc = tb->pc;
1635 cs_base = tb->cs_base;
1636 flags = tb->flags;
1637 tb_phys_invalidate(tb, -1);
1638 if (tb->cflags & CF_NOCACHE) {
1639 if (tb->orig_tb) {
1640 /* Invalidate original TB if this TB was generated in
1641 * cpu_exec_nocache() */
1642 tb_phys_invalidate(tb->orig_tb, -1);
1643 }
1644 tb_free(tb);
1645 }
1646 /* FIXME: In theory this could raise an exception. In practice
1647 we have already translated the block once so it's probably ok. */
1648 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1649 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1650 the first in the TB) then we end up generating a whole new TB and
1651 repeating the fault, which is horribly inefficient.
1652 Better would be to execute just this insn uncached, or generate a
1653 second new TB. */
1654 cpu_resume_from_signal(cpu, NULL);
1655 }
1656
1657 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1658 {
1659 unsigned int i;
1660
1661 /* Discard jump cache entries for any tb which might potentially
1662 overlap the flushed page. */
1663 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1664 memset(&cpu->tb_jmp_cache[i], 0,
1665 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1666
1667 i = tb_jmp_cache_hash_page(addr);
1668 memset(&cpu->tb_jmp_cache[i], 0,
1669 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1670 }
1671
1672 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1673 {
1674 int i, target_code_size, max_target_code_size;
1675 int direct_jmp_count, direct_jmp2_count, cross_page;
1676 TranslationBlock *tb;
1677
1678 target_code_size = 0;
1679 max_target_code_size = 0;
1680 cross_page = 0;
1681 direct_jmp_count = 0;
1682 direct_jmp2_count = 0;
1683 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1684 tb = &tcg_ctx.tb_ctx.tbs[i];
1685 target_code_size += tb->size;
1686 if (tb->size > max_target_code_size) {
1687 max_target_code_size = tb->size;
1688 }
1689 if (tb->page_addr[1] != -1) {
1690 cross_page++;
1691 }
1692 if (tb->tb_next_offset[0] != 0xffff) {
1693 direct_jmp_count++;
1694 if (tb->tb_next_offset[1] != 0xffff) {
1695 direct_jmp2_count++;
1696 }
1697 }
1698 }
1699 /* XXX: avoid using doubles ? */
1700 cpu_fprintf(f, "Translation buffer state:\n");
1701 cpu_fprintf(f, "gen code size %td/%zd\n",
1702 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1703 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1704 cpu_fprintf(f, "TB count %d/%d\n",
1705 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1706 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1707 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1708 tcg_ctx.tb_ctx.nb_tbs : 0,
1709 max_target_code_size);
1710 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1711 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1712 tcg_ctx.code_gen_buffer) /
1713 tcg_ctx.tb_ctx.nb_tbs : 0,
1714 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1715 tcg_ctx.code_gen_buffer) /
1716 target_code_size : 0);
1717 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1718 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1719 tcg_ctx.tb_ctx.nb_tbs : 0);
1720 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1721 direct_jmp_count,
1722 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1723 tcg_ctx.tb_ctx.nb_tbs : 0,
1724 direct_jmp2_count,
1725 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1726 tcg_ctx.tb_ctx.nb_tbs : 0);
1727 cpu_fprintf(f, "\nStatistics:\n");
1728 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1729 cpu_fprintf(f, "TB invalidate count %d\n",
1730 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1731 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1732 tcg_dump_info(f, cpu_fprintf);
1733 }
1734
1735 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1736 {
1737 tcg_dump_op_count(f, cpu_fprintf);
1738 }
1739
1740 #else /* CONFIG_USER_ONLY */
1741
1742 void cpu_interrupt(CPUState *cpu, int mask)
1743 {
1744 cpu->interrupt_request |= mask;
1745 cpu->tcg_exit_req = 1;
1746 }
1747
1748 /*
1749 * Walks guest process memory "regions" one by one
1750 * and calls callback function 'fn' for each region.
1751 */
1752 struct walk_memory_regions_data {
1753 walk_memory_regions_fn fn;
1754 void *priv;
1755 target_ulong start;
1756 int prot;
1757 };
1758
1759 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1760 target_ulong end, int new_prot)
1761 {
1762 if (data->start != -1u) {
1763 int rc = data->fn(data->priv, data->start, end, data->prot);
1764 if (rc != 0) {
1765 return rc;
1766 }
1767 }
1768
1769 data->start = (new_prot ? end : -1u);
1770 data->prot = new_prot;
1771
1772 return 0;
1773 }
1774
1775 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1776 target_ulong base, int level, void **lp)
1777 {
1778 target_ulong pa;
1779 int i, rc;
1780
1781 if (*lp == NULL) {
1782 return walk_memory_regions_end(data, base, 0);
1783 }
1784
1785 if (level == 0) {
1786 PageDesc *pd = *lp;
1787
1788 for (i = 0; i < V_L2_SIZE; ++i) {
1789 int prot = pd[i].flags;
1790
1791 pa = base | (i << TARGET_PAGE_BITS);
1792 if (prot != data->prot) {
1793 rc = walk_memory_regions_end(data, pa, prot);
1794 if (rc != 0) {
1795 return rc;
1796 }
1797 }
1798 }
1799 } else {
1800 void **pp = *lp;
1801
1802 for (i = 0; i < V_L2_SIZE; ++i) {
1803 pa = base | ((target_ulong)i <<
1804 (TARGET_PAGE_BITS + V_L2_BITS * level));
1805 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1806 if (rc != 0) {
1807 return rc;
1808 }
1809 }
1810 }
1811
1812 return 0;
1813 }
1814
1815 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1816 {
1817 struct walk_memory_regions_data data;
1818 uintptr_t i;
1819
1820 data.fn = fn;
1821 data.priv = priv;
1822 data.start = -1u;
1823 data.prot = 0;
1824
1825 for (i = 0; i < V_L1_SIZE; i++) {
1826 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1827 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1828 if (rc != 0) {
1829 return rc;
1830 }
1831 }
1832
1833 return walk_memory_regions_end(&data, 0, 0);
1834 }
1835
1836 static int dump_region(void *priv, target_ulong start,
1837 target_ulong end, unsigned long prot)
1838 {
1839 FILE *f = (FILE *)priv;
1840
1841 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1842 " "TARGET_FMT_lx" %c%c%c\n",
1843 start, end, end - start,
1844 ((prot & PAGE_READ) ? 'r' : '-'),
1845 ((prot & PAGE_WRITE) ? 'w' : '-'),
1846 ((prot & PAGE_EXEC) ? 'x' : '-'));
1847
1848 return 0;
1849 }
1850
1851 /* dump memory mappings */
1852 void page_dump(FILE *f)
1853 {
1854 const int length = sizeof(target_ulong) * 2;
1855 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1856 length, "start", length, "end", length, "size", "prot");
1857 walk_memory_regions(f, dump_region);
1858 }
1859
1860 int page_get_flags(target_ulong address)
1861 {
1862 PageDesc *p;
1863
1864 p = page_find(address >> TARGET_PAGE_BITS);
1865 if (!p) {
1866 return 0;
1867 }
1868 return p->flags;
1869 }
1870
1871 /* Modify the flags of a page and invalidate the code if necessary.
1872 The flag PAGE_WRITE_ORG is positioned automatically depending
1873 on PAGE_WRITE. The mmap_lock should already be held. */
1874 void page_set_flags(target_ulong start, target_ulong end, int flags)
1875 {
1876 target_ulong addr, len;
1877
1878 /* This function should never be called with addresses outside the
1879 guest address space. If this assert fires, it probably indicates
1880 a missing call to h2g_valid. */
1881 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1882 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1883 #endif
1884 assert(start < end);
1885
1886 start = start & TARGET_PAGE_MASK;
1887 end = TARGET_PAGE_ALIGN(end);
1888
1889 if (flags & PAGE_WRITE) {
1890 flags |= PAGE_WRITE_ORG;
1891 }
1892
1893 for (addr = start, len = end - start;
1894 len != 0;
1895 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1896 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1897
1898 /* If the write protection bit is set, then we invalidate
1899 the code inside. */
1900 if (!(p->flags & PAGE_WRITE) &&
1901 (flags & PAGE_WRITE) &&
1902 p->first_tb) {
1903 tb_invalidate_phys_page(addr, 0, NULL, false);
1904 }
1905 p->flags = flags;
1906 }
1907 }
1908
1909 int page_check_range(target_ulong start, target_ulong len, int flags)
1910 {
1911 PageDesc *p;
1912 target_ulong end;
1913 target_ulong addr;
1914
1915 /* This function should never be called with addresses outside the
1916 guest address space. If this assert fires, it probably indicates
1917 a missing call to h2g_valid. */
1918 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1919 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1920 #endif
1921
1922 if (len == 0) {
1923 return 0;
1924 }
1925 if (start + len - 1 < start) {
1926 /* We've wrapped around. */
1927 return -1;
1928 }
1929
1930 /* must do before we loose bits in the next step */
1931 end = TARGET_PAGE_ALIGN(start + len);
1932 start = start & TARGET_PAGE_MASK;
1933
1934 for (addr = start, len = end - start;
1935 len != 0;
1936 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1937 p = page_find(addr >> TARGET_PAGE_BITS);
1938 if (!p) {
1939 return -1;
1940 }
1941 if (!(p->flags & PAGE_VALID)) {
1942 return -1;
1943 }
1944
1945 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1946 return -1;
1947 }
1948 if (flags & PAGE_WRITE) {
1949 if (!(p->flags & PAGE_WRITE_ORG)) {
1950 return -1;
1951 }
1952 /* unprotect the page if it was put read-only because it
1953 contains translated code */
1954 if (!(p->flags & PAGE_WRITE)) {
1955 if (!page_unprotect(addr, 0, NULL)) {
1956 return -1;
1957 }
1958 }
1959 }
1960 }
1961 return 0;
1962 }
1963
1964 /* called from signal handler: invalidate the code and unprotect the
1965 page. Return TRUE if the fault was successfully handled. */
1966 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1967 {
1968 unsigned int prot;
1969 PageDesc *p;
1970 target_ulong host_start, host_end, addr;
1971
1972 /* Technically this isn't safe inside a signal handler. However we
1973 know this only ever happens in a synchronous SEGV handler, so in
1974 practice it seems to be ok. */
1975 mmap_lock();
1976
1977 p = page_find(address >> TARGET_PAGE_BITS);
1978 if (!p) {
1979 mmap_unlock();
1980 return 0;
1981 }
1982
1983 /* if the page was really writable, then we change its
1984 protection back to writable */
1985 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1986 host_start = address & qemu_host_page_mask;
1987 host_end = host_start + qemu_host_page_size;
1988
1989 prot = 0;
1990 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1991 p = page_find(addr >> TARGET_PAGE_BITS);
1992 p->flags |= PAGE_WRITE;
1993 prot |= p->flags;
1994
1995 /* and since the content will be modified, we must invalidate
1996 the corresponding translated code. */
1997 tb_invalidate_phys_page(addr, pc, puc, true);
1998 #ifdef DEBUG_TB_CHECK
1999 tb_invalidate_check(addr);
2000 #endif
2001 }
2002 mprotect((void *)g2h(host_start), qemu_host_page_size,
2003 prot & PAGE_BITS);
2004
2005 mmap_unlock();
2006 return 1;
2007 }
2008 mmap_unlock();
2009 return 0;
2010 }
2011 #endif /* CONFIG_USER_ONLY */