]> git.proxmox.com Git - mirror_qemu.git/blob - util/cutils.c
meson: convert common QMP bits for qemu and qemu-storage-daemon
[mirror_qemu.git] / util / cutils.c
1 /*
2 * Simple C functions to supplement the C library
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/host-utils.h"
27 #include <math.h>
28
29 #include "qemu-common.h"
30 #include "qemu/sockets.h"
31 #include "qemu/iov.h"
32 #include "net/net.h"
33 #include "qemu/ctype.h"
34 #include "qemu/cutils.h"
35 #include "qemu/error-report.h"
36
37 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
38 {
39 int len = qemu_strnlen(str, buf_size);
40 memcpy(buf, str, len);
41 memset(buf + len, pad, buf_size - len);
42 }
43
44 void pstrcpy(char *buf, int buf_size, const char *str)
45 {
46 int c;
47 char *q = buf;
48
49 if (buf_size <= 0)
50 return;
51
52 for(;;) {
53 c = *str++;
54 if (c == 0 || q >= buf + buf_size - 1)
55 break;
56 *q++ = c;
57 }
58 *q = '\0';
59 }
60
61 /* strcat and truncate. */
62 char *pstrcat(char *buf, int buf_size, const char *s)
63 {
64 int len;
65 len = strlen(buf);
66 if (len < buf_size)
67 pstrcpy(buf + len, buf_size - len, s);
68 return buf;
69 }
70
71 int strstart(const char *str, const char *val, const char **ptr)
72 {
73 const char *p, *q;
74 p = str;
75 q = val;
76 while (*q != '\0') {
77 if (*p != *q)
78 return 0;
79 p++;
80 q++;
81 }
82 if (ptr)
83 *ptr = p;
84 return 1;
85 }
86
87 int stristart(const char *str, const char *val, const char **ptr)
88 {
89 const char *p, *q;
90 p = str;
91 q = val;
92 while (*q != '\0') {
93 if (qemu_toupper(*p) != qemu_toupper(*q))
94 return 0;
95 p++;
96 q++;
97 }
98 if (ptr)
99 *ptr = p;
100 return 1;
101 }
102
103 /* XXX: use host strnlen if available ? */
104 int qemu_strnlen(const char *s, int max_len)
105 {
106 int i;
107
108 for(i = 0; i < max_len; i++) {
109 if (s[i] == '\0') {
110 break;
111 }
112 }
113 return i;
114 }
115
116 char *qemu_strsep(char **input, const char *delim)
117 {
118 char *result = *input;
119 if (result != NULL) {
120 char *p;
121
122 for (p = result; *p != '\0'; p++) {
123 if (strchr(delim, *p)) {
124 break;
125 }
126 }
127 if (*p == '\0') {
128 *input = NULL;
129 } else {
130 *p = '\0';
131 *input = p + 1;
132 }
133 }
134 return result;
135 }
136
137 time_t mktimegm(struct tm *tm)
138 {
139 time_t t;
140 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
141 if (m < 3) {
142 m += 12;
143 y--;
144 }
145 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
146 y / 400 - 719469);
147 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
148 return t;
149 }
150
151 /*
152 * Make sure data goes on disk, but if possible do not bother to
153 * write out the inode just for timestamp updates.
154 *
155 * Unfortunately even in 2009 many operating systems do not support
156 * fdatasync and have to fall back to fsync.
157 */
158 int qemu_fdatasync(int fd)
159 {
160 #ifdef CONFIG_FDATASYNC
161 return fdatasync(fd);
162 #else
163 return fsync(fd);
164 #endif
165 }
166
167 /**
168 * Sync changes made to the memory mapped file back to the backing
169 * storage. For POSIX compliant systems this will fallback
170 * to regular msync call. Otherwise it will trigger whole file sync
171 * (including the metadata case there is no support to skip that otherwise)
172 *
173 * @addr - start of the memory area to be synced
174 * @length - length of the are to be synced
175 * @fd - file descriptor for the file to be synced
176 * (mandatory only for POSIX non-compliant systems)
177 */
178 int qemu_msync(void *addr, size_t length, int fd)
179 {
180 #ifdef CONFIG_POSIX
181 size_t align_mask = ~(qemu_real_host_page_size - 1);
182
183 /**
184 * There are no strict reqs as per the length of mapping
185 * to be synced. Still the length needs to follow the address
186 * alignment changes. Additionally - round the size to the multiple
187 * of PAGE_SIZE
188 */
189 length += ((uintptr_t)addr & (qemu_real_host_page_size - 1));
190 length = (length + ~align_mask) & align_mask;
191
192 addr = (void *)((uintptr_t)addr & align_mask);
193
194 return msync(addr, length, MS_SYNC);
195 #else /* CONFIG_POSIX */
196 /**
197 * Perform the sync based on the file descriptor
198 * The sync range will most probably be wider than the one
199 * requested - but it will still get the job done
200 */
201 return qemu_fdatasync(fd);
202 #endif /* CONFIG_POSIX */
203 }
204
205 #ifndef _WIN32
206 /* Sets a specific flag */
207 int fcntl_setfl(int fd, int flag)
208 {
209 int flags;
210
211 flags = fcntl(fd, F_GETFL);
212 if (flags == -1)
213 return -errno;
214
215 if (fcntl(fd, F_SETFL, flags | flag) == -1)
216 return -errno;
217
218 return 0;
219 }
220 #endif
221
222 static int64_t suffix_mul(char suffix, int64_t unit)
223 {
224 switch (qemu_toupper(suffix)) {
225 case 'B':
226 return 1;
227 case 'K':
228 return unit;
229 case 'M':
230 return unit * unit;
231 case 'G':
232 return unit * unit * unit;
233 case 'T':
234 return unit * unit * unit * unit;
235 case 'P':
236 return unit * unit * unit * unit * unit;
237 case 'E':
238 return unit * unit * unit * unit * unit * unit;
239 }
240 return -1;
241 }
242
243 /*
244 * Convert string to bytes, allowing either B/b for bytes, K/k for KB,
245 * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned
246 * in *end, if not NULL. Return -ERANGE on overflow, and -EINVAL on
247 * other error.
248 */
249 static int do_strtosz(const char *nptr, const char **end,
250 const char default_suffix, int64_t unit,
251 uint64_t *result)
252 {
253 int retval;
254 const char *endptr;
255 unsigned char c;
256 int mul_required = 0;
257 double val, mul, integral, fraction;
258
259 retval = qemu_strtod_finite(nptr, &endptr, &val);
260 if (retval) {
261 goto out;
262 }
263 fraction = modf(val, &integral);
264 if (fraction != 0) {
265 mul_required = 1;
266 }
267 c = *endptr;
268 mul = suffix_mul(c, unit);
269 if (mul >= 0) {
270 endptr++;
271 } else {
272 mul = suffix_mul(default_suffix, unit);
273 assert(mul >= 0);
274 }
275 if (mul == 1 && mul_required) {
276 retval = -EINVAL;
277 goto out;
278 }
279 /*
280 * Values near UINT64_MAX overflow to 2**64 when converting to double
281 * precision. Compare against the maximum representable double precision
282 * value below 2**64, computed as "the next value after 2**64 (0x1p64) in
283 * the direction of 0".
284 */
285 if ((val * mul > nextafter(0x1p64, 0)) || val < 0) {
286 retval = -ERANGE;
287 goto out;
288 }
289 *result = val * mul;
290 retval = 0;
291
292 out:
293 if (end) {
294 *end = endptr;
295 } else if (*endptr) {
296 retval = -EINVAL;
297 }
298
299 return retval;
300 }
301
302 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result)
303 {
304 return do_strtosz(nptr, end, 'B', 1024, result);
305 }
306
307 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result)
308 {
309 return do_strtosz(nptr, end, 'M', 1024, result);
310 }
311
312 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result)
313 {
314 return do_strtosz(nptr, end, 'B', 1000, result);
315 }
316
317 /**
318 * Helper function for error checking after strtol() and the like
319 */
320 static int check_strtox_error(const char *nptr, char *ep,
321 const char **endptr, int libc_errno)
322 {
323 assert(ep >= nptr);
324 if (endptr) {
325 *endptr = ep;
326 }
327
328 /* Turn "no conversion" into an error */
329 if (libc_errno == 0 && ep == nptr) {
330 return -EINVAL;
331 }
332
333 /* Fail when we're expected to consume the string, but didn't */
334 if (!endptr && *ep) {
335 return -EINVAL;
336 }
337
338 return -libc_errno;
339 }
340
341 /**
342 * Convert string @nptr to an integer, and store it in @result.
343 *
344 * This is a wrapper around strtol() that is harder to misuse.
345 * Semantics of @nptr, @endptr, @base match strtol() with differences
346 * noted below.
347 *
348 * @nptr may be null, and no conversion is performed then.
349 *
350 * If no conversion is performed, store @nptr in *@endptr and return
351 * -EINVAL.
352 *
353 * If @endptr is null, and the string isn't fully converted, return
354 * -EINVAL. This is the case when the pointer that would be stored in
355 * a non-null @endptr points to a character other than '\0'.
356 *
357 * If the conversion overflows @result, store INT_MAX in @result,
358 * and return -ERANGE.
359 *
360 * If the conversion underflows @result, store INT_MIN in @result,
361 * and return -ERANGE.
362 *
363 * Else store the converted value in @result, and return zero.
364 */
365 int qemu_strtoi(const char *nptr, const char **endptr, int base,
366 int *result)
367 {
368 char *ep;
369 long long lresult;
370
371 assert((unsigned) base <= 36 && base != 1);
372 if (!nptr) {
373 if (endptr) {
374 *endptr = nptr;
375 }
376 return -EINVAL;
377 }
378
379 errno = 0;
380 lresult = strtoll(nptr, &ep, base);
381 if (lresult < INT_MIN) {
382 *result = INT_MIN;
383 errno = ERANGE;
384 } else if (lresult > INT_MAX) {
385 *result = INT_MAX;
386 errno = ERANGE;
387 } else {
388 *result = lresult;
389 }
390 return check_strtox_error(nptr, ep, endptr, errno);
391 }
392
393 /**
394 * Convert string @nptr to an unsigned integer, and store it in @result.
395 *
396 * This is a wrapper around strtoul() that is harder to misuse.
397 * Semantics of @nptr, @endptr, @base match strtoul() with differences
398 * noted below.
399 *
400 * @nptr may be null, and no conversion is performed then.
401 *
402 * If no conversion is performed, store @nptr in *@endptr and return
403 * -EINVAL.
404 *
405 * If @endptr is null, and the string isn't fully converted, return
406 * -EINVAL. This is the case when the pointer that would be stored in
407 * a non-null @endptr points to a character other than '\0'.
408 *
409 * If the conversion overflows @result, store UINT_MAX in @result,
410 * and return -ERANGE.
411 *
412 * Else store the converted value in @result, and return zero.
413 *
414 * Note that a number with a leading minus sign gets converted without
415 * the minus sign, checked for overflow (see above), then negated (in
416 * @result's type). This is exactly how strtoul() works.
417 */
418 int qemu_strtoui(const char *nptr, const char **endptr, int base,
419 unsigned int *result)
420 {
421 char *ep;
422 long long lresult;
423
424 assert((unsigned) base <= 36 && base != 1);
425 if (!nptr) {
426 if (endptr) {
427 *endptr = nptr;
428 }
429 return -EINVAL;
430 }
431
432 errno = 0;
433 lresult = strtoull(nptr, &ep, base);
434
435 /* Windows returns 1 for negative out-of-range values. */
436 if (errno == ERANGE) {
437 *result = -1;
438 } else {
439 if (lresult > UINT_MAX) {
440 *result = UINT_MAX;
441 errno = ERANGE;
442 } else if (lresult < INT_MIN) {
443 *result = UINT_MAX;
444 errno = ERANGE;
445 } else {
446 *result = lresult;
447 }
448 }
449 return check_strtox_error(nptr, ep, endptr, errno);
450 }
451
452 /**
453 * Convert string @nptr to a long integer, and store it in @result.
454 *
455 * This is a wrapper around strtol() that is harder to misuse.
456 * Semantics of @nptr, @endptr, @base match strtol() with differences
457 * noted below.
458 *
459 * @nptr may be null, and no conversion is performed then.
460 *
461 * If no conversion is performed, store @nptr in *@endptr and return
462 * -EINVAL.
463 *
464 * If @endptr is null, and the string isn't fully converted, return
465 * -EINVAL. This is the case when the pointer that would be stored in
466 * a non-null @endptr points to a character other than '\0'.
467 *
468 * If the conversion overflows @result, store LONG_MAX in @result,
469 * and return -ERANGE.
470 *
471 * If the conversion underflows @result, store LONG_MIN in @result,
472 * and return -ERANGE.
473 *
474 * Else store the converted value in @result, and return zero.
475 */
476 int qemu_strtol(const char *nptr, const char **endptr, int base,
477 long *result)
478 {
479 char *ep;
480
481 assert((unsigned) base <= 36 && base != 1);
482 if (!nptr) {
483 if (endptr) {
484 *endptr = nptr;
485 }
486 return -EINVAL;
487 }
488
489 errno = 0;
490 *result = strtol(nptr, &ep, base);
491 return check_strtox_error(nptr, ep, endptr, errno);
492 }
493
494 /**
495 * Convert string @nptr to an unsigned long, and store it in @result.
496 *
497 * This is a wrapper around strtoul() that is harder to misuse.
498 * Semantics of @nptr, @endptr, @base match strtoul() with differences
499 * noted below.
500 *
501 * @nptr may be null, and no conversion is performed then.
502 *
503 * If no conversion is performed, store @nptr in *@endptr and return
504 * -EINVAL.
505 *
506 * If @endptr is null, and the string isn't fully converted, return
507 * -EINVAL. This is the case when the pointer that would be stored in
508 * a non-null @endptr points to a character other than '\0'.
509 *
510 * If the conversion overflows @result, store ULONG_MAX in @result,
511 * and return -ERANGE.
512 *
513 * Else store the converted value in @result, and return zero.
514 *
515 * Note that a number with a leading minus sign gets converted without
516 * the minus sign, checked for overflow (see above), then negated (in
517 * @result's type). This is exactly how strtoul() works.
518 */
519 int qemu_strtoul(const char *nptr, const char **endptr, int base,
520 unsigned long *result)
521 {
522 char *ep;
523
524 assert((unsigned) base <= 36 && base != 1);
525 if (!nptr) {
526 if (endptr) {
527 *endptr = nptr;
528 }
529 return -EINVAL;
530 }
531
532 errno = 0;
533 *result = strtoul(nptr, &ep, base);
534 /* Windows returns 1 for negative out-of-range values. */
535 if (errno == ERANGE) {
536 *result = -1;
537 }
538 return check_strtox_error(nptr, ep, endptr, errno);
539 }
540
541 /**
542 * Convert string @nptr to an int64_t.
543 *
544 * Works like qemu_strtol(), except it stores INT64_MAX on overflow,
545 * and INT64_MIN on underflow.
546 */
547 int qemu_strtoi64(const char *nptr, const char **endptr, int base,
548 int64_t *result)
549 {
550 char *ep;
551
552 assert((unsigned) base <= 36 && base != 1);
553 if (!nptr) {
554 if (endptr) {
555 *endptr = nptr;
556 }
557 return -EINVAL;
558 }
559
560 /* This assumes int64_t is long long TODO relax */
561 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long));
562 errno = 0;
563 *result = strtoll(nptr, &ep, base);
564 return check_strtox_error(nptr, ep, endptr, errno);
565 }
566
567 /**
568 * Convert string @nptr to an uint64_t.
569 *
570 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow.
571 */
572 int qemu_strtou64(const char *nptr, const char **endptr, int base,
573 uint64_t *result)
574 {
575 char *ep;
576
577 assert((unsigned) base <= 36 && base != 1);
578 if (!nptr) {
579 if (endptr) {
580 *endptr = nptr;
581 }
582 return -EINVAL;
583 }
584
585 /* This assumes uint64_t is unsigned long long TODO relax */
586 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long));
587 errno = 0;
588 *result = strtoull(nptr, &ep, base);
589 /* Windows returns 1 for negative out-of-range values. */
590 if (errno == ERANGE) {
591 *result = -1;
592 }
593 return check_strtox_error(nptr, ep, endptr, errno);
594 }
595
596 /**
597 * Convert string @nptr to a double.
598 *
599 * This is a wrapper around strtod() that is harder to misuse.
600 * Semantics of @nptr and @endptr match strtod() with differences
601 * noted below.
602 *
603 * @nptr may be null, and no conversion is performed then.
604 *
605 * If no conversion is performed, store @nptr in *@endptr and return
606 * -EINVAL.
607 *
608 * If @endptr is null, and the string isn't fully converted, return
609 * -EINVAL. This is the case when the pointer that would be stored in
610 * a non-null @endptr points to a character other than '\0'.
611 *
612 * If the conversion overflows, store +/-HUGE_VAL in @result, depending
613 * on the sign, and return -ERANGE.
614 *
615 * If the conversion underflows, store +/-0.0 in @result, depending on the
616 * sign, and return -ERANGE.
617 *
618 * Else store the converted value in @result, and return zero.
619 */
620 int qemu_strtod(const char *nptr, const char **endptr, double *result)
621 {
622 char *ep;
623
624 if (!nptr) {
625 if (endptr) {
626 *endptr = nptr;
627 }
628 return -EINVAL;
629 }
630
631 errno = 0;
632 *result = strtod(nptr, &ep);
633 return check_strtox_error(nptr, ep, endptr, errno);
634 }
635
636 /**
637 * Convert string @nptr to a finite double.
638 *
639 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected
640 * with -EINVAL and no conversion is performed.
641 */
642 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result)
643 {
644 double tmp;
645 int ret;
646
647 ret = qemu_strtod(nptr, endptr, &tmp);
648 if (!ret && !isfinite(tmp)) {
649 if (endptr) {
650 *endptr = nptr;
651 }
652 ret = -EINVAL;
653 }
654
655 if (ret != -EINVAL) {
656 *result = tmp;
657 }
658 return ret;
659 }
660
661 /**
662 * Searches for the first occurrence of 'c' in 's', and returns a pointer
663 * to the trailing null byte if none was found.
664 */
665 #ifndef HAVE_STRCHRNUL
666 const char *qemu_strchrnul(const char *s, int c)
667 {
668 const char *e = strchr(s, c);
669 if (!e) {
670 e = s + strlen(s);
671 }
672 return e;
673 }
674 #endif
675
676 /**
677 * parse_uint:
678 *
679 * @s: String to parse
680 * @value: Destination for parsed integer value
681 * @endptr: Destination for pointer to first character not consumed
682 * @base: integer base, between 2 and 36 inclusive, or 0
683 *
684 * Parse unsigned integer
685 *
686 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
687 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
688 *
689 * If @s is null, or @base is invalid, or @s doesn't start with an
690 * integer in the syntax above, set *@value to 0, *@endptr to @s, and
691 * return -EINVAL.
692 *
693 * Set *@endptr to point right beyond the parsed integer (even if the integer
694 * overflows or is negative, all digits will be parsed and *@endptr will
695 * point right beyond them).
696 *
697 * If the integer is negative, set *@value to 0, and return -ERANGE.
698 *
699 * If the integer overflows unsigned long long, set *@value to
700 * ULLONG_MAX, and return -ERANGE.
701 *
702 * Else, set *@value to the parsed integer, and return 0.
703 */
704 int parse_uint(const char *s, unsigned long long *value, char **endptr,
705 int base)
706 {
707 int r = 0;
708 char *endp = (char *)s;
709 unsigned long long val = 0;
710
711 assert((unsigned) base <= 36 && base != 1);
712 if (!s) {
713 r = -EINVAL;
714 goto out;
715 }
716
717 errno = 0;
718 val = strtoull(s, &endp, base);
719 if (errno) {
720 r = -errno;
721 goto out;
722 }
723
724 if (endp == s) {
725 r = -EINVAL;
726 goto out;
727 }
728
729 /* make sure we reject negative numbers: */
730 while (qemu_isspace(*s)) {
731 s++;
732 }
733 if (*s == '-') {
734 val = 0;
735 r = -ERANGE;
736 goto out;
737 }
738
739 out:
740 *value = val;
741 *endptr = endp;
742 return r;
743 }
744
745 /**
746 * parse_uint_full:
747 *
748 * @s: String to parse
749 * @value: Destination for parsed integer value
750 * @base: integer base, between 2 and 36 inclusive, or 0
751 *
752 * Parse unsigned integer from entire string
753 *
754 * Have the same behavior of parse_uint(), but with an additional check
755 * for additional data after the parsed number. If extra characters are present
756 * after the parsed number, the function will return -EINVAL, and *@v will
757 * be set to 0.
758 */
759 int parse_uint_full(const char *s, unsigned long long *value, int base)
760 {
761 char *endp;
762 int r;
763
764 r = parse_uint(s, value, &endp, base);
765 if (r < 0) {
766 return r;
767 }
768 if (*endp) {
769 *value = 0;
770 return -EINVAL;
771 }
772
773 return 0;
774 }
775
776 int qemu_parse_fd(const char *param)
777 {
778 long fd;
779 char *endptr;
780
781 errno = 0;
782 fd = strtol(param, &endptr, 10);
783 if (param == endptr /* no conversion performed */ ||
784 errno != 0 /* not representable as long; possibly others */ ||
785 *endptr != '\0' /* final string not empty */ ||
786 fd < 0 /* invalid as file descriptor */ ||
787 fd > INT_MAX /* not representable as int */) {
788 return -1;
789 }
790 return fd;
791 }
792
793 /*
794 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
795 * Input is limited to 14-bit numbers
796 */
797 int uleb128_encode_small(uint8_t *out, uint32_t n)
798 {
799 g_assert(n <= 0x3fff);
800 if (n < 0x80) {
801 *out = n;
802 return 1;
803 } else {
804 *out++ = (n & 0x7f) | 0x80;
805 *out = n >> 7;
806 return 2;
807 }
808 }
809
810 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
811 {
812 if (!(*in & 0x80)) {
813 *n = *in;
814 return 1;
815 } else {
816 *n = *in++ & 0x7f;
817 /* we exceed 14 bit number */
818 if (*in & 0x80) {
819 return -1;
820 }
821 *n |= *in << 7;
822 return 2;
823 }
824 }
825
826 /*
827 * helper to parse debug environment variables
828 */
829 int parse_debug_env(const char *name, int max, int initial)
830 {
831 char *debug_env = getenv(name);
832 char *inv = NULL;
833 long debug;
834
835 if (!debug_env) {
836 return initial;
837 }
838 errno = 0;
839 debug = strtol(debug_env, &inv, 10);
840 if (inv == debug_env) {
841 return initial;
842 }
843 if (debug < 0 || debug > max || errno != 0) {
844 warn_report("%s not in [0, %d]", name, max);
845 return initial;
846 }
847 return debug;
848 }
849
850 /*
851 * Helper to print ethernet mac address
852 */
853 const char *qemu_ether_ntoa(const MACAddr *mac)
854 {
855 static char ret[18];
856
857 snprintf(ret, sizeof(ret), "%02x:%02x:%02x:%02x:%02x:%02x",
858 mac->a[0], mac->a[1], mac->a[2], mac->a[3], mac->a[4], mac->a[5]);
859
860 return ret;
861 }
862
863 /*
864 * Return human readable string for size @val.
865 * @val can be anything that uint64_t allows (no more than "16 EiB").
866 * Use IEC binary units like KiB, MiB, and so forth.
867 * Caller is responsible for passing it to g_free().
868 */
869 char *size_to_str(uint64_t val)
870 {
871 static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" };
872 uint64_t div;
873 int i;
874
875 /*
876 * The exponent (returned in i) minus one gives us
877 * floor(log2(val * 1024 / 1000). The correction makes us
878 * switch to the higher power when the integer part is >= 1000.
879 * (see e41b509d68afb1f for more info)
880 */
881 frexp(val / (1000.0 / 1024.0), &i);
882 i = (i - 1) / 10;
883 div = 1ULL << (i * 10);
884
885 return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]);
886 }
887
888 int qemu_pstrcmp0(const char **str1, const char **str2)
889 {
890 return g_strcmp0(*str1, *str2);
891 }