]> git.proxmox.com Git - mirror_qemu.git/blob - util/cutils.c
Merge tag 'for-upstream' of https://gitlab.com/bonzini/qemu into staging
[mirror_qemu.git] / util / cutils.c
1 /*
2 * Simple C functions to supplement the C library
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/host-utils.h"
27 #include <math.h>
28
29 #include "qemu/ctype.h"
30 #include "qemu/cutils.h"
31 #include "qemu/error-report.h"
32
33 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
34 {
35 int len = qemu_strnlen(str, buf_size);
36 memcpy(buf, str, len);
37 memset(buf + len, pad, buf_size - len);
38 }
39
40 void pstrcpy(char *buf, int buf_size, const char *str)
41 {
42 int c;
43 char *q = buf;
44
45 if (buf_size <= 0)
46 return;
47
48 for(;;) {
49 c = *str++;
50 if (c == 0 || q >= buf + buf_size - 1)
51 break;
52 *q++ = c;
53 }
54 *q = '\0';
55 }
56
57 /* strcat and truncate. */
58 char *pstrcat(char *buf, int buf_size, const char *s)
59 {
60 int len;
61 len = strlen(buf);
62 if (len < buf_size)
63 pstrcpy(buf + len, buf_size - len, s);
64 return buf;
65 }
66
67 int strstart(const char *str, const char *val, const char **ptr)
68 {
69 const char *p, *q;
70 p = str;
71 q = val;
72 while (*q != '\0') {
73 if (*p != *q)
74 return 0;
75 p++;
76 q++;
77 }
78 if (ptr)
79 *ptr = p;
80 return 1;
81 }
82
83 int stristart(const char *str, const char *val, const char **ptr)
84 {
85 const char *p, *q;
86 p = str;
87 q = val;
88 while (*q != '\0') {
89 if (qemu_toupper(*p) != qemu_toupper(*q))
90 return 0;
91 p++;
92 q++;
93 }
94 if (ptr)
95 *ptr = p;
96 return 1;
97 }
98
99 /* XXX: use host strnlen if available ? */
100 int qemu_strnlen(const char *s, int max_len)
101 {
102 int i;
103
104 for(i = 0; i < max_len; i++) {
105 if (s[i] == '\0') {
106 break;
107 }
108 }
109 return i;
110 }
111
112 char *qemu_strsep(char **input, const char *delim)
113 {
114 char *result = *input;
115 if (result != NULL) {
116 char *p;
117
118 for (p = result; *p != '\0'; p++) {
119 if (strchr(delim, *p)) {
120 break;
121 }
122 }
123 if (*p == '\0') {
124 *input = NULL;
125 } else {
126 *p = '\0';
127 *input = p + 1;
128 }
129 }
130 return result;
131 }
132
133 time_t mktimegm(struct tm *tm)
134 {
135 time_t t;
136 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
137 if (m < 3) {
138 m += 12;
139 y--;
140 }
141 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
142 y / 400 - 719469);
143 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
144 return t;
145 }
146
147 /*
148 * Make sure data goes on disk, but if possible do not bother to
149 * write out the inode just for timestamp updates.
150 *
151 * Unfortunately even in 2009 many operating systems do not support
152 * fdatasync and have to fall back to fsync.
153 */
154 int qemu_fdatasync(int fd)
155 {
156 #ifdef CONFIG_FDATASYNC
157 return fdatasync(fd);
158 #else
159 return fsync(fd);
160 #endif
161 }
162
163 /**
164 * Sync changes made to the memory mapped file back to the backing
165 * storage. For POSIX compliant systems this will fallback
166 * to regular msync call. Otherwise it will trigger whole file sync
167 * (including the metadata case there is no support to skip that otherwise)
168 *
169 * @addr - start of the memory area to be synced
170 * @length - length of the are to be synced
171 * @fd - file descriptor for the file to be synced
172 * (mandatory only for POSIX non-compliant systems)
173 */
174 int qemu_msync(void *addr, size_t length, int fd)
175 {
176 #ifdef CONFIG_POSIX
177 size_t align_mask = ~(qemu_real_host_page_size() - 1);
178
179 /**
180 * There are no strict reqs as per the length of mapping
181 * to be synced. Still the length needs to follow the address
182 * alignment changes. Additionally - round the size to the multiple
183 * of PAGE_SIZE
184 */
185 length += ((uintptr_t)addr & (qemu_real_host_page_size() - 1));
186 length = (length + ~align_mask) & align_mask;
187
188 addr = (void *)((uintptr_t)addr & align_mask);
189
190 return msync(addr, length, MS_SYNC);
191 #else /* CONFIG_POSIX */
192 /**
193 * Perform the sync based on the file descriptor
194 * The sync range will most probably be wider than the one
195 * requested - but it will still get the job done
196 */
197 return qemu_fdatasync(fd);
198 #endif /* CONFIG_POSIX */
199 }
200
201 static int64_t suffix_mul(char suffix, int64_t unit)
202 {
203 switch (qemu_toupper(suffix)) {
204 case 'B':
205 return 1;
206 case 'K':
207 return unit;
208 case 'M':
209 return unit * unit;
210 case 'G':
211 return unit * unit * unit;
212 case 'T':
213 return unit * unit * unit * unit;
214 case 'P':
215 return unit * unit * unit * unit * unit;
216 case 'E':
217 return unit * unit * unit * unit * unit * unit;
218 }
219 return -1;
220 }
221
222 /*
223 * Convert size string to bytes.
224 *
225 * The size parsing supports the following syntaxes
226 * - 12345 - decimal, scale determined by @default_suffix and @unit
227 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit
228 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and
229 * fractional portion is truncated to byte
230 * - 0x7fEE - hexadecimal, unit determined by @default_suffix
231 *
232 * The following cause a deprecation warning, and may be removed in the future
233 * - 0xabc{kKmMgGtTpP} - hex with scaling suffix
234 *
235 * The following are intentionally not supported
236 * - octal, such as 08
237 * - fractional hex, such as 0x1.8
238 * - floating point exponents, such as 1e3
239 *
240 * The end pointer will be returned in *end, if not NULL. If there is
241 * no fraction, the input can be decimal or hexadecimal; if there is a
242 * fraction, then the input must be decimal and there must be a suffix
243 * (possibly by @default_suffix) larger than Byte, and the fractional
244 * portion may suffer from precision loss or rounding. The input must
245 * be positive.
246 *
247 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on
248 * other error (with *@end left unchanged).
249 */
250 static int do_strtosz(const char *nptr, const char **end,
251 const char default_suffix, int64_t unit,
252 uint64_t *result)
253 {
254 int retval;
255 const char *endptr, *f;
256 unsigned char c;
257 bool hex = false;
258 uint64_t val, valf = 0;
259 int64_t mul;
260
261 /* Parse integral portion as decimal. */
262 retval = qemu_strtou64(nptr, &endptr, 10, &val);
263 if (retval) {
264 goto out;
265 }
266 if (memchr(nptr, '-', endptr - nptr) != NULL) {
267 endptr = nptr;
268 retval = -EINVAL;
269 goto out;
270 }
271 if (val == 0 && (*endptr == 'x' || *endptr == 'X')) {
272 /* Input looks like hex, reparse, and insist on no fraction. */
273 retval = qemu_strtou64(nptr, &endptr, 16, &val);
274 if (retval) {
275 goto out;
276 }
277 if (*endptr == '.') {
278 endptr = nptr;
279 retval = -EINVAL;
280 goto out;
281 }
282 hex = true;
283 } else if (*endptr == '.') {
284 /*
285 * Input looks like a fraction. Make sure even 1.k works
286 * without fractional digits. If we see an exponent, treat
287 * the entire input as invalid instead.
288 */
289 double fraction;
290
291 f = endptr;
292 retval = qemu_strtod_finite(f, &endptr, &fraction);
293 if (retval) {
294 endptr++;
295 } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) {
296 endptr = nptr;
297 retval = -EINVAL;
298 goto out;
299 } else {
300 /* Extract into a 64-bit fixed-point fraction. */
301 valf = (uint64_t)(fraction * 0x1p64);
302 }
303 }
304 c = *endptr;
305 mul = suffix_mul(c, unit);
306 if (mul > 0) {
307 if (hex) {
308 warn_report("Using a multiplier suffix on hex numbers "
309 "is deprecated: %s", nptr);
310 }
311 endptr++;
312 } else {
313 mul = suffix_mul(default_suffix, unit);
314 assert(mul > 0);
315 }
316 if (mul == 1) {
317 /* When a fraction is present, a scale is required. */
318 if (valf != 0) {
319 endptr = nptr;
320 retval = -EINVAL;
321 goto out;
322 }
323 } else {
324 uint64_t valh, tmp;
325
326 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */
327 mulu64(&val, &valh, val, mul);
328 mulu64(&valf, &tmp, valf, mul);
329 val += tmp;
330 valh += val < tmp;
331
332 /* Round 0.5 upward. */
333 tmp = valf >> 63;
334 val += tmp;
335 valh += val < tmp;
336
337 /* Report overflow. */
338 if (valh != 0) {
339 retval = -ERANGE;
340 goto out;
341 }
342 }
343
344 retval = 0;
345
346 out:
347 if (end) {
348 *end = endptr;
349 } else if (*endptr) {
350 retval = -EINVAL;
351 }
352 if (retval == 0) {
353 *result = val;
354 }
355
356 return retval;
357 }
358
359 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result)
360 {
361 return do_strtosz(nptr, end, 'B', 1024, result);
362 }
363
364 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result)
365 {
366 return do_strtosz(nptr, end, 'M', 1024, result);
367 }
368
369 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result)
370 {
371 return do_strtosz(nptr, end, 'B', 1000, result);
372 }
373
374 /**
375 * Helper function for error checking after strtol() and the like
376 */
377 static int check_strtox_error(const char *nptr, char *ep,
378 const char **endptr, bool check_zero,
379 int libc_errno)
380 {
381 assert(ep >= nptr);
382
383 /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */
384 if (check_zero && ep == nptr && libc_errno == 0) {
385 char *tmp;
386
387 errno = 0;
388 if (strtol(nptr, &tmp, 10) == 0 && errno == 0 &&
389 (*tmp == 'x' || *tmp == 'X')) {
390 ep = tmp;
391 }
392 }
393
394 if (endptr) {
395 *endptr = ep;
396 }
397
398 /* Turn "no conversion" into an error */
399 if (libc_errno == 0 && ep == nptr) {
400 return -EINVAL;
401 }
402
403 /* Fail when we're expected to consume the string, but didn't */
404 if (!endptr && *ep) {
405 return -EINVAL;
406 }
407
408 return -libc_errno;
409 }
410
411 /**
412 * Convert string @nptr to an integer, and store it in @result.
413 *
414 * This is a wrapper around strtol() that is harder to misuse.
415 * Semantics of @nptr, @endptr, @base match strtol() with differences
416 * noted below.
417 *
418 * @nptr may be null, and no conversion is performed then.
419 *
420 * If no conversion is performed, store @nptr in *@endptr and return
421 * -EINVAL.
422 *
423 * If @endptr is null, and the string isn't fully converted, return
424 * -EINVAL. This is the case when the pointer that would be stored in
425 * a non-null @endptr points to a character other than '\0'.
426 *
427 * If the conversion overflows @result, store INT_MAX in @result,
428 * and return -ERANGE.
429 *
430 * If the conversion underflows @result, store INT_MIN in @result,
431 * and return -ERANGE.
432 *
433 * Else store the converted value in @result, and return zero.
434 */
435 int qemu_strtoi(const char *nptr, const char **endptr, int base,
436 int *result)
437 {
438 char *ep;
439 long long lresult;
440
441 assert((unsigned) base <= 36 && base != 1);
442 if (!nptr) {
443 if (endptr) {
444 *endptr = nptr;
445 }
446 return -EINVAL;
447 }
448
449 errno = 0;
450 lresult = strtoll(nptr, &ep, base);
451 if (lresult < INT_MIN) {
452 *result = INT_MIN;
453 errno = ERANGE;
454 } else if (lresult > INT_MAX) {
455 *result = INT_MAX;
456 errno = ERANGE;
457 } else {
458 *result = lresult;
459 }
460 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
461 }
462
463 /**
464 * Convert string @nptr to an unsigned integer, and store it in @result.
465 *
466 * This is a wrapper around strtoul() that is harder to misuse.
467 * Semantics of @nptr, @endptr, @base match strtoul() with differences
468 * noted below.
469 *
470 * @nptr may be null, and no conversion is performed then.
471 *
472 * If no conversion is performed, store @nptr in *@endptr and return
473 * -EINVAL.
474 *
475 * If @endptr is null, and the string isn't fully converted, return
476 * -EINVAL. This is the case when the pointer that would be stored in
477 * a non-null @endptr points to a character other than '\0'.
478 *
479 * If the conversion overflows @result, store UINT_MAX in @result,
480 * and return -ERANGE.
481 *
482 * Else store the converted value in @result, and return zero.
483 *
484 * Note that a number with a leading minus sign gets converted without
485 * the minus sign, checked for overflow (see above), then negated (in
486 * @result's type). This is exactly how strtoul() works.
487 */
488 int qemu_strtoui(const char *nptr, const char **endptr, int base,
489 unsigned int *result)
490 {
491 char *ep;
492 long long lresult;
493
494 assert((unsigned) base <= 36 && base != 1);
495 if (!nptr) {
496 if (endptr) {
497 *endptr = nptr;
498 }
499 return -EINVAL;
500 }
501
502 errno = 0;
503 lresult = strtoull(nptr, &ep, base);
504
505 /* Windows returns 1 for negative out-of-range values. */
506 if (errno == ERANGE) {
507 *result = -1;
508 } else {
509 if (lresult > UINT_MAX) {
510 *result = UINT_MAX;
511 errno = ERANGE;
512 } else if (lresult < INT_MIN) {
513 *result = UINT_MAX;
514 errno = ERANGE;
515 } else {
516 *result = lresult;
517 }
518 }
519 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
520 }
521
522 /**
523 * Convert string @nptr to a long integer, and store it in @result.
524 *
525 * This is a wrapper around strtol() that is harder to misuse.
526 * Semantics of @nptr, @endptr, @base match strtol() with differences
527 * noted below.
528 *
529 * @nptr may be null, and no conversion is performed then.
530 *
531 * If no conversion is performed, store @nptr in *@endptr and return
532 * -EINVAL.
533 *
534 * If @endptr is null, and the string isn't fully converted, return
535 * -EINVAL. This is the case when the pointer that would be stored in
536 * a non-null @endptr points to a character other than '\0'.
537 *
538 * If the conversion overflows @result, store LONG_MAX in @result,
539 * and return -ERANGE.
540 *
541 * If the conversion underflows @result, store LONG_MIN in @result,
542 * and return -ERANGE.
543 *
544 * Else store the converted value in @result, and return zero.
545 */
546 int qemu_strtol(const char *nptr, const char **endptr, int base,
547 long *result)
548 {
549 char *ep;
550
551 assert((unsigned) base <= 36 && base != 1);
552 if (!nptr) {
553 if (endptr) {
554 *endptr = nptr;
555 }
556 return -EINVAL;
557 }
558
559 errno = 0;
560 *result = strtol(nptr, &ep, base);
561 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
562 }
563
564 /**
565 * Convert string @nptr to an unsigned long, and store it in @result.
566 *
567 * This is a wrapper around strtoul() that is harder to misuse.
568 * Semantics of @nptr, @endptr, @base match strtoul() with differences
569 * noted below.
570 *
571 * @nptr may be null, and no conversion is performed then.
572 *
573 * If no conversion is performed, store @nptr in *@endptr and return
574 * -EINVAL.
575 *
576 * If @endptr is null, and the string isn't fully converted, return
577 * -EINVAL. This is the case when the pointer that would be stored in
578 * a non-null @endptr points to a character other than '\0'.
579 *
580 * If the conversion overflows @result, store ULONG_MAX in @result,
581 * and return -ERANGE.
582 *
583 * Else store the converted value in @result, and return zero.
584 *
585 * Note that a number with a leading minus sign gets converted without
586 * the minus sign, checked for overflow (see above), then negated (in
587 * @result's type). This is exactly how strtoul() works.
588 */
589 int qemu_strtoul(const char *nptr, const char **endptr, int base,
590 unsigned long *result)
591 {
592 char *ep;
593
594 assert((unsigned) base <= 36 && base != 1);
595 if (!nptr) {
596 if (endptr) {
597 *endptr = nptr;
598 }
599 return -EINVAL;
600 }
601
602 errno = 0;
603 *result = strtoul(nptr, &ep, base);
604 /* Windows returns 1 for negative out-of-range values. */
605 if (errno == ERANGE) {
606 *result = -1;
607 }
608 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
609 }
610
611 /**
612 * Convert string @nptr to an int64_t.
613 *
614 * Works like qemu_strtol(), except it stores INT64_MAX on overflow,
615 * and INT64_MIN on underflow.
616 */
617 int qemu_strtoi64(const char *nptr, const char **endptr, int base,
618 int64_t *result)
619 {
620 char *ep;
621
622 assert((unsigned) base <= 36 && base != 1);
623 if (!nptr) {
624 if (endptr) {
625 *endptr = nptr;
626 }
627 return -EINVAL;
628 }
629
630 /* This assumes int64_t is long long TODO relax */
631 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long));
632 errno = 0;
633 *result = strtoll(nptr, &ep, base);
634 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
635 }
636
637 /**
638 * Convert string @nptr to an uint64_t.
639 *
640 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow.
641 */
642 int qemu_strtou64(const char *nptr, const char **endptr, int base,
643 uint64_t *result)
644 {
645 char *ep;
646
647 assert((unsigned) base <= 36 && base != 1);
648 if (!nptr) {
649 if (endptr) {
650 *endptr = nptr;
651 }
652 return -EINVAL;
653 }
654
655 /* This assumes uint64_t is unsigned long long TODO relax */
656 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long));
657 errno = 0;
658 *result = strtoull(nptr, &ep, base);
659 /* Windows returns 1 for negative out-of-range values. */
660 if (errno == ERANGE) {
661 *result = -1;
662 }
663 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
664 }
665
666 /**
667 * Convert string @nptr to a double.
668 *
669 * This is a wrapper around strtod() that is harder to misuse.
670 * Semantics of @nptr and @endptr match strtod() with differences
671 * noted below.
672 *
673 * @nptr may be null, and no conversion is performed then.
674 *
675 * If no conversion is performed, store @nptr in *@endptr and return
676 * -EINVAL.
677 *
678 * If @endptr is null, and the string isn't fully converted, return
679 * -EINVAL. This is the case when the pointer that would be stored in
680 * a non-null @endptr points to a character other than '\0'.
681 *
682 * If the conversion overflows, store +/-HUGE_VAL in @result, depending
683 * on the sign, and return -ERANGE.
684 *
685 * If the conversion underflows, store +/-0.0 in @result, depending on the
686 * sign, and return -ERANGE.
687 *
688 * Else store the converted value in @result, and return zero.
689 */
690 int qemu_strtod(const char *nptr, const char **endptr, double *result)
691 {
692 char *ep;
693
694 if (!nptr) {
695 if (endptr) {
696 *endptr = nptr;
697 }
698 return -EINVAL;
699 }
700
701 errno = 0;
702 *result = strtod(nptr, &ep);
703 return check_strtox_error(nptr, ep, endptr, false, errno);
704 }
705
706 /**
707 * Convert string @nptr to a finite double.
708 *
709 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected
710 * with -EINVAL and no conversion is performed.
711 */
712 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result)
713 {
714 double tmp;
715 int ret;
716
717 ret = qemu_strtod(nptr, endptr, &tmp);
718 if (!ret && !isfinite(tmp)) {
719 if (endptr) {
720 *endptr = nptr;
721 }
722 ret = -EINVAL;
723 }
724
725 if (ret != -EINVAL) {
726 *result = tmp;
727 }
728 return ret;
729 }
730
731 /**
732 * Searches for the first occurrence of 'c' in 's', and returns a pointer
733 * to the trailing null byte if none was found.
734 */
735 #ifndef HAVE_STRCHRNUL
736 const char *qemu_strchrnul(const char *s, int c)
737 {
738 const char *e = strchr(s, c);
739 if (!e) {
740 e = s + strlen(s);
741 }
742 return e;
743 }
744 #endif
745
746 /**
747 * parse_uint:
748 *
749 * @s: String to parse
750 * @value: Destination for parsed integer value
751 * @endptr: Destination for pointer to first character not consumed
752 * @base: integer base, between 2 and 36 inclusive, or 0
753 *
754 * Parse unsigned integer
755 *
756 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
757 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
758 *
759 * If @s is null, or @base is invalid, or @s doesn't start with an
760 * integer in the syntax above, set *@value to 0, *@endptr to @s, and
761 * return -EINVAL.
762 *
763 * Set *@endptr to point right beyond the parsed integer (even if the integer
764 * overflows or is negative, all digits will be parsed and *@endptr will
765 * point right beyond them).
766 *
767 * If the integer is negative, set *@value to 0, and return -ERANGE.
768 *
769 * If the integer overflows unsigned long long, set *@value to
770 * ULLONG_MAX, and return -ERANGE.
771 *
772 * Else, set *@value to the parsed integer, and return 0.
773 */
774 int parse_uint(const char *s, unsigned long long *value, char **endptr,
775 int base)
776 {
777 int r = 0;
778 char *endp = (char *)s;
779 unsigned long long val = 0;
780
781 assert((unsigned) base <= 36 && base != 1);
782 if (!s) {
783 r = -EINVAL;
784 goto out;
785 }
786
787 errno = 0;
788 val = strtoull(s, &endp, base);
789 if (errno) {
790 r = -errno;
791 goto out;
792 }
793
794 if (endp == s) {
795 r = -EINVAL;
796 goto out;
797 }
798
799 /* make sure we reject negative numbers: */
800 while (qemu_isspace(*s)) {
801 s++;
802 }
803 if (*s == '-') {
804 val = 0;
805 r = -ERANGE;
806 goto out;
807 }
808
809 out:
810 *value = val;
811 *endptr = endp;
812 return r;
813 }
814
815 /**
816 * parse_uint_full:
817 *
818 * @s: String to parse
819 * @value: Destination for parsed integer value
820 * @base: integer base, between 2 and 36 inclusive, or 0
821 *
822 * Parse unsigned integer from entire string
823 *
824 * Have the same behavior of parse_uint(), but with an additional check
825 * for additional data after the parsed number. If extra characters are present
826 * after the parsed number, the function will return -EINVAL, and *@v will
827 * be set to 0.
828 */
829 int parse_uint_full(const char *s, unsigned long long *value, int base)
830 {
831 char *endp;
832 int r;
833
834 r = parse_uint(s, value, &endp, base);
835 if (r < 0) {
836 return r;
837 }
838 if (*endp) {
839 *value = 0;
840 return -EINVAL;
841 }
842
843 return 0;
844 }
845
846 int qemu_parse_fd(const char *param)
847 {
848 long fd;
849 char *endptr;
850
851 errno = 0;
852 fd = strtol(param, &endptr, 10);
853 if (param == endptr /* no conversion performed */ ||
854 errno != 0 /* not representable as long; possibly others */ ||
855 *endptr != '\0' /* final string not empty */ ||
856 fd < 0 /* invalid as file descriptor */ ||
857 fd > INT_MAX /* not representable as int */) {
858 return -1;
859 }
860 return fd;
861 }
862
863 /*
864 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
865 * Input is limited to 14-bit numbers
866 */
867 int uleb128_encode_small(uint8_t *out, uint32_t n)
868 {
869 g_assert(n <= 0x3fff);
870 if (n < 0x80) {
871 *out = n;
872 return 1;
873 } else {
874 *out++ = (n & 0x7f) | 0x80;
875 *out = n >> 7;
876 return 2;
877 }
878 }
879
880 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
881 {
882 if (!(*in & 0x80)) {
883 *n = *in;
884 return 1;
885 } else {
886 *n = *in++ & 0x7f;
887 /* we exceed 14 bit number */
888 if (*in & 0x80) {
889 return -1;
890 }
891 *n |= *in << 7;
892 return 2;
893 }
894 }
895
896 /*
897 * helper to parse debug environment variables
898 */
899 int parse_debug_env(const char *name, int max, int initial)
900 {
901 char *debug_env = getenv(name);
902 char *inv = NULL;
903 long debug;
904
905 if (!debug_env) {
906 return initial;
907 }
908 errno = 0;
909 debug = strtol(debug_env, &inv, 10);
910 if (inv == debug_env) {
911 return initial;
912 }
913 if (debug < 0 || debug > max || errno != 0) {
914 warn_report("%s not in [0, %d]", name, max);
915 return initial;
916 }
917 return debug;
918 }
919
920 /*
921 * Return human readable string for size @val.
922 * @val can be anything that uint64_t allows (no more than "16 EiB").
923 * Use IEC binary units like KiB, MiB, and so forth.
924 * Caller is responsible for passing it to g_free().
925 */
926 char *size_to_str(uint64_t val)
927 {
928 static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" };
929 uint64_t div;
930 int i;
931
932 /*
933 * The exponent (returned in i) minus one gives us
934 * floor(log2(val * 1024 / 1000). The correction makes us
935 * switch to the higher power when the integer part is >= 1000.
936 * (see e41b509d68afb1f for more info)
937 */
938 frexp(val / (1000.0 / 1024.0), &i);
939 i = (i - 1) / 10;
940 div = 1ULL << (i * 10);
941
942 return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]);
943 }
944
945 char *freq_to_str(uint64_t freq_hz)
946 {
947 static const char *const suffixes[] = { "", "K", "M", "G", "T", "P", "E" };
948 double freq = freq_hz;
949 size_t idx = 0;
950
951 while (freq >= 1000.0) {
952 freq /= 1000.0;
953 idx++;
954 }
955 assert(idx < ARRAY_SIZE(suffixes));
956
957 return g_strdup_printf("%0.3g %sHz", freq, suffixes[idx]);
958 }
959
960 int qemu_pstrcmp0(const char **str1, const char **str2)
961 {
962 return g_strcmp0(*str1, *str2);
963 }
964
965 static inline bool starts_with_prefix(const char *dir)
966 {
967 size_t prefix_len = strlen(CONFIG_PREFIX);
968 return !memcmp(dir, CONFIG_PREFIX, prefix_len) &&
969 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len]));
970 }
971
972 /* Return the next path component in dir, and store its length in *p_len. */
973 static inline const char *next_component(const char *dir, int *p_len)
974 {
975 int len;
976 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) ||
977 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) {
978 dir++;
979 }
980 len = 0;
981 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) {
982 len++;
983 }
984 *p_len = len;
985 return dir;
986 }
987
988 char *get_relocated_path(const char *dir)
989 {
990 size_t prefix_len = strlen(CONFIG_PREFIX);
991 const char *bindir = CONFIG_BINDIR;
992 const char *exec_dir = qemu_get_exec_dir();
993 GString *result;
994 int len_dir, len_bindir;
995
996 /* Fail if qemu_init_exec_dir was not called. */
997 assert(exec_dir[0]);
998 if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) {
999 return g_strdup(dir);
1000 }
1001
1002 result = g_string_new(exec_dir);
1003
1004 /* Advance over common components. */
1005 len_dir = len_bindir = prefix_len;
1006 do {
1007 dir += len_dir;
1008 bindir += len_bindir;
1009 dir = next_component(dir, &len_dir);
1010 bindir = next_component(bindir, &len_bindir);
1011 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir));
1012
1013 /* Ascend from bindir to the common prefix with dir. */
1014 while (len_bindir) {
1015 bindir += len_bindir;
1016 g_string_append(result, "/..");
1017 bindir = next_component(bindir, &len_bindir);
1018 }
1019
1020 if (*dir) {
1021 assert(G_IS_DIR_SEPARATOR(dir[-1]));
1022 g_string_append(result, dir - 1);
1023 }
1024 return g_string_free(result, false);
1025 }