]> git.proxmox.com Git - mirror_qemu.git/blob - translate-all.c
translate-all: add missing munmap of the code_gen guard page for MIPS
[mirror_qemu.git] / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/mman.h>
23 #endif
24 #include "qemu/osdep.h"
25
26
27 #include "qemu-common.h"
28 #define NO_CPU_IO_DEFS
29 #include "cpu.h"
30 #include "trace.h"
31 #include "disas/disas.h"
32 #include "tcg.h"
33 #if defined(CONFIG_USER_ONLY)
34 #include "qemu.h"
35 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36 #include <sys/param.h>
37 #if __FreeBSD_version >= 700104
38 #define HAVE_KINFO_GETVMMAP
39 #define sigqueue sigqueue_freebsd /* avoid redefinition */
40 #include <sys/proc.h>
41 #include <machine/profile.h>
42 #define _KERNEL
43 #include <sys/user.h>
44 #undef _KERNEL
45 #undef sigqueue
46 #include <libutil.h>
47 #endif
48 #endif
49 #else
50 #include "exec/address-spaces.h"
51 #endif
52
53 #include "exec/cputlb.h"
54 #include "exec/tb-hash.h"
55 #include "translate-all.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/timer.h"
58 #include "exec/log.h"
59
60 //#define DEBUG_TB_INVALIDATE
61 //#define DEBUG_FLUSH
62 /* make various TB consistency checks */
63 //#define DEBUG_TB_CHECK
64
65 #if !defined(CONFIG_USER_ONLY)
66 /* TB consistency checks only implemented for usermode emulation. */
67 #undef DEBUG_TB_CHECK
68 #endif
69
70 #define SMC_BITMAP_USE_THRESHOLD 10
71
72 typedef struct PageDesc {
73 /* list of TBs intersecting this ram page */
74 TranslationBlock *first_tb;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
78 unsigned long *code_bitmap;
79 #if defined(CONFIG_USER_ONLY)
80 unsigned long flags;
81 #endif
82 } PageDesc;
83
84 /* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86 #if !defined(CONFIG_USER_ONLY)
87 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89 #else
90 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91 #endif
92 #else
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94 #endif
95
96 /* Size of the L2 (and L3, etc) page tables. */
97 #define V_L2_BITS 10
98 #define V_L2_SIZE (1 << V_L2_BITS)
99
100 /* The bits remaining after N lower levels of page tables. */
101 #define V_L1_BITS_REM \
102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
103
104 #if V_L1_BITS_REM < 4
105 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
106 #else
107 #define V_L1_BITS V_L1_BITS_REM
108 #endif
109
110 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
111
112 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
113
114 uintptr_t qemu_host_page_size;
115 intptr_t qemu_host_page_mask;
116
117 /* The bottom level has pointers to PageDesc */
118 static void *l1_map[V_L1_SIZE];
119
120 /* code generation context */
121 TCGContext tcg_ctx;
122
123 /* translation block context */
124 #ifdef CONFIG_USER_ONLY
125 __thread int have_tb_lock;
126 #endif
127
128 void tb_lock(void)
129 {
130 #ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134 #endif
135 }
136
137 void tb_unlock(void)
138 {
139 #ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143 #endif
144 }
145
146 void tb_lock_reset(void)
147 {
148 #ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
152 }
153 #endif
154 }
155
156 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
157 tb_page_addr_t phys_page2);
158 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
159
160 void cpu_gen_init(void)
161 {
162 tcg_context_init(&tcg_ctx);
163 }
164
165 /* Encode VAL as a signed leb128 sequence at P.
166 Return P incremented past the encoded value. */
167 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
168 {
169 int more, byte;
170
171 do {
172 byte = val & 0x7f;
173 val >>= 7;
174 more = !((val == 0 && (byte & 0x40) == 0)
175 || (val == -1 && (byte & 0x40) != 0));
176 if (more) {
177 byte |= 0x80;
178 }
179 *p++ = byte;
180 } while (more);
181
182 return p;
183 }
184
185 /* Decode a signed leb128 sequence at *PP; increment *PP past the
186 decoded value. Return the decoded value. */
187 static target_long decode_sleb128(uint8_t **pp)
188 {
189 uint8_t *p = *pp;
190 target_long val = 0;
191 int byte, shift = 0;
192
193 do {
194 byte = *p++;
195 val |= (target_ulong)(byte & 0x7f) << shift;
196 shift += 7;
197 } while (byte & 0x80);
198 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
199 val |= -(target_ulong)1 << shift;
200 }
201
202 *pp = p;
203 return val;
204 }
205
206 /* Encode the data collected about the instructions while compiling TB.
207 Place the data at BLOCK, and return the number of bytes consumed.
208
209 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
210 which come from the target's insn_start data, followed by a uintptr_t
211 which comes from the host pc of the end of the code implementing the insn.
212
213 Each line of the table is encoded as sleb128 deltas from the previous
214 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
215 That is, the first column is seeded with the guest pc, the last column
216 with the host pc, and the middle columns with zeros. */
217
218 static int encode_search(TranslationBlock *tb, uint8_t *block)
219 {
220 uint8_t *highwater = tcg_ctx.code_gen_highwater;
221 uint8_t *p = block;
222 int i, j, n;
223
224 tb->tc_search = block;
225
226 for (i = 0, n = tb->icount; i < n; ++i) {
227 target_ulong prev;
228
229 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
230 if (i == 0) {
231 prev = (j == 0 ? tb->pc : 0);
232 } else {
233 prev = tcg_ctx.gen_insn_data[i - 1][j];
234 }
235 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
236 }
237 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
238 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
239
240 /* Test for (pending) buffer overflow. The assumption is that any
241 one row beginning below the high water mark cannot overrun
242 the buffer completely. Thus we can test for overflow after
243 encoding a row without having to check during encoding. */
244 if (unlikely(p > highwater)) {
245 return -1;
246 }
247 }
248
249 return p - block;
250 }
251
252 /* The cpu state corresponding to 'searched_pc' is restored. */
253 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
254 uintptr_t searched_pc)
255 {
256 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
257 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
258 CPUArchState *env = cpu->env_ptr;
259 uint8_t *p = tb->tc_search;
260 int i, j, num_insns = tb->icount;
261 #ifdef CONFIG_PROFILER
262 int64_t ti = profile_getclock();
263 #endif
264
265 if (searched_pc < host_pc) {
266 return -1;
267 }
268
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
274 }
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
278 }
279 }
280 return -1;
281
282 found:
283 if (tb->cflags & CF_USE_ICOUNT) {
284 assert(use_icount);
285 /* Reset the cycle counter to the start of the block. */
286 cpu->icount_decr.u16.low += num_insns;
287 /* Clear the IO flag. */
288 cpu->can_do_io = 0;
289 }
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
292
293 #ifdef CONFIG_PROFILER
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
296 #endif
297 return 0;
298 }
299
300 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
301 {
302 TranslationBlock *tb;
303
304 tb = tb_find_pc(retaddr);
305 if (tb) {
306 cpu_restore_state_from_tb(cpu, tb, retaddr);
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
309 cpu->current_tb = NULL;
310 tb_phys_invalidate(tb, -1);
311 tb_free(tb);
312 }
313 return true;
314 }
315 return false;
316 }
317
318 void page_size_init(void)
319 {
320 /* NOTE: we can always suppose that qemu_host_page_size >=
321 TARGET_PAGE_SIZE */
322 qemu_real_host_page_size = getpagesize();
323 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
324 if (qemu_host_page_size == 0) {
325 qemu_host_page_size = qemu_real_host_page_size;
326 }
327 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
328 qemu_host_page_size = TARGET_PAGE_SIZE;
329 }
330 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
331 }
332
333 static void page_init(void)
334 {
335 page_size_init();
336 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
337 {
338 #ifdef HAVE_KINFO_GETVMMAP
339 struct kinfo_vmentry *freep;
340 int i, cnt;
341
342 freep = kinfo_getvmmap(getpid(), &cnt);
343 if (freep) {
344 mmap_lock();
345 for (i = 0; i < cnt; i++) {
346 unsigned long startaddr, endaddr;
347
348 startaddr = freep[i].kve_start;
349 endaddr = freep[i].kve_end;
350 if (h2g_valid(startaddr)) {
351 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
352
353 if (h2g_valid(endaddr)) {
354 endaddr = h2g(endaddr);
355 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
356 } else {
357 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
358 endaddr = ~0ul;
359 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
360 #endif
361 }
362 }
363 }
364 free(freep);
365 mmap_unlock();
366 }
367 #else
368 FILE *f;
369
370 last_brk = (unsigned long)sbrk(0);
371
372 f = fopen("/compat/linux/proc/self/maps", "r");
373 if (f) {
374 mmap_lock();
375
376 do {
377 unsigned long startaddr, endaddr;
378 int n;
379
380 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
381
382 if (n == 2 && h2g_valid(startaddr)) {
383 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
384
385 if (h2g_valid(endaddr)) {
386 endaddr = h2g(endaddr);
387 } else {
388 endaddr = ~0ul;
389 }
390 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
391 }
392 } while (!feof(f));
393
394 fclose(f);
395 mmap_unlock();
396 }
397 #endif
398 }
399 #endif
400 }
401
402 /* If alloc=1:
403 * Called with mmap_lock held for user-mode emulation.
404 */
405 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
406 {
407 PageDesc *pd;
408 void **lp;
409 int i;
410
411 /* Level 1. Always allocated. */
412 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
413
414 /* Level 2..N-1. */
415 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
416 void **p = atomic_rcu_read(lp);
417
418 if (p == NULL) {
419 if (!alloc) {
420 return NULL;
421 }
422 p = g_new0(void *, V_L2_SIZE);
423 atomic_rcu_set(lp, p);
424 }
425
426 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
427 }
428
429 pd = atomic_rcu_read(lp);
430 if (pd == NULL) {
431 if (!alloc) {
432 return NULL;
433 }
434 pd = g_new0(PageDesc, V_L2_SIZE);
435 atomic_rcu_set(lp, pd);
436 }
437
438 return pd + (index & (V_L2_SIZE - 1));
439 }
440
441 static inline PageDesc *page_find(tb_page_addr_t index)
442 {
443 return page_find_alloc(index, 0);
444 }
445
446 #if defined(CONFIG_USER_ONLY)
447 /* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451 #define USE_STATIC_CODE_GEN_BUFFER
452 #endif
453
454 /* Minimum size of the code gen buffer. This number is randomly chosen,
455 but not so small that we can't have a fair number of TB's live. */
456 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
457
458 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
459 indicated, this is constrained by the range of direct branches on the
460 host cpu, as used by the TCG implementation of goto_tb. */
461 #if defined(__x86_64__)
462 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463 #elif defined(__sparc__)
464 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
465 #elif defined(__powerpc64__)
466 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
467 #elif defined(__powerpc__)
468 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
469 #elif defined(__aarch64__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
471 #elif defined(__arm__)
472 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
473 #elif defined(__s390x__)
474 /* We have a +- 4GB range on the branches; leave some slop. */
475 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
476 #elif defined(__mips__)
477 /* We have a 256MB branch region, but leave room to make sure the
478 main executable is also within that region. */
479 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
480 #else
481 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
482 #endif
483
484 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
485
486 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
487 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
488 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
489
490 static inline size_t size_code_gen_buffer(size_t tb_size)
491 {
492 /* Size the buffer. */
493 if (tb_size == 0) {
494 #ifdef USE_STATIC_CODE_GEN_BUFFER
495 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
496 #else
497 /* ??? Needs adjustments. */
498 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
499 static buffer, we could size this on RESERVED_VA, on the text
500 segment size of the executable, or continue to use the default. */
501 tb_size = (unsigned long)(ram_size / 4);
502 #endif
503 }
504 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
505 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
506 }
507 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
508 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
509 }
510 return tb_size;
511 }
512
513 #ifdef __mips__
514 /* In order to use J and JAL within the code_gen_buffer, we require
515 that the buffer not cross a 256MB boundary. */
516 static inline bool cross_256mb(void *addr, size_t size)
517 {
518 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
519 }
520
521 /* We weren't able to allocate a buffer without crossing that boundary,
522 so make do with the larger portion of the buffer that doesn't cross.
523 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
524 static inline void *split_cross_256mb(void *buf1, size_t size1)
525 {
526 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
527 size_t size2 = buf1 + size1 - buf2;
528
529 size1 = buf2 - buf1;
530 if (size1 < size2) {
531 size1 = size2;
532 buf1 = buf2;
533 }
534
535 tcg_ctx.code_gen_buffer_size = size1;
536 return buf1;
537 }
538 #endif
539
540 #ifdef USE_STATIC_CODE_GEN_BUFFER
541 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
542 __attribute__((aligned(CODE_GEN_ALIGN)));
543
544 # ifdef _WIN32
545 static inline void do_protect(void *addr, long size, int prot)
546 {
547 DWORD old_protect;
548 VirtualProtect(addr, size, prot, &old_protect);
549 }
550
551 static inline void map_exec(void *addr, long size)
552 {
553 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
554 }
555
556 static inline void map_none(void *addr, long size)
557 {
558 do_protect(addr, size, PAGE_NOACCESS);
559 }
560 # else
561 static inline void do_protect(void *addr, long size, int prot)
562 {
563 uintptr_t start, end;
564
565 start = (uintptr_t)addr;
566 start &= qemu_real_host_page_mask;
567
568 end = (uintptr_t)addr + size;
569 end = ROUND_UP(end, qemu_real_host_page_size);
570
571 mprotect((void *)start, end - start, prot);
572 }
573
574 static inline void map_exec(void *addr, long size)
575 {
576 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
577 }
578
579 static inline void map_none(void *addr, long size)
580 {
581 do_protect(addr, size, PROT_NONE);
582 }
583 # endif /* WIN32 */
584
585 static inline void *alloc_code_gen_buffer(void)
586 {
587 void *buf = static_code_gen_buffer;
588 size_t full_size, size;
589
590 /* The size of the buffer, rounded down to end on a page boundary. */
591 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
592 & qemu_real_host_page_mask) - (uintptr_t)buf;
593
594 /* Reserve a guard page. */
595 size = full_size - qemu_real_host_page_size;
596
597 /* Honor a command-line option limiting the size of the buffer. */
598 if (size > tcg_ctx.code_gen_buffer_size) {
599 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
600 & qemu_real_host_page_mask) - (uintptr_t)buf;
601 }
602 tcg_ctx.code_gen_buffer_size = size;
603
604 #ifdef __mips__
605 if (cross_256mb(buf, size)) {
606 buf = split_cross_256mb(buf, size);
607 size = tcg_ctx.code_gen_buffer_size;
608 }
609 #endif
610
611 map_exec(buf, size);
612 map_none(buf + size, qemu_real_host_page_size);
613 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
614
615 return buf;
616 }
617 #elif defined(_WIN32)
618 static inline void *alloc_code_gen_buffer(void)
619 {
620 size_t size = tcg_ctx.code_gen_buffer_size;
621 void *buf1, *buf2;
622
623 /* Perform the allocation in two steps, so that the guard page
624 is reserved but uncommitted. */
625 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
626 MEM_RESERVE, PAGE_NOACCESS);
627 if (buf1 != NULL) {
628 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
629 assert(buf1 == buf2);
630 }
631
632 return buf1;
633 }
634 #else
635 static inline void *alloc_code_gen_buffer(void)
636 {
637 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
638 uintptr_t start = 0;
639 size_t size = tcg_ctx.code_gen_buffer_size;
640 void *buf;
641
642 /* Constrain the position of the buffer based on the host cpu.
643 Note that these addresses are chosen in concert with the
644 addresses assigned in the relevant linker script file. */
645 # if defined(__PIE__) || defined(__PIC__)
646 /* Don't bother setting a preferred location if we're building
647 a position-independent executable. We're more likely to get
648 an address near the main executable if we let the kernel
649 choose the address. */
650 # elif defined(__x86_64__) && defined(MAP_32BIT)
651 /* Force the memory down into low memory with the executable.
652 Leave the choice of exact location with the kernel. */
653 flags |= MAP_32BIT;
654 /* Cannot expect to map more than 800MB in low memory. */
655 if (size > 800u * 1024 * 1024) {
656 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
657 }
658 # elif defined(__sparc__)
659 start = 0x40000000ul;
660 # elif defined(__s390x__)
661 start = 0x90000000ul;
662 # elif defined(__mips__)
663 # if _MIPS_SIM == _ABI64
664 start = 0x128000000ul;
665 # else
666 start = 0x08000000ul;
667 # endif
668 # endif
669
670 buf = mmap((void *)start, size + qemu_real_host_page_size,
671 PROT_NONE, flags, -1, 0);
672 if (buf == MAP_FAILED) {
673 return NULL;
674 }
675
676 #ifdef __mips__
677 if (cross_256mb(buf, size)) {
678 /* Try again, with the original still mapped, to avoid re-acquiring
679 that 256mb crossing. This time don't specify an address. */
680 size_t size2;
681 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
682 PROT_NONE, flags, -1, 0);
683 switch (buf2 != MAP_FAILED) {
684 case 1:
685 if (!cross_256mb(buf2, size)) {
686 /* Success! Use the new buffer. */
687 munmap(buf, size + qemu_real_host_page_size);
688 break;
689 }
690 /* Failure. Work with what we had. */
691 munmap(buf2, size + qemu_real_host_page_size);
692 /* fallthru */
693 default:
694 /* Split the original buffer. Free the smaller half. */
695 buf2 = split_cross_256mb(buf, size);
696 size2 = tcg_ctx.code_gen_buffer_size;
697 if (buf == buf2) {
698 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
699 } else {
700 munmap(buf, size - size2);
701 }
702 size = size2;
703 break;
704 }
705 buf = buf2;
706 }
707 #endif
708
709 /* Make the final buffer accessible. The guard page at the end
710 will remain inaccessible with PROT_NONE. */
711 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
712
713 /* Request large pages for the buffer. */
714 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
715
716 return buf;
717 }
718 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
719
720 static inline void code_gen_alloc(size_t tb_size)
721 {
722 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
723 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
724 if (tcg_ctx.code_gen_buffer == NULL) {
725 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
726 exit(1);
727 }
728
729 /* Estimate a good size for the number of TBs we can support. We
730 still haven't deducted the prologue from the buffer size here,
731 but that's minimal and won't affect the estimate much. */
732 tcg_ctx.code_gen_max_blocks
733 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
734 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
735
736 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
737 }
738
739 /* Must be called before using the QEMU cpus. 'tb_size' is the size
740 (in bytes) allocated to the translation buffer. Zero means default
741 size. */
742 void tcg_exec_init(unsigned long tb_size)
743 {
744 cpu_gen_init();
745 page_init();
746 code_gen_alloc(tb_size);
747 #if defined(CONFIG_SOFTMMU)
748 /* There's no guest base to take into account, so go ahead and
749 initialize the prologue now. */
750 tcg_prologue_init(&tcg_ctx);
751 #endif
752 }
753
754 bool tcg_enabled(void)
755 {
756 return tcg_ctx.code_gen_buffer != NULL;
757 }
758
759 /* Allocate a new translation block. Flush the translation buffer if
760 too many translation blocks or too much generated code. */
761 static TranslationBlock *tb_alloc(target_ulong pc)
762 {
763 TranslationBlock *tb;
764
765 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
766 return NULL;
767 }
768 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
769 tb->pc = pc;
770 tb->cflags = 0;
771 return tb;
772 }
773
774 void tb_free(TranslationBlock *tb)
775 {
776 /* In practice this is mostly used for single use temporary TB
777 Ignore the hard cases and just back up if this TB happens to
778 be the last one generated. */
779 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
780 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
781 tcg_ctx.code_gen_ptr = tb->tc_ptr;
782 tcg_ctx.tb_ctx.nb_tbs--;
783 }
784 }
785
786 static inline void invalidate_page_bitmap(PageDesc *p)
787 {
788 g_free(p->code_bitmap);
789 p->code_bitmap = NULL;
790 p->code_write_count = 0;
791 }
792
793 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
794 static void page_flush_tb_1(int level, void **lp)
795 {
796 int i;
797
798 if (*lp == NULL) {
799 return;
800 }
801 if (level == 0) {
802 PageDesc *pd = *lp;
803
804 for (i = 0; i < V_L2_SIZE; ++i) {
805 pd[i].first_tb = NULL;
806 invalidate_page_bitmap(pd + i);
807 }
808 } else {
809 void **pp = *lp;
810
811 for (i = 0; i < V_L2_SIZE; ++i) {
812 page_flush_tb_1(level - 1, pp + i);
813 }
814 }
815 }
816
817 static void page_flush_tb(void)
818 {
819 int i;
820
821 for (i = 0; i < V_L1_SIZE; i++) {
822 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
823 }
824 }
825
826 /* flush all the translation blocks */
827 /* XXX: tb_flush is currently not thread safe */
828 void tb_flush(CPUState *cpu)
829 {
830 #if defined(DEBUG_FLUSH)
831 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
832 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
833 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
834 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
835 tcg_ctx.tb_ctx.nb_tbs : 0);
836 #endif
837 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
838 > tcg_ctx.code_gen_buffer_size) {
839 cpu_abort(cpu, "Internal error: code buffer overflow\n");
840 }
841 tcg_ctx.tb_ctx.nb_tbs = 0;
842
843 CPU_FOREACH(cpu) {
844 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
845 }
846
847 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
848 page_flush_tb();
849
850 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
851 /* XXX: flush processor icache at this point if cache flush is
852 expensive */
853 tcg_ctx.tb_ctx.tb_flush_count++;
854 }
855
856 #ifdef DEBUG_TB_CHECK
857
858 static void tb_invalidate_check(target_ulong address)
859 {
860 TranslationBlock *tb;
861 int i;
862
863 address &= TARGET_PAGE_MASK;
864 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
865 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
866 tb = tb->phys_hash_next) {
867 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
868 address >= tb->pc + tb->size)) {
869 printf("ERROR invalidate: address=" TARGET_FMT_lx
870 " PC=%08lx size=%04x\n",
871 address, (long)tb->pc, tb->size);
872 }
873 }
874 }
875 }
876
877 /* verify that all the pages have correct rights for code */
878 static void tb_page_check(void)
879 {
880 TranslationBlock *tb;
881 int i, flags1, flags2;
882
883 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
884 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
885 tb = tb->phys_hash_next) {
886 flags1 = page_get_flags(tb->pc);
887 flags2 = page_get_flags(tb->pc + tb->size - 1);
888 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
889 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
890 (long)tb->pc, tb->size, flags1, flags2);
891 }
892 }
893 }
894 }
895
896 #endif
897
898 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
899 {
900 TranslationBlock *tb1;
901
902 for (;;) {
903 tb1 = *ptb;
904 if (tb1 == tb) {
905 *ptb = tb1->phys_hash_next;
906 break;
907 }
908 ptb = &tb1->phys_hash_next;
909 }
910 }
911
912 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
913 {
914 TranslationBlock *tb1;
915 unsigned int n1;
916
917 for (;;) {
918 tb1 = *ptb;
919 n1 = (uintptr_t)tb1 & 3;
920 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
921 if (tb1 == tb) {
922 *ptb = tb1->page_next[n1];
923 break;
924 }
925 ptb = &tb1->page_next[n1];
926 }
927 }
928
929 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
930 {
931 TranslationBlock *tb1, **ptb;
932 unsigned int n1;
933
934 ptb = &tb->jmp_next[n];
935 tb1 = *ptb;
936 if (tb1) {
937 /* find tb(n) in circular list */
938 for (;;) {
939 tb1 = *ptb;
940 n1 = (uintptr_t)tb1 & 3;
941 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
942 if (n1 == n && tb1 == tb) {
943 break;
944 }
945 if (n1 == 2) {
946 ptb = &tb1->jmp_first;
947 } else {
948 ptb = &tb1->jmp_next[n1];
949 }
950 }
951 /* now we can suppress tb(n) from the list */
952 *ptb = tb->jmp_next[n];
953
954 tb->jmp_next[n] = NULL;
955 }
956 }
957
958 /* reset the jump entry 'n' of a TB so that it is not chained to
959 another TB */
960 static inline void tb_reset_jump(TranslationBlock *tb, int n)
961 {
962 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
963 }
964
965 /* invalidate one TB */
966 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
967 {
968 CPUState *cpu;
969 PageDesc *p;
970 unsigned int h, n1;
971 tb_page_addr_t phys_pc;
972 TranslationBlock *tb1, *tb2;
973
974 /* remove the TB from the hash list */
975 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
976 h = tb_phys_hash_func(phys_pc);
977 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
978
979 /* remove the TB from the page list */
980 if (tb->page_addr[0] != page_addr) {
981 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
982 tb_page_remove(&p->first_tb, tb);
983 invalidate_page_bitmap(p);
984 }
985 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
986 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
987 tb_page_remove(&p->first_tb, tb);
988 invalidate_page_bitmap(p);
989 }
990
991 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
992
993 /* remove the TB from the hash list */
994 h = tb_jmp_cache_hash_func(tb->pc);
995 CPU_FOREACH(cpu) {
996 if (cpu->tb_jmp_cache[h] == tb) {
997 cpu->tb_jmp_cache[h] = NULL;
998 }
999 }
1000
1001 /* suppress this TB from the two jump lists */
1002 tb_jmp_remove(tb, 0);
1003 tb_jmp_remove(tb, 1);
1004
1005 /* suppress any remaining jumps to this TB */
1006 tb1 = tb->jmp_first;
1007 for (;;) {
1008 n1 = (uintptr_t)tb1 & 3;
1009 if (n1 == 2) {
1010 break;
1011 }
1012 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1013 tb2 = tb1->jmp_next[n1];
1014 tb_reset_jump(tb1, n1);
1015 tb1->jmp_next[n1] = NULL;
1016 tb1 = tb2;
1017 }
1018 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1019
1020 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1021 }
1022
1023 static void build_page_bitmap(PageDesc *p)
1024 {
1025 int n, tb_start, tb_end;
1026 TranslationBlock *tb;
1027
1028 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1029
1030 tb = p->first_tb;
1031 while (tb != NULL) {
1032 n = (uintptr_t)tb & 3;
1033 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1034 /* NOTE: this is subtle as a TB may span two physical pages */
1035 if (n == 0) {
1036 /* NOTE: tb_end may be after the end of the page, but
1037 it is not a problem */
1038 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1039 tb_end = tb_start + tb->size;
1040 if (tb_end > TARGET_PAGE_SIZE) {
1041 tb_end = TARGET_PAGE_SIZE;
1042 }
1043 } else {
1044 tb_start = 0;
1045 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1046 }
1047 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1048 tb = tb->page_next[n];
1049 }
1050 }
1051
1052 /* Called with mmap_lock held for user mode emulation. */
1053 TranslationBlock *tb_gen_code(CPUState *cpu,
1054 target_ulong pc, target_ulong cs_base,
1055 uint32_t flags, int cflags)
1056 {
1057 CPUArchState *env = cpu->env_ptr;
1058 TranslationBlock *tb;
1059 tb_page_addr_t phys_pc, phys_page2;
1060 target_ulong virt_page2;
1061 tcg_insn_unit *gen_code_buf;
1062 int gen_code_size, search_size;
1063 #ifdef CONFIG_PROFILER
1064 int64_t ti;
1065 #endif
1066
1067 phys_pc = get_page_addr_code(env, pc);
1068 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1069 cflags |= CF_USE_ICOUNT;
1070 }
1071
1072 tb = tb_alloc(pc);
1073 if (unlikely(!tb)) {
1074 buffer_overflow:
1075 /* flush must be done */
1076 tb_flush(cpu);
1077 /* cannot fail at this point */
1078 tb = tb_alloc(pc);
1079 assert(tb != NULL);
1080 /* Don't forget to invalidate previous TB info. */
1081 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1082 }
1083
1084 gen_code_buf = tcg_ctx.code_gen_ptr;
1085 tb->tc_ptr = gen_code_buf;
1086 tb->cs_base = cs_base;
1087 tb->flags = flags;
1088 tb->cflags = cflags;
1089
1090 #ifdef CONFIG_PROFILER
1091 tcg_ctx.tb_count1++; /* includes aborted translations because of
1092 exceptions */
1093 ti = profile_getclock();
1094 #endif
1095
1096 tcg_func_start(&tcg_ctx);
1097
1098 gen_intermediate_code(env, tb);
1099
1100 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1101
1102 /* generate machine code */
1103 tb->tb_next_offset[0] = 0xffff;
1104 tb->tb_next_offset[1] = 0xffff;
1105 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1106 #ifdef USE_DIRECT_JUMP
1107 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1108 tcg_ctx.tb_next = NULL;
1109 #else
1110 tcg_ctx.tb_jmp_offset = NULL;
1111 tcg_ctx.tb_next = tb->tb_next;
1112 #endif
1113
1114 #ifdef CONFIG_PROFILER
1115 tcg_ctx.tb_count++;
1116 tcg_ctx.interm_time += profile_getclock() - ti;
1117 tcg_ctx.code_time -= profile_getclock();
1118 #endif
1119
1120 /* ??? Overflow could be handled better here. In particular, we
1121 don't need to re-do gen_intermediate_code, nor should we re-do
1122 the tcg optimization currently hidden inside tcg_gen_code. All
1123 that should be required is to flush the TBs, allocate a new TB,
1124 re-initialize it per above, and re-do the actual code generation. */
1125 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1126 if (unlikely(gen_code_size < 0)) {
1127 goto buffer_overflow;
1128 }
1129 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1130 if (unlikely(search_size < 0)) {
1131 goto buffer_overflow;
1132 }
1133
1134 #ifdef CONFIG_PROFILER
1135 tcg_ctx.code_time += profile_getclock();
1136 tcg_ctx.code_in_len += tb->size;
1137 tcg_ctx.code_out_len += gen_code_size;
1138 tcg_ctx.search_out_len += search_size;
1139 #endif
1140
1141 #ifdef DEBUG_DISAS
1142 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1143 qemu_log_in_addr_range(tb->pc)) {
1144 qemu_log("OUT: [size=%d]\n", gen_code_size);
1145 log_disas(tb->tc_ptr, gen_code_size);
1146 qemu_log("\n");
1147 qemu_log_flush();
1148 }
1149 #endif
1150
1151 tcg_ctx.code_gen_ptr = (void *)
1152 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1153 CODE_GEN_ALIGN);
1154
1155 /* check next page if needed */
1156 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1157 phys_page2 = -1;
1158 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1159 phys_page2 = get_page_addr_code(env, virt_page2);
1160 }
1161 tb_link_page(tb, phys_pc, phys_page2);
1162 return tb;
1163 }
1164
1165 /*
1166 * Invalidate all TBs which intersect with the target physical address range
1167 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1168 * 'is_cpu_write_access' should be true if called from a real cpu write
1169 * access: the virtual CPU will exit the current TB if code is modified inside
1170 * this TB.
1171 *
1172 * Called with mmap_lock held for user-mode emulation
1173 */
1174 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1175 {
1176 while (start < end) {
1177 tb_invalidate_phys_page_range(start, end, 0);
1178 start &= TARGET_PAGE_MASK;
1179 start += TARGET_PAGE_SIZE;
1180 }
1181 }
1182
1183 /*
1184 * Invalidate all TBs which intersect with the target physical address range
1185 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1186 * 'is_cpu_write_access' should be true if called from a real cpu write
1187 * access: the virtual CPU will exit the current TB if code is modified inside
1188 * this TB.
1189 *
1190 * Called with mmap_lock held for user-mode emulation
1191 */
1192 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1193 int is_cpu_write_access)
1194 {
1195 TranslationBlock *tb, *tb_next, *saved_tb;
1196 CPUState *cpu = current_cpu;
1197 #if defined(TARGET_HAS_PRECISE_SMC)
1198 CPUArchState *env = NULL;
1199 #endif
1200 tb_page_addr_t tb_start, tb_end;
1201 PageDesc *p;
1202 int n;
1203 #ifdef TARGET_HAS_PRECISE_SMC
1204 int current_tb_not_found = is_cpu_write_access;
1205 TranslationBlock *current_tb = NULL;
1206 int current_tb_modified = 0;
1207 target_ulong current_pc = 0;
1208 target_ulong current_cs_base = 0;
1209 uint32_t current_flags = 0;
1210 #endif /* TARGET_HAS_PRECISE_SMC */
1211
1212 p = page_find(start >> TARGET_PAGE_BITS);
1213 if (!p) {
1214 return;
1215 }
1216 #if defined(TARGET_HAS_PRECISE_SMC)
1217 if (cpu != NULL) {
1218 env = cpu->env_ptr;
1219 }
1220 #endif
1221
1222 /* we remove all the TBs in the range [start, end[ */
1223 /* XXX: see if in some cases it could be faster to invalidate all
1224 the code */
1225 tb = p->first_tb;
1226 while (tb != NULL) {
1227 n = (uintptr_t)tb & 3;
1228 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1229 tb_next = tb->page_next[n];
1230 /* NOTE: this is subtle as a TB may span two physical pages */
1231 if (n == 0) {
1232 /* NOTE: tb_end may be after the end of the page, but
1233 it is not a problem */
1234 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1235 tb_end = tb_start + tb->size;
1236 } else {
1237 tb_start = tb->page_addr[1];
1238 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1239 }
1240 if (!(tb_end <= start || tb_start >= end)) {
1241 #ifdef TARGET_HAS_PRECISE_SMC
1242 if (current_tb_not_found) {
1243 current_tb_not_found = 0;
1244 current_tb = NULL;
1245 if (cpu->mem_io_pc) {
1246 /* now we have a real cpu fault */
1247 current_tb = tb_find_pc(cpu->mem_io_pc);
1248 }
1249 }
1250 if (current_tb == tb &&
1251 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1252 /* If we are modifying the current TB, we must stop
1253 its execution. We could be more precise by checking
1254 that the modification is after the current PC, but it
1255 would require a specialized function to partially
1256 restore the CPU state */
1257
1258 current_tb_modified = 1;
1259 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1260 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1261 &current_flags);
1262 }
1263 #endif /* TARGET_HAS_PRECISE_SMC */
1264 /* we need to do that to handle the case where a signal
1265 occurs while doing tb_phys_invalidate() */
1266 saved_tb = NULL;
1267 if (cpu != NULL) {
1268 saved_tb = cpu->current_tb;
1269 cpu->current_tb = NULL;
1270 }
1271 tb_phys_invalidate(tb, -1);
1272 if (cpu != NULL) {
1273 cpu->current_tb = saved_tb;
1274 if (cpu->interrupt_request && cpu->current_tb) {
1275 cpu_interrupt(cpu, cpu->interrupt_request);
1276 }
1277 }
1278 }
1279 tb = tb_next;
1280 }
1281 #if !defined(CONFIG_USER_ONLY)
1282 /* if no code remaining, no need to continue to use slow writes */
1283 if (!p->first_tb) {
1284 invalidate_page_bitmap(p);
1285 tlb_unprotect_code(start);
1286 }
1287 #endif
1288 #ifdef TARGET_HAS_PRECISE_SMC
1289 if (current_tb_modified) {
1290 /* we generate a block containing just the instruction
1291 modifying the memory. It will ensure that it cannot modify
1292 itself */
1293 cpu->current_tb = NULL;
1294 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1295 cpu_resume_from_signal(cpu, NULL);
1296 }
1297 #endif
1298 }
1299
1300 /* len must be <= 8 and start must be a multiple of len */
1301 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1302 {
1303 PageDesc *p;
1304
1305 #if 0
1306 if (1) {
1307 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1308 cpu_single_env->mem_io_vaddr, len,
1309 cpu_single_env->eip,
1310 cpu_single_env->eip +
1311 (intptr_t)cpu_single_env->segs[R_CS].base);
1312 }
1313 #endif
1314 p = page_find(start >> TARGET_PAGE_BITS);
1315 if (!p) {
1316 return;
1317 }
1318 if (!p->code_bitmap &&
1319 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1320 /* build code bitmap */
1321 build_page_bitmap(p);
1322 }
1323 if (p->code_bitmap) {
1324 unsigned int nr;
1325 unsigned long b;
1326
1327 nr = start & ~TARGET_PAGE_MASK;
1328 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1329 if (b & ((1 << len) - 1)) {
1330 goto do_invalidate;
1331 }
1332 } else {
1333 do_invalidate:
1334 tb_invalidate_phys_page_range(start, start + len, 1);
1335 }
1336 }
1337
1338 #if !defined(CONFIG_SOFTMMU)
1339 /* Called with mmap_lock held. */
1340 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1341 uintptr_t pc, void *puc,
1342 bool locked)
1343 {
1344 TranslationBlock *tb;
1345 PageDesc *p;
1346 int n;
1347 #ifdef TARGET_HAS_PRECISE_SMC
1348 TranslationBlock *current_tb = NULL;
1349 CPUState *cpu = current_cpu;
1350 CPUArchState *env = NULL;
1351 int current_tb_modified = 0;
1352 target_ulong current_pc = 0;
1353 target_ulong current_cs_base = 0;
1354 uint32_t current_flags = 0;
1355 #endif
1356
1357 addr &= TARGET_PAGE_MASK;
1358 p = page_find(addr >> TARGET_PAGE_BITS);
1359 if (!p) {
1360 return;
1361 }
1362 tb = p->first_tb;
1363 #ifdef TARGET_HAS_PRECISE_SMC
1364 if (tb && pc != 0) {
1365 current_tb = tb_find_pc(pc);
1366 }
1367 if (cpu != NULL) {
1368 env = cpu->env_ptr;
1369 }
1370 #endif
1371 while (tb != NULL) {
1372 n = (uintptr_t)tb & 3;
1373 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1374 #ifdef TARGET_HAS_PRECISE_SMC
1375 if (current_tb == tb &&
1376 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1377 /* If we are modifying the current TB, we must stop
1378 its execution. We could be more precise by checking
1379 that the modification is after the current PC, but it
1380 would require a specialized function to partially
1381 restore the CPU state */
1382
1383 current_tb_modified = 1;
1384 cpu_restore_state_from_tb(cpu, current_tb, pc);
1385 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1386 &current_flags);
1387 }
1388 #endif /* TARGET_HAS_PRECISE_SMC */
1389 tb_phys_invalidate(tb, addr);
1390 tb = tb->page_next[n];
1391 }
1392 p->first_tb = NULL;
1393 #ifdef TARGET_HAS_PRECISE_SMC
1394 if (current_tb_modified) {
1395 /* we generate a block containing just the instruction
1396 modifying the memory. It will ensure that it cannot modify
1397 itself */
1398 cpu->current_tb = NULL;
1399 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1400 if (locked) {
1401 mmap_unlock();
1402 }
1403 cpu_resume_from_signal(cpu, puc);
1404 }
1405 #endif
1406 }
1407 #endif
1408
1409 /* add the tb in the target page and protect it if necessary
1410 *
1411 * Called with mmap_lock held for user-mode emulation.
1412 */
1413 static inline void tb_alloc_page(TranslationBlock *tb,
1414 unsigned int n, tb_page_addr_t page_addr)
1415 {
1416 PageDesc *p;
1417 #ifndef CONFIG_USER_ONLY
1418 bool page_already_protected;
1419 #endif
1420
1421 tb->page_addr[n] = page_addr;
1422 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1423 tb->page_next[n] = p->first_tb;
1424 #ifndef CONFIG_USER_ONLY
1425 page_already_protected = p->first_tb != NULL;
1426 #endif
1427 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1428 invalidate_page_bitmap(p);
1429
1430 #if defined(CONFIG_USER_ONLY)
1431 if (p->flags & PAGE_WRITE) {
1432 target_ulong addr;
1433 PageDesc *p2;
1434 int prot;
1435
1436 /* force the host page as non writable (writes will have a
1437 page fault + mprotect overhead) */
1438 page_addr &= qemu_host_page_mask;
1439 prot = 0;
1440 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1441 addr += TARGET_PAGE_SIZE) {
1442
1443 p2 = page_find(addr >> TARGET_PAGE_BITS);
1444 if (!p2) {
1445 continue;
1446 }
1447 prot |= p2->flags;
1448 p2->flags &= ~PAGE_WRITE;
1449 }
1450 mprotect(g2h(page_addr), qemu_host_page_size,
1451 (prot & PAGE_BITS) & ~PAGE_WRITE);
1452 #ifdef DEBUG_TB_INVALIDATE
1453 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1454 page_addr);
1455 #endif
1456 }
1457 #else
1458 /* if some code is already present, then the pages are already
1459 protected. So we handle the case where only the first TB is
1460 allocated in a physical page */
1461 if (!page_already_protected) {
1462 tlb_protect_code(page_addr);
1463 }
1464 #endif
1465 }
1466
1467 /* add a new TB and link it to the physical page tables. phys_page2 is
1468 * (-1) to indicate that only one page contains the TB.
1469 *
1470 * Called with mmap_lock held for user-mode emulation.
1471 */
1472 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1473 tb_page_addr_t phys_page2)
1474 {
1475 unsigned int h;
1476 TranslationBlock **ptb;
1477
1478 /* add in the physical hash table */
1479 h = tb_phys_hash_func(phys_pc);
1480 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1481 tb->phys_hash_next = *ptb;
1482 *ptb = tb;
1483
1484 /* add in the page list */
1485 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1486 if (phys_page2 != -1) {
1487 tb_alloc_page(tb, 1, phys_page2);
1488 } else {
1489 tb->page_addr[1] = -1;
1490 }
1491
1492 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1493 tb->jmp_next[0] = NULL;
1494 tb->jmp_next[1] = NULL;
1495
1496 /* init original jump addresses */
1497 if (tb->tb_next_offset[0] != 0xffff) {
1498 tb_reset_jump(tb, 0);
1499 }
1500 if (tb->tb_next_offset[1] != 0xffff) {
1501 tb_reset_jump(tb, 1);
1502 }
1503
1504 #ifdef DEBUG_TB_CHECK
1505 tb_page_check();
1506 #endif
1507 }
1508
1509 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1510 tb[1].tc_ptr. Return NULL if not found */
1511 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1512 {
1513 int m_min, m_max, m;
1514 uintptr_t v;
1515 TranslationBlock *tb;
1516
1517 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1518 return NULL;
1519 }
1520 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1521 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1522 return NULL;
1523 }
1524 /* binary search (cf Knuth) */
1525 m_min = 0;
1526 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1527 while (m_min <= m_max) {
1528 m = (m_min + m_max) >> 1;
1529 tb = &tcg_ctx.tb_ctx.tbs[m];
1530 v = (uintptr_t)tb->tc_ptr;
1531 if (v == tc_ptr) {
1532 return tb;
1533 } else if (tc_ptr < v) {
1534 m_max = m - 1;
1535 } else {
1536 m_min = m + 1;
1537 }
1538 }
1539 return &tcg_ctx.tb_ctx.tbs[m_max];
1540 }
1541
1542 #if !defined(CONFIG_USER_ONLY)
1543 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1544 {
1545 ram_addr_t ram_addr;
1546 MemoryRegion *mr;
1547 hwaddr l = 1;
1548
1549 rcu_read_lock();
1550 mr = address_space_translate(as, addr, &addr, &l, false);
1551 if (!(memory_region_is_ram(mr)
1552 || memory_region_is_romd(mr))) {
1553 rcu_read_unlock();
1554 return;
1555 }
1556 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1557 + addr;
1558 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1559 rcu_read_unlock();
1560 }
1561 #endif /* !defined(CONFIG_USER_ONLY) */
1562
1563 void tb_check_watchpoint(CPUState *cpu)
1564 {
1565 TranslationBlock *tb;
1566
1567 tb = tb_find_pc(cpu->mem_io_pc);
1568 if (tb) {
1569 /* We can use retranslation to find the PC. */
1570 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1571 tb_phys_invalidate(tb, -1);
1572 } else {
1573 /* The exception probably happened in a helper. The CPU state should
1574 have been saved before calling it. Fetch the PC from there. */
1575 CPUArchState *env = cpu->env_ptr;
1576 target_ulong pc, cs_base;
1577 tb_page_addr_t addr;
1578 uint32_t flags;
1579
1580 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1581 addr = get_page_addr_code(env, pc);
1582 tb_invalidate_phys_range(addr, addr + 1);
1583 }
1584 }
1585
1586 #ifndef CONFIG_USER_ONLY
1587 /* in deterministic execution mode, instructions doing device I/Os
1588 must be at the end of the TB */
1589 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1590 {
1591 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1592 CPUArchState *env = cpu->env_ptr;
1593 #endif
1594 TranslationBlock *tb;
1595 uint32_t n, cflags;
1596 target_ulong pc, cs_base;
1597 uint32_t flags;
1598
1599 tb = tb_find_pc(retaddr);
1600 if (!tb) {
1601 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1602 (void *)retaddr);
1603 }
1604 n = cpu->icount_decr.u16.low + tb->icount;
1605 cpu_restore_state_from_tb(cpu, tb, retaddr);
1606 /* Calculate how many instructions had been executed before the fault
1607 occurred. */
1608 n = n - cpu->icount_decr.u16.low;
1609 /* Generate a new TB ending on the I/O insn. */
1610 n++;
1611 /* On MIPS and SH, delay slot instructions can only be restarted if
1612 they were already the first instruction in the TB. If this is not
1613 the first instruction in a TB then re-execute the preceding
1614 branch. */
1615 #if defined(TARGET_MIPS)
1616 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1617 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1618 cpu->icount_decr.u16.low++;
1619 env->hflags &= ~MIPS_HFLAG_BMASK;
1620 }
1621 #elif defined(TARGET_SH4)
1622 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1623 && n > 1) {
1624 env->pc -= 2;
1625 cpu->icount_decr.u16.low++;
1626 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1627 }
1628 #endif
1629 /* This should never happen. */
1630 if (n > CF_COUNT_MASK) {
1631 cpu_abort(cpu, "TB too big during recompile");
1632 }
1633
1634 cflags = n | CF_LAST_IO;
1635 pc = tb->pc;
1636 cs_base = tb->cs_base;
1637 flags = tb->flags;
1638 tb_phys_invalidate(tb, -1);
1639 if (tb->cflags & CF_NOCACHE) {
1640 if (tb->orig_tb) {
1641 /* Invalidate original TB if this TB was generated in
1642 * cpu_exec_nocache() */
1643 tb_phys_invalidate(tb->orig_tb, -1);
1644 }
1645 tb_free(tb);
1646 }
1647 /* FIXME: In theory this could raise an exception. In practice
1648 we have already translated the block once so it's probably ok. */
1649 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1650 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1651 the first in the TB) then we end up generating a whole new TB and
1652 repeating the fault, which is horribly inefficient.
1653 Better would be to execute just this insn uncached, or generate a
1654 second new TB. */
1655 cpu_resume_from_signal(cpu, NULL);
1656 }
1657
1658 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1659 {
1660 unsigned int i;
1661
1662 /* Discard jump cache entries for any tb which might potentially
1663 overlap the flushed page. */
1664 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1665 memset(&cpu->tb_jmp_cache[i], 0,
1666 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1667
1668 i = tb_jmp_cache_hash_page(addr);
1669 memset(&cpu->tb_jmp_cache[i], 0,
1670 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1671 }
1672
1673 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1674 {
1675 int i, target_code_size, max_target_code_size;
1676 int direct_jmp_count, direct_jmp2_count, cross_page;
1677 TranslationBlock *tb;
1678
1679 target_code_size = 0;
1680 max_target_code_size = 0;
1681 cross_page = 0;
1682 direct_jmp_count = 0;
1683 direct_jmp2_count = 0;
1684 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1685 tb = &tcg_ctx.tb_ctx.tbs[i];
1686 target_code_size += tb->size;
1687 if (tb->size > max_target_code_size) {
1688 max_target_code_size = tb->size;
1689 }
1690 if (tb->page_addr[1] != -1) {
1691 cross_page++;
1692 }
1693 if (tb->tb_next_offset[0] != 0xffff) {
1694 direct_jmp_count++;
1695 if (tb->tb_next_offset[1] != 0xffff) {
1696 direct_jmp2_count++;
1697 }
1698 }
1699 }
1700 /* XXX: avoid using doubles ? */
1701 cpu_fprintf(f, "Translation buffer state:\n");
1702 cpu_fprintf(f, "gen code size %td/%zd\n",
1703 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1704 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1705 cpu_fprintf(f, "TB count %d/%d\n",
1706 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1707 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1708 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1709 tcg_ctx.tb_ctx.nb_tbs : 0,
1710 max_target_code_size);
1711 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1712 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1713 tcg_ctx.code_gen_buffer) /
1714 tcg_ctx.tb_ctx.nb_tbs : 0,
1715 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1716 tcg_ctx.code_gen_buffer) /
1717 target_code_size : 0);
1718 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1719 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1720 tcg_ctx.tb_ctx.nb_tbs : 0);
1721 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1722 direct_jmp_count,
1723 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1724 tcg_ctx.tb_ctx.nb_tbs : 0,
1725 direct_jmp2_count,
1726 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1727 tcg_ctx.tb_ctx.nb_tbs : 0);
1728 cpu_fprintf(f, "\nStatistics:\n");
1729 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1730 cpu_fprintf(f, "TB invalidate count %d\n",
1731 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1732 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1733 tcg_dump_info(f, cpu_fprintf);
1734 }
1735
1736 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1737 {
1738 tcg_dump_op_count(f, cpu_fprintf);
1739 }
1740
1741 #else /* CONFIG_USER_ONLY */
1742
1743 void cpu_interrupt(CPUState *cpu, int mask)
1744 {
1745 cpu->interrupt_request |= mask;
1746 cpu->tcg_exit_req = 1;
1747 }
1748
1749 /*
1750 * Walks guest process memory "regions" one by one
1751 * and calls callback function 'fn' for each region.
1752 */
1753 struct walk_memory_regions_data {
1754 walk_memory_regions_fn fn;
1755 void *priv;
1756 target_ulong start;
1757 int prot;
1758 };
1759
1760 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1761 target_ulong end, int new_prot)
1762 {
1763 if (data->start != -1u) {
1764 int rc = data->fn(data->priv, data->start, end, data->prot);
1765 if (rc != 0) {
1766 return rc;
1767 }
1768 }
1769
1770 data->start = (new_prot ? end : -1u);
1771 data->prot = new_prot;
1772
1773 return 0;
1774 }
1775
1776 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1777 target_ulong base, int level, void **lp)
1778 {
1779 target_ulong pa;
1780 int i, rc;
1781
1782 if (*lp == NULL) {
1783 return walk_memory_regions_end(data, base, 0);
1784 }
1785
1786 if (level == 0) {
1787 PageDesc *pd = *lp;
1788
1789 for (i = 0; i < V_L2_SIZE; ++i) {
1790 int prot = pd[i].flags;
1791
1792 pa = base | (i << TARGET_PAGE_BITS);
1793 if (prot != data->prot) {
1794 rc = walk_memory_regions_end(data, pa, prot);
1795 if (rc != 0) {
1796 return rc;
1797 }
1798 }
1799 }
1800 } else {
1801 void **pp = *lp;
1802
1803 for (i = 0; i < V_L2_SIZE; ++i) {
1804 pa = base | ((target_ulong)i <<
1805 (TARGET_PAGE_BITS + V_L2_BITS * level));
1806 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1807 if (rc != 0) {
1808 return rc;
1809 }
1810 }
1811 }
1812
1813 return 0;
1814 }
1815
1816 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1817 {
1818 struct walk_memory_regions_data data;
1819 uintptr_t i;
1820
1821 data.fn = fn;
1822 data.priv = priv;
1823 data.start = -1u;
1824 data.prot = 0;
1825
1826 for (i = 0; i < V_L1_SIZE; i++) {
1827 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1828 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1829 if (rc != 0) {
1830 return rc;
1831 }
1832 }
1833
1834 return walk_memory_regions_end(&data, 0, 0);
1835 }
1836
1837 static int dump_region(void *priv, target_ulong start,
1838 target_ulong end, unsigned long prot)
1839 {
1840 FILE *f = (FILE *)priv;
1841
1842 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1843 " "TARGET_FMT_lx" %c%c%c\n",
1844 start, end, end - start,
1845 ((prot & PAGE_READ) ? 'r' : '-'),
1846 ((prot & PAGE_WRITE) ? 'w' : '-'),
1847 ((prot & PAGE_EXEC) ? 'x' : '-'));
1848
1849 return 0;
1850 }
1851
1852 /* dump memory mappings */
1853 void page_dump(FILE *f)
1854 {
1855 const int length = sizeof(target_ulong) * 2;
1856 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1857 length, "start", length, "end", length, "size", "prot");
1858 walk_memory_regions(f, dump_region);
1859 }
1860
1861 int page_get_flags(target_ulong address)
1862 {
1863 PageDesc *p;
1864
1865 p = page_find(address >> TARGET_PAGE_BITS);
1866 if (!p) {
1867 return 0;
1868 }
1869 return p->flags;
1870 }
1871
1872 /* Modify the flags of a page and invalidate the code if necessary.
1873 The flag PAGE_WRITE_ORG is positioned automatically depending
1874 on PAGE_WRITE. The mmap_lock should already be held. */
1875 void page_set_flags(target_ulong start, target_ulong end, int flags)
1876 {
1877 target_ulong addr, len;
1878
1879 /* This function should never be called with addresses outside the
1880 guest address space. If this assert fires, it probably indicates
1881 a missing call to h2g_valid. */
1882 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1883 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1884 #endif
1885 assert(start < end);
1886
1887 start = start & TARGET_PAGE_MASK;
1888 end = TARGET_PAGE_ALIGN(end);
1889
1890 if (flags & PAGE_WRITE) {
1891 flags |= PAGE_WRITE_ORG;
1892 }
1893
1894 for (addr = start, len = end - start;
1895 len != 0;
1896 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1897 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1898
1899 /* If the write protection bit is set, then we invalidate
1900 the code inside. */
1901 if (!(p->flags & PAGE_WRITE) &&
1902 (flags & PAGE_WRITE) &&
1903 p->first_tb) {
1904 tb_invalidate_phys_page(addr, 0, NULL, false);
1905 }
1906 p->flags = flags;
1907 }
1908 }
1909
1910 int page_check_range(target_ulong start, target_ulong len, int flags)
1911 {
1912 PageDesc *p;
1913 target_ulong end;
1914 target_ulong addr;
1915
1916 /* This function should never be called with addresses outside the
1917 guest address space. If this assert fires, it probably indicates
1918 a missing call to h2g_valid. */
1919 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1920 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1921 #endif
1922
1923 if (len == 0) {
1924 return 0;
1925 }
1926 if (start + len - 1 < start) {
1927 /* We've wrapped around. */
1928 return -1;
1929 }
1930
1931 /* must do before we loose bits in the next step */
1932 end = TARGET_PAGE_ALIGN(start + len);
1933 start = start & TARGET_PAGE_MASK;
1934
1935 for (addr = start, len = end - start;
1936 len != 0;
1937 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1938 p = page_find(addr >> TARGET_PAGE_BITS);
1939 if (!p) {
1940 return -1;
1941 }
1942 if (!(p->flags & PAGE_VALID)) {
1943 return -1;
1944 }
1945
1946 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1947 return -1;
1948 }
1949 if (flags & PAGE_WRITE) {
1950 if (!(p->flags & PAGE_WRITE_ORG)) {
1951 return -1;
1952 }
1953 /* unprotect the page if it was put read-only because it
1954 contains translated code */
1955 if (!(p->flags & PAGE_WRITE)) {
1956 if (!page_unprotect(addr, 0, NULL)) {
1957 return -1;
1958 }
1959 }
1960 }
1961 }
1962 return 0;
1963 }
1964
1965 /* called from signal handler: invalidate the code and unprotect the
1966 page. Return TRUE if the fault was successfully handled. */
1967 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1968 {
1969 unsigned int prot;
1970 PageDesc *p;
1971 target_ulong host_start, host_end, addr;
1972
1973 /* Technically this isn't safe inside a signal handler. However we
1974 know this only ever happens in a synchronous SEGV handler, so in
1975 practice it seems to be ok. */
1976 mmap_lock();
1977
1978 p = page_find(address >> TARGET_PAGE_BITS);
1979 if (!p) {
1980 mmap_unlock();
1981 return 0;
1982 }
1983
1984 /* if the page was really writable, then we change its
1985 protection back to writable */
1986 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1987 host_start = address & qemu_host_page_mask;
1988 host_end = host_start + qemu_host_page_size;
1989
1990 prot = 0;
1991 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1992 p = page_find(addr >> TARGET_PAGE_BITS);
1993 p->flags |= PAGE_WRITE;
1994 prot |= p->flags;
1995
1996 /* and since the content will be modified, we must invalidate
1997 the corresponding translated code. */
1998 tb_invalidate_phys_page(addr, pc, puc, true);
1999 #ifdef DEBUG_TB_CHECK
2000 tb_invalidate_check(addr);
2001 #endif
2002 }
2003 mprotect((void *)g2h(host_start), qemu_host_page_size,
2004 prot & PAGE_BITS);
2005
2006 mmap_unlock();
2007 return 1;
2008 }
2009 mmap_unlock();
2010 return 0;
2011 }
2012 #endif /* CONFIG_USER_ONLY */