]> git.proxmox.com Git - mirror_qemu.git/blob - translate-all.c
Merge remote-tracking branch 'remotes/kraxel/tags/pull-virgl-20151008-1' into staging
[mirror_qemu.git] / translate-all.c
1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
30
31 #include "config.h"
32
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "trace.h"
37 #include "disas/disas.h"
38 #include "tcg.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
59
60 #include "exec/cputlb.h"
61 #include "exec/tb-hash.h"
62 #include "translate-all.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/timer.h"
65
66 //#define DEBUG_TB_INVALIDATE
67 //#define DEBUG_FLUSH
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
70
71 #if !defined(CONFIG_USER_ONLY)
72 /* TB consistency checks only implemented for usermode emulation. */
73 #undef DEBUG_TB_CHECK
74 #endif
75
76 #define SMC_BITMAP_USE_THRESHOLD 10
77
78 typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
84 unsigned long *code_bitmap;
85 #if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87 #endif
88 } PageDesc;
89
90 /* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92 #if !defined(CONFIG_USER_ONLY)
93 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95 #else
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97 #endif
98 #else
99 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100 #endif
101
102 /* Size of the L2 (and L3, etc) page tables. */
103 #define V_L2_BITS 10
104 #define V_L2_SIZE (1 << V_L2_BITS)
105
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
109
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
112 #else
113 #define V_L1_BITS V_L1_BITS_REM
114 #endif
115
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
117
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
119
120 uintptr_t qemu_host_page_size;
121 uintptr_t qemu_host_page_mask;
122
123 /* The bottom level has pointers to PageDesc */
124 static void *l1_map[V_L1_SIZE];
125
126 /* code generation context */
127 TCGContext tcg_ctx;
128
129 /* translation block context */
130 #ifdef CONFIG_USER_ONLY
131 __thread int have_tb_lock;
132 #endif
133
134 void tb_lock(void)
135 {
136 #ifdef CONFIG_USER_ONLY
137 assert(!have_tb_lock);
138 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
139 have_tb_lock++;
140 #endif
141 }
142
143 void tb_unlock(void)
144 {
145 #ifdef CONFIG_USER_ONLY
146 assert(have_tb_lock);
147 have_tb_lock--;
148 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
149 #endif
150 }
151
152 void tb_lock_reset(void)
153 {
154 #ifdef CONFIG_USER_ONLY
155 if (have_tb_lock) {
156 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
157 have_tb_lock = 0;
158 }
159 #endif
160 }
161
162 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
163 tb_page_addr_t phys_page2);
164 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
165
166 void cpu_gen_init(void)
167 {
168 tcg_context_init(&tcg_ctx);
169 }
170
171 /* Encode VAL as a signed leb128 sequence at P.
172 Return P incremented past the encoded value. */
173 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
174 {
175 int more, byte;
176
177 do {
178 byte = val & 0x7f;
179 val >>= 7;
180 more = !((val == 0 && (byte & 0x40) == 0)
181 || (val == -1 && (byte & 0x40) != 0));
182 if (more) {
183 byte |= 0x80;
184 }
185 *p++ = byte;
186 } while (more);
187
188 return p;
189 }
190
191 /* Decode a signed leb128 sequence at *PP; increment *PP past the
192 decoded value. Return the decoded value. */
193 static target_long decode_sleb128(uint8_t **pp)
194 {
195 uint8_t *p = *pp;
196 target_long val = 0;
197 int byte, shift = 0;
198
199 do {
200 byte = *p++;
201 val |= (target_ulong)(byte & 0x7f) << shift;
202 shift += 7;
203 } while (byte & 0x80);
204 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
205 val |= -(target_ulong)1 << shift;
206 }
207
208 *pp = p;
209 return val;
210 }
211
212 /* Encode the data collected about the instructions while compiling TB.
213 Place the data at BLOCK, and return the number of bytes consumed.
214
215 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
216 which come from the target's insn_start data, followed by a uintptr_t
217 which comes from the host pc of the end of the code implementing the insn.
218
219 Each line of the table is encoded as sleb128 deltas from the previous
220 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
221 That is, the first column is seeded with the guest pc, the last column
222 with the host pc, and the middle columns with zeros. */
223
224 static int encode_search(TranslationBlock *tb, uint8_t *block)
225 {
226 uint8_t *highwater = tcg_ctx.code_gen_highwater;
227 uint8_t *p = block;
228 int i, j, n;
229
230 tb->tc_search = block;
231
232 for (i = 0, n = tb->icount; i < n; ++i) {
233 target_ulong prev;
234
235 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
236 if (i == 0) {
237 prev = (j == 0 ? tb->pc : 0);
238 } else {
239 prev = tcg_ctx.gen_insn_data[i - 1][j];
240 }
241 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
242 }
243 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
244 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
245
246 /* Test for (pending) buffer overflow. The assumption is that any
247 one row beginning below the high water mark cannot overrun
248 the buffer completely. Thus we can test for overflow after
249 encoding a row without having to check during encoding. */
250 if (unlikely(p > highwater)) {
251 return -1;
252 }
253 }
254
255 return p - block;
256 }
257
258 /* The cpu state corresponding to 'searched_pc' is restored. */
259 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
260 uintptr_t searched_pc)
261 {
262 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
263 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
264 CPUArchState *env = cpu->env_ptr;
265 uint8_t *p = tb->tc_search;
266 int i, j, num_insns = tb->icount;
267 #ifdef CONFIG_PROFILER
268 int64_t ti = profile_getclock();
269 #endif
270
271 if (searched_pc < host_pc) {
272 return -1;
273 }
274
275 /* Reconstruct the stored insn data while looking for the point at
276 which the end of the insn exceeds the searched_pc. */
277 for (i = 0; i < num_insns; ++i) {
278 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
279 data[j] += decode_sleb128(&p);
280 }
281 host_pc += decode_sleb128(&p);
282 if (host_pc > searched_pc) {
283 goto found;
284 }
285 }
286 return -1;
287
288 found:
289 if (tb->cflags & CF_USE_ICOUNT) {
290 assert(use_icount);
291 /* Reset the cycle counter to the start of the block. */
292 cpu->icount_decr.u16.low += num_insns;
293 /* Clear the IO flag. */
294 cpu->can_do_io = 0;
295 }
296 cpu->icount_decr.u16.low -= i;
297 restore_state_to_opc(env, tb, data);
298
299 #ifdef CONFIG_PROFILER
300 tcg_ctx.restore_time += profile_getclock() - ti;
301 tcg_ctx.restore_count++;
302 #endif
303 return 0;
304 }
305
306 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
307 {
308 TranslationBlock *tb;
309
310 tb = tb_find_pc(retaddr);
311 if (tb) {
312 cpu_restore_state_from_tb(cpu, tb, retaddr);
313 if (tb->cflags & CF_NOCACHE) {
314 /* one-shot translation, invalidate it immediately */
315 cpu->current_tb = NULL;
316 tb_phys_invalidate(tb, -1);
317 tb_free(tb);
318 }
319 return true;
320 }
321 return false;
322 }
323
324 void page_size_init(void)
325 {
326 /* NOTE: we can always suppose that qemu_host_page_size >=
327 TARGET_PAGE_SIZE */
328 qemu_real_host_page_size = getpagesize();
329 qemu_real_host_page_mask = ~(qemu_real_host_page_size - 1);
330 if (qemu_host_page_size == 0) {
331 qemu_host_page_size = qemu_real_host_page_size;
332 }
333 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
334 qemu_host_page_size = TARGET_PAGE_SIZE;
335 }
336 qemu_host_page_mask = ~(qemu_host_page_size - 1);
337 }
338
339 static void page_init(void)
340 {
341 page_size_init();
342 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
343 {
344 #ifdef HAVE_KINFO_GETVMMAP
345 struct kinfo_vmentry *freep;
346 int i, cnt;
347
348 freep = kinfo_getvmmap(getpid(), &cnt);
349 if (freep) {
350 mmap_lock();
351 for (i = 0; i < cnt; i++) {
352 unsigned long startaddr, endaddr;
353
354 startaddr = freep[i].kve_start;
355 endaddr = freep[i].kve_end;
356 if (h2g_valid(startaddr)) {
357 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
358
359 if (h2g_valid(endaddr)) {
360 endaddr = h2g(endaddr);
361 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
362 } else {
363 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
364 endaddr = ~0ul;
365 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
366 #endif
367 }
368 }
369 }
370 free(freep);
371 mmap_unlock();
372 }
373 #else
374 FILE *f;
375
376 last_brk = (unsigned long)sbrk(0);
377
378 f = fopen("/compat/linux/proc/self/maps", "r");
379 if (f) {
380 mmap_lock();
381
382 do {
383 unsigned long startaddr, endaddr;
384 int n;
385
386 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
387
388 if (n == 2 && h2g_valid(startaddr)) {
389 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
390
391 if (h2g_valid(endaddr)) {
392 endaddr = h2g(endaddr);
393 } else {
394 endaddr = ~0ul;
395 }
396 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
397 }
398 } while (!feof(f));
399
400 fclose(f);
401 mmap_unlock();
402 }
403 #endif
404 }
405 #endif
406 }
407
408 /* If alloc=1:
409 * Called with mmap_lock held for user-mode emulation.
410 */
411 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
412 {
413 PageDesc *pd;
414 void **lp;
415 int i;
416
417 /* Level 1. Always allocated. */
418 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
419
420 /* Level 2..N-1. */
421 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
422 void **p = atomic_rcu_read(lp);
423
424 if (p == NULL) {
425 if (!alloc) {
426 return NULL;
427 }
428 p = g_new0(void *, V_L2_SIZE);
429 atomic_rcu_set(lp, p);
430 }
431
432 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
433 }
434
435 pd = atomic_rcu_read(lp);
436 if (pd == NULL) {
437 if (!alloc) {
438 return NULL;
439 }
440 pd = g_new0(PageDesc, V_L2_SIZE);
441 atomic_rcu_set(lp, pd);
442 }
443
444 return pd + (index & (V_L2_SIZE - 1));
445 }
446
447 static inline PageDesc *page_find(tb_page_addr_t index)
448 {
449 return page_find_alloc(index, 0);
450 }
451
452 #if defined(CONFIG_USER_ONLY)
453 /* Currently it is not recommended to allocate big chunks of data in
454 user mode. It will change when a dedicated libc will be used. */
455 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
456 region in which the guest needs to run. Revisit this. */
457 #define USE_STATIC_CODE_GEN_BUFFER
458 #endif
459
460 /* Minimum size of the code gen buffer. This number is randomly chosen,
461 but not so small that we can't have a fair number of TB's live. */
462 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
463
464 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
465 indicated, this is constrained by the range of direct branches on the
466 host cpu, as used by the TCG implementation of goto_tb. */
467 #if defined(__x86_64__)
468 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
469 #elif defined(__sparc__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
471 #elif defined(__aarch64__)
472 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
473 #elif defined(__arm__)
474 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
475 #elif defined(__s390x__)
476 /* We have a +- 4GB range on the branches; leave some slop. */
477 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
478 #elif defined(__mips__)
479 /* We have a 256MB branch region, but leave room to make sure the
480 main executable is also within that region. */
481 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
482 #else
483 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
484 #endif
485
486 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
487
488 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
489 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
490 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
491
492 static inline size_t size_code_gen_buffer(size_t tb_size)
493 {
494 /* Size the buffer. */
495 if (tb_size == 0) {
496 #ifdef USE_STATIC_CODE_GEN_BUFFER
497 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
498 #else
499 /* ??? Needs adjustments. */
500 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
501 static buffer, we could size this on RESERVED_VA, on the text
502 segment size of the executable, or continue to use the default. */
503 tb_size = (unsigned long)(ram_size / 4);
504 #endif
505 }
506 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
507 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
508 }
509 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
510 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
511 }
512 tcg_ctx.code_gen_buffer_size = tb_size;
513 return tb_size;
514 }
515
516 #ifdef __mips__
517 /* In order to use J and JAL within the code_gen_buffer, we require
518 that the buffer not cross a 256MB boundary. */
519 static inline bool cross_256mb(void *addr, size_t size)
520 {
521 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
522 }
523
524 /* We weren't able to allocate a buffer without crossing that boundary,
525 so make do with the larger portion of the buffer that doesn't cross.
526 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
527 static inline void *split_cross_256mb(void *buf1, size_t size1)
528 {
529 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
530 size_t size2 = buf1 + size1 - buf2;
531
532 size1 = buf2 - buf1;
533 if (size1 < size2) {
534 size1 = size2;
535 buf1 = buf2;
536 }
537
538 tcg_ctx.code_gen_buffer_size = size1;
539 return buf1;
540 }
541 #endif
542
543 #ifdef USE_STATIC_CODE_GEN_BUFFER
544 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
545 __attribute__((aligned(CODE_GEN_ALIGN)));
546
547 # ifdef _WIN32
548 static inline void do_protect(void *addr, long size, int prot)
549 {
550 DWORD old_protect;
551 VirtualProtect(addr, size, prot, &old_protect);
552 }
553
554 static inline void map_exec(void *addr, long size)
555 {
556 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
557 }
558
559 static inline void map_none(void *addr, long size)
560 {
561 do_protect(addr, size, PAGE_NOACCESS);
562 }
563 # else
564 static inline void do_protect(void *addr, long size, int prot)
565 {
566 uintptr_t start, end;
567
568 start = (uintptr_t)addr;
569 start &= qemu_real_host_page_mask;
570
571 end = (uintptr_t)addr + size;
572 end = ROUND_UP(end, qemu_real_host_page_size);
573
574 mprotect((void *)start, end - start, prot);
575 }
576
577 static inline void map_exec(void *addr, long size)
578 {
579 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
580 }
581
582 static inline void map_none(void *addr, long size)
583 {
584 do_protect(addr, size, PROT_NONE);
585 }
586 # endif /* WIN32 */
587
588 static inline void *alloc_code_gen_buffer(void)
589 {
590 void *buf = static_code_gen_buffer;
591 size_t full_size, size;
592
593 /* The size of the buffer, rounded down to end on a page boundary. */
594 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
595 & qemu_real_host_page_mask) - (uintptr_t)buf;
596
597 /* Reserve a guard page. */
598 size = full_size - qemu_real_host_page_size;
599
600 /* Honor a command-line option limiting the size of the buffer. */
601 if (size > tcg_ctx.code_gen_buffer_size) {
602 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
603 & qemu_real_host_page_mask) - (uintptr_t)buf;
604 }
605 tcg_ctx.code_gen_buffer_size = size;
606
607 #ifdef __mips__
608 if (cross_256mb(buf, size)) {
609 buf = split_cross_256mb(buf, size);
610 size = tcg_ctx.code_gen_buffer_size;
611 }
612 #endif
613
614 map_exec(buf, size);
615 map_none(buf + size, qemu_real_host_page_size);
616 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
617
618 return buf;
619 }
620 #elif defined(_WIN32)
621 static inline void *alloc_code_gen_buffer(void)
622 {
623 size_t size = tcg_ctx.code_gen_buffer_size;
624 void *buf1, *buf2;
625
626 /* Perform the allocation in two steps, so that the guard page
627 is reserved but uncommitted. */
628 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
629 MEM_RESERVE, PAGE_NOACCESS);
630 if (buf1 != NULL) {
631 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
632 assert(buf1 == buf2);
633 }
634
635 return buf1;
636 }
637 #else
638 static inline void *alloc_code_gen_buffer(void)
639 {
640 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
641 uintptr_t start = 0;
642 size_t size = tcg_ctx.code_gen_buffer_size;
643 void *buf;
644
645 /* Constrain the position of the buffer based on the host cpu.
646 Note that these addresses are chosen in concert with the
647 addresses assigned in the relevant linker script file. */
648 # if defined(__PIE__) || defined(__PIC__)
649 /* Don't bother setting a preferred location if we're building
650 a position-independent executable. We're more likely to get
651 an address near the main executable if we let the kernel
652 choose the address. */
653 # elif defined(__x86_64__) && defined(MAP_32BIT)
654 /* Force the memory down into low memory with the executable.
655 Leave the choice of exact location with the kernel. */
656 flags |= MAP_32BIT;
657 /* Cannot expect to map more than 800MB in low memory. */
658 if (size > 800u * 1024 * 1024) {
659 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
660 }
661 # elif defined(__sparc__)
662 start = 0x40000000ul;
663 # elif defined(__s390x__)
664 start = 0x90000000ul;
665 # elif defined(__mips__)
666 # if _MIPS_SIM == _ABI64
667 start = 0x128000000ul;
668 # else
669 start = 0x08000000ul;
670 # endif
671 # endif
672
673 buf = mmap((void *)start, size + qemu_real_host_page_size,
674 PROT_NONE, flags, -1, 0);
675 if (buf == MAP_FAILED) {
676 return NULL;
677 }
678
679 #ifdef __mips__
680 if (cross_256mb(buf, size)) {
681 /* Try again, with the original still mapped, to avoid re-acquiring
682 that 256mb crossing. This time don't specify an address. */
683 size_t size2;
684 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
685 PROT_NONE, flags, -1, 0);
686 switch (buf2 != MAP_FAILED) {
687 case 1:
688 if (!cross_256mb(buf2, size)) {
689 /* Success! Use the new buffer. */
690 munmap(buf, size);
691 break;
692 }
693 /* Failure. Work with what we had. */
694 munmap(buf2, size);
695 /* fallthru */
696 default:
697 /* Split the original buffer. Free the smaller half. */
698 buf2 = split_cross_256mb(buf, size);
699 size2 = tcg_ctx.code_gen_buffer_size;
700 if (buf == buf2) {
701 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
702 } else {
703 munmap(buf, size - size2);
704 }
705 size = size2;
706 break;
707 }
708 buf = buf2;
709 }
710 #endif
711
712 /* Make the final buffer accessible. The guard page at the end
713 will remain inaccessible with PROT_NONE. */
714 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
715
716 /* Request large pages for the buffer. */
717 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
718
719 return buf;
720 }
721 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
722
723 static inline void code_gen_alloc(size_t tb_size)
724 {
725 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
726 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
727 if (tcg_ctx.code_gen_buffer == NULL) {
728 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
729 exit(1);
730 }
731
732 /* Estimate a good size for the number of TBs we can support. We
733 still haven't deducted the prologue from the buffer size here,
734 but that's minimal and won't affect the estimate much. */
735 tcg_ctx.code_gen_max_blocks
736 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
737 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
738
739 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
740 }
741
742 /* Must be called before using the QEMU cpus. 'tb_size' is the size
743 (in bytes) allocated to the translation buffer. Zero means default
744 size. */
745 void tcg_exec_init(unsigned long tb_size)
746 {
747 cpu_gen_init();
748 page_init();
749 code_gen_alloc(tb_size);
750 #if defined(CONFIG_SOFTMMU)
751 /* There's no guest base to take into account, so go ahead and
752 initialize the prologue now. */
753 tcg_prologue_init(&tcg_ctx);
754 #endif
755 }
756
757 bool tcg_enabled(void)
758 {
759 return tcg_ctx.code_gen_buffer != NULL;
760 }
761
762 /* Allocate a new translation block. Flush the translation buffer if
763 too many translation blocks or too much generated code. */
764 static TranslationBlock *tb_alloc(target_ulong pc)
765 {
766 TranslationBlock *tb;
767
768 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
769 return NULL;
770 }
771 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
772 tb->pc = pc;
773 tb->cflags = 0;
774 return tb;
775 }
776
777 void tb_free(TranslationBlock *tb)
778 {
779 /* In practice this is mostly used for single use temporary TB
780 Ignore the hard cases and just back up if this TB happens to
781 be the last one generated. */
782 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
783 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
784 tcg_ctx.code_gen_ptr = tb->tc_ptr;
785 tcg_ctx.tb_ctx.nb_tbs--;
786 }
787 }
788
789 static inline void invalidate_page_bitmap(PageDesc *p)
790 {
791 g_free(p->code_bitmap);
792 p->code_bitmap = NULL;
793 p->code_write_count = 0;
794 }
795
796 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
797 static void page_flush_tb_1(int level, void **lp)
798 {
799 int i;
800
801 if (*lp == NULL) {
802 return;
803 }
804 if (level == 0) {
805 PageDesc *pd = *lp;
806
807 for (i = 0; i < V_L2_SIZE; ++i) {
808 pd[i].first_tb = NULL;
809 invalidate_page_bitmap(pd + i);
810 }
811 } else {
812 void **pp = *lp;
813
814 for (i = 0; i < V_L2_SIZE; ++i) {
815 page_flush_tb_1(level - 1, pp + i);
816 }
817 }
818 }
819
820 static void page_flush_tb(void)
821 {
822 int i;
823
824 for (i = 0; i < V_L1_SIZE; i++) {
825 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
826 }
827 }
828
829 /* flush all the translation blocks */
830 /* XXX: tb_flush is currently not thread safe */
831 void tb_flush(CPUState *cpu)
832 {
833 #if defined(DEBUG_FLUSH)
834 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
835 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
836 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
837 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
838 tcg_ctx.tb_ctx.nb_tbs : 0);
839 #endif
840 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
841 > tcg_ctx.code_gen_buffer_size) {
842 cpu_abort(cpu, "Internal error: code buffer overflow\n");
843 }
844 tcg_ctx.tb_ctx.nb_tbs = 0;
845
846 CPU_FOREACH(cpu) {
847 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
848 }
849
850 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
851 page_flush_tb();
852
853 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
854 /* XXX: flush processor icache at this point if cache flush is
855 expensive */
856 tcg_ctx.tb_ctx.tb_flush_count++;
857 }
858
859 #ifdef DEBUG_TB_CHECK
860
861 static void tb_invalidate_check(target_ulong address)
862 {
863 TranslationBlock *tb;
864 int i;
865
866 address &= TARGET_PAGE_MASK;
867 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
868 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
869 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
870 address >= tb->pc + tb->size)) {
871 printf("ERROR invalidate: address=" TARGET_FMT_lx
872 " PC=%08lx size=%04x\n",
873 address, (long)tb->pc, tb->size);
874 }
875 }
876 }
877 }
878
879 /* verify that all the pages have correct rights for code */
880 static void tb_page_check(void)
881 {
882 TranslationBlock *tb;
883 int i, flags1, flags2;
884
885 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
886 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
887 tb = tb->phys_hash_next) {
888 flags1 = page_get_flags(tb->pc);
889 flags2 = page_get_flags(tb->pc + tb->size - 1);
890 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
891 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
892 (long)tb->pc, tb->size, flags1, flags2);
893 }
894 }
895 }
896 }
897
898 #endif
899
900 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
901 {
902 TranslationBlock *tb1;
903
904 for (;;) {
905 tb1 = *ptb;
906 if (tb1 == tb) {
907 *ptb = tb1->phys_hash_next;
908 break;
909 }
910 ptb = &tb1->phys_hash_next;
911 }
912 }
913
914 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
915 {
916 TranslationBlock *tb1;
917 unsigned int n1;
918
919 for (;;) {
920 tb1 = *ptb;
921 n1 = (uintptr_t)tb1 & 3;
922 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
923 if (tb1 == tb) {
924 *ptb = tb1->page_next[n1];
925 break;
926 }
927 ptb = &tb1->page_next[n1];
928 }
929 }
930
931 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
932 {
933 TranslationBlock *tb1, **ptb;
934 unsigned int n1;
935
936 ptb = &tb->jmp_next[n];
937 tb1 = *ptb;
938 if (tb1) {
939 /* find tb(n) in circular list */
940 for (;;) {
941 tb1 = *ptb;
942 n1 = (uintptr_t)tb1 & 3;
943 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
944 if (n1 == n && tb1 == tb) {
945 break;
946 }
947 if (n1 == 2) {
948 ptb = &tb1->jmp_first;
949 } else {
950 ptb = &tb1->jmp_next[n1];
951 }
952 }
953 /* now we can suppress tb(n) from the list */
954 *ptb = tb->jmp_next[n];
955
956 tb->jmp_next[n] = NULL;
957 }
958 }
959
960 /* reset the jump entry 'n' of a TB so that it is not chained to
961 another TB */
962 static inline void tb_reset_jump(TranslationBlock *tb, int n)
963 {
964 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
965 }
966
967 /* invalidate one TB */
968 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
969 {
970 CPUState *cpu;
971 PageDesc *p;
972 unsigned int h, n1;
973 tb_page_addr_t phys_pc;
974 TranslationBlock *tb1, *tb2;
975
976 /* remove the TB from the hash list */
977 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
978 h = tb_phys_hash_func(phys_pc);
979 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
980
981 /* remove the TB from the page list */
982 if (tb->page_addr[0] != page_addr) {
983 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
984 tb_page_remove(&p->first_tb, tb);
985 invalidate_page_bitmap(p);
986 }
987 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
988 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
989 tb_page_remove(&p->first_tb, tb);
990 invalidate_page_bitmap(p);
991 }
992
993 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
994
995 /* remove the TB from the hash list */
996 h = tb_jmp_cache_hash_func(tb->pc);
997 CPU_FOREACH(cpu) {
998 if (cpu->tb_jmp_cache[h] == tb) {
999 cpu->tb_jmp_cache[h] = NULL;
1000 }
1001 }
1002
1003 /* suppress this TB from the two jump lists */
1004 tb_jmp_remove(tb, 0);
1005 tb_jmp_remove(tb, 1);
1006
1007 /* suppress any remaining jumps to this TB */
1008 tb1 = tb->jmp_first;
1009 for (;;) {
1010 n1 = (uintptr_t)tb1 & 3;
1011 if (n1 == 2) {
1012 break;
1013 }
1014 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1015 tb2 = tb1->jmp_next[n1];
1016 tb_reset_jump(tb1, n1);
1017 tb1->jmp_next[n1] = NULL;
1018 tb1 = tb2;
1019 }
1020 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1021
1022 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1023 }
1024
1025 static void build_page_bitmap(PageDesc *p)
1026 {
1027 int n, tb_start, tb_end;
1028 TranslationBlock *tb;
1029
1030 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1031
1032 tb = p->first_tb;
1033 while (tb != NULL) {
1034 n = (uintptr_t)tb & 3;
1035 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1036 /* NOTE: this is subtle as a TB may span two physical pages */
1037 if (n == 0) {
1038 /* NOTE: tb_end may be after the end of the page, but
1039 it is not a problem */
1040 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1041 tb_end = tb_start + tb->size;
1042 if (tb_end > TARGET_PAGE_SIZE) {
1043 tb_end = TARGET_PAGE_SIZE;
1044 }
1045 } else {
1046 tb_start = 0;
1047 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1048 }
1049 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1050 tb = tb->page_next[n];
1051 }
1052 }
1053
1054 /* Called with mmap_lock held for user mode emulation. */
1055 TranslationBlock *tb_gen_code(CPUState *cpu,
1056 target_ulong pc, target_ulong cs_base,
1057 int flags, int cflags)
1058 {
1059 CPUArchState *env = cpu->env_ptr;
1060 TranslationBlock *tb;
1061 tb_page_addr_t phys_pc, phys_page2;
1062 target_ulong virt_page2;
1063 tcg_insn_unit *gen_code_buf;
1064 int gen_code_size, search_size;
1065 #ifdef CONFIG_PROFILER
1066 int64_t ti;
1067 #endif
1068
1069 phys_pc = get_page_addr_code(env, pc);
1070 if (use_icount) {
1071 cflags |= CF_USE_ICOUNT;
1072 }
1073
1074 tb = tb_alloc(pc);
1075 if (unlikely(!tb)) {
1076 buffer_overflow:
1077 /* flush must be done */
1078 tb_flush(cpu);
1079 /* cannot fail at this point */
1080 tb = tb_alloc(pc);
1081 assert(tb != NULL);
1082 /* Don't forget to invalidate previous TB info. */
1083 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1084 }
1085
1086 gen_code_buf = tcg_ctx.code_gen_ptr;
1087 tb->tc_ptr = gen_code_buf;
1088 tb->cs_base = cs_base;
1089 tb->flags = flags;
1090 tb->cflags = cflags;
1091
1092 #ifdef CONFIG_PROFILER
1093 tcg_ctx.tb_count1++; /* includes aborted translations because of
1094 exceptions */
1095 ti = profile_getclock();
1096 #endif
1097
1098 tcg_func_start(&tcg_ctx);
1099
1100 gen_intermediate_code(env, tb);
1101
1102 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1103
1104 /* generate machine code */
1105 tb->tb_next_offset[0] = 0xffff;
1106 tb->tb_next_offset[1] = 0xffff;
1107 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1108 #ifdef USE_DIRECT_JUMP
1109 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1110 tcg_ctx.tb_next = NULL;
1111 #else
1112 tcg_ctx.tb_jmp_offset = NULL;
1113 tcg_ctx.tb_next = tb->tb_next;
1114 #endif
1115
1116 #ifdef CONFIG_PROFILER
1117 tcg_ctx.tb_count++;
1118 tcg_ctx.interm_time += profile_getclock() - ti;
1119 tcg_ctx.code_time -= profile_getclock();
1120 #endif
1121
1122 /* ??? Overflow could be handled better here. In particular, we
1123 don't need to re-do gen_intermediate_code, nor should we re-do
1124 the tcg optimization currently hidden inside tcg_gen_code. All
1125 that should be required is to flush the TBs, allocate a new TB,
1126 re-initialize it per above, and re-do the actual code generation. */
1127 gen_code_size = tcg_gen_code(&tcg_ctx, gen_code_buf);
1128 if (unlikely(gen_code_size < 0)) {
1129 goto buffer_overflow;
1130 }
1131 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1132 if (unlikely(search_size < 0)) {
1133 goto buffer_overflow;
1134 }
1135
1136 #ifdef CONFIG_PROFILER
1137 tcg_ctx.code_time += profile_getclock();
1138 tcg_ctx.code_in_len += tb->size;
1139 tcg_ctx.code_out_len += gen_code_size;
1140 tcg_ctx.search_out_len += search_size;
1141 #endif
1142
1143 #ifdef DEBUG_DISAS
1144 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1145 qemu_log("OUT: [size=%d]\n", gen_code_size);
1146 log_disas(tb->tc_ptr, gen_code_size);
1147 qemu_log("\n");
1148 qemu_log_flush();
1149 }
1150 #endif
1151
1152 tcg_ctx.code_gen_ptr = (void *)
1153 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1154 CODE_GEN_ALIGN);
1155
1156 /* check next page if needed */
1157 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1158 phys_page2 = -1;
1159 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1160 phys_page2 = get_page_addr_code(env, virt_page2);
1161 }
1162 tb_link_page(tb, phys_pc, phys_page2);
1163 return tb;
1164 }
1165
1166 /*
1167 * Invalidate all TBs which intersect with the target physical address range
1168 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1169 * 'is_cpu_write_access' should be true if called from a real cpu write
1170 * access: the virtual CPU will exit the current TB if code is modified inside
1171 * this TB.
1172 *
1173 * Called with mmap_lock held for user-mode emulation
1174 */
1175 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1176 {
1177 while (start < end) {
1178 tb_invalidate_phys_page_range(start, end, 0);
1179 start &= TARGET_PAGE_MASK;
1180 start += TARGET_PAGE_SIZE;
1181 }
1182 }
1183
1184 /*
1185 * Invalidate all TBs which intersect with the target physical address range
1186 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1187 * 'is_cpu_write_access' should be true if called from a real cpu write
1188 * access: the virtual CPU will exit the current TB if code is modified inside
1189 * this TB.
1190 *
1191 * Called with mmap_lock held for user-mode emulation
1192 */
1193 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1194 int is_cpu_write_access)
1195 {
1196 TranslationBlock *tb, *tb_next, *saved_tb;
1197 CPUState *cpu = current_cpu;
1198 #if defined(TARGET_HAS_PRECISE_SMC)
1199 CPUArchState *env = NULL;
1200 #endif
1201 tb_page_addr_t tb_start, tb_end;
1202 PageDesc *p;
1203 int n;
1204 #ifdef TARGET_HAS_PRECISE_SMC
1205 int current_tb_not_found = is_cpu_write_access;
1206 TranslationBlock *current_tb = NULL;
1207 int current_tb_modified = 0;
1208 target_ulong current_pc = 0;
1209 target_ulong current_cs_base = 0;
1210 int current_flags = 0;
1211 #endif /* TARGET_HAS_PRECISE_SMC */
1212
1213 p = page_find(start >> TARGET_PAGE_BITS);
1214 if (!p) {
1215 return;
1216 }
1217 #if defined(TARGET_HAS_PRECISE_SMC)
1218 if (cpu != NULL) {
1219 env = cpu->env_ptr;
1220 }
1221 #endif
1222
1223 /* we remove all the TBs in the range [start, end[ */
1224 /* XXX: see if in some cases it could be faster to invalidate all
1225 the code */
1226 tb = p->first_tb;
1227 while (tb != NULL) {
1228 n = (uintptr_t)tb & 3;
1229 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1230 tb_next = tb->page_next[n];
1231 /* NOTE: this is subtle as a TB may span two physical pages */
1232 if (n == 0) {
1233 /* NOTE: tb_end may be after the end of the page, but
1234 it is not a problem */
1235 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1236 tb_end = tb_start + tb->size;
1237 } else {
1238 tb_start = tb->page_addr[1];
1239 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1240 }
1241 if (!(tb_end <= start || tb_start >= end)) {
1242 #ifdef TARGET_HAS_PRECISE_SMC
1243 if (current_tb_not_found) {
1244 current_tb_not_found = 0;
1245 current_tb = NULL;
1246 if (cpu->mem_io_pc) {
1247 /* now we have a real cpu fault */
1248 current_tb = tb_find_pc(cpu->mem_io_pc);
1249 }
1250 }
1251 if (current_tb == tb &&
1252 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1253 /* If we are modifying the current TB, we must stop
1254 its execution. We could be more precise by checking
1255 that the modification is after the current PC, but it
1256 would require a specialized function to partially
1257 restore the CPU state */
1258
1259 current_tb_modified = 1;
1260 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1261 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1262 &current_flags);
1263 }
1264 #endif /* TARGET_HAS_PRECISE_SMC */
1265 /* we need to do that to handle the case where a signal
1266 occurs while doing tb_phys_invalidate() */
1267 saved_tb = NULL;
1268 if (cpu != NULL) {
1269 saved_tb = cpu->current_tb;
1270 cpu->current_tb = NULL;
1271 }
1272 tb_phys_invalidate(tb, -1);
1273 if (cpu != NULL) {
1274 cpu->current_tb = saved_tb;
1275 if (cpu->interrupt_request && cpu->current_tb) {
1276 cpu_interrupt(cpu, cpu->interrupt_request);
1277 }
1278 }
1279 }
1280 tb = tb_next;
1281 }
1282 #if !defined(CONFIG_USER_ONLY)
1283 /* if no code remaining, no need to continue to use slow writes */
1284 if (!p->first_tb) {
1285 invalidate_page_bitmap(p);
1286 tlb_unprotect_code(start);
1287 }
1288 #endif
1289 #ifdef TARGET_HAS_PRECISE_SMC
1290 if (current_tb_modified) {
1291 /* we generate a block containing just the instruction
1292 modifying the memory. It will ensure that it cannot modify
1293 itself */
1294 cpu->current_tb = NULL;
1295 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1296 cpu_resume_from_signal(cpu, NULL);
1297 }
1298 #endif
1299 }
1300
1301 /* len must be <= 8 and start must be a multiple of len */
1302 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1303 {
1304 PageDesc *p;
1305
1306 #if 0
1307 if (1) {
1308 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1309 cpu_single_env->mem_io_vaddr, len,
1310 cpu_single_env->eip,
1311 cpu_single_env->eip +
1312 (intptr_t)cpu_single_env->segs[R_CS].base);
1313 }
1314 #endif
1315 p = page_find(start >> TARGET_PAGE_BITS);
1316 if (!p) {
1317 return;
1318 }
1319 if (!p->code_bitmap &&
1320 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1321 /* build code bitmap */
1322 build_page_bitmap(p);
1323 }
1324 if (p->code_bitmap) {
1325 unsigned int nr;
1326 unsigned long b;
1327
1328 nr = start & ~TARGET_PAGE_MASK;
1329 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1330 if (b & ((1 << len) - 1)) {
1331 goto do_invalidate;
1332 }
1333 } else {
1334 do_invalidate:
1335 tb_invalidate_phys_page_range(start, start + len, 1);
1336 }
1337 }
1338
1339 #if !defined(CONFIG_SOFTMMU)
1340 /* Called with mmap_lock held. */
1341 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1342 uintptr_t pc, void *puc,
1343 bool locked)
1344 {
1345 TranslationBlock *tb;
1346 PageDesc *p;
1347 int n;
1348 #ifdef TARGET_HAS_PRECISE_SMC
1349 TranslationBlock *current_tb = NULL;
1350 CPUState *cpu = current_cpu;
1351 CPUArchState *env = NULL;
1352 int current_tb_modified = 0;
1353 target_ulong current_pc = 0;
1354 target_ulong current_cs_base = 0;
1355 int current_flags = 0;
1356 #endif
1357
1358 addr &= TARGET_PAGE_MASK;
1359 p = page_find(addr >> TARGET_PAGE_BITS);
1360 if (!p) {
1361 return;
1362 }
1363 tb = p->first_tb;
1364 #ifdef TARGET_HAS_PRECISE_SMC
1365 if (tb && pc != 0) {
1366 current_tb = tb_find_pc(pc);
1367 }
1368 if (cpu != NULL) {
1369 env = cpu->env_ptr;
1370 }
1371 #endif
1372 while (tb != NULL) {
1373 n = (uintptr_t)tb & 3;
1374 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1375 #ifdef TARGET_HAS_PRECISE_SMC
1376 if (current_tb == tb &&
1377 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1378 /* If we are modifying the current TB, we must stop
1379 its execution. We could be more precise by checking
1380 that the modification is after the current PC, but it
1381 would require a specialized function to partially
1382 restore the CPU state */
1383
1384 current_tb_modified = 1;
1385 cpu_restore_state_from_tb(cpu, current_tb, pc);
1386 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1387 &current_flags);
1388 }
1389 #endif /* TARGET_HAS_PRECISE_SMC */
1390 tb_phys_invalidate(tb, addr);
1391 tb = tb->page_next[n];
1392 }
1393 p->first_tb = NULL;
1394 #ifdef TARGET_HAS_PRECISE_SMC
1395 if (current_tb_modified) {
1396 /* we generate a block containing just the instruction
1397 modifying the memory. It will ensure that it cannot modify
1398 itself */
1399 cpu->current_tb = NULL;
1400 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1401 if (locked) {
1402 mmap_unlock();
1403 }
1404 cpu_resume_from_signal(cpu, puc);
1405 }
1406 #endif
1407 }
1408 #endif
1409
1410 /* add the tb in the target page and protect it if necessary
1411 *
1412 * Called with mmap_lock held for user-mode emulation.
1413 */
1414 static inline void tb_alloc_page(TranslationBlock *tb,
1415 unsigned int n, tb_page_addr_t page_addr)
1416 {
1417 PageDesc *p;
1418 #ifndef CONFIG_USER_ONLY
1419 bool page_already_protected;
1420 #endif
1421
1422 tb->page_addr[n] = page_addr;
1423 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1424 tb->page_next[n] = p->first_tb;
1425 #ifndef CONFIG_USER_ONLY
1426 page_already_protected = p->first_tb != NULL;
1427 #endif
1428 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1429 invalidate_page_bitmap(p);
1430
1431 #if defined(CONFIG_USER_ONLY)
1432 if (p->flags & PAGE_WRITE) {
1433 target_ulong addr;
1434 PageDesc *p2;
1435 int prot;
1436
1437 /* force the host page as non writable (writes will have a
1438 page fault + mprotect overhead) */
1439 page_addr &= qemu_host_page_mask;
1440 prot = 0;
1441 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1442 addr += TARGET_PAGE_SIZE) {
1443
1444 p2 = page_find(addr >> TARGET_PAGE_BITS);
1445 if (!p2) {
1446 continue;
1447 }
1448 prot |= p2->flags;
1449 p2->flags &= ~PAGE_WRITE;
1450 }
1451 mprotect(g2h(page_addr), qemu_host_page_size,
1452 (prot & PAGE_BITS) & ~PAGE_WRITE);
1453 #ifdef DEBUG_TB_INVALIDATE
1454 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1455 page_addr);
1456 #endif
1457 }
1458 #else
1459 /* if some code is already present, then the pages are already
1460 protected. So we handle the case where only the first TB is
1461 allocated in a physical page */
1462 if (!page_already_protected) {
1463 tlb_protect_code(page_addr);
1464 }
1465 #endif
1466 }
1467
1468 /* add a new TB and link it to the physical page tables. phys_page2 is
1469 * (-1) to indicate that only one page contains the TB.
1470 *
1471 * Called with mmap_lock held for user-mode emulation.
1472 */
1473 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1474 tb_page_addr_t phys_page2)
1475 {
1476 unsigned int h;
1477 TranslationBlock **ptb;
1478
1479 /* add in the physical hash table */
1480 h = tb_phys_hash_func(phys_pc);
1481 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1482 tb->phys_hash_next = *ptb;
1483 *ptb = tb;
1484
1485 /* add in the page list */
1486 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1487 if (phys_page2 != -1) {
1488 tb_alloc_page(tb, 1, phys_page2);
1489 } else {
1490 tb->page_addr[1] = -1;
1491 }
1492
1493 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1494 tb->jmp_next[0] = NULL;
1495 tb->jmp_next[1] = NULL;
1496
1497 /* init original jump addresses */
1498 if (tb->tb_next_offset[0] != 0xffff) {
1499 tb_reset_jump(tb, 0);
1500 }
1501 if (tb->tb_next_offset[1] != 0xffff) {
1502 tb_reset_jump(tb, 1);
1503 }
1504
1505 #ifdef DEBUG_TB_CHECK
1506 tb_page_check();
1507 #endif
1508 }
1509
1510 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1511 tb[1].tc_ptr. Return NULL if not found */
1512 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1513 {
1514 int m_min, m_max, m;
1515 uintptr_t v;
1516 TranslationBlock *tb;
1517
1518 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1519 return NULL;
1520 }
1521 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1522 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1523 return NULL;
1524 }
1525 /* binary search (cf Knuth) */
1526 m_min = 0;
1527 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1528 while (m_min <= m_max) {
1529 m = (m_min + m_max) >> 1;
1530 tb = &tcg_ctx.tb_ctx.tbs[m];
1531 v = (uintptr_t)tb->tc_ptr;
1532 if (v == tc_ptr) {
1533 return tb;
1534 } else if (tc_ptr < v) {
1535 m_max = m - 1;
1536 } else {
1537 m_min = m + 1;
1538 }
1539 }
1540 return &tcg_ctx.tb_ctx.tbs[m_max];
1541 }
1542
1543 #if !defined(CONFIG_USER_ONLY)
1544 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1545 {
1546 ram_addr_t ram_addr;
1547 MemoryRegion *mr;
1548 hwaddr l = 1;
1549
1550 rcu_read_lock();
1551 mr = address_space_translate(as, addr, &addr, &l, false);
1552 if (!(memory_region_is_ram(mr)
1553 || memory_region_is_romd(mr))) {
1554 rcu_read_unlock();
1555 return;
1556 }
1557 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1558 + addr;
1559 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1560 rcu_read_unlock();
1561 }
1562 #endif /* !defined(CONFIG_USER_ONLY) */
1563
1564 void tb_check_watchpoint(CPUState *cpu)
1565 {
1566 TranslationBlock *tb;
1567
1568 tb = tb_find_pc(cpu->mem_io_pc);
1569 if (tb) {
1570 /* We can use retranslation to find the PC. */
1571 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1572 tb_phys_invalidate(tb, -1);
1573 } else {
1574 /* The exception probably happened in a helper. The CPU state should
1575 have been saved before calling it. Fetch the PC from there. */
1576 CPUArchState *env = cpu->env_ptr;
1577 target_ulong pc, cs_base;
1578 tb_page_addr_t addr;
1579 int flags;
1580
1581 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1582 addr = get_page_addr_code(env, pc);
1583 tb_invalidate_phys_range(addr, addr + 1);
1584 }
1585 }
1586
1587 #ifndef CONFIG_USER_ONLY
1588 /* in deterministic execution mode, instructions doing device I/Os
1589 must be at the end of the TB */
1590 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1591 {
1592 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1593 CPUArchState *env = cpu->env_ptr;
1594 #endif
1595 TranslationBlock *tb;
1596 uint32_t n, cflags;
1597 target_ulong pc, cs_base;
1598 uint64_t flags;
1599
1600 tb = tb_find_pc(retaddr);
1601 if (!tb) {
1602 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1603 (void *)retaddr);
1604 }
1605 n = cpu->icount_decr.u16.low + tb->icount;
1606 cpu_restore_state_from_tb(cpu, tb, retaddr);
1607 /* Calculate how many instructions had been executed before the fault
1608 occurred. */
1609 n = n - cpu->icount_decr.u16.low;
1610 /* Generate a new TB ending on the I/O insn. */
1611 n++;
1612 /* On MIPS and SH, delay slot instructions can only be restarted if
1613 they were already the first instruction in the TB. If this is not
1614 the first instruction in a TB then re-execute the preceding
1615 branch. */
1616 #if defined(TARGET_MIPS)
1617 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1618 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1619 cpu->icount_decr.u16.low++;
1620 env->hflags &= ~MIPS_HFLAG_BMASK;
1621 }
1622 #elif defined(TARGET_SH4)
1623 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1624 && n > 1) {
1625 env->pc -= 2;
1626 cpu->icount_decr.u16.low++;
1627 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1628 }
1629 #endif
1630 /* This should never happen. */
1631 if (n > CF_COUNT_MASK) {
1632 cpu_abort(cpu, "TB too big during recompile");
1633 }
1634
1635 cflags = n | CF_LAST_IO;
1636 pc = tb->pc;
1637 cs_base = tb->cs_base;
1638 flags = tb->flags;
1639 tb_phys_invalidate(tb, -1);
1640 if (tb->cflags & CF_NOCACHE) {
1641 if (tb->orig_tb) {
1642 /* Invalidate original TB if this TB was generated in
1643 * cpu_exec_nocache() */
1644 tb_phys_invalidate(tb->orig_tb, -1);
1645 }
1646 tb_free(tb);
1647 }
1648 /* FIXME: In theory this could raise an exception. In practice
1649 we have already translated the block once so it's probably ok. */
1650 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1651 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1652 the first in the TB) then we end up generating a whole new TB and
1653 repeating the fault, which is horribly inefficient.
1654 Better would be to execute just this insn uncached, or generate a
1655 second new TB. */
1656 cpu_resume_from_signal(cpu, NULL);
1657 }
1658
1659 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1660 {
1661 unsigned int i;
1662
1663 /* Discard jump cache entries for any tb which might potentially
1664 overlap the flushed page. */
1665 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1666 memset(&cpu->tb_jmp_cache[i], 0,
1667 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1668
1669 i = tb_jmp_cache_hash_page(addr);
1670 memset(&cpu->tb_jmp_cache[i], 0,
1671 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1672 }
1673
1674 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1675 {
1676 int i, target_code_size, max_target_code_size;
1677 int direct_jmp_count, direct_jmp2_count, cross_page;
1678 TranslationBlock *tb;
1679
1680 target_code_size = 0;
1681 max_target_code_size = 0;
1682 cross_page = 0;
1683 direct_jmp_count = 0;
1684 direct_jmp2_count = 0;
1685 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1686 tb = &tcg_ctx.tb_ctx.tbs[i];
1687 target_code_size += tb->size;
1688 if (tb->size > max_target_code_size) {
1689 max_target_code_size = tb->size;
1690 }
1691 if (tb->page_addr[1] != -1) {
1692 cross_page++;
1693 }
1694 if (tb->tb_next_offset[0] != 0xffff) {
1695 direct_jmp_count++;
1696 if (tb->tb_next_offset[1] != 0xffff) {
1697 direct_jmp2_count++;
1698 }
1699 }
1700 }
1701 /* XXX: avoid using doubles ? */
1702 cpu_fprintf(f, "Translation buffer state:\n");
1703 cpu_fprintf(f, "gen code size %td/%zd\n",
1704 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1705 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1706 cpu_fprintf(f, "TB count %d/%d\n",
1707 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1708 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1709 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1710 tcg_ctx.tb_ctx.nb_tbs : 0,
1711 max_target_code_size);
1712 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1713 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1714 tcg_ctx.code_gen_buffer) /
1715 tcg_ctx.tb_ctx.nb_tbs : 0,
1716 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1717 tcg_ctx.code_gen_buffer) /
1718 target_code_size : 0);
1719 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1720 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1721 tcg_ctx.tb_ctx.nb_tbs : 0);
1722 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1723 direct_jmp_count,
1724 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1725 tcg_ctx.tb_ctx.nb_tbs : 0,
1726 direct_jmp2_count,
1727 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1728 tcg_ctx.tb_ctx.nb_tbs : 0);
1729 cpu_fprintf(f, "\nStatistics:\n");
1730 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1731 cpu_fprintf(f, "TB invalidate count %d\n",
1732 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1733 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1734 tcg_dump_info(f, cpu_fprintf);
1735 }
1736
1737 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1738 {
1739 tcg_dump_op_count(f, cpu_fprintf);
1740 }
1741
1742 #else /* CONFIG_USER_ONLY */
1743
1744 void cpu_interrupt(CPUState *cpu, int mask)
1745 {
1746 cpu->interrupt_request |= mask;
1747 cpu->tcg_exit_req = 1;
1748 }
1749
1750 /*
1751 * Walks guest process memory "regions" one by one
1752 * and calls callback function 'fn' for each region.
1753 */
1754 struct walk_memory_regions_data {
1755 walk_memory_regions_fn fn;
1756 void *priv;
1757 target_ulong start;
1758 int prot;
1759 };
1760
1761 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1762 target_ulong end, int new_prot)
1763 {
1764 if (data->start != -1u) {
1765 int rc = data->fn(data->priv, data->start, end, data->prot);
1766 if (rc != 0) {
1767 return rc;
1768 }
1769 }
1770
1771 data->start = (new_prot ? end : -1u);
1772 data->prot = new_prot;
1773
1774 return 0;
1775 }
1776
1777 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1778 target_ulong base, int level, void **lp)
1779 {
1780 target_ulong pa;
1781 int i, rc;
1782
1783 if (*lp == NULL) {
1784 return walk_memory_regions_end(data, base, 0);
1785 }
1786
1787 if (level == 0) {
1788 PageDesc *pd = *lp;
1789
1790 for (i = 0; i < V_L2_SIZE; ++i) {
1791 int prot = pd[i].flags;
1792
1793 pa = base | (i << TARGET_PAGE_BITS);
1794 if (prot != data->prot) {
1795 rc = walk_memory_regions_end(data, pa, prot);
1796 if (rc != 0) {
1797 return rc;
1798 }
1799 }
1800 }
1801 } else {
1802 void **pp = *lp;
1803
1804 for (i = 0; i < V_L2_SIZE; ++i) {
1805 pa = base | ((target_ulong)i <<
1806 (TARGET_PAGE_BITS + V_L2_BITS * level));
1807 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1808 if (rc != 0) {
1809 return rc;
1810 }
1811 }
1812 }
1813
1814 return 0;
1815 }
1816
1817 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1818 {
1819 struct walk_memory_regions_data data;
1820 uintptr_t i;
1821
1822 data.fn = fn;
1823 data.priv = priv;
1824 data.start = -1u;
1825 data.prot = 0;
1826
1827 for (i = 0; i < V_L1_SIZE; i++) {
1828 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1829 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1830 if (rc != 0) {
1831 return rc;
1832 }
1833 }
1834
1835 return walk_memory_regions_end(&data, 0, 0);
1836 }
1837
1838 static int dump_region(void *priv, target_ulong start,
1839 target_ulong end, unsigned long prot)
1840 {
1841 FILE *f = (FILE *)priv;
1842
1843 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1844 " "TARGET_FMT_lx" %c%c%c\n",
1845 start, end, end - start,
1846 ((prot & PAGE_READ) ? 'r' : '-'),
1847 ((prot & PAGE_WRITE) ? 'w' : '-'),
1848 ((prot & PAGE_EXEC) ? 'x' : '-'));
1849
1850 return 0;
1851 }
1852
1853 /* dump memory mappings */
1854 void page_dump(FILE *f)
1855 {
1856 const int length = sizeof(target_ulong) * 2;
1857 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1858 length, "start", length, "end", length, "size", "prot");
1859 walk_memory_regions(f, dump_region);
1860 }
1861
1862 int page_get_flags(target_ulong address)
1863 {
1864 PageDesc *p;
1865
1866 p = page_find(address >> TARGET_PAGE_BITS);
1867 if (!p) {
1868 return 0;
1869 }
1870 return p->flags;
1871 }
1872
1873 /* Modify the flags of a page and invalidate the code if necessary.
1874 The flag PAGE_WRITE_ORG is positioned automatically depending
1875 on PAGE_WRITE. The mmap_lock should already be held. */
1876 void page_set_flags(target_ulong start, target_ulong end, int flags)
1877 {
1878 target_ulong addr, len;
1879
1880 /* This function should never be called with addresses outside the
1881 guest address space. If this assert fires, it probably indicates
1882 a missing call to h2g_valid. */
1883 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1884 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1885 #endif
1886 assert(start < end);
1887
1888 start = start & TARGET_PAGE_MASK;
1889 end = TARGET_PAGE_ALIGN(end);
1890
1891 if (flags & PAGE_WRITE) {
1892 flags |= PAGE_WRITE_ORG;
1893 }
1894
1895 for (addr = start, len = end - start;
1896 len != 0;
1897 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1898 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1899
1900 /* If the write protection bit is set, then we invalidate
1901 the code inside. */
1902 if (!(p->flags & PAGE_WRITE) &&
1903 (flags & PAGE_WRITE) &&
1904 p->first_tb) {
1905 tb_invalidate_phys_page(addr, 0, NULL, false);
1906 }
1907 p->flags = flags;
1908 }
1909 }
1910
1911 int page_check_range(target_ulong start, target_ulong len, int flags)
1912 {
1913 PageDesc *p;
1914 target_ulong end;
1915 target_ulong addr;
1916
1917 /* This function should never be called with addresses outside the
1918 guest address space. If this assert fires, it probably indicates
1919 a missing call to h2g_valid. */
1920 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1921 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1922 #endif
1923
1924 if (len == 0) {
1925 return 0;
1926 }
1927 if (start + len - 1 < start) {
1928 /* We've wrapped around. */
1929 return -1;
1930 }
1931
1932 /* must do before we loose bits in the next step */
1933 end = TARGET_PAGE_ALIGN(start + len);
1934 start = start & TARGET_PAGE_MASK;
1935
1936 for (addr = start, len = end - start;
1937 len != 0;
1938 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1939 p = page_find(addr >> TARGET_PAGE_BITS);
1940 if (!p) {
1941 return -1;
1942 }
1943 if (!(p->flags & PAGE_VALID)) {
1944 return -1;
1945 }
1946
1947 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1948 return -1;
1949 }
1950 if (flags & PAGE_WRITE) {
1951 if (!(p->flags & PAGE_WRITE_ORG)) {
1952 return -1;
1953 }
1954 /* unprotect the page if it was put read-only because it
1955 contains translated code */
1956 if (!(p->flags & PAGE_WRITE)) {
1957 if (!page_unprotect(addr, 0, NULL)) {
1958 return -1;
1959 }
1960 }
1961 }
1962 }
1963 return 0;
1964 }
1965
1966 /* called from signal handler: invalidate the code and unprotect the
1967 page. Return TRUE if the fault was successfully handled. */
1968 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1969 {
1970 unsigned int prot;
1971 PageDesc *p;
1972 target_ulong host_start, host_end, addr;
1973
1974 /* Technically this isn't safe inside a signal handler. However we
1975 know this only ever happens in a synchronous SEGV handler, so in
1976 practice it seems to be ok. */
1977 mmap_lock();
1978
1979 p = page_find(address >> TARGET_PAGE_BITS);
1980 if (!p) {
1981 mmap_unlock();
1982 return 0;
1983 }
1984
1985 /* if the page was really writable, then we change its
1986 protection back to writable */
1987 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1988 host_start = address & qemu_host_page_mask;
1989 host_end = host_start + qemu_host_page_size;
1990
1991 prot = 0;
1992 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1993 p = page_find(addr >> TARGET_PAGE_BITS);
1994 p->flags |= PAGE_WRITE;
1995 prot |= p->flags;
1996
1997 /* and since the content will be modified, we must invalidate
1998 the corresponding translated code. */
1999 tb_invalidate_phys_page(addr, pc, puc, true);
2000 #ifdef DEBUG_TB_CHECK
2001 tb_invalidate_check(addr);
2002 #endif
2003 }
2004 mprotect((void *)g2h(host_start), qemu_host_page_size,
2005 prot & PAGE_BITS);
2006
2007 mmap_unlock();
2008 return 1;
2009 }
2010 mmap_unlock();
2011 return 0;
2012 }
2013 #endif /* CONFIG_USER_ONLY */