]> git.proxmox.com Git - mirror_qemu.git/blob - util/bitmap.c
migration: Reference migration state around loadvm_postcopy_handle_run_bh
[mirror_qemu.git] / util / bitmap.c
1 /*
2 * Bitmap Module
3 *
4 * Stolen from linux/src/lib/bitmap.c
5 *
6 * Copyright (C) 2010 Corentin Chary
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2.
10 */
11
12 #include "qemu/osdep.h"
13 #include "qemu/bitops.h"
14 #include "qemu/bitmap.h"
15 #include "qemu/atomic.h"
16
17 /*
18 * bitmaps provide an array of bits, implemented using an
19 * array of unsigned longs. The number of valid bits in a
20 * given bitmap does _not_ need to be an exact multiple of
21 * BITS_PER_LONG.
22 *
23 * The possible unused bits in the last, partially used word
24 * of a bitmap are 'don't care'. The implementation makes
25 * no particular effort to keep them zero. It ensures that
26 * their value will not affect the results of any operation.
27 * The bitmap operations that return Boolean (bitmap_empty,
28 * for example) or scalar (bitmap_weight, for example) results
29 * carefully filter out these unused bits from impacting their
30 * results.
31 *
32 * These operations actually hold to a slightly stronger rule:
33 * if you don't input any bitmaps to these ops that have some
34 * unused bits set, then they won't output any set unused bits
35 * in output bitmaps.
36 *
37 * The byte ordering of bitmaps is more natural on little
38 * endian architectures.
39 */
40
41 int slow_bitmap_empty(const unsigned long *bitmap, long bits)
42 {
43 long k, lim = bits/BITS_PER_LONG;
44
45 for (k = 0; k < lim; ++k) {
46 if (bitmap[k]) {
47 return 0;
48 }
49 }
50 if (bits % BITS_PER_LONG) {
51 if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
52 return 0;
53 }
54 }
55
56 return 1;
57 }
58
59 int slow_bitmap_full(const unsigned long *bitmap, long bits)
60 {
61 long k, lim = bits/BITS_PER_LONG;
62
63 for (k = 0; k < lim; ++k) {
64 if (~bitmap[k]) {
65 return 0;
66 }
67 }
68
69 if (bits % BITS_PER_LONG) {
70 if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) {
71 return 0;
72 }
73 }
74
75 return 1;
76 }
77
78 int slow_bitmap_equal(const unsigned long *bitmap1,
79 const unsigned long *bitmap2, long bits)
80 {
81 long k, lim = bits/BITS_PER_LONG;
82
83 for (k = 0; k < lim; ++k) {
84 if (bitmap1[k] != bitmap2[k]) {
85 return 0;
86 }
87 }
88
89 if (bits % BITS_PER_LONG) {
90 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
91 return 0;
92 }
93 }
94
95 return 1;
96 }
97
98 void slow_bitmap_complement(unsigned long *dst, const unsigned long *src,
99 long bits)
100 {
101 long k, lim = bits/BITS_PER_LONG;
102
103 for (k = 0; k < lim; ++k) {
104 dst[k] = ~src[k];
105 }
106
107 if (bits % BITS_PER_LONG) {
108 dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
109 }
110 }
111
112 int slow_bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
113 const unsigned long *bitmap2, long bits)
114 {
115 long k;
116 long nr = BITS_TO_LONGS(bits);
117 unsigned long result = 0;
118
119 for (k = 0; k < nr; k++) {
120 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
121 }
122 return result != 0;
123 }
124
125 void slow_bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
126 const unsigned long *bitmap2, long bits)
127 {
128 long k;
129 long nr = BITS_TO_LONGS(bits);
130
131 for (k = 0; k < nr; k++) {
132 dst[k] = bitmap1[k] | bitmap2[k];
133 }
134 }
135
136 void slow_bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
137 const unsigned long *bitmap2, long bits)
138 {
139 long k;
140 long nr = BITS_TO_LONGS(bits);
141
142 for (k = 0; k < nr; k++) {
143 dst[k] = bitmap1[k] ^ bitmap2[k];
144 }
145 }
146
147 int slow_bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
148 const unsigned long *bitmap2, long bits)
149 {
150 long k;
151 long nr = BITS_TO_LONGS(bits);
152 unsigned long result = 0;
153
154 for (k = 0; k < nr; k++) {
155 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
156 }
157 return result != 0;
158 }
159
160 void bitmap_set(unsigned long *map, long start, long nr)
161 {
162 unsigned long *p = map + BIT_WORD(start);
163 const long size = start + nr;
164 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
165 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
166
167 assert(start >= 0 && nr >= 0);
168
169 while (nr - bits_to_set >= 0) {
170 *p |= mask_to_set;
171 nr -= bits_to_set;
172 bits_to_set = BITS_PER_LONG;
173 mask_to_set = ~0UL;
174 p++;
175 }
176 if (nr) {
177 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
178 *p |= mask_to_set;
179 }
180 }
181
182 void bitmap_set_atomic(unsigned long *map, long start, long nr)
183 {
184 unsigned long *p = map + BIT_WORD(start);
185 const long size = start + nr;
186 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
187 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
188
189 assert(start >= 0 && nr >= 0);
190
191 /* First word */
192 if (nr - bits_to_set > 0) {
193 qatomic_or(p, mask_to_set);
194 nr -= bits_to_set;
195 bits_to_set = BITS_PER_LONG;
196 mask_to_set = ~0UL;
197 p++;
198 }
199
200 /* Full words */
201 if (bits_to_set == BITS_PER_LONG) {
202 while (nr >= BITS_PER_LONG) {
203 *p = ~0UL;
204 nr -= BITS_PER_LONG;
205 p++;
206 }
207 }
208
209 /* Last word */
210 if (nr) {
211 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
212 qatomic_or(p, mask_to_set);
213 } else {
214 /* If we avoided the full barrier in qatomic_or(), issue a
215 * barrier to account for the assignments in the while loop.
216 */
217 smp_mb();
218 }
219 }
220
221 void bitmap_clear(unsigned long *map, long start, long nr)
222 {
223 unsigned long *p = map + BIT_WORD(start);
224 const long size = start + nr;
225 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
226 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
227
228 assert(start >= 0 && nr >= 0);
229
230 while (nr - bits_to_clear >= 0) {
231 *p &= ~mask_to_clear;
232 nr -= bits_to_clear;
233 bits_to_clear = BITS_PER_LONG;
234 mask_to_clear = ~0UL;
235 p++;
236 }
237 if (nr) {
238 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
239 *p &= ~mask_to_clear;
240 }
241 }
242
243 bool bitmap_test_and_clear(unsigned long *map, long start, long nr)
244 {
245 unsigned long *p = map + BIT_WORD(start);
246 const long size = start + nr;
247 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
248 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
249 bool dirty = false;
250
251 assert(start >= 0 && nr >= 0);
252
253 /* First word */
254 if (nr - bits_to_clear > 0) {
255 if ((*p) & mask_to_clear) {
256 dirty = true;
257 }
258 *p &= ~mask_to_clear;
259 nr -= bits_to_clear;
260 bits_to_clear = BITS_PER_LONG;
261 p++;
262 }
263
264 /* Full words */
265 if (bits_to_clear == BITS_PER_LONG) {
266 while (nr >= BITS_PER_LONG) {
267 if (*p) {
268 dirty = true;
269 *p = 0;
270 }
271 nr -= BITS_PER_LONG;
272 p++;
273 }
274 }
275
276 /* Last word */
277 if (nr) {
278 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
279 if ((*p) & mask_to_clear) {
280 dirty = true;
281 }
282 *p &= ~mask_to_clear;
283 }
284
285 return dirty;
286 }
287
288 bool bitmap_test_and_clear_atomic(unsigned long *map, long start, long nr)
289 {
290 unsigned long *p = map + BIT_WORD(start);
291 const long size = start + nr;
292 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
293 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
294 unsigned long dirty = 0;
295 unsigned long old_bits;
296
297 assert(start >= 0 && nr >= 0);
298
299 /* First word */
300 if (nr - bits_to_clear > 0) {
301 old_bits = qatomic_fetch_and(p, ~mask_to_clear);
302 dirty |= old_bits & mask_to_clear;
303 nr -= bits_to_clear;
304 bits_to_clear = BITS_PER_LONG;
305 mask_to_clear = ~0UL;
306 p++;
307 }
308
309 /* Full words */
310 if (bits_to_clear == BITS_PER_LONG) {
311 while (nr >= BITS_PER_LONG) {
312 if (*p) {
313 old_bits = qatomic_xchg(p, 0);
314 dirty |= old_bits;
315 }
316 nr -= BITS_PER_LONG;
317 p++;
318 }
319 }
320
321 /* Last word */
322 if (nr) {
323 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
324 old_bits = qatomic_fetch_and(p, ~mask_to_clear);
325 dirty |= old_bits & mask_to_clear;
326 } else {
327 if (!dirty) {
328 smp_mb();
329 }
330 }
331
332 return dirty != 0;
333 }
334
335 void bitmap_copy_and_clear_atomic(unsigned long *dst, unsigned long *src,
336 long nr)
337 {
338 while (nr > 0) {
339 *dst = qatomic_xchg(src, 0);
340 dst++;
341 src++;
342 nr -= BITS_PER_LONG;
343 }
344 }
345
346 #define ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
347
348 /**
349 * bitmap_find_next_zero_area - find a contiguous aligned zero area
350 * @map: The address to base the search on
351 * @size: The bitmap size in bits
352 * @start: The bitnumber to start searching at
353 * @nr: The number of zeroed bits we're looking for
354 * @align_mask: Alignment mask for zero area
355 *
356 * The @align_mask should be one less than a power of 2; the effect is that
357 * the bit offset of all zero areas this function finds is multiples of that
358 * power of 2. A @align_mask of 0 means no alignment is required.
359 */
360 unsigned long bitmap_find_next_zero_area(unsigned long *map,
361 unsigned long size,
362 unsigned long start,
363 unsigned long nr,
364 unsigned long align_mask)
365 {
366 unsigned long index, end, i;
367 again:
368 index = find_next_zero_bit(map, size, start);
369
370 /* Align allocation */
371 index = ALIGN_MASK(index, align_mask);
372
373 end = index + nr;
374 if (end > size) {
375 return end;
376 }
377 i = find_next_bit(map, end, index);
378 if (i < end) {
379 start = i + 1;
380 goto again;
381 }
382 return index;
383 }
384
385 int slow_bitmap_intersects(const unsigned long *bitmap1,
386 const unsigned long *bitmap2, long bits)
387 {
388 long k, lim = bits/BITS_PER_LONG;
389
390 for (k = 0; k < lim; ++k) {
391 if (bitmap1[k] & bitmap2[k]) {
392 return 1;
393 }
394 }
395
396 if (bits % BITS_PER_LONG) {
397 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) {
398 return 1;
399 }
400 }
401 return 0;
402 }
403
404 long slow_bitmap_count_one(const unsigned long *bitmap, long nbits)
405 {
406 long k, lim = nbits / BITS_PER_LONG, result = 0;
407
408 for (k = 0; k < lim; k++) {
409 result += ctpopl(bitmap[k]);
410 }
411
412 if (nbits % BITS_PER_LONG) {
413 result += ctpopl(bitmap[k] & BITMAP_LAST_WORD_MASK(nbits));
414 }
415
416 return result;
417 }
418
419 static void bitmap_to_from_le(unsigned long *dst,
420 const unsigned long *src, long nbits)
421 {
422 long len = BITS_TO_LONGS(nbits);
423
424 #if HOST_BIG_ENDIAN
425 long index;
426
427 for (index = 0; index < len; index++) {
428 # if HOST_LONG_BITS == 64
429 dst[index] = bswap64(src[index]);
430 # else
431 dst[index] = bswap32(src[index]);
432 # endif
433 }
434 #else
435 memcpy(dst, src, len * sizeof(unsigned long));
436 #endif
437 }
438
439 void bitmap_from_le(unsigned long *dst, const unsigned long *src,
440 long nbits)
441 {
442 bitmap_to_from_le(dst, src, nbits);
443 }
444
445 void bitmap_to_le(unsigned long *dst, const unsigned long *src,
446 long nbits)
447 {
448 bitmap_to_from_le(dst, src, nbits);
449 }
450
451 /*
452 * Copy "src" bitmap with a positive offset and put it into the "dst"
453 * bitmap. The caller needs to make sure the bitmap size of "src"
454 * is bigger than (shift + nbits).
455 */
456 void bitmap_copy_with_src_offset(unsigned long *dst, const unsigned long *src,
457 unsigned long shift, unsigned long nbits)
458 {
459 unsigned long left_mask, right_mask, last_mask;
460
461 /* Proper shift src pointer to the first word to copy from */
462 src += BIT_WORD(shift);
463 shift %= BITS_PER_LONG;
464
465 if (!shift) {
466 /* Fast path */
467 bitmap_copy(dst, src, nbits);
468 return;
469 }
470
471 right_mask = (1ul << shift) - 1;
472 left_mask = ~right_mask;
473
474 while (nbits >= BITS_PER_LONG) {
475 *dst = (*src & left_mask) >> shift;
476 *dst |= (src[1] & right_mask) << (BITS_PER_LONG - shift);
477 dst++;
478 src++;
479 nbits -= BITS_PER_LONG;
480 }
481
482 if (nbits > BITS_PER_LONG - shift) {
483 *dst = (*src & left_mask) >> shift;
484 nbits -= BITS_PER_LONG - shift;
485 last_mask = (1ul << nbits) - 1;
486 *dst |= (src[1] & last_mask) << (BITS_PER_LONG - shift);
487 } else if (nbits) {
488 last_mask = (1ul << nbits) - 1;
489 *dst = (*src >> shift) & last_mask;
490 }
491 }
492
493 /*
494 * Copy "src" bitmap into the "dst" bitmap with an offset in the
495 * "dst". The caller needs to make sure the bitmap size of "dst" is
496 * bigger than (shift + nbits).
497 */
498 void bitmap_copy_with_dst_offset(unsigned long *dst, const unsigned long *src,
499 unsigned long shift, unsigned long nbits)
500 {
501 unsigned long left_mask, right_mask, last_mask;
502
503 /* Proper shift dst pointer to the first word to copy from */
504 dst += BIT_WORD(shift);
505 shift %= BITS_PER_LONG;
506
507 if (!shift) {
508 /* Fast path */
509 bitmap_copy(dst, src, nbits);
510 return;
511 }
512
513 right_mask = (1ul << (BITS_PER_LONG - shift)) - 1;
514 left_mask = ~right_mask;
515
516 *dst &= (1ul << shift) - 1;
517 while (nbits >= BITS_PER_LONG) {
518 *dst |= (*src & right_mask) << shift;
519 dst[1] = (*src & left_mask) >> (BITS_PER_LONG - shift);
520 dst++;
521 src++;
522 nbits -= BITS_PER_LONG;
523 }
524
525 if (nbits > BITS_PER_LONG - shift) {
526 *dst |= (*src & right_mask) << shift;
527 nbits -= BITS_PER_LONG - shift;
528 last_mask = ((1ul << nbits) - 1) << (BITS_PER_LONG - shift);
529 dst[1] = (*src & last_mask) >> (BITS_PER_LONG - shift);
530 } else if (nbits) {
531 last_mask = (1ul << nbits) - 1;
532 *dst |= (*src & last_mask) << shift;
533 }
534 }