]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - ubuntu/vbox/vboxguest/r0drv/linux/memobj-r0drv-linux.c
UBUNTU: ubuntu: vbox -- update to 5.2.0-dfsg-2
[mirror_ubuntu-bionic-kernel.git] / ubuntu / vbox / vboxguest / r0drv / linux / memobj-r0drv-linux.c
1 /* $Id: memobj-r0drv-linux.c $ */
2 /** @file
3 * IPRT - Ring-0 Memory Objects, Linux.
4 */
5
6 /*
7 * Copyright (C) 2006-2017 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28 /*********************************************************************************************************************************
29 * Header Files *
30 *********************************************************************************************************************************/
31 #include "the-linux-kernel.h"
32
33 #include <iprt/memobj.h>
34 #include <iprt/alloc.h>
35 #include <iprt/assert.h>
36 #include <iprt/log.h>
37 #include <iprt/process.h>
38 #include <iprt/string.h>
39 #include "internal/memobj.h"
40
41
42 /*********************************************************************************************************************************
43 * Defined Constants And Macros *
44 *********************************************************************************************************************************/
45 /* early 2.6 kernels */
46 #ifndef PAGE_SHARED_EXEC
47 # define PAGE_SHARED_EXEC PAGE_SHARED
48 #endif
49 #ifndef PAGE_READONLY_EXEC
50 # define PAGE_READONLY_EXEC PAGE_READONLY
51 #endif
52
53 /*
54 * 2.6.29+ kernels don't work with remap_pfn_range() anymore because
55 * track_pfn_vma_new() is apparently not defined for non-RAM pages.
56 * It should be safe to use vm_insert_page() older kernels as well.
57 */
58 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23)
59 # define VBOX_USE_INSERT_PAGE
60 #endif
61 #if defined(CONFIG_X86_PAE) \
62 && ( defined(HAVE_26_STYLE_REMAP_PAGE_RANGE) \
63 || ( LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) \
64 && LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)))
65 # define VBOX_USE_PAE_HACK
66 #endif
67
68
69 /*********************************************************************************************************************************
70 * Structures and Typedefs *
71 *********************************************************************************************************************************/
72 /**
73 * The Darwin version of the memory object structure.
74 */
75 typedef struct RTR0MEMOBJLNX
76 {
77 /** The core structure. */
78 RTR0MEMOBJINTERNAL Core;
79 /** Set if the allocation is contiguous.
80 * This means it has to be given back as one chunk. */
81 bool fContiguous;
82 /** Set if we've vmap'ed the memory into ring-0. */
83 bool fMappedToRing0;
84 /** The pages in the apPages array. */
85 size_t cPages;
86 /** Array of struct page pointers. (variable size) */
87 struct page *apPages[1];
88 } RTR0MEMOBJLNX, *PRTR0MEMOBJLNX;
89
90
91 static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx);
92
93
94 /**
95 * Helper that converts from a RTR0PROCESS handle to a linux task.
96 *
97 * @returns The corresponding Linux task.
98 * @param R0Process IPRT ring-0 process handle.
99 */
100 static struct task_struct *rtR0ProcessToLinuxTask(RTR0PROCESS R0Process)
101 {
102 /** @todo fix rtR0ProcessToLinuxTask!! */
103 /** @todo many (all?) callers currently assume that we return 'current'! */
104 return R0Process == RTR0ProcHandleSelf() ? current : NULL;
105 }
106
107
108 /**
109 * Compute order. Some functions allocate 2^order pages.
110 *
111 * @returns order.
112 * @param cPages Number of pages.
113 */
114 static int rtR0MemObjLinuxOrder(size_t cPages)
115 {
116 int iOrder;
117 size_t cTmp;
118
119 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
120 ;
121 if (cPages & ~((size_t)1 << iOrder))
122 ++iOrder;
123
124 return iOrder;
125 }
126
127
128 /**
129 * Converts from RTMEM_PROT_* to Linux PAGE_*.
130 *
131 * @returns Linux page protection constant.
132 * @param fProt The IPRT protection mask.
133 * @param fKernel Whether it applies to kernel or user space.
134 */
135 static pgprot_t rtR0MemObjLinuxConvertProt(unsigned fProt, bool fKernel)
136 {
137 switch (fProt)
138 {
139 default:
140 AssertMsgFailed(("%#x %d\n", fProt, fKernel));
141 case RTMEM_PROT_NONE:
142 return PAGE_NONE;
143
144 case RTMEM_PROT_READ:
145 return fKernel ? PAGE_KERNEL_RO : PAGE_READONLY;
146
147 case RTMEM_PROT_WRITE:
148 case RTMEM_PROT_WRITE | RTMEM_PROT_READ:
149 return fKernel ? PAGE_KERNEL : PAGE_SHARED;
150
151 case RTMEM_PROT_EXEC:
152 case RTMEM_PROT_EXEC | RTMEM_PROT_READ:
153 #if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
154 if (fKernel)
155 {
156 pgprot_t fPg = MY_PAGE_KERNEL_EXEC;
157 pgprot_val(fPg) &= ~_PAGE_RW;
158 return fPg;
159 }
160 return PAGE_READONLY_EXEC;
161 #else
162 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_READONLY_EXEC;
163 #endif
164
165 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC:
166 case RTMEM_PROT_WRITE | RTMEM_PROT_EXEC | RTMEM_PROT_READ:
167 return fKernel ? MY_PAGE_KERNEL_EXEC : PAGE_SHARED_EXEC;
168 }
169 }
170
171
172 /**
173 * Worker for rtR0MemObjNativeReserveUser and rtR0MemObjNativerMapUser that creates
174 * an empty user space mapping.
175 *
176 * We acquire the mmap_sem of the task!
177 *
178 * @returns Pointer to the mapping.
179 * (void *)-1 on failure.
180 * @param R3PtrFixed (RTR3PTR)-1 if anywhere, otherwise a specific location.
181 * @param cb The size of the mapping.
182 * @param uAlignment The alignment of the mapping.
183 * @param pTask The Linux task to create this mapping in.
184 * @param fProt The RTMEM_PROT_* mask.
185 */
186 static void *rtR0MemObjLinuxDoMmap(RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, struct task_struct *pTask, unsigned fProt)
187 {
188 unsigned fLnxProt;
189 unsigned long ulAddr;
190
191 Assert(pTask == current); /* do_mmap */
192 RT_NOREF_PV(pTask);
193
194 /*
195 * Convert from IPRT protection to mman.h PROT_ and call do_mmap.
196 */
197 fProt &= (RTMEM_PROT_NONE | RTMEM_PROT_READ | RTMEM_PROT_WRITE | RTMEM_PROT_EXEC);
198 if (fProt == RTMEM_PROT_NONE)
199 fLnxProt = PROT_NONE;
200 else
201 {
202 fLnxProt = 0;
203 if (fProt & RTMEM_PROT_READ)
204 fLnxProt |= PROT_READ;
205 if (fProt & RTMEM_PROT_WRITE)
206 fLnxProt |= PROT_WRITE;
207 if (fProt & RTMEM_PROT_EXEC)
208 fLnxProt |= PROT_EXEC;
209 }
210
211 if (R3PtrFixed != (RTR3PTR)-1)
212 {
213 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
214 ulAddr = vm_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
215 #else
216 down_write(&pTask->mm->mmap_sem);
217 ulAddr = do_mmap(NULL, R3PtrFixed, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, 0);
218 up_write(&pTask->mm->mmap_sem);
219 #endif
220 }
221 else
222 {
223 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
224 ulAddr = vm_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
225 #else
226 down_write(&pTask->mm->mmap_sem);
227 ulAddr = do_mmap(NULL, 0, cb, fLnxProt, MAP_SHARED | MAP_ANONYMOUS, 0);
228 up_write(&pTask->mm->mmap_sem);
229 #endif
230 if ( !(ulAddr & ~PAGE_MASK)
231 && (ulAddr & (uAlignment - 1)))
232 {
233 /** @todo implement uAlignment properly... We'll probably need to make some dummy mappings to fill
234 * up alignment gaps. This is of course complicated by fragmentation (which we might have cause
235 * ourselves) and further by there begin two mmap strategies (top / bottom). */
236 /* For now, just ignore uAlignment requirements... */
237 }
238 }
239
240
241 if (ulAddr & ~PAGE_MASK) /* ~PAGE_MASK == PAGE_OFFSET_MASK */
242 return (void *)-1;
243 return (void *)ulAddr;
244 }
245
246
247 /**
248 * Worker that destroys a user space mapping.
249 * Undoes what rtR0MemObjLinuxDoMmap did.
250 *
251 * We acquire the mmap_sem of the task!
252 *
253 * @param pv The ring-3 mapping.
254 * @param cb The size of the mapping.
255 * @param pTask The Linux task to destroy this mapping in.
256 */
257 static void rtR0MemObjLinuxDoMunmap(void *pv, size_t cb, struct task_struct *pTask)
258 {
259 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 5, 0)
260 Assert(pTask == current); RT_NOREF_PV(pTask);
261 vm_munmap((unsigned long)pv, cb);
262 #elif defined(USE_RHEL4_MUNMAP)
263 down_write(&pTask->mm->mmap_sem);
264 do_munmap(pTask->mm, (unsigned long)pv, cb, 0); /* should it be 1 or 0? */
265 up_write(&pTask->mm->mmap_sem);
266 #else
267 down_write(&pTask->mm->mmap_sem);
268 do_munmap(pTask->mm, (unsigned long)pv, cb);
269 up_write(&pTask->mm->mmap_sem);
270 #endif
271 }
272
273
274 /**
275 * Internal worker that allocates physical pages and creates the memory object for them.
276 *
277 * @returns IPRT status code.
278 * @param ppMemLnx Where to store the memory object pointer.
279 * @param enmType The object type.
280 * @param cb The number of bytes to allocate.
281 * @param uAlignment The alignment of the physical memory.
282 * Only valid if fContiguous == true, ignored otherwise.
283 * @param fFlagsLnx The page allocation flags (GPFs).
284 * @param fContiguous Whether the allocation must be contiguous.
285 * @param rcNoMem What to return when we're out of pages.
286 */
287 static int rtR0MemObjLinuxAllocPages(PRTR0MEMOBJLNX *ppMemLnx, RTR0MEMOBJTYPE enmType, size_t cb,
288 size_t uAlignment, unsigned fFlagsLnx, bool fContiguous, int rcNoMem)
289 {
290 size_t iPage;
291 size_t const cPages = cb >> PAGE_SHIFT;
292 struct page *paPages;
293
294 /*
295 * Allocate a memory object structure that's large enough to contain
296 * the page pointer array.
297 */
298 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), enmType, NULL, cb);
299 if (!pMemLnx)
300 return VERR_NO_MEMORY;
301 pMemLnx->cPages = cPages;
302
303 if (cPages > 255)
304 {
305 # ifdef __GFP_REPEAT
306 /* Try hard to allocate the memory, but the allocation attempt might fail. */
307 fFlagsLnx |= __GFP_REPEAT;
308 # endif
309 # ifdef __GFP_NOMEMALLOC
310 /* Introduced with Linux 2.6.12: Don't use emergency reserves */
311 fFlagsLnx |= __GFP_NOMEMALLOC;
312 # endif
313 }
314
315 /*
316 * Allocate the pages.
317 * For small allocations we'll try contiguous first and then fall back on page by page.
318 */
319 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
320 if ( fContiguous
321 || cb <= PAGE_SIZE * 2)
322 {
323 # ifdef VBOX_USE_INSERT_PAGE
324 paPages = alloc_pages(fFlagsLnx | __GFP_COMP | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
325 # else
326 paPages = alloc_pages(fFlagsLnx | __GFP_NOWARN, rtR0MemObjLinuxOrder(cPages));
327 # endif
328 if (paPages)
329 {
330 fContiguous = true;
331 for (iPage = 0; iPage < cPages; iPage++)
332 pMemLnx->apPages[iPage] = &paPages[iPage];
333 }
334 else if (fContiguous)
335 {
336 rtR0MemObjDelete(&pMemLnx->Core);
337 return rcNoMem;
338 }
339 }
340
341 if (!fContiguous)
342 {
343 for (iPage = 0; iPage < cPages; iPage++)
344 {
345 pMemLnx->apPages[iPage] = alloc_page(fFlagsLnx | __GFP_NOWARN);
346 if (RT_UNLIKELY(!pMemLnx->apPages[iPage]))
347 {
348 while (iPage-- > 0)
349 __free_page(pMemLnx->apPages[iPage]);
350 rtR0MemObjDelete(&pMemLnx->Core);
351 return rcNoMem;
352 }
353 }
354 }
355
356 #else /* < 2.4.22 */
357 /** @todo figure out why we didn't allocate page-by-page on 2.4.21 and older... */
358 paPages = alloc_pages(fFlagsLnx, rtR0MemObjLinuxOrder(cPages));
359 if (!paPages)
360 {
361 rtR0MemObjDelete(&pMemLnx->Core);
362 return rcNoMem;
363 }
364 for (iPage = 0; iPage < cPages; iPage++)
365 {
366 pMemLnx->apPages[iPage] = &paPages[iPage];
367 MY_SET_PAGES_EXEC(pMemLnx->apPages[iPage], 1);
368 if (PageHighMem(pMemLnx->apPages[iPage]))
369 BUG();
370 }
371
372 fContiguous = true;
373 #endif /* < 2.4.22 */
374 pMemLnx->fContiguous = fContiguous;
375
376 #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
377 /*
378 * Reserve the pages.
379 *
380 * Linux >= 4.5 with CONFIG_DEBUG_VM panics when setting PG_reserved on compound
381 * pages. According to Michal Hocko this shouldn't be necessary anyway because
382 * as pages which are not on the LRU list are never evictable.
383 */
384 for (iPage = 0; iPage < cPages; iPage++)
385 SetPageReserved(pMemLnx->apPages[iPage]);
386 #endif
387
388 /*
389 * Note that the physical address of memory allocated with alloc_pages(flags, order)
390 * is always 2^(PAGE_SHIFT+order)-aligned.
391 */
392 if ( fContiguous
393 && uAlignment > PAGE_SIZE)
394 {
395 /*
396 * Check for alignment constraints. The physical address of memory allocated with
397 * alloc_pages(flags, order) is always 2^(PAGE_SHIFT+order)-aligned.
398 */
399 if (RT_UNLIKELY(page_to_phys(pMemLnx->apPages[0]) & (uAlignment - 1)))
400 {
401 /*
402 * This should never happen!
403 */
404 printk("rtR0MemObjLinuxAllocPages(cb=0x%lx, uAlignment=0x%lx): alloc_pages(..., %d) returned physical memory at 0x%lx!\n",
405 (unsigned long)cb, (unsigned long)uAlignment, rtR0MemObjLinuxOrder(cPages), (unsigned long)page_to_phys(pMemLnx->apPages[0]));
406 rtR0MemObjLinuxFreePages(pMemLnx);
407 return rcNoMem;
408 }
409 }
410
411 *ppMemLnx = pMemLnx;
412 return VINF_SUCCESS;
413 }
414
415
416 /**
417 * Frees the physical pages allocated by the rtR0MemObjLinuxAllocPages() call.
418 *
419 * This method does NOT free the object.
420 *
421 * @param pMemLnx The object which physical pages should be freed.
422 */
423 static void rtR0MemObjLinuxFreePages(PRTR0MEMOBJLNX pMemLnx)
424 {
425 size_t iPage = pMemLnx->cPages;
426 if (iPage > 0)
427 {
428 /*
429 * Restore the page flags.
430 */
431 while (iPage-- > 0)
432 {
433 #if LINUX_VERSION_CODE < KERNEL_VERSION(4, 5, 0)
434 /*
435 * See SetPageReserved() in rtR0MemObjLinuxAllocPages()
436 */
437 ClearPageReserved(pMemLnx->apPages[iPage]);
438 #endif
439 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
440 #else
441 MY_SET_PAGES_NOEXEC(pMemLnx->apPages[iPage], 1);
442 #endif
443 }
444
445 /*
446 * Free the pages.
447 */
448 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
449 if (!pMemLnx->fContiguous)
450 {
451 iPage = pMemLnx->cPages;
452 while (iPage-- > 0)
453 __free_page(pMemLnx->apPages[iPage]);
454 }
455 else
456 #endif
457 __free_pages(pMemLnx->apPages[0], rtR0MemObjLinuxOrder(pMemLnx->cPages));
458
459 pMemLnx->cPages = 0;
460 }
461 }
462
463
464 /**
465 * Maps the allocation into ring-0.
466 *
467 * This will update the RTR0MEMOBJLNX::Core.pv and RTR0MEMOBJ::fMappedToRing0 members.
468 *
469 * Contiguous mappings that isn't in 'high' memory will already be mapped into kernel
470 * space, so we'll use that mapping if possible. If execute access is required, we'll
471 * play safe and do our own mapping.
472 *
473 * @returns IPRT status code.
474 * @param pMemLnx The linux memory object to map.
475 * @param fExecutable Whether execute access is required.
476 */
477 static int rtR0MemObjLinuxVMap(PRTR0MEMOBJLNX pMemLnx, bool fExecutable)
478 {
479 int rc = VINF_SUCCESS;
480
481 /*
482 * Choose mapping strategy.
483 */
484 bool fMustMap = fExecutable
485 || !pMemLnx->fContiguous;
486 if (!fMustMap)
487 {
488 size_t iPage = pMemLnx->cPages;
489 while (iPage-- > 0)
490 if (PageHighMem(pMemLnx->apPages[iPage]))
491 {
492 fMustMap = true;
493 break;
494 }
495 }
496
497 Assert(!pMemLnx->Core.pv);
498 Assert(!pMemLnx->fMappedToRing0);
499
500 if (fMustMap)
501 {
502 /*
503 * Use vmap - 2.4.22 and later.
504 */
505 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
506 pgprot_t fPg;
507 pgprot_val(fPg) = _PAGE_PRESENT | _PAGE_RW;
508 # ifdef _PAGE_NX
509 if (!fExecutable)
510 pgprot_val(fPg) |= _PAGE_NX;
511 # endif
512
513 # ifdef VM_MAP
514 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_MAP, fPg);
515 # else
516 pMemLnx->Core.pv = vmap(&pMemLnx->apPages[0], pMemLnx->cPages, VM_ALLOC, fPg);
517 # endif
518 if (pMemLnx->Core.pv)
519 pMemLnx->fMappedToRing0 = true;
520 else
521 rc = VERR_MAP_FAILED;
522 #else /* < 2.4.22 */
523 rc = VERR_NOT_SUPPORTED;
524 #endif
525 }
526 else
527 {
528 /*
529 * Use the kernel RAM mapping.
530 */
531 pMemLnx->Core.pv = phys_to_virt(page_to_phys(pMemLnx->apPages[0]));
532 Assert(pMemLnx->Core.pv);
533 }
534
535 return rc;
536 }
537
538
539 /**
540 * Undoes what rtR0MemObjLinuxVMap() did.
541 *
542 * @param pMemLnx The linux memory object.
543 */
544 static void rtR0MemObjLinuxVUnmap(PRTR0MEMOBJLNX pMemLnx)
545 {
546 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
547 if (pMemLnx->fMappedToRing0)
548 {
549 Assert(pMemLnx->Core.pv);
550 vunmap(pMemLnx->Core.pv);
551 pMemLnx->fMappedToRing0 = false;
552 }
553 #else /* < 2.4.22 */
554 Assert(!pMemLnx->fMappedToRing0);
555 #endif
556 pMemLnx->Core.pv = NULL;
557 }
558
559
560 DECLHIDDEN(int) rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
561 {
562 IPRT_LINUX_SAVE_EFL_AC();
563 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
564
565 /*
566 * Release any memory that we've allocated or locked.
567 */
568 switch (pMemLnx->Core.enmType)
569 {
570 case RTR0MEMOBJTYPE_LOW:
571 case RTR0MEMOBJTYPE_PAGE:
572 case RTR0MEMOBJTYPE_CONT:
573 case RTR0MEMOBJTYPE_PHYS:
574 case RTR0MEMOBJTYPE_PHYS_NC:
575 rtR0MemObjLinuxVUnmap(pMemLnx);
576 rtR0MemObjLinuxFreePages(pMemLnx);
577 break;
578
579 case RTR0MEMOBJTYPE_LOCK:
580 if (pMemLnx->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
581 {
582 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
583 size_t iPage;
584 Assert(pTask);
585 if (pTask && pTask->mm)
586 down_read(&pTask->mm->mmap_sem);
587
588 iPage = pMemLnx->cPages;
589 while (iPage-- > 0)
590 {
591 if (!PageReserved(pMemLnx->apPages[iPage]))
592 SetPageDirty(pMemLnx->apPages[iPage]);
593 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
594 put_page(pMemLnx->apPages[iPage]);
595 #else
596 page_cache_release(pMemLnx->apPages[iPage]);
597 #endif
598 }
599
600 if (pTask && pTask->mm)
601 up_read(&pTask->mm->mmap_sem);
602 }
603 /* else: kernel memory - nothing to do here. */
604 break;
605
606 case RTR0MEMOBJTYPE_RES_VIRT:
607 Assert(pMemLnx->Core.pv);
608 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
609 {
610 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
611 Assert(pTask);
612 if (pTask && pTask->mm)
613 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
614 }
615 else
616 {
617 vunmap(pMemLnx->Core.pv);
618
619 Assert(pMemLnx->cPages == 1 && pMemLnx->apPages[0] != NULL);
620 __free_page(pMemLnx->apPages[0]);
621 pMemLnx->apPages[0] = NULL;
622 pMemLnx->cPages = 0;
623 }
624 pMemLnx->Core.pv = NULL;
625 break;
626
627 case RTR0MEMOBJTYPE_MAPPING:
628 Assert(pMemLnx->cPages == 0); Assert(pMemLnx->Core.pv);
629 if (pMemLnx->Core.u.ResVirt.R0Process != NIL_RTR0PROCESS)
630 {
631 struct task_struct *pTask = rtR0ProcessToLinuxTask(pMemLnx->Core.u.Lock.R0Process);
632 Assert(pTask);
633 if (pTask && pTask->mm)
634 rtR0MemObjLinuxDoMunmap(pMemLnx->Core.pv, pMemLnx->Core.cb, pTask);
635 }
636 else
637 vunmap(pMemLnx->Core.pv);
638 pMemLnx->Core.pv = NULL;
639 break;
640
641 default:
642 AssertMsgFailed(("enmType=%d\n", pMemLnx->Core.enmType));
643 return VERR_INTERNAL_ERROR;
644 }
645 IPRT_LINUX_RESTORE_EFL_ONLY_AC();
646 return VINF_SUCCESS;
647 }
648
649
650 DECLHIDDEN(int) rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
651 {
652 IPRT_LINUX_SAVE_EFL_AC();
653 PRTR0MEMOBJLNX pMemLnx;
654 int rc;
655
656 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
657 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_HIGHUSER,
658 false /* non-contiguous */, VERR_NO_MEMORY);
659 #else
660 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_PAGE, cb, PAGE_SIZE, GFP_USER,
661 false /* non-contiguous */, VERR_NO_MEMORY);
662 #endif
663 if (RT_SUCCESS(rc))
664 {
665 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
666 if (RT_SUCCESS(rc))
667 {
668 *ppMem = &pMemLnx->Core;
669 IPRT_LINUX_RESTORE_EFL_AC();
670 return rc;
671 }
672
673 rtR0MemObjLinuxFreePages(pMemLnx);
674 rtR0MemObjDelete(&pMemLnx->Core);
675 }
676
677 IPRT_LINUX_RESTORE_EFL_AC();
678 return rc;
679 }
680
681
682 DECLHIDDEN(int) rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
683 {
684 IPRT_LINUX_SAVE_EFL_AC();
685 PRTR0MEMOBJLNX pMemLnx;
686 int rc;
687
688 /* Try to avoid GFP_DMA. GFM_DMA32 was introduced with Linux 2.6.15. */
689 #if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
690 /* ZONE_DMA32: 0-4GB */
691 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA32,
692 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
693 if (RT_FAILURE(rc))
694 #endif
695 #ifdef RT_ARCH_AMD64
696 /* ZONE_DMA: 0-16MB */
697 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_DMA,
698 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
699 #else
700 # ifdef CONFIG_X86_PAE
701 # endif
702 /* ZONE_NORMAL: 0-896MB */
703 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_LOW, cb, PAGE_SIZE, GFP_USER,
704 false /* non-contiguous */, VERR_NO_LOW_MEMORY);
705 #endif
706 if (RT_SUCCESS(rc))
707 {
708 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
709 if (RT_SUCCESS(rc))
710 {
711 *ppMem = &pMemLnx->Core;
712 IPRT_LINUX_RESTORE_EFL_AC();
713 return rc;
714 }
715
716 rtR0MemObjLinuxFreePages(pMemLnx);
717 rtR0MemObjDelete(&pMemLnx->Core);
718 }
719
720 IPRT_LINUX_RESTORE_EFL_AC();
721 return rc;
722 }
723
724
725 DECLHIDDEN(int) rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
726 {
727 IPRT_LINUX_SAVE_EFL_AC();
728 PRTR0MEMOBJLNX pMemLnx;
729 int rc;
730
731 #if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
732 /* ZONE_DMA32: 0-4GB */
733 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA32,
734 true /* contiguous */, VERR_NO_CONT_MEMORY);
735 if (RT_FAILURE(rc))
736 #endif
737 #ifdef RT_ARCH_AMD64
738 /* ZONE_DMA: 0-16MB */
739 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_DMA,
740 true /* contiguous */, VERR_NO_CONT_MEMORY);
741 #else
742 /* ZONE_NORMAL (32-bit hosts): 0-896MB */
743 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, RTR0MEMOBJTYPE_CONT, cb, PAGE_SIZE, GFP_USER,
744 true /* contiguous */, VERR_NO_CONT_MEMORY);
745 #endif
746 if (RT_SUCCESS(rc))
747 {
748 rc = rtR0MemObjLinuxVMap(pMemLnx, fExecutable);
749 if (RT_SUCCESS(rc))
750 {
751 #if defined(RT_STRICT) && (defined(RT_ARCH_AMD64) || defined(CONFIG_HIGHMEM64G))
752 size_t iPage = pMemLnx->cPages;
753 while (iPage-- > 0)
754 Assert(page_to_phys(pMemLnx->apPages[iPage]) < _4G);
755 #endif
756 pMemLnx->Core.u.Cont.Phys = page_to_phys(pMemLnx->apPages[0]);
757 *ppMem = &pMemLnx->Core;
758 IPRT_LINUX_RESTORE_EFL_AC();
759 return rc;
760 }
761
762 rtR0MemObjLinuxFreePages(pMemLnx);
763 rtR0MemObjDelete(&pMemLnx->Core);
764 }
765
766 IPRT_LINUX_RESTORE_EFL_AC();
767 return rc;
768 }
769
770
771 /**
772 * Worker for rtR0MemObjLinuxAllocPhysSub that tries one allocation strategy.
773 *
774 * @returns IPRT status code.
775 * @param ppMemLnx Where to
776 * @param enmType The object type.
777 * @param cb The size of the allocation.
778 * @param uAlignment The alignment of the physical memory.
779 * Only valid for fContiguous == true, ignored otherwise.
780 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
781 * @param fGfp The Linux GFP flags to use for the allocation.
782 */
783 static int rtR0MemObjLinuxAllocPhysSub2(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
784 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest, unsigned fGfp)
785 {
786 PRTR0MEMOBJLNX pMemLnx;
787 int rc;
788
789 rc = rtR0MemObjLinuxAllocPages(&pMemLnx, enmType, cb, uAlignment, fGfp,
790 enmType == RTR0MEMOBJTYPE_PHYS /* contiguous / non-contiguous */,
791 VERR_NO_PHYS_MEMORY);
792 if (RT_FAILURE(rc))
793 return rc;
794
795 /*
796 * Check the addresses if necessary. (Can be optimized a bit for PHYS.)
797 */
798 if (PhysHighest != NIL_RTHCPHYS)
799 {
800 size_t iPage = pMemLnx->cPages;
801 while (iPage-- > 0)
802 if (page_to_phys(pMemLnx->apPages[iPage]) > PhysHighest)
803 {
804 rtR0MemObjLinuxFreePages(pMemLnx);
805 rtR0MemObjDelete(&pMemLnx->Core);
806 return VERR_NO_MEMORY;
807 }
808 }
809
810 /*
811 * Complete the object.
812 */
813 if (enmType == RTR0MEMOBJTYPE_PHYS)
814 {
815 pMemLnx->Core.u.Phys.PhysBase = page_to_phys(pMemLnx->apPages[0]);
816 pMemLnx->Core.u.Phys.fAllocated = true;
817 }
818 *ppMem = &pMemLnx->Core;
819 return rc;
820 }
821
822
823 /**
824 * Worker for rtR0MemObjNativeAllocPhys and rtR0MemObjNativeAllocPhysNC.
825 *
826 * @returns IPRT status code.
827 * @param ppMem Where to store the memory object pointer on success.
828 * @param enmType The object type.
829 * @param cb The size of the allocation.
830 * @param uAlignment The alignment of the physical memory.
831 * Only valid for enmType == RTR0MEMOBJTYPE_PHYS, ignored otherwise.
832 * @param PhysHighest See rtR0MemObjNativeAllocPhys.
833 */
834 static int rtR0MemObjLinuxAllocPhysSub(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJTYPE enmType,
835 size_t cb, size_t uAlignment, RTHCPHYS PhysHighest)
836 {
837 int rc;
838 IPRT_LINUX_SAVE_EFL_AC();
839
840 /*
841 * There are two clear cases and that's the <=16MB and anything-goes ones.
842 * When the physical address limit is somewhere in-between those two we'll
843 * just have to try, starting with HIGHUSER and working our way thru the
844 * different types, hoping we'll get lucky.
845 *
846 * We should probably move this physical address restriction logic up to
847 * the page alloc function as it would be more efficient there. But since
848 * we don't expect this to be a performance issue just yet it can wait.
849 */
850 if (PhysHighest == NIL_RTHCPHYS)
851 /* ZONE_HIGHMEM: the whole physical memory */
852 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
853 else if (PhysHighest <= _1M * 16)
854 /* ZONE_DMA: 0-16MB */
855 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
856 else
857 {
858 rc = VERR_NO_MEMORY;
859 if (RT_FAILURE(rc))
860 /* ZONE_HIGHMEM: the whole physical memory */
861 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_HIGHUSER);
862 if (RT_FAILURE(rc))
863 /* ZONE_NORMAL: 0-896MB */
864 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_USER);
865 #ifdef GFP_DMA32
866 if (RT_FAILURE(rc))
867 /* ZONE_DMA32: 0-4GB */
868 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA32);
869 #endif
870 if (RT_FAILURE(rc))
871 /* ZONE_DMA: 0-16MB */
872 rc = rtR0MemObjLinuxAllocPhysSub2(ppMem, enmType, cb, uAlignment, PhysHighest, GFP_DMA);
873 }
874 IPRT_LINUX_RESTORE_EFL_AC();
875 return rc;
876 }
877
878
879 /**
880 * Translates a kernel virtual address to a linux page structure by walking the
881 * page tables.
882 *
883 * @note We do assume that the page tables will not change as we are walking
884 * them. This assumption is rather forced by the fact that I could not
885 * immediately see any way of preventing this from happening. So, we
886 * take some extra care when accessing them.
887 *
888 * Because of this, we don't want to use this function on memory where
889 * attribute changes to nearby pages is likely to cause large pages to
890 * be used or split up. So, don't use this for the linear mapping of
891 * physical memory.
892 *
893 * @returns Pointer to the page structur or NULL if it could not be found.
894 * @param pv The kernel virtual address.
895 */
896 static struct page *rtR0MemObjLinuxVirtToPage(void *pv)
897 {
898 unsigned long ulAddr = (unsigned long)pv;
899 unsigned long pfn;
900 struct page *pPage;
901 pte_t *pEntry;
902 union
903 {
904 pgd_t Global;
905 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
906 p4d_t Four;
907 #endif
908 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
909 pud_t Upper;
910 #endif
911 pmd_t Middle;
912 pte_t Entry;
913 } u;
914
915 /* Should this happen in a situation this code will be called in? And if
916 * so, can it change under our feet? See also
917 * "Documentation/vm/active_mm.txt" in the kernel sources. */
918 if (RT_UNLIKELY(!current->active_mm))
919 return NULL;
920 u.Global = *pgd_offset(current->active_mm, ulAddr);
921 if (RT_UNLIKELY(pgd_none(u.Global)))
922 return NULL;
923 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
924 # if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
925 u.Four = *p4d_offset(&u.Global, ulAddr);
926 if (RT_UNLIKELY(p4d_none(u.Four)))
927 return NULL;
928 if (p4d_large(u.Four))
929 {
930 pPage = p4d_page(u.Four);
931 AssertReturn(pPage, NULL);
932 pfn = page_to_pfn(pPage); /* doing the safe way... */
933 AssertCompile(P4D_SHIFT - PAGE_SHIFT < 31);
934 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (P4D_SHIFT - PAGE_SHIFT)) - 1);
935 return pfn_to_page(pfn);
936 }
937 u.Upper = *pud_offset(&u.Four, ulAddr);
938 # else /* < 4.12 */
939 u.Upper = *pud_offset(&u.Global, ulAddr);
940 # endif /* < 4.12 */
941 if (RT_UNLIKELY(pud_none(u.Upper)))
942 return NULL;
943 # if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 25)
944 if (pud_large(u.Upper))
945 {
946 pPage = pud_page(u.Upper);
947 AssertReturn(pPage, NULL);
948 pfn = page_to_pfn(pPage); /* doing the safe way... */
949 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PUD_SHIFT - PAGE_SHIFT)) - 1);
950 return pfn_to_page(pfn);
951 }
952 # endif
953 u.Middle = *pmd_offset(&u.Upper, ulAddr);
954 #else /* < 2.6.11 */
955 u.Middle = *pmd_offset(&u.Global, ulAddr);
956 #endif /* < 2.6.11 */
957 if (RT_UNLIKELY(pmd_none(u.Middle)))
958 return NULL;
959 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0)
960 if (pmd_large(u.Middle))
961 {
962 pPage = pmd_page(u.Middle);
963 AssertReturn(pPage, NULL);
964 pfn = page_to_pfn(pPage); /* doing the safe way... */
965 pfn += (ulAddr >> PAGE_SHIFT) & ((UINT32_C(1) << (PMD_SHIFT - PAGE_SHIFT)) - 1);
966 return pfn_to_page(pfn);
967 }
968 #endif
969
970 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map) /* As usual, RHEL 3 had pte_offset_map earlier. */
971 pEntry = pte_offset_map(&u.Middle, ulAddr);
972 #else
973 pEntry = pte_offset(&u.Middle, ulAddr);
974 #endif
975 if (RT_UNLIKELY(!pEntry))
976 return NULL;
977 u.Entry = *pEntry;
978 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 5) || defined(pte_offset_map)
979 pte_unmap(pEntry);
980 #endif
981
982 if (RT_UNLIKELY(!pte_present(u.Entry)))
983 return NULL;
984 return pte_page(u.Entry);
985 }
986
987
988 DECLHIDDEN(int) rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
989 {
990 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS, cb, uAlignment, PhysHighest);
991 }
992
993
994 DECLHIDDEN(int) rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
995 {
996 return rtR0MemObjLinuxAllocPhysSub(ppMem, RTR0MEMOBJTYPE_PHYS_NC, cb, PAGE_SIZE, PhysHighest);
997 }
998
999
1000 DECLHIDDEN(int) rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb, uint32_t uCachePolicy)
1001 {
1002 IPRT_LINUX_SAVE_EFL_AC();
1003
1004 /*
1005 * All we need to do here is to validate that we can use
1006 * ioremap on the specified address (32/64-bit dma_addr_t).
1007 */
1008 PRTR0MEMOBJLNX pMemLnx;
1009 dma_addr_t PhysAddr = Phys;
1010 AssertMsgReturn(PhysAddr == Phys, ("%#llx\n", (unsigned long long)Phys), VERR_ADDRESS_TOO_BIG);
1011
1012 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_PHYS, NULL, cb);
1013 if (!pMemLnx)
1014 {
1015 IPRT_LINUX_RESTORE_EFL_AC();
1016 return VERR_NO_MEMORY;
1017 }
1018
1019 pMemLnx->Core.u.Phys.PhysBase = PhysAddr;
1020 pMemLnx->Core.u.Phys.fAllocated = false;
1021 pMemLnx->Core.u.Phys.uCachePolicy = uCachePolicy;
1022 Assert(!pMemLnx->cPages);
1023 *ppMem = &pMemLnx->Core;
1024 IPRT_LINUX_RESTORE_EFL_AC();
1025 return VINF_SUCCESS;
1026 }
1027
1028 /* openSUSE Leap 42.3 detection :-/ */
1029 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0) \
1030 && LINUX_VERSION_CODE < KERNEL_VERSION(4, 6, 0) \
1031 && defined(FAULT_FLAG_REMOTE)
1032 # define GET_USER_PAGES_API KERNEL_VERSION(4, 10, 0) /* no typo! */
1033 #else
1034 # define GET_USER_PAGES_API LINUX_VERSION_CODE
1035 #endif
1036
1037 DECLHIDDEN(int) rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
1038 {
1039 IPRT_LINUX_SAVE_EFL_AC();
1040 const int cPages = cb >> PAGE_SHIFT;
1041 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1042 struct vm_area_struct **papVMAs;
1043 PRTR0MEMOBJLNX pMemLnx;
1044 int rc = VERR_NO_MEMORY;
1045 int const fWrite = fAccess & RTMEM_PROT_WRITE ? 1 : 0;
1046
1047 /*
1048 * Check for valid task and size overflows.
1049 */
1050 if (!pTask)
1051 return VERR_NOT_SUPPORTED;
1052 if (((size_t)cPages << PAGE_SHIFT) != cb)
1053 return VERR_OUT_OF_RANGE;
1054
1055 /*
1056 * Allocate the memory object and a temporary buffer for the VMAs.
1057 */
1058 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
1059 if (!pMemLnx)
1060 {
1061 IPRT_LINUX_RESTORE_EFL_AC();
1062 return VERR_NO_MEMORY;
1063 }
1064
1065 papVMAs = (struct vm_area_struct **)RTMemAlloc(sizeof(*papVMAs) * cPages);
1066 if (papVMAs)
1067 {
1068 down_read(&pTask->mm->mmap_sem);
1069
1070 /*
1071 * Get user pages.
1072 */
1073 #if GET_USER_PAGES_API >= KERNEL_VERSION(4, 6, 0)
1074 if (R0Process == RTR0ProcHandleSelf())
1075 rc = get_user_pages(R3Ptr, /* Where from. */
1076 cPages, /* How many pages. */
1077 # if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1078 fWrite ? FOLL_WRITE | /* Write to memory. */
1079 FOLL_FORCE /* force write access. */
1080 : 0, /* Write to memory. */
1081 # else
1082 fWrite, /* Write to memory. */
1083 fWrite, /* force write access. */
1084 # endif
1085 &pMemLnx->apPages[0], /* Page array. */
1086 papVMAs); /* vmas */
1087 /*
1088 * Actually this should not happen at the moment as call this function
1089 * only for our own process.
1090 */
1091 else
1092 rc = get_user_pages_remote(
1093 pTask, /* Task for fault accounting. */
1094 pTask->mm, /* Whose pages. */
1095 R3Ptr, /* Where from. */
1096 cPages, /* How many pages. */
1097 # if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1098 fWrite ? FOLL_WRITE | /* Write to memory. */
1099 FOLL_FORCE /* force write access. */
1100 : 0, /* Write to memory. */
1101 # else
1102 fWrite, /* Write to memory. */
1103 fWrite, /* force write access. */
1104 # endif
1105 &pMemLnx->apPages[0], /* Page array. */
1106 papVMAs /* vmas */
1107 # if GET_USER_PAGES_API >= KERNEL_VERSION(4, 10, 0)
1108 , NULL /* locked */
1109 # endif
1110 );
1111 #else /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1112 rc = get_user_pages(pTask, /* Task for fault accounting. */
1113 pTask->mm, /* Whose pages. */
1114 R3Ptr, /* Where from. */
1115 cPages, /* How many pages. */
1116 # if GET_USER_PAGES_API >= KERNEL_VERSION(4, 9, 0)
1117 fWrite ? FOLL_WRITE | /* Write to memory. */
1118 FOLL_FORCE /* force write access. */
1119 : 0, /* Write to memory. */
1120 # else
1121 fWrite, /* Write to memory. */
1122 fWrite, /* force write access. */
1123 # endif
1124 &pMemLnx->apPages[0], /* Page array. */
1125 papVMAs); /* vmas */
1126 #endif /* GET_USER_PAGES_API < KERNEL_VERSION(4, 6, 0) */
1127 if (rc == cPages)
1128 {
1129 /*
1130 * Flush dcache (required?), protect against fork and _really_ pin the page
1131 * table entries. get_user_pages() will protect against swapping out the
1132 * pages but it will NOT protect against removing page table entries. This
1133 * can be achieved with
1134 * - using mlock / mmap(..., MAP_LOCKED, ...) from userland. This requires
1135 * an appropriate limit set up with setrlimit(..., RLIMIT_MEMLOCK, ...).
1136 * Usual Linux distributions support only a limited size of locked pages
1137 * (e.g. 32KB).
1138 * - setting the PageReserved bit (as we do in rtR0MemObjLinuxAllocPages()
1139 * or by
1140 * - setting the VM_LOCKED flag. This is the same as doing mlock() without
1141 * a range check.
1142 */
1143 /** @todo The Linux fork() protection will require more work if this API
1144 * is to be used for anything but locking VM pages. */
1145 while (rc-- > 0)
1146 {
1147 flush_dcache_page(pMemLnx->apPages[rc]);
1148 papVMAs[rc]->vm_flags |= (VM_DONTCOPY | VM_LOCKED);
1149 }
1150
1151 up_read(&pTask->mm->mmap_sem);
1152
1153 RTMemFree(papVMAs);
1154
1155 pMemLnx->Core.u.Lock.R0Process = R0Process;
1156 pMemLnx->cPages = cPages;
1157 Assert(!pMemLnx->fMappedToRing0);
1158 *ppMem = &pMemLnx->Core;
1159
1160 IPRT_LINUX_RESTORE_EFL_AC();
1161 return VINF_SUCCESS;
1162 }
1163
1164 /*
1165 * Failed - we need to unlock any pages that we succeeded to lock.
1166 */
1167 while (rc-- > 0)
1168 {
1169 if (!PageReserved(pMemLnx->apPages[rc]))
1170 SetPageDirty(pMemLnx->apPages[rc]);
1171 #if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 6, 0)
1172 put_page(pMemLnx->apPages[rc]);
1173 #else
1174 page_cache_release(pMemLnx->apPages[rc]);
1175 #endif
1176 }
1177
1178 up_read(&pTask->mm->mmap_sem);
1179
1180 RTMemFree(papVMAs);
1181 rc = VERR_LOCK_FAILED;
1182 }
1183
1184 rtR0MemObjDelete(&pMemLnx->Core);
1185 IPRT_LINUX_RESTORE_EFL_AC();
1186 return rc;
1187 }
1188
1189
1190 DECLHIDDEN(int) rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
1191 {
1192 IPRT_LINUX_SAVE_EFL_AC();
1193 void *pvLast = (uint8_t *)pv + cb - 1;
1194 size_t const cPages = cb >> PAGE_SHIFT;
1195 PRTR0MEMOBJLNX pMemLnx;
1196 bool fLinearMapping;
1197 int rc;
1198 uint8_t *pbPage;
1199 size_t iPage;
1200 NOREF(fAccess);
1201
1202 if ( !RTR0MemKernelIsValidAddr(pv)
1203 || !RTR0MemKernelIsValidAddr(pv + cb))
1204 return VERR_INVALID_PARAMETER;
1205
1206 /*
1207 * The lower part of the kernel memory has a linear mapping between
1208 * physical and virtual addresses. So we take a short cut here. This is
1209 * assumed to be the cleanest way to handle those addresses (and the code
1210 * is well tested, though the test for determining it is not very nice).
1211 * If we ever decide it isn't we can still remove it.
1212 */
1213 #if 0
1214 fLinearMapping = (unsigned long)pvLast < VMALLOC_START;
1215 #else
1216 fLinearMapping = (unsigned long)pv >= (unsigned long)__va(0)
1217 && (unsigned long)pvLast < (unsigned long)high_memory;
1218 #endif
1219
1220 /*
1221 * Allocate the memory object.
1222 */
1223 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJLNX, apPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
1224 if (!pMemLnx)
1225 {
1226 IPRT_LINUX_RESTORE_EFL_AC();
1227 return VERR_NO_MEMORY;
1228 }
1229
1230 /*
1231 * Gather the pages.
1232 * We ASSUME all kernel pages are non-swappable and non-movable.
1233 */
1234 rc = VINF_SUCCESS;
1235 pbPage = (uint8_t *)pvLast;
1236 iPage = cPages;
1237 if (!fLinearMapping)
1238 {
1239 while (iPage-- > 0)
1240 {
1241 struct page *pPage = rtR0MemObjLinuxVirtToPage(pbPage);
1242 if (RT_UNLIKELY(!pPage))
1243 {
1244 rc = VERR_LOCK_FAILED;
1245 break;
1246 }
1247 pMemLnx->apPages[iPage] = pPage;
1248 pbPage -= PAGE_SIZE;
1249 }
1250 }
1251 else
1252 {
1253 while (iPage-- > 0)
1254 {
1255 pMemLnx->apPages[iPage] = virt_to_page(pbPage);
1256 pbPage -= PAGE_SIZE;
1257 }
1258 }
1259 if (RT_SUCCESS(rc))
1260 {
1261 /*
1262 * Complete the memory object and return.
1263 */
1264 pMemLnx->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
1265 pMemLnx->cPages = cPages;
1266 Assert(!pMemLnx->fMappedToRing0);
1267 *ppMem = &pMemLnx->Core;
1268
1269 IPRT_LINUX_RESTORE_EFL_AC();
1270 return VINF_SUCCESS;
1271 }
1272
1273 rtR0MemObjDelete(&pMemLnx->Core);
1274 IPRT_LINUX_RESTORE_EFL_AC();
1275 return rc;
1276 }
1277
1278
1279 DECLHIDDEN(int) rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
1280 {
1281 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
1282 IPRT_LINUX_SAVE_EFL_AC();
1283 const size_t cPages = cb >> PAGE_SHIFT;
1284 struct page *pDummyPage;
1285 struct page **papPages;
1286
1287 /* check for unsupported stuff. */
1288 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1289 if (uAlignment > PAGE_SIZE)
1290 return VERR_NOT_SUPPORTED;
1291
1292 /*
1293 * Allocate a dummy page and create a page pointer array for vmap such that
1294 * the dummy page is mapped all over the reserved area.
1295 */
1296 pDummyPage = alloc_page(GFP_HIGHUSER | __GFP_NOWARN);
1297 if (pDummyPage)
1298 {
1299 papPages = RTMemAlloc(sizeof(*papPages) * cPages);
1300 if (papPages)
1301 {
1302 void *pv;
1303 size_t iPage = cPages;
1304 while (iPage-- > 0)
1305 papPages[iPage] = pDummyPage;
1306 # ifdef VM_MAP
1307 pv = vmap(papPages, cPages, VM_MAP, PAGE_KERNEL_RO);
1308 # else
1309 pv = vmap(papPages, cPages, VM_ALLOC, PAGE_KERNEL_RO);
1310 # endif
1311 RTMemFree(papPages);
1312 if (pv)
1313 {
1314 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1315 if (pMemLnx)
1316 {
1317 pMemLnx->Core.u.ResVirt.R0Process = NIL_RTR0PROCESS;
1318 pMemLnx->cPages = 1;
1319 pMemLnx->apPages[0] = pDummyPage;
1320 *ppMem = &pMemLnx->Core;
1321 IPRT_LINUX_RESTORE_EFL_AC();
1322 return VINF_SUCCESS;
1323 }
1324 vunmap(pv);
1325 }
1326 }
1327 __free_page(pDummyPage);
1328 }
1329 IPRT_LINUX_RESTORE_EFL_AC();
1330 return VERR_NO_MEMORY;
1331
1332 #else /* < 2.4.22 */
1333 /*
1334 * Could probably use ioremap here, but the caller is in a better position than us
1335 * to select some safe physical memory.
1336 */
1337 return VERR_NOT_SUPPORTED;
1338 #endif
1339 }
1340
1341
1342 DECLHIDDEN(int) rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
1343 {
1344 IPRT_LINUX_SAVE_EFL_AC();
1345 PRTR0MEMOBJLNX pMemLnx;
1346 void *pv;
1347 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1348 if (!pTask)
1349 return VERR_NOT_SUPPORTED;
1350
1351 /*
1352 * Check that the specified alignment is supported.
1353 */
1354 if (uAlignment > PAGE_SIZE)
1355 return VERR_NOT_SUPPORTED;
1356
1357 /*
1358 * Let rtR0MemObjLinuxDoMmap do the difficult bits.
1359 */
1360 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, cb, uAlignment, pTask, RTMEM_PROT_NONE);
1361 if (pv == (void *)-1)
1362 {
1363 IPRT_LINUX_RESTORE_EFL_AC();
1364 return VERR_NO_MEMORY;
1365 }
1366
1367 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_RES_VIRT, pv, cb);
1368 if (!pMemLnx)
1369 {
1370 rtR0MemObjLinuxDoMunmap(pv, cb, pTask);
1371 IPRT_LINUX_RESTORE_EFL_AC();
1372 return VERR_NO_MEMORY;
1373 }
1374
1375 pMemLnx->Core.u.ResVirt.R0Process = R0Process;
1376 *ppMem = &pMemLnx->Core;
1377 IPRT_LINUX_RESTORE_EFL_AC();
1378 return VINF_SUCCESS;
1379 }
1380
1381
1382 DECLHIDDEN(int) rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap,
1383 void *pvFixed, size_t uAlignment,
1384 unsigned fProt, size_t offSub, size_t cbSub)
1385 {
1386 int rc = VERR_NO_MEMORY;
1387 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1388 PRTR0MEMOBJLNX pMemLnx;
1389 IPRT_LINUX_SAVE_EFL_AC();
1390
1391 /* Fail if requested to do something we can't. */
1392 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
1393 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
1394 if (uAlignment > PAGE_SIZE)
1395 return VERR_NOT_SUPPORTED;
1396
1397 /*
1398 * Create the IPRT memory object.
1399 */
1400 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1401 if (pMemLnx)
1402 {
1403 if (pMemLnxToMap->cPages)
1404 {
1405 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 4, 22)
1406 /*
1407 * Use vmap - 2.4.22 and later.
1408 */
1409 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, true /* kernel */);
1410 # ifdef VM_MAP
1411 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_MAP, fPg);
1412 # else
1413 pMemLnx->Core.pv = vmap(&pMemLnxToMap->apPages[0], pMemLnxToMap->cPages, VM_ALLOC, fPg);
1414 # endif
1415 if (pMemLnx->Core.pv)
1416 {
1417 pMemLnx->fMappedToRing0 = true;
1418 rc = VINF_SUCCESS;
1419 }
1420 else
1421 rc = VERR_MAP_FAILED;
1422
1423 #else /* < 2.4.22 */
1424 /*
1425 * Only option here is to share mappings if possible and forget about fProt.
1426 */
1427 if (rtR0MemObjIsRing3(pMemToMap))
1428 rc = VERR_NOT_SUPPORTED;
1429 else
1430 {
1431 rc = VINF_SUCCESS;
1432 if (!pMemLnxToMap->Core.pv)
1433 rc = rtR0MemObjLinuxVMap(pMemLnxToMap, !!(fProt & RTMEM_PROT_EXEC));
1434 if (RT_SUCCESS(rc))
1435 {
1436 Assert(pMemLnxToMap->Core.pv);
1437 pMemLnx->Core.pv = pMemLnxToMap->Core.pv;
1438 }
1439 }
1440 #endif
1441 }
1442 else
1443 {
1444 /*
1445 * MMIO / physical memory.
1446 */
1447 Assert(pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS && !pMemLnxToMap->Core.u.Phys.fAllocated);
1448 pMemLnx->Core.pv = pMemLnxToMap->Core.u.Phys.uCachePolicy == RTMEM_CACHE_POLICY_MMIO
1449 ? ioremap_nocache(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb)
1450 : ioremap(pMemLnxToMap->Core.u.Phys.PhysBase, pMemLnxToMap->Core.cb);
1451 if (pMemLnx->Core.pv)
1452 {
1453 /** @todo fix protection. */
1454 rc = VINF_SUCCESS;
1455 }
1456 }
1457 if (RT_SUCCESS(rc))
1458 {
1459 pMemLnx->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
1460 *ppMem = &pMemLnx->Core;
1461 IPRT_LINUX_RESTORE_EFL_AC();
1462 return VINF_SUCCESS;
1463 }
1464 rtR0MemObjDelete(&pMemLnx->Core);
1465 }
1466
1467 IPRT_LINUX_RESTORE_EFL_AC();
1468 return rc;
1469 }
1470
1471
1472 #ifdef VBOX_USE_PAE_HACK
1473 /**
1474 * Replace the PFN of a PTE with the address of the actual page.
1475 *
1476 * The caller maps a reserved dummy page at the address with the desired access
1477 * and flags.
1478 *
1479 * This hack is required for older Linux kernels which don't provide
1480 * remap_pfn_range().
1481 *
1482 * @returns 0 on success, -ENOMEM on failure.
1483 * @param mm The memory context.
1484 * @param ulAddr The mapping address.
1485 * @param Phys The physical address of the page to map.
1486 */
1487 static int rtR0MemObjLinuxFixPte(struct mm_struct *mm, unsigned long ulAddr, RTHCPHYS Phys)
1488 {
1489 int rc = -ENOMEM;
1490 pgd_t *pgd;
1491
1492 spin_lock(&mm->page_table_lock);
1493
1494 pgd = pgd_offset(mm, ulAddr);
1495 if (!pgd_none(*pgd) && !pgd_bad(*pgd))
1496 {
1497 pmd_t *pmd = pmd_offset(pgd, ulAddr);
1498 if (!pmd_none(*pmd))
1499 {
1500 pte_t *ptep = pte_offset_map(pmd, ulAddr);
1501 if (ptep)
1502 {
1503 pte_t pte = *ptep;
1504 pte.pte_high &= 0xfff00000;
1505 pte.pte_high |= ((Phys >> 32) & 0x000fffff);
1506 pte.pte_low &= 0x00000fff;
1507 pte.pte_low |= (Phys & 0xfffff000);
1508 set_pte(ptep, pte);
1509 pte_unmap(ptep);
1510 rc = 0;
1511 }
1512 }
1513 }
1514
1515 spin_unlock(&mm->page_table_lock);
1516 return rc;
1517 }
1518 #endif /* VBOX_USE_PAE_HACK */
1519
1520
1521 DECLHIDDEN(int) rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed,
1522 size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
1523 {
1524 struct task_struct *pTask = rtR0ProcessToLinuxTask(R0Process);
1525 PRTR0MEMOBJLNX pMemLnxToMap = (PRTR0MEMOBJLNX)pMemToMap;
1526 int rc = VERR_NO_MEMORY;
1527 PRTR0MEMOBJLNX pMemLnx;
1528 #ifdef VBOX_USE_PAE_HACK
1529 struct page *pDummyPage;
1530 RTHCPHYS DummyPhys;
1531 #endif
1532 IPRT_LINUX_SAVE_EFL_AC();
1533
1534 /*
1535 * Check for restrictions.
1536 */
1537 if (!pTask)
1538 return VERR_NOT_SUPPORTED;
1539 if (uAlignment > PAGE_SIZE)
1540 return VERR_NOT_SUPPORTED;
1541
1542 #ifdef VBOX_USE_PAE_HACK
1543 /*
1544 * Allocate a dummy page for use when mapping the memory.
1545 */
1546 pDummyPage = alloc_page(GFP_USER | __GFP_NOWARN);
1547 if (!pDummyPage)
1548 {
1549 IPRT_LINUX_RESTORE_EFL_AC();
1550 return VERR_NO_MEMORY;
1551 }
1552 SetPageReserved(pDummyPage);
1553 DummyPhys = page_to_phys(pDummyPage);
1554 #endif
1555
1556 /*
1557 * Create the IPRT memory object.
1558 */
1559 pMemLnx = (PRTR0MEMOBJLNX)rtR0MemObjNew(sizeof(*pMemLnx), RTR0MEMOBJTYPE_MAPPING, NULL, pMemLnxToMap->Core.cb);
1560 if (pMemLnx)
1561 {
1562 /*
1563 * Allocate user space mapping.
1564 */
1565 void *pv;
1566 pv = rtR0MemObjLinuxDoMmap(R3PtrFixed, pMemLnxToMap->Core.cb, uAlignment, pTask, fProt);
1567 if (pv != (void *)-1)
1568 {
1569 /*
1570 * Map page by page into the mmap area.
1571 * This is generic, paranoid and not very efficient.
1572 */
1573 pgprot_t fPg = rtR0MemObjLinuxConvertProt(fProt, false /* user */);
1574 unsigned long ulAddrCur = (unsigned long)pv;
1575 const size_t cPages = pMemLnxToMap->Core.cb >> PAGE_SHIFT;
1576 size_t iPage;
1577
1578 down_write(&pTask->mm->mmap_sem);
1579
1580 rc = VINF_SUCCESS;
1581 if (pMemLnxToMap->cPages)
1582 {
1583 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE)
1584 {
1585 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 11)
1586 RTHCPHYS Phys = page_to_phys(pMemLnxToMap->apPages[iPage]);
1587 #endif
1588 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1589 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1590 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1591 #endif
1592 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1593 /* remap_page_range() limitation on x86 */
1594 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1595 #endif
1596
1597 #if defined(VBOX_USE_INSERT_PAGE) && LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 22)
1598 rc = vm_insert_page(vma, ulAddrCur, pMemLnxToMap->apPages[iPage]);
1599 /* Thes flags help making 100% sure some bad stuff wont happen (swap, core, ++).
1600 * See remap_pfn_range() in mm/memory.c */
1601 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)
1602 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1603 #else
1604 vma->vm_flags |= VM_RESERVED;
1605 #endif
1606 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1607 rc = remap_pfn_range(vma, ulAddrCur, page_to_pfn(pMemLnxToMap->apPages[iPage]), PAGE_SIZE, fPg);
1608 #elif defined(VBOX_USE_PAE_HACK)
1609 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1610 if (!rc)
1611 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1612 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1613 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1614 #else /* 2.4 */
1615 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1616 #endif
1617 if (rc)
1618 {
1619 rc = VERR_NO_MEMORY;
1620 break;
1621 }
1622 }
1623 }
1624 else
1625 {
1626 RTHCPHYS Phys;
1627 if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS)
1628 Phys = pMemLnxToMap->Core.u.Phys.PhysBase;
1629 else if (pMemLnxToMap->Core.enmType == RTR0MEMOBJTYPE_CONT)
1630 Phys = pMemLnxToMap->Core.u.Cont.Phys;
1631 else
1632 {
1633 AssertMsgFailed(("%d\n", pMemLnxToMap->Core.enmType));
1634 Phys = NIL_RTHCPHYS;
1635 }
1636 if (Phys != NIL_RTHCPHYS)
1637 {
1638 for (iPage = 0; iPage < cPages; iPage++, ulAddrCur += PAGE_SIZE, Phys += PAGE_SIZE)
1639 {
1640 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1641 struct vm_area_struct *vma = find_vma(pTask->mm, ulAddrCur); /* this is probably the same for all the pages... */
1642 AssertBreakStmt(vma, rc = VERR_INTERNAL_ERROR);
1643 #endif
1644 #if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 0) && defined(RT_ARCH_X86)
1645 /* remap_page_range() limitation on x86 */
1646 AssertBreakStmt(Phys < _4G, rc = VERR_NO_MEMORY);
1647 #endif
1648
1649 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 11)
1650 rc = remap_pfn_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1651 #elif defined(VBOX_USE_PAE_HACK)
1652 rc = remap_page_range(vma, ulAddrCur, DummyPhys, PAGE_SIZE, fPg);
1653 if (!rc)
1654 rc = rtR0MemObjLinuxFixPte(pTask->mm, ulAddrCur, Phys);
1655 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 0) || defined(HAVE_26_STYLE_REMAP_PAGE_RANGE)
1656 rc = remap_page_range(vma, ulAddrCur, Phys, PAGE_SIZE, fPg);
1657 #else /* 2.4 */
1658 rc = remap_page_range(ulAddrCur, Phys, PAGE_SIZE, fPg);
1659 #endif
1660 if (rc)
1661 {
1662 rc = VERR_NO_MEMORY;
1663 break;
1664 }
1665 }
1666 }
1667 }
1668
1669 #ifdef CONFIG_NUMA_BALANCING
1670 # if LINUX_VERSION_CODE < KERNEL_VERSION(3, 13, 0)
1671 # ifdef RHEL_RELEASE_CODE
1672 # if RHEL_RELEASE_CODE < RHEL_RELEASE_VERSION(7, 0)
1673 # define VBOX_NUMA_HACK_OLD
1674 # endif
1675 # endif
1676 # endif
1677 if (RT_SUCCESS(rc))
1678 {
1679 /** @todo Ugly hack! But right now we have no other means to
1680 * disable automatic NUMA page balancing. */
1681 # ifdef RT_OS_X86
1682 # ifdef VBOX_NUMA_HACK_OLD
1683 pTask->mm->numa_next_reset = jiffies + 0x7fffffffUL;
1684 # endif
1685 pTask->mm->numa_next_scan = jiffies + 0x7fffffffUL;
1686 # else
1687 # ifdef VBOX_NUMA_HACK_OLD
1688 pTask->mm->numa_next_reset = jiffies + 0x7fffffffffffffffUL;
1689 # endif
1690 pTask->mm->numa_next_scan = jiffies + 0x7fffffffffffffffUL;
1691 # endif
1692 }
1693 #endif /* CONFIG_NUMA_BALANCING */
1694
1695 up_write(&pTask->mm->mmap_sem);
1696
1697 if (RT_SUCCESS(rc))
1698 {
1699 #ifdef VBOX_USE_PAE_HACK
1700 __free_page(pDummyPage);
1701 #endif
1702 pMemLnx->Core.pv = pv;
1703 pMemLnx->Core.u.Mapping.R0Process = R0Process;
1704 *ppMem = &pMemLnx->Core;
1705 IPRT_LINUX_RESTORE_EFL_AC();
1706 return VINF_SUCCESS;
1707 }
1708
1709 /*
1710 * Bail out.
1711 */
1712 rtR0MemObjLinuxDoMunmap(pv, pMemLnxToMap->Core.cb, pTask);
1713 }
1714 rtR0MemObjDelete(&pMemLnx->Core);
1715 }
1716 #ifdef VBOX_USE_PAE_HACK
1717 __free_page(pDummyPage);
1718 #endif
1719
1720 IPRT_LINUX_RESTORE_EFL_AC();
1721 return rc;
1722 }
1723
1724
1725 DECLHIDDEN(int) rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
1726 {
1727 NOREF(pMem);
1728 NOREF(offSub);
1729 NOREF(cbSub);
1730 NOREF(fProt);
1731 return VERR_NOT_SUPPORTED;
1732 }
1733
1734
1735 DECLHIDDEN(RTHCPHYS) rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
1736 {
1737 PRTR0MEMOBJLNX pMemLnx = (PRTR0MEMOBJLNX)pMem;
1738
1739 if (pMemLnx->cPages)
1740 return page_to_phys(pMemLnx->apPages[iPage]);
1741
1742 switch (pMemLnx->Core.enmType)
1743 {
1744 case RTR0MEMOBJTYPE_CONT:
1745 return pMemLnx->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
1746
1747 case RTR0MEMOBJTYPE_PHYS:
1748 return pMemLnx->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
1749
1750 /* the parent knows */
1751 case RTR0MEMOBJTYPE_MAPPING:
1752 return rtR0MemObjNativeGetPagePhysAddr(pMemLnx->Core.uRel.Child.pParent, iPage);
1753
1754 /* cPages > 0 */
1755 case RTR0MEMOBJTYPE_LOW:
1756 case RTR0MEMOBJTYPE_LOCK:
1757 case RTR0MEMOBJTYPE_PHYS_NC:
1758 case RTR0MEMOBJTYPE_PAGE:
1759 default:
1760 AssertMsgFailed(("%d\n", pMemLnx->Core.enmType));
1761 /* fall thru */
1762
1763 case RTR0MEMOBJTYPE_RES_VIRT:
1764 return NIL_RTHCPHYS;
1765 }
1766 }
1767