]> git.proxmox.com Git - mirror_qemu.git/blob - translate-all.c
exec: make mmap_lock/mmap_unlock globally available
[mirror_qemu.git] / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
30
31 #include "config.h"
32
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "trace.h"
37 #include "disas/disas.h"
38 #include "tcg.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
59
60 #include "exec/cputlb.h"
61 #include "exec/tb-hash.h"
62 #include "translate-all.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/timer.h"
65
66 //#define DEBUG_TB_INVALIDATE
67 //#define DEBUG_FLUSH
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70
71 #if !defined(CONFIG_USER_ONLY)
72 /* TB consistency checks only implemented for usermode emulation. */
73 #undef DEBUG_TB_CHECK
74 #endif
75
76 #define SMC_BITMAP_USE_THRESHOLD 10
77
78 typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
84 unsigned long *code_bitmap;
85 #if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87 #endif
88 } PageDesc;
89
90 /* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92 #if !defined(CONFIG_USER_ONLY)
93 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95 #else
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97 #endif
98 #else
99 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100 #endif
101
102 /* Size of the L2 (and L3, etc) page tables. */
103 #define V_L2_BITS 10
104 #define V_L2_SIZE (1 << V_L2_BITS)
105
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
109
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
112 #else
113 #define V_L1_BITS V_L1_BITS_REM
114 #endif
115
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119
120 uintptr_t qemu_real_host_page_size;
121 uintptr_t qemu_real_host_page_mask;
122 uintptr_t qemu_host_page_size;
123 uintptr_t qemu_host_page_mask;
124
125 /* The bottom level has pointers to PageDesc */
126 static void *l1_map[V_L1_SIZE];
127
128 /* code generation context */
129 TCGContext tcg_ctx;
130
131 /* translation block context */
132 #ifdef CONFIG_USER_ONLY
133 __thread int have_tb_lock;
134 #endif
135
136 void tb_lock(void)
137 {
138 #ifdef CONFIG_USER_ONLY
139 assert(!have_tb_lock);
140 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
141 have_tb_lock++;
142 #endif
143 }
144
145 void tb_unlock(void)
146 {
147 #ifdef CONFIG_USER_ONLY
148 assert(have_tb_lock);
149 have_tb_lock--;
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 #endif
152 }
153
154 void tb_lock_reset(void)
155 {
156 #ifdef CONFIG_USER_ONLY
157 if (have_tb_lock) {
158 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
159 have_tb_lock = 0;
160 }
161 #endif
162 }
163
164 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
165 tb_page_addr_t phys_page2);
166 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
167
168 void cpu_gen_init(void)
169 {
170 tcg_context_init(&tcg_ctx);
171 }
172
173 /* return non zero if the very first instruction is invalid so that
174 * the virtual CPU can trigger an exception.
175 *
176 * '*gen_code_size_ptr' contains the size of the generated code (host
177 * code).
178 *
179 * Called with mmap_lock held for user-mode emulation.
180 */
181 int cpu_gen_code(CPUArchState *env, TranslationBlock *tb, int *gen_code_size_ptr)
182 {
183 TCGContext *s = &tcg_ctx;
184 tcg_insn_unit *gen_code_buf;
185 int gen_code_size;
186 #ifdef CONFIG_PROFILER
187 int64_t ti;
188 #endif
189
190 #ifdef CONFIG_PROFILER
191 s->tb_count1++; /* includes aborted translations because of
192 exceptions */
193 ti = profile_getclock();
194 #endif
195 tcg_func_start(s);
196
197 gen_intermediate_code(env, tb);
198
199 trace_translate_block(tb, tb->pc, tb->tc_ptr);
200
201 /* generate machine code */
202 gen_code_buf = tb->tc_ptr;
203 tb->tb_next_offset[0] = 0xffff;
204 tb->tb_next_offset[1] = 0xffff;
205 s->tb_next_offset = tb->tb_next_offset;
206 #ifdef USE_DIRECT_JUMP
207 s->tb_jmp_offset = tb->tb_jmp_offset;
208 s->tb_next = NULL;
209 #else
210 s->tb_jmp_offset = NULL;
211 s->tb_next = tb->tb_next;
212 #endif
213
214 #ifdef CONFIG_PROFILER
215 s->tb_count++;
216 s->interm_time += profile_getclock() - ti;
217 s->code_time -= profile_getclock();
218 #endif
219 gen_code_size = tcg_gen_code(s, gen_code_buf);
220 *gen_code_size_ptr = gen_code_size;
221 #ifdef CONFIG_PROFILER
222 s->code_time += profile_getclock();
223 s->code_in_len += tb->size;
224 s->code_out_len += gen_code_size;
225 #endif
226
227 #ifdef DEBUG_DISAS
228 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
229 qemu_log("OUT: [size=%d]\n", gen_code_size);
230 log_disas(tb->tc_ptr, gen_code_size);
231 qemu_log("\n");
232 qemu_log_flush();
233 }
234 #endif
235 return 0;
236 }
237
238 /* The cpu state corresponding to 'searched_pc' is restored.
239 */
240 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
241 uintptr_t searched_pc)
242 {
243 CPUArchState *env = cpu->env_ptr;
244 TCGContext *s = &tcg_ctx;
245 int j;
246 uintptr_t tc_ptr;
247 #ifdef CONFIG_PROFILER
248 int64_t ti;
249 #endif
250
251 #ifdef CONFIG_PROFILER
252 ti = profile_getclock();
253 #endif
254 tcg_func_start(s);
255
256 gen_intermediate_code_pc(env, tb);
257
258 if (tb->cflags & CF_USE_ICOUNT) {
259 assert(use_icount);
260 /* Reset the cycle counter to the start of the block. */
261 cpu->icount_decr.u16.low += tb->icount;
262 /* Clear the IO flag. */
263 cpu->can_do_io = 0;
264 }
265
266 /* find opc index corresponding to search_pc */
267 tc_ptr = (uintptr_t)tb->tc_ptr;
268 if (searched_pc < tc_ptr)
269 return -1;
270
271 s->tb_next_offset = tb->tb_next_offset;
272 #ifdef USE_DIRECT_JUMP
273 s->tb_jmp_offset = tb->tb_jmp_offset;
274 s->tb_next = NULL;
275 #else
276 s->tb_jmp_offset = NULL;
277 s->tb_next = tb->tb_next;
278 #endif
279 j = tcg_gen_code_search_pc(s, (tcg_insn_unit *)tc_ptr,
280 searched_pc - tc_ptr);
281 if (j < 0)
282 return -1;
283 /* now find start of instruction before */
284 while (s->gen_opc_instr_start[j] == 0) {
285 j--;
286 }
287 cpu->icount_decr.u16.low -= s->gen_opc_icount[j];
288
289 restore_state_to_opc(env, tb, j);
290
291 #ifdef CONFIG_PROFILER
292 s->restore_time += profile_getclock() - ti;
293 s->restore_count++;
294 #endif
295 return 0;
296 }
297
298 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
299 {
300 TranslationBlock *tb;
301
302 tb = tb_find_pc(retaddr);
303 if (tb) {
304 cpu_restore_state_from_tb(cpu, tb, retaddr);
305 if (tb->cflags & CF_NOCACHE) {
306 /* one-shot translation, invalidate it immediately */
307 cpu->current_tb = NULL;
308 tb_phys_invalidate(tb, -1);
309 tb_free(tb);
310 }
311 return true;
312 }
313 return false;
314 }
315
316 #ifdef _WIN32
317 static __attribute__((unused)) void map_exec(void *addr, long size)
318 {
319 DWORD old_protect;
320 VirtualProtect(addr, size,
321 PAGE_EXECUTE_READWRITE, &old_protect);
322 }
323 #else
324 static __attribute__((unused)) void map_exec(void *addr, long size)
325 {
326 unsigned long start, end, page_size;
327
328 page_size = getpagesize();
329 start = (unsigned long)addr;
330 start &= ~(page_size - 1);
331
332 end = (unsigned long)addr + size;
333 end += page_size - 1;
334 end &= ~(page_size - 1);
335
336 mprotect((void *)start, end - start,
337 PROT_READ | PROT_WRITE | PROT_EXEC);
338 }
339 #endif
340
341 void page_size_init(void)
342 {
343 /* NOTE: we can always suppose that qemu_host_page_size >=
344 TARGET_PAGE_SIZE */
345 qemu_real_host_page_size = getpagesize();
346 qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
347 if (qemu_host_page_size == 0) {
348 qemu_host_page_size = qemu_real_host_page_size;
349 }
350 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
351 qemu_host_page_size = TARGET_PAGE_SIZE;
352 }
353 qemu_host_page_mask = ~(qemu_host_page_size - 1);
354 }
355
356 static void page_init(void)
357 {
358 page_size_init();
359 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
360 {
361 #ifdef HAVE_KINFO_GETVMMAP
362 struct kinfo_vmentry *freep;
363 int i, cnt;
364
365 freep = kinfo_getvmmap(getpid(), &cnt);
366 if (freep) {
367 mmap_lock();
368 for (i = 0; i < cnt; i++) {
369 unsigned long startaddr, endaddr;
370
371 startaddr = freep[i].kve_start;
372 endaddr = freep[i].kve_end;
373 if (h2g_valid(startaddr)) {
374 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
375
376 if (h2g_valid(endaddr)) {
377 endaddr = h2g(endaddr);
378 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
379 } else {
380 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
381 endaddr = ~0ul;
382 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
383 #endif
384 }
385 }
386 }
387 free(freep);
388 mmap_unlock();
389 }
390 #else
391 FILE *f;
392
393 last_brk = (unsigned long)sbrk(0);
394
395 f = fopen("/compat/linux/proc/self/maps", "r");
396 if (f) {
397 mmap_lock();
398
399 do {
400 unsigned long startaddr, endaddr;
401 int n;
402
403 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
404
405 if (n == 2 && h2g_valid(startaddr)) {
406 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
407
408 if (h2g_valid(endaddr)) {
409 endaddr = h2g(endaddr);
410 } else {
411 endaddr = ~0ul;
412 }
413 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
414 }
415 } while (!feof(f));
416
417 fclose(f);
418 mmap_unlock();
419 }
420 #endif
421 }
422 #endif
423 }
424
425 /* If alloc=1:
426 * Called with mmap_lock held for user-mode emulation.
427 */
428 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
429 {
430 PageDesc *pd;
431 void **lp;
432 int i;
433
434 /* Level 1. Always allocated. */
435 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
436
437 /* Level 2..N-1. */
438 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
439 void **p = atomic_rcu_read(lp);
440
441 if (p == NULL) {
442 if (!alloc) {
443 return NULL;
444 }
445 p = g_new0(void *, V_L2_SIZE);
446 atomic_rcu_set(lp, p);
447 }
448
449 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
450 }
451
452 pd = atomic_rcu_read(lp);
453 if (pd == NULL) {
454 if (!alloc) {
455 return NULL;
456 }
457 pd = g_new0(PageDesc, V_L2_SIZE);
458 atomic_rcu_set(lp, pd);
459 }
460
461 return pd + (index & (V_L2_SIZE - 1));
462 }
463
464 static inline PageDesc *page_find(tb_page_addr_t index)
465 {
466 return page_find_alloc(index, 0);
467 }
468
469 #if defined(CONFIG_USER_ONLY)
470 /* Currently it is not recommended to allocate big chunks of data in
471 user mode. It will change when a dedicated libc will be used. */
472 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
473 region in which the guest needs to run. Revisit this. */
474 #define USE_STATIC_CODE_GEN_BUFFER
475 #endif
476
477 /* ??? Should configure for this, not list operating systems here. */
478 #if (defined(__linux__) \
479 || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
480 || defined(__DragonFly__) || defined(__OpenBSD__) \
481 || defined(__NetBSD__))
482 # define USE_MMAP
483 #endif
484
485 /* Minimum size of the code gen buffer. This number is randomly chosen,
486 but not so small that we can't have a fair number of TB's live. */
487 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
488
489 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
490 indicated, this is constrained by the range of direct branches on the
491 host cpu, as used by the TCG implementation of goto_tb. */
492 #if defined(__x86_64__)
493 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
494 #elif defined(__sparc__)
495 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
496 #elif defined(__aarch64__)
497 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
498 #elif defined(__arm__)
499 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
500 #elif defined(__s390x__)
501 /* We have a +- 4GB range on the branches; leave some slop. */
502 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
503 #elif defined(__mips__)
504 /* We have a 256MB branch region, but leave room to make sure the
505 main executable is also within that region. */
506 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
507 #else
508 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
509 #endif
510
511 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
512
513 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
514 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
515 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
516
517 static inline size_t size_code_gen_buffer(size_t tb_size)
518 {
519 /* Size the buffer. */
520 if (tb_size == 0) {
521 #ifdef USE_STATIC_CODE_GEN_BUFFER
522 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
523 #else
524 /* ??? Needs adjustments. */
525 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
526 static buffer, we could size this on RESERVED_VA, on the text
527 segment size of the executable, or continue to use the default. */
528 tb_size = (unsigned long)(ram_size / 4);
529 #endif
530 }
531 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
532 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
533 }
534 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
535 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
536 }
537 tcg_ctx.code_gen_buffer_size = tb_size;
538 return tb_size;
539 }
540
541 #ifdef __mips__
542 /* In order to use J and JAL within the code_gen_buffer, we require
543 that the buffer not cross a 256MB boundary. */
544 static inline bool cross_256mb(void *addr, size_t size)
545 {
546 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
547 }
548
549 /* We weren't able to allocate a buffer without crossing that boundary,
550 so make do with the larger portion of the buffer that doesn't cross.
551 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
552 static inline void *split_cross_256mb(void *buf1, size_t size1)
553 {
554 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
555 size_t size2 = buf1 + size1 - buf2;
556
557 size1 = buf2 - buf1;
558 if (size1 < size2) {
559 size1 = size2;
560 buf1 = buf2;
561 }
562
563 tcg_ctx.code_gen_buffer_size = size1;
564 return buf1;
565 }
566 #endif
567
568 #ifdef USE_STATIC_CODE_GEN_BUFFER
569 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
570 __attribute__((aligned(CODE_GEN_ALIGN)));
571
572 static inline void *alloc_code_gen_buffer(void)
573 {
574 void *buf = static_code_gen_buffer;
575 #ifdef __mips__
576 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
577 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
578 }
579 #endif
580 map_exec(buf, tcg_ctx.code_gen_buffer_size);
581 return buf;
582 }
583 #elif defined(USE_MMAP)
584 static inline void *alloc_code_gen_buffer(void)
585 {
586 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
587 uintptr_t start = 0;
588 void *buf;
589
590 /* Constrain the position of the buffer based on the host cpu.
591 Note that these addresses are chosen in concert with the
592 addresses assigned in the relevant linker script file. */
593 # if defined(__PIE__) || defined(__PIC__)
594 /* Don't bother setting a preferred location if we're building
595 a position-independent executable. We're more likely to get
596 an address near the main executable if we let the kernel
597 choose the address. */
598 # elif defined(__x86_64__) && defined(MAP_32BIT)
599 /* Force the memory down into low memory with the executable.
600 Leave the choice of exact location with the kernel. */
601 flags |= MAP_32BIT;
602 /* Cannot expect to map more than 800MB in low memory. */
603 if (tcg_ctx.code_gen_buffer_size > 800u * 1024 * 1024) {
604 tcg_ctx.code_gen_buffer_size = 800u * 1024 * 1024;
605 }
606 # elif defined(__sparc__)
607 start = 0x40000000ul;
608 # elif defined(__s390x__)
609 start = 0x90000000ul;
610 # elif defined(__mips__)
611 /* ??? We ought to more explicitly manage layout for softmmu too. */
612 # ifdef CONFIG_USER_ONLY
613 start = 0x68000000ul;
614 # elif _MIPS_SIM == _ABI64
615 start = 0x128000000ul;
616 # else
617 start = 0x08000000ul;
618 # endif
619 # endif
620
621 buf = mmap((void *)start, tcg_ctx.code_gen_buffer_size,
622 PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
623 if (buf == MAP_FAILED) {
624 return NULL;
625 }
626
627 #ifdef __mips__
628 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
629 /* Try again, with the original still mapped, to avoid re-acquiring
630 that 256mb crossing. This time don't specify an address. */
631 size_t size2, size1 = tcg_ctx.code_gen_buffer_size;
632 void *buf2 = mmap(NULL, size1, PROT_WRITE | PROT_READ | PROT_EXEC,
633 flags, -1, 0);
634 if (buf2 != MAP_FAILED) {
635 if (!cross_256mb(buf2, size1)) {
636 /* Success! Use the new buffer. */
637 munmap(buf, size1);
638 return buf2;
639 }
640 /* Failure. Work with what we had. */
641 munmap(buf2, size1);
642 }
643
644 /* Split the original buffer. Free the smaller half. */
645 buf2 = split_cross_256mb(buf, size1);
646 size2 = tcg_ctx.code_gen_buffer_size;
647 munmap(buf + (buf == buf2 ? size2 : 0), size1 - size2);
648 return buf2;
649 }
650 #endif
651
652 return buf;
653 }
654 #else
655 static inline void *alloc_code_gen_buffer(void)
656 {
657 void *buf = g_try_malloc(tcg_ctx.code_gen_buffer_size);
658
659 if (buf == NULL) {
660 return NULL;
661 }
662
663 #ifdef __mips__
664 if (cross_256mb(buf, tcg_ctx.code_gen_buffer_size)) {
665 void *buf2 = g_malloc(tcg_ctx.code_gen_buffer_size);
666 if (buf2 != NULL && !cross_256mb(buf2, size1)) {
667 /* Success! Use the new buffer. */
668 free(buf);
669 buf = buf2;
670 } else {
671 /* Failure. Work with what we had. Since this is malloc
672 and not mmap, we can't free the other half. */
673 free(buf2);
674 buf = split_cross_256mb(buf, tcg_ctx.code_gen_buffer_size);
675 }
676 }
677 #endif
678
679 map_exec(buf, tcg_ctx.code_gen_buffer_size);
680 return buf;
681 }
682 #endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
683
684 static inline void code_gen_alloc(size_t tb_size)
685 {
686 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
687 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
688 if (tcg_ctx.code_gen_buffer == NULL) {
689 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
690 exit(1);
691 }
692
693 qemu_madvise(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size,
694 QEMU_MADV_HUGEPAGE);
695
696 /* Steal room for the prologue at the end of the buffer. This ensures
697 (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
698 from TB's to the prologue are going to be in range. It also means
699 that we don't need to mark (additional) portions of the data segment
700 as executable. */
701 tcg_ctx.code_gen_prologue = tcg_ctx.code_gen_buffer +
702 tcg_ctx.code_gen_buffer_size - 1024;
703 tcg_ctx.code_gen_buffer_size -= 1024;
704
705 tcg_ctx.code_gen_buffer_max_size = tcg_ctx.code_gen_buffer_size -
706 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
707 tcg_ctx.code_gen_max_blocks = tcg_ctx.code_gen_buffer_size /
708 CODE_GEN_AVG_BLOCK_SIZE;
709 tcg_ctx.tb_ctx.tbs =
710 g_malloc(tcg_ctx.code_gen_max_blocks * sizeof(TranslationBlock));
711 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
712 }
713
714 /* Must be called before using the QEMU cpus. 'tb_size' is the size
715 (in bytes) allocated to the translation buffer. Zero means default
716 size. */
717 void tcg_exec_init(unsigned long tb_size)
718 {
719 cpu_gen_init();
720 code_gen_alloc(tb_size);
721 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
722 tcg_register_jit(tcg_ctx.code_gen_buffer, tcg_ctx.code_gen_buffer_size);
723 page_init();
724 #if defined(CONFIG_SOFTMMU)
725 /* There's no guest base to take into account, so go ahead and
726 initialize the prologue now. */
727 tcg_prologue_init(&tcg_ctx);
728 #endif
729 }
730
731 bool tcg_enabled(void)
732 {
733 return tcg_ctx.code_gen_buffer != NULL;
734 }
735
736 /* Allocate a new translation block. Flush the translation buffer if
737 too many translation blocks or too much generated code. */
738 static TranslationBlock *tb_alloc(target_ulong pc)
739 {
740 TranslationBlock *tb;
741
742 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks ||
743 (tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer) >=
744 tcg_ctx.code_gen_buffer_max_size) {
745 return NULL;
746 }
747 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
748 tb->pc = pc;
749 tb->cflags = 0;
750 return tb;
751 }
752
753 void tb_free(TranslationBlock *tb)
754 {
755 /* In practice this is mostly used for single use temporary TB
756 Ignore the hard cases and just back up if this TB happens to
757 be the last one generated. */
758 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
759 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
760 tcg_ctx.code_gen_ptr = tb->tc_ptr;
761 tcg_ctx.tb_ctx.nb_tbs--;
762 }
763 }
764
765 static inline void invalidate_page_bitmap(PageDesc *p)
766 {
767 if (p->code_bitmap) {
768 g_free(p->code_bitmap);
769 p->code_bitmap = NULL;
770 }
771 p->code_write_count = 0;
772 }
773
774 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
775 static void page_flush_tb_1(int level, void **lp)
776 {
777 int i;
778
779 if (*lp == NULL) {
780 return;
781 }
782 if (level == 0) {
783 PageDesc *pd = *lp;
784
785 for (i = 0; i < V_L2_SIZE; ++i) {
786 pd[i].first_tb = NULL;
787 invalidate_page_bitmap(pd + i);
788 }
789 } else {
790 void **pp = *lp;
791
792 for (i = 0; i < V_L2_SIZE; ++i) {
793 page_flush_tb_1(level - 1, pp + i);
794 }
795 }
796 }
797
798 static void page_flush_tb(void)
799 {
800 int i;
801
802 for (i = 0; i < V_L1_SIZE; i++) {
803 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
804 }
805 }
806
807 /* flush all the translation blocks */
808 /* XXX: tb_flush is currently not thread safe */
809 void tb_flush(CPUState *cpu)
810 {
811 #if defined(DEBUG_FLUSH)
812 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
813 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
814 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
815 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
816 tcg_ctx.tb_ctx.nb_tbs : 0);
817 #endif
818 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
819 > tcg_ctx.code_gen_buffer_size) {
820 cpu_abort(cpu, "Internal error: code buffer overflow\n");
821 }
822 tcg_ctx.tb_ctx.nb_tbs = 0;
823
824 CPU_FOREACH(cpu) {
825 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
826 }
827
828 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
829 page_flush_tb();
830
831 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
832 /* XXX: flush processor icache at this point if cache flush is
833 expensive */
834 tcg_ctx.tb_ctx.tb_flush_count++;
835 }
836
837 #ifdef DEBUG_TB_CHECK
838
839 static void tb_invalidate_check(target_ulong address)
840 {
841 TranslationBlock *tb;
842 int i;
843
844 address &= TARGET_PAGE_MASK;
845 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
846 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
847 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
848 address >= tb->pc + tb->size)) {
849 printf("ERROR invalidate: address=" TARGET_FMT_lx
850 " PC=%08lx size=%04x\n",
851 address, (long)tb->pc, tb->size);
852 }
853 }
854 }
855 }
856
857 /* verify that all the pages have correct rights for code */
858 static void tb_page_check(void)
859 {
860 TranslationBlock *tb;
861 int i, flags1, flags2;
862
863 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
864 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
865 tb = tb->phys_hash_next) {
866 flags1 = page_get_flags(tb->pc);
867 flags2 = page_get_flags(tb->pc + tb->size - 1);
868 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
869 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
870 (long)tb->pc, tb->size, flags1, flags2);
871 }
872 }
873 }
874 }
875
876 #endif
877
878 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
879 {
880 TranslationBlock *tb1;
881
882 for (;;) {
883 tb1 = *ptb;
884 if (tb1 == tb) {
885 *ptb = tb1->phys_hash_next;
886 break;
887 }
888 ptb = &tb1->phys_hash_next;
889 }
890 }
891
892 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
893 {
894 TranslationBlock *tb1;
895 unsigned int n1;
896
897 for (;;) {
898 tb1 = *ptb;
899 n1 = (uintptr_t)tb1 & 3;
900 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
901 if (tb1 == tb) {
902 *ptb = tb1->page_next[n1];
903 break;
904 }
905 ptb = &tb1->page_next[n1];
906 }
907 }
908
909 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
910 {
911 TranslationBlock *tb1, **ptb;
912 unsigned int n1;
913
914 ptb = &tb->jmp_next[n];
915 tb1 = *ptb;
916 if (tb1) {
917 /* find tb(n) in circular list */
918 for (;;) {
919 tb1 = *ptb;
920 n1 = (uintptr_t)tb1 & 3;
921 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
922 if (n1 == n && tb1 == tb) {
923 break;
924 }
925 if (n1 == 2) {
926 ptb = &tb1->jmp_first;
927 } else {
928 ptb = &tb1->jmp_next[n1];
929 }
930 }
931 /* now we can suppress tb(n) from the list */
932 *ptb = tb->jmp_next[n];
933
934 tb->jmp_next[n] = NULL;
935 }
936 }
937
938 /* reset the jump entry 'n' of a TB so that it is not chained to
939 another TB */
940 static inline void tb_reset_jump(TranslationBlock *tb, int n)
941 {
942 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
943 }
944
945 /* invalidate one TB */
946 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
947 {
948 CPUState *cpu;
949 PageDesc *p;
950 unsigned int h, n1;
951 tb_page_addr_t phys_pc;
952 TranslationBlock *tb1, *tb2;
953
954 /* remove the TB from the hash list */
955 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
956 h = tb_phys_hash_func(phys_pc);
957 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
958
959 /* remove the TB from the page list */
960 if (tb->page_addr[0] != page_addr) {
961 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
962 tb_page_remove(&p->first_tb, tb);
963 invalidate_page_bitmap(p);
964 }
965 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
966 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
967 tb_page_remove(&p->first_tb, tb);
968 invalidate_page_bitmap(p);
969 }
970
971 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
972
973 /* remove the TB from the hash list */
974 h = tb_jmp_cache_hash_func(tb->pc);
975 CPU_FOREACH(cpu) {
976 if (cpu->tb_jmp_cache[h] == tb) {
977 cpu->tb_jmp_cache[h] = NULL;
978 }
979 }
980
981 /* suppress this TB from the two jump lists */
982 tb_jmp_remove(tb, 0);
983 tb_jmp_remove(tb, 1);
984
985 /* suppress any remaining jumps to this TB */
986 tb1 = tb->jmp_first;
987 for (;;) {
988 n1 = (uintptr_t)tb1 & 3;
989 if (n1 == 2) {
990 break;
991 }
992 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
993 tb2 = tb1->jmp_next[n1];
994 tb_reset_jump(tb1, n1);
995 tb1->jmp_next[n1] = NULL;
996 tb1 = tb2;
997 }
998 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
999
1000 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1001 }
1002
1003 static void build_page_bitmap(PageDesc *p)
1004 {
1005 int n, tb_start, tb_end;
1006 TranslationBlock *tb;
1007
1008 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1009
1010 tb = p->first_tb;
1011 while (tb != NULL) {
1012 n = (uintptr_t)tb & 3;
1013 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1014 /* NOTE: this is subtle as a TB may span two physical pages */
1015 if (n == 0) {
1016 /* NOTE: tb_end may be after the end of the page, but
1017 it is not a problem */
1018 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1019 tb_end = tb_start + tb->size;
1020 if (tb_end > TARGET_PAGE_SIZE) {
1021 tb_end = TARGET_PAGE_SIZE;
1022 }
1023 } else {
1024 tb_start = 0;
1025 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1026 }
1027 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1028 tb = tb->page_next[n];
1029 }
1030 }
1031
1032 /* Called with mmap_lock held for user mode emulation. */
1033 TranslationBlock *tb_gen_code(CPUState *cpu,
1034 target_ulong pc, target_ulong cs_base,
1035 int flags, int cflags)
1036 {
1037 CPUArchState *env = cpu->env_ptr;
1038 TranslationBlock *tb;
1039 tb_page_addr_t phys_pc, phys_page2;
1040 target_ulong virt_page2;
1041 int code_gen_size;
1042
1043 phys_pc = get_page_addr_code(env, pc);
1044 if (use_icount) {
1045 cflags |= CF_USE_ICOUNT;
1046 }
1047 tb = tb_alloc(pc);
1048 if (!tb) {
1049 /* flush must be done */
1050 tb_flush(cpu);
1051 /* cannot fail at this point */
1052 tb = tb_alloc(pc);
1053 /* Don't forget to invalidate previous TB info. */
1054 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1055 }
1056 tb->tc_ptr = tcg_ctx.code_gen_ptr;
1057 tb->cs_base = cs_base;
1058 tb->flags = flags;
1059 tb->cflags = cflags;
1060 cpu_gen_code(env, tb, &code_gen_size);
1061 tcg_ctx.code_gen_ptr = (void *)(((uintptr_t)tcg_ctx.code_gen_ptr +
1062 code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1063
1064 /* check next page if needed */
1065 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1066 phys_page2 = -1;
1067 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1068 phys_page2 = get_page_addr_code(env, virt_page2);
1069 }
1070 tb_link_page(tb, phys_pc, phys_page2);
1071 return tb;
1072 }
1073
1074 /*
1075 * Invalidate all TBs which intersect with the target physical address range
1076 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1077 * 'is_cpu_write_access' should be true if called from a real cpu write
1078 * access: the virtual CPU will exit the current TB if code is modified inside
1079 * this TB.
1080 *
1081 * Called with mmap_lock held for user-mode emulation
1082 */
1083 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1084 {
1085 while (start < end) {
1086 tb_invalidate_phys_page_range(start, end, 0);
1087 start &= TARGET_PAGE_MASK;
1088 start += TARGET_PAGE_SIZE;
1089 }
1090 }
1091
1092 /*
1093 * Invalidate all TBs which intersect with the target physical address range
1094 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1095 * 'is_cpu_write_access' should be true if called from a real cpu write
1096 * access: the virtual CPU will exit the current TB if code is modified inside
1097 * this TB.
1098 *
1099 * Called with mmap_lock held for user-mode emulation
1100 */
1101 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1102 int is_cpu_write_access)
1103 {
1104 TranslationBlock *tb, *tb_next, *saved_tb;
1105 CPUState *cpu = current_cpu;
1106 #if defined(TARGET_HAS_PRECISE_SMC)
1107 CPUArchState *env = NULL;
1108 #endif
1109 tb_page_addr_t tb_start, tb_end;
1110 PageDesc *p;
1111 int n;
1112 #ifdef TARGET_HAS_PRECISE_SMC
1113 int current_tb_not_found = is_cpu_write_access;
1114 TranslationBlock *current_tb = NULL;
1115 int current_tb_modified = 0;
1116 target_ulong current_pc = 0;
1117 target_ulong current_cs_base = 0;
1118 int current_flags = 0;
1119 #endif /* TARGET_HAS_PRECISE_SMC */
1120
1121 p = page_find(start >> TARGET_PAGE_BITS);
1122 if (!p) {
1123 return;
1124 }
1125 #if defined(TARGET_HAS_PRECISE_SMC)
1126 if (cpu != NULL) {
1127 env = cpu->env_ptr;
1128 }
1129 #endif
1130
1131 /* we remove all the TBs in the range [start, end[ */
1132 /* XXX: see if in some cases it could be faster to invalidate all
1133 the code */
1134 tb = p->first_tb;
1135 while (tb != NULL) {
1136 n = (uintptr_t)tb & 3;
1137 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1138 tb_next = tb->page_next[n];
1139 /* NOTE: this is subtle as a TB may span two physical pages */
1140 if (n == 0) {
1141 /* NOTE: tb_end may be after the end of the page, but
1142 it is not a problem */
1143 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1144 tb_end = tb_start + tb->size;
1145 } else {
1146 tb_start = tb->page_addr[1];
1147 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1148 }
1149 if (!(tb_end <= start || tb_start >= end)) {
1150 #ifdef TARGET_HAS_PRECISE_SMC
1151 if (current_tb_not_found) {
1152 current_tb_not_found = 0;
1153 current_tb = NULL;
1154 if (cpu->mem_io_pc) {
1155 /* now we have a real cpu fault */
1156 current_tb = tb_find_pc(cpu->mem_io_pc);
1157 }
1158 }
1159 if (current_tb == tb &&
1160 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1161 /* If we are modifying the current TB, we must stop
1162 its execution. We could be more precise by checking
1163 that the modification is after the current PC, but it
1164 would require a specialized function to partially
1165 restore the CPU state */
1166
1167 current_tb_modified = 1;
1168 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1169 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1170 &current_flags);
1171 }
1172 #endif /* TARGET_HAS_PRECISE_SMC */
1173 /* we need to do that to handle the case where a signal
1174 occurs while doing tb_phys_invalidate() */
1175 saved_tb = NULL;
1176 if (cpu != NULL) {
1177 saved_tb = cpu->current_tb;
1178 cpu->current_tb = NULL;
1179 }
1180 tb_phys_invalidate(tb, -1);
1181 if (cpu != NULL) {
1182 cpu->current_tb = saved_tb;
1183 if (cpu->interrupt_request && cpu->current_tb) {
1184 cpu_interrupt(cpu, cpu->interrupt_request);
1185 }
1186 }
1187 }
1188 tb = tb_next;
1189 }
1190 #if !defined(CONFIG_USER_ONLY)
1191 /* if no code remaining, no need to continue to use slow writes */
1192 if (!p->first_tb) {
1193 invalidate_page_bitmap(p);
1194 tlb_unprotect_code(start);
1195 }
1196 #endif
1197 #ifdef TARGET_HAS_PRECISE_SMC
1198 if (current_tb_modified) {
1199 /* we generate a block containing just the instruction
1200 modifying the memory. It will ensure that it cannot modify
1201 itself */
1202 cpu->current_tb = NULL;
1203 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1204 cpu_resume_from_signal(cpu, NULL);
1205 }
1206 #endif
1207 }
1208
1209 /* len must be <= 8 and start must be a multiple of len */
1210 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1211 {
1212 PageDesc *p;
1213
1214 #if 0
1215 if (1) {
1216 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1217 cpu_single_env->mem_io_vaddr, len,
1218 cpu_single_env->eip,
1219 cpu_single_env->eip +
1220 (intptr_t)cpu_single_env->segs[R_CS].base);
1221 }
1222 #endif
1223 p = page_find(start >> TARGET_PAGE_BITS);
1224 if (!p) {
1225 return;
1226 }
1227 if (!p->code_bitmap &&
1228 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1229 /* build code bitmap */
1230 build_page_bitmap(p);
1231 }
1232 if (p->code_bitmap) {
1233 unsigned int nr;
1234 unsigned long b;
1235
1236 nr = start & ~TARGET_PAGE_MASK;
1237 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1238 if (b & ((1 << len) - 1)) {
1239 goto do_invalidate;
1240 }
1241 } else {
1242 do_invalidate:
1243 tb_invalidate_phys_page_range(start, start + len, 1);
1244 }
1245 }
1246
1247 #if !defined(CONFIG_SOFTMMU)
1248 /* Called with mmap_lock held. */
1249 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1250 uintptr_t pc, void *puc,
1251 bool locked)
1252 {
1253 TranslationBlock *tb;
1254 PageDesc *p;
1255 int n;
1256 #ifdef TARGET_HAS_PRECISE_SMC
1257 TranslationBlock *current_tb = NULL;
1258 CPUState *cpu = current_cpu;
1259 CPUArchState *env = NULL;
1260 int current_tb_modified = 0;
1261 target_ulong current_pc = 0;
1262 target_ulong current_cs_base = 0;
1263 int current_flags = 0;
1264 #endif
1265
1266 addr &= TARGET_PAGE_MASK;
1267 p = page_find(addr >> TARGET_PAGE_BITS);
1268 if (!p) {
1269 return;
1270 }
1271 tb = p->first_tb;
1272 #ifdef TARGET_HAS_PRECISE_SMC
1273 if (tb && pc != 0) {
1274 current_tb = tb_find_pc(pc);
1275 }
1276 if (cpu != NULL) {
1277 env = cpu->env_ptr;
1278 }
1279 #endif
1280 while (tb != NULL) {
1281 n = (uintptr_t)tb & 3;
1282 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1283 #ifdef TARGET_HAS_PRECISE_SMC
1284 if (current_tb == tb &&
1285 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1286 /* If we are modifying the current TB, we must stop
1287 its execution. We could be more precise by checking
1288 that the modification is after the current PC, but it
1289 would require a specialized function to partially
1290 restore the CPU state */
1291
1292 current_tb_modified = 1;
1293 cpu_restore_state_from_tb(cpu, current_tb, pc);
1294 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1295 &current_flags);
1296 }
1297 #endif /* TARGET_HAS_PRECISE_SMC */
1298 tb_phys_invalidate(tb, addr);
1299 tb = tb->page_next[n];
1300 }
1301 p->first_tb = NULL;
1302 #ifdef TARGET_HAS_PRECISE_SMC
1303 if (current_tb_modified) {
1304 /* we generate a block containing just the instruction
1305 modifying the memory. It will ensure that it cannot modify
1306 itself */
1307 cpu->current_tb = NULL;
1308 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1309 if (locked) {
1310 mmap_unlock();
1311 }
1312 cpu_resume_from_signal(cpu, puc);
1313 }
1314 #endif
1315 }
1316 #endif
1317
1318 /* add the tb in the target page and protect it if necessary
1319 *
1320 * Called with mmap_lock held for user-mode emulation.
1321 */
1322 static inline void tb_alloc_page(TranslationBlock *tb,
1323 unsigned int n, tb_page_addr_t page_addr)
1324 {
1325 PageDesc *p;
1326 #ifndef CONFIG_USER_ONLY
1327 bool page_already_protected;
1328 #endif
1329
1330 tb->page_addr[n] = page_addr;
1331 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1332 tb->page_next[n] = p->first_tb;
1333 #ifndef CONFIG_USER_ONLY
1334 page_already_protected = p->first_tb != NULL;
1335 #endif
1336 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1337 invalidate_page_bitmap(p);
1338
1339 #if defined(CONFIG_USER_ONLY)
1340 if (p->flags & PAGE_WRITE) {
1341 target_ulong addr;
1342 PageDesc *p2;
1343 int prot;
1344
1345 /* force the host page as non writable (writes will have a
1346 page fault + mprotect overhead) */
1347 page_addr &= qemu_host_page_mask;
1348 prot = 0;
1349 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1350 addr += TARGET_PAGE_SIZE) {
1351
1352 p2 = page_find(addr >> TARGET_PAGE_BITS);
1353 if (!p2) {
1354 continue;
1355 }
1356 prot |= p2->flags;
1357 p2->flags &= ~PAGE_WRITE;
1358 }
1359 mprotect(g2h(page_addr), qemu_host_page_size,
1360 (prot & PAGE_BITS) & ~PAGE_WRITE);
1361 #ifdef DEBUG_TB_INVALIDATE
1362 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1363 page_addr);
1364 #endif
1365 }
1366 #else
1367 /* if some code is already present, then the pages are already
1368 protected. So we handle the case where only the first TB is
1369 allocated in a physical page */
1370 if (!page_already_protected) {
1371 tlb_protect_code(page_addr);
1372 }
1373 #endif
1374 }
1375
1376 /* add a new TB and link it to the physical page tables. phys_page2 is
1377 * (-1) to indicate that only one page contains the TB.
1378 */
1379 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1380 tb_page_addr_t phys_page2)
1381 {
1382 unsigned int h;
1383 TranslationBlock **ptb;
1384
1385 /* Grab the mmap lock to stop another thread invalidating this TB
1386 before we are done. */
1387 mmap_lock();
1388 /* add in the physical hash table */
1389 h = tb_phys_hash_func(phys_pc);
1390 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1391 tb->phys_hash_next = *ptb;
1392 *ptb = tb;
1393
1394 /* add in the page list */
1395 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1396 if (phys_page2 != -1) {
1397 tb_alloc_page(tb, 1, phys_page2);
1398 } else {
1399 tb->page_addr[1] = -1;
1400 }
1401
1402 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1403 tb->jmp_next[0] = NULL;
1404 tb->jmp_next[1] = NULL;
1405
1406 /* init original jump addresses */
1407 if (tb->tb_next_offset[0] != 0xffff) {
1408 tb_reset_jump(tb, 0);
1409 }
1410 if (tb->tb_next_offset[1] != 0xffff) {
1411 tb_reset_jump(tb, 1);
1412 }
1413
1414 #ifdef DEBUG_TB_CHECK
1415 tb_page_check();
1416 #endif
1417 mmap_unlock();
1418 }
1419
1420 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1421 tb[1].tc_ptr. Return NULL if not found */
1422 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1423 {
1424 int m_min, m_max, m;
1425 uintptr_t v;
1426 TranslationBlock *tb;
1427
1428 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1429 return NULL;
1430 }
1431 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1432 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1433 return NULL;
1434 }
1435 /* binary search (cf Knuth) */
1436 m_min = 0;
1437 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1438 while (m_min <= m_max) {
1439 m = (m_min + m_max) >> 1;
1440 tb = &tcg_ctx.tb_ctx.tbs[m];
1441 v = (uintptr_t)tb->tc_ptr;
1442 if (v == tc_ptr) {
1443 return tb;
1444 } else if (tc_ptr < v) {
1445 m_max = m - 1;
1446 } else {
1447 m_min = m + 1;
1448 }
1449 }
1450 return &tcg_ctx.tb_ctx.tbs[m_max];
1451 }
1452
1453 #if !defined(CONFIG_USER_ONLY)
1454 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1455 {
1456 ram_addr_t ram_addr;
1457 MemoryRegion *mr;
1458 hwaddr l = 1;
1459
1460 rcu_read_lock();
1461 mr = address_space_translate(as, addr, &addr, &l, false);
1462 if (!(memory_region_is_ram(mr)
1463 || memory_region_is_romd(mr))) {
1464 rcu_read_unlock();
1465 return;
1466 }
1467 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1468 + addr;
1469 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1470 rcu_read_unlock();
1471 }
1472 #endif /* !defined(CONFIG_USER_ONLY) */
1473
1474 void tb_check_watchpoint(CPUState *cpu)
1475 {
1476 TranslationBlock *tb;
1477
1478 tb = tb_find_pc(cpu->mem_io_pc);
1479 if (tb) {
1480 /* We can use retranslation to find the PC. */
1481 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1482 tb_phys_invalidate(tb, -1);
1483 } else {
1484 /* The exception probably happened in a helper. The CPU state should
1485 have been saved before calling it. Fetch the PC from there. */
1486 CPUArchState *env = cpu->env_ptr;
1487 target_ulong pc, cs_base;
1488 tb_page_addr_t addr;
1489 int flags;
1490
1491 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1492 addr = get_page_addr_code(env, pc);
1493 tb_invalidate_phys_range(addr, addr + 1);
1494 }
1495 }
1496
1497 #ifndef CONFIG_USER_ONLY
1498 /* mask must never be zero, except for A20 change call */
1499 static void tcg_handle_interrupt(CPUState *cpu, int mask)
1500 {
1501 int old_mask;
1502
1503 old_mask = cpu->interrupt_request;
1504 cpu->interrupt_request |= mask;
1505
1506 /*
1507 * If called from iothread context, wake the target cpu in
1508 * case its halted.
1509 */
1510 if (!qemu_cpu_is_self(cpu)) {
1511 qemu_cpu_kick(cpu);
1512 return;
1513 }
1514
1515 if (use_icount) {
1516 cpu->icount_decr.u16.high = 0xffff;
1517 if (!cpu->can_do_io
1518 && (mask & ~old_mask) != 0) {
1519 cpu_abort(cpu, "Raised interrupt while not in I/O function");
1520 }
1521 } else {
1522 cpu->tcg_exit_req = 1;
1523 }
1524 }
1525
1526 CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1527
1528 /* in deterministic execution mode, instructions doing device I/Os
1529 must be at the end of the TB */
1530 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1531 {
1532 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1533 CPUArchState *env = cpu->env_ptr;
1534 #endif
1535 TranslationBlock *tb;
1536 uint32_t n, cflags;
1537 target_ulong pc, cs_base;
1538 uint64_t flags;
1539
1540 tb = tb_find_pc(retaddr);
1541 if (!tb) {
1542 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1543 (void *)retaddr);
1544 }
1545 n = cpu->icount_decr.u16.low + tb->icount;
1546 cpu_restore_state_from_tb(cpu, tb, retaddr);
1547 /* Calculate how many instructions had been executed before the fault
1548 occurred. */
1549 n = n - cpu->icount_decr.u16.low;
1550 /* Generate a new TB ending on the I/O insn. */
1551 n++;
1552 /* On MIPS and SH, delay slot instructions can only be restarted if
1553 they were already the first instruction in the TB. If this is not
1554 the first instruction in a TB then re-execute the preceding
1555 branch. */
1556 #if defined(TARGET_MIPS)
1557 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1558 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1559 cpu->icount_decr.u16.low++;
1560 env->hflags &= ~MIPS_HFLAG_BMASK;
1561 }
1562 #elif defined(TARGET_SH4)
1563 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1564 && n > 1) {
1565 env->pc -= 2;
1566 cpu->icount_decr.u16.low++;
1567 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1568 }
1569 #endif
1570 /* This should never happen. */
1571 if (n > CF_COUNT_MASK) {
1572 cpu_abort(cpu, "TB too big during recompile");
1573 }
1574
1575 cflags = n | CF_LAST_IO;
1576 pc = tb->pc;
1577 cs_base = tb->cs_base;
1578 flags = tb->flags;
1579 tb_phys_invalidate(tb, -1);
1580 if (tb->cflags & CF_NOCACHE) {
1581 if (tb->orig_tb) {
1582 /* Invalidate original TB if this TB was generated in
1583 * cpu_exec_nocache() */
1584 tb_phys_invalidate(tb->orig_tb, -1);
1585 }
1586 tb_free(tb);
1587 }
1588 /* FIXME: In theory this could raise an exception. In practice
1589 we have already translated the block once so it's probably ok. */
1590 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1591 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1592 the first in the TB) then we end up generating a whole new TB and
1593 repeating the fault, which is horribly inefficient.
1594 Better would be to execute just this insn uncached, or generate a
1595 second new TB. */
1596 cpu_resume_from_signal(cpu, NULL);
1597 }
1598
1599 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1600 {
1601 unsigned int i;
1602
1603 /* Discard jump cache entries for any tb which might potentially
1604 overlap the flushed page. */
1605 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1606 memset(&cpu->tb_jmp_cache[i], 0,
1607 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1608
1609 i = tb_jmp_cache_hash_page(addr);
1610 memset(&cpu->tb_jmp_cache[i], 0,
1611 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1612 }
1613
1614 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1615 {
1616 int i, target_code_size, max_target_code_size;
1617 int direct_jmp_count, direct_jmp2_count, cross_page;
1618 TranslationBlock *tb;
1619
1620 target_code_size = 0;
1621 max_target_code_size = 0;
1622 cross_page = 0;
1623 direct_jmp_count = 0;
1624 direct_jmp2_count = 0;
1625 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1626 tb = &tcg_ctx.tb_ctx.tbs[i];
1627 target_code_size += tb->size;
1628 if (tb->size > max_target_code_size) {
1629 max_target_code_size = tb->size;
1630 }
1631 if (tb->page_addr[1] != -1) {
1632 cross_page++;
1633 }
1634 if (tb->tb_next_offset[0] != 0xffff) {
1635 direct_jmp_count++;
1636 if (tb->tb_next_offset[1] != 0xffff) {
1637 direct_jmp2_count++;
1638 }
1639 }
1640 }
1641 /* XXX: avoid using doubles ? */
1642 cpu_fprintf(f, "Translation buffer state:\n");
1643 cpu_fprintf(f, "gen code size %td/%zd\n",
1644 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1645 tcg_ctx.code_gen_buffer_max_size);
1646 cpu_fprintf(f, "TB count %d/%d\n",
1647 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1648 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1649 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1650 tcg_ctx.tb_ctx.nb_tbs : 0,
1651 max_target_code_size);
1652 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1653 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1654 tcg_ctx.code_gen_buffer) /
1655 tcg_ctx.tb_ctx.nb_tbs : 0,
1656 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1657 tcg_ctx.code_gen_buffer) /
1658 target_code_size : 0);
1659 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1660 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1661 tcg_ctx.tb_ctx.nb_tbs : 0);
1662 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1663 direct_jmp_count,
1664 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1665 tcg_ctx.tb_ctx.nb_tbs : 0,
1666 direct_jmp2_count,
1667 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1668 tcg_ctx.tb_ctx.nb_tbs : 0);
1669 cpu_fprintf(f, "\nStatistics:\n");
1670 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1671 cpu_fprintf(f, "TB invalidate count %d\n",
1672 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1673 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1674 tcg_dump_info(f, cpu_fprintf);
1675 }
1676
1677 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1678 {
1679 tcg_dump_op_count(f, cpu_fprintf);
1680 }
1681
1682 #else /* CONFIG_USER_ONLY */
1683
1684 void cpu_interrupt(CPUState *cpu, int mask)
1685 {
1686 cpu->interrupt_request |= mask;
1687 cpu->tcg_exit_req = 1;
1688 }
1689
1690 /*
1691 * Walks guest process memory "regions" one by one
1692 * and calls callback function 'fn' for each region.
1693 */
1694 struct walk_memory_regions_data {
1695 walk_memory_regions_fn fn;
1696 void *priv;
1697 target_ulong start;
1698 int prot;
1699 };
1700
1701 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1702 target_ulong end, int new_prot)
1703 {
1704 if (data->start != -1u) {
1705 int rc = data->fn(data->priv, data->start, end, data->prot);
1706 if (rc != 0) {
1707 return rc;
1708 }
1709 }
1710
1711 data->start = (new_prot ? end : -1u);
1712 data->prot = new_prot;
1713
1714 return 0;
1715 }
1716
1717 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1718 target_ulong base, int level, void **lp)
1719 {
1720 target_ulong pa;
1721 int i, rc;
1722
1723 if (*lp == NULL) {
1724 return walk_memory_regions_end(data, base, 0);
1725 }
1726
1727 if (level == 0) {
1728 PageDesc *pd = *lp;
1729
1730 for (i = 0; i < V_L2_SIZE; ++i) {
1731 int prot = pd[i].flags;
1732
1733 pa = base | (i << TARGET_PAGE_BITS);
1734 if (prot != data->prot) {
1735 rc = walk_memory_regions_end(data, pa, prot);
1736 if (rc != 0) {
1737 return rc;
1738 }
1739 }
1740 }
1741 } else {
1742 void **pp = *lp;
1743
1744 for (i = 0; i < V_L2_SIZE; ++i) {
1745 pa = base | ((target_ulong)i <<
1746 (TARGET_PAGE_BITS + V_L2_BITS * level));
1747 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1748 if (rc != 0) {
1749 return rc;
1750 }
1751 }
1752 }
1753
1754 return 0;
1755 }
1756
1757 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1758 {
1759 struct walk_memory_regions_data data;
1760 uintptr_t i;
1761
1762 data.fn = fn;
1763 data.priv = priv;
1764 data.start = -1u;
1765 data.prot = 0;
1766
1767 for (i = 0; i < V_L1_SIZE; i++) {
1768 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1769 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1770 if (rc != 0) {
1771 return rc;
1772 }
1773 }
1774
1775 return walk_memory_regions_end(&data, 0, 0);
1776 }
1777
1778 static int dump_region(void *priv, target_ulong start,
1779 target_ulong end, unsigned long prot)
1780 {
1781 FILE *f = (FILE *)priv;
1782
1783 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1784 " "TARGET_FMT_lx" %c%c%c\n",
1785 start, end, end - start,
1786 ((prot & PAGE_READ) ? 'r' : '-'),
1787 ((prot & PAGE_WRITE) ? 'w' : '-'),
1788 ((prot & PAGE_EXEC) ? 'x' : '-'));
1789
1790 return 0;
1791 }
1792
1793 /* dump memory mappings */
1794 void page_dump(FILE *f)
1795 {
1796 const int length = sizeof(target_ulong) * 2;
1797 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1798 length, "start", length, "end", length, "size", "prot");
1799 walk_memory_regions(f, dump_region);
1800 }
1801
1802 int page_get_flags(target_ulong address)
1803 {
1804 PageDesc *p;
1805
1806 p = page_find(address >> TARGET_PAGE_BITS);
1807 if (!p) {
1808 return 0;
1809 }
1810 return p->flags;
1811 }
1812
1813 /* Modify the flags of a page and invalidate the code if necessary.
1814 The flag PAGE_WRITE_ORG is positioned automatically depending
1815 on PAGE_WRITE. The mmap_lock should already be held. */
1816 void page_set_flags(target_ulong start, target_ulong end, int flags)
1817 {
1818 target_ulong addr, len;
1819
1820 /* This function should never be called with addresses outside the
1821 guest address space. If this assert fires, it probably indicates
1822 a missing call to h2g_valid. */
1823 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1824 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1825 #endif
1826 assert(start < end);
1827
1828 start = start & TARGET_PAGE_MASK;
1829 end = TARGET_PAGE_ALIGN(end);
1830
1831 if (flags & PAGE_WRITE) {
1832 flags |= PAGE_WRITE_ORG;
1833 }
1834
1835 for (addr = start, len = end - start;
1836 len != 0;
1837 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1838 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1839
1840 /* If the write protection bit is set, then we invalidate
1841 the code inside. */
1842 if (!(p->flags & PAGE_WRITE) &&
1843 (flags & PAGE_WRITE) &&
1844 p->first_tb) {
1845 tb_invalidate_phys_page(addr, 0, NULL, false);
1846 }
1847 p->flags = flags;
1848 }
1849 }
1850
1851 int page_check_range(target_ulong start, target_ulong len, int flags)
1852 {
1853 PageDesc *p;
1854 target_ulong end;
1855 target_ulong addr;
1856
1857 /* This function should never be called with addresses outside the
1858 guest address space. If this assert fires, it probably indicates
1859 a missing call to h2g_valid. */
1860 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1861 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1862 #endif
1863
1864 if (len == 0) {
1865 return 0;
1866 }
1867 if (start + len - 1 < start) {
1868 /* We've wrapped around. */
1869 return -1;
1870 }
1871
1872 /* must do before we loose bits in the next step */
1873 end = TARGET_PAGE_ALIGN(start + len);
1874 start = start & TARGET_PAGE_MASK;
1875
1876 for (addr = start, len = end - start;
1877 len != 0;
1878 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1879 p = page_find(addr >> TARGET_PAGE_BITS);
1880 if (!p) {
1881 return -1;
1882 }
1883 if (!(p->flags & PAGE_VALID)) {
1884 return -1;
1885 }
1886
1887 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1888 return -1;
1889 }
1890 if (flags & PAGE_WRITE) {
1891 if (!(p->flags & PAGE_WRITE_ORG)) {
1892 return -1;
1893 }
1894 /* unprotect the page if it was put read-only because it
1895 contains translated code */
1896 if (!(p->flags & PAGE_WRITE)) {
1897 if (!page_unprotect(addr, 0, NULL)) {
1898 return -1;
1899 }
1900 }
1901 }
1902 }
1903 return 0;
1904 }
1905
1906 /* called from signal handler: invalidate the code and unprotect the
1907 page. Return TRUE if the fault was successfully handled. */
1908 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1909 {
1910 unsigned int prot;
1911 PageDesc *p;
1912 target_ulong host_start, host_end, addr;
1913
1914 /* Technically this isn't safe inside a signal handler. However we
1915 know this only ever happens in a synchronous SEGV handler, so in
1916 practice it seems to be ok. */
1917 mmap_lock();
1918
1919 p = page_find(address >> TARGET_PAGE_BITS);
1920 if (!p) {
1921 mmap_unlock();
1922 return 0;
1923 }
1924
1925 /* if the page was really writable, then we change its
1926 protection back to writable */
1927 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1928 host_start = address & qemu_host_page_mask;
1929 host_end = host_start + qemu_host_page_size;
1930
1931 prot = 0;
1932 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1933 p = page_find(addr >> TARGET_PAGE_BITS);
1934 p->flags |= PAGE_WRITE;
1935 prot |= p->flags;
1936
1937 /* and since the content will be modified, we must invalidate
1938 the corresponding translated code. */
1939 tb_invalidate_phys_page(addr, pc, puc, true);
1940 #ifdef DEBUG_TB_CHECK
1941 tb_invalidate_check(addr);
1942 #endif
1943 }
1944 mprotect((void *)g2h(host_start), qemu_host_page_size,
1945 prot & PAGE_BITS);
1946
1947 mmap_unlock();
1948 return 1;
1949 }
1950 mmap_unlock();
1951 return 0;
1952 }
1953 #endif /* CONFIG_USER_ONLY */