]> git.proxmox.com Git - mirror_qemu.git/blob - util/cutils.c
bsd-user: Implement revoke, access, eaccess and faccessat
[mirror_qemu.git] / util / cutils.c
1 /*
2 * Simple C functions to supplement the C library
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25 #include "qemu/osdep.h"
26 #include "qemu/host-utils.h"
27 #include <math.h>
28
29 #ifdef __FreeBSD__
30 #include <sys/sysctl.h>
31 #include <sys/user.h>
32 #endif
33
34 #ifdef __NetBSD__
35 #include <sys/sysctl.h>
36 #endif
37
38 #include "qemu/ctype.h"
39 #include "qemu/cutils.h"
40 #include "qemu/error-report.h"
41
42 void strpadcpy(char *buf, int buf_size, const char *str, char pad)
43 {
44 int len = qemu_strnlen(str, buf_size);
45 memcpy(buf, str, len);
46 memset(buf + len, pad, buf_size - len);
47 }
48
49 void pstrcpy(char *buf, int buf_size, const char *str)
50 {
51 int c;
52 char *q = buf;
53
54 if (buf_size <= 0)
55 return;
56
57 for(;;) {
58 c = *str++;
59 if (c == 0 || q >= buf + buf_size - 1)
60 break;
61 *q++ = c;
62 }
63 *q = '\0';
64 }
65
66 /* strcat and truncate. */
67 char *pstrcat(char *buf, int buf_size, const char *s)
68 {
69 int len;
70 len = strlen(buf);
71 if (len < buf_size)
72 pstrcpy(buf + len, buf_size - len, s);
73 return buf;
74 }
75
76 int strstart(const char *str, const char *val, const char **ptr)
77 {
78 const char *p, *q;
79 p = str;
80 q = val;
81 while (*q != '\0') {
82 if (*p != *q)
83 return 0;
84 p++;
85 q++;
86 }
87 if (ptr)
88 *ptr = p;
89 return 1;
90 }
91
92 int stristart(const char *str, const char *val, const char **ptr)
93 {
94 const char *p, *q;
95 p = str;
96 q = val;
97 while (*q != '\0') {
98 if (qemu_toupper(*p) != qemu_toupper(*q))
99 return 0;
100 p++;
101 q++;
102 }
103 if (ptr)
104 *ptr = p;
105 return 1;
106 }
107
108 /* XXX: use host strnlen if available ? */
109 int qemu_strnlen(const char *s, int max_len)
110 {
111 int i;
112
113 for(i = 0; i < max_len; i++) {
114 if (s[i] == '\0') {
115 break;
116 }
117 }
118 return i;
119 }
120
121 char *qemu_strsep(char **input, const char *delim)
122 {
123 char *result = *input;
124 if (result != NULL) {
125 char *p;
126
127 for (p = result; *p != '\0'; p++) {
128 if (strchr(delim, *p)) {
129 break;
130 }
131 }
132 if (*p == '\0') {
133 *input = NULL;
134 } else {
135 *p = '\0';
136 *input = p + 1;
137 }
138 }
139 return result;
140 }
141
142 time_t mktimegm(struct tm *tm)
143 {
144 time_t t;
145 int y = tm->tm_year + 1900, m = tm->tm_mon + 1, d = tm->tm_mday;
146 if (m < 3) {
147 m += 12;
148 y--;
149 }
150 t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
151 y / 400 - 719469);
152 t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
153 return t;
154 }
155
156 static int64_t suffix_mul(char suffix, int64_t unit)
157 {
158 switch (qemu_toupper(suffix)) {
159 case 'B':
160 return 1;
161 case 'K':
162 return unit;
163 case 'M':
164 return unit * unit;
165 case 'G':
166 return unit * unit * unit;
167 case 'T':
168 return unit * unit * unit * unit;
169 case 'P':
170 return unit * unit * unit * unit * unit;
171 case 'E':
172 return unit * unit * unit * unit * unit * unit;
173 }
174 return -1;
175 }
176
177 /*
178 * Convert size string to bytes.
179 *
180 * The size parsing supports the following syntaxes
181 * - 12345 - decimal, scale determined by @default_suffix and @unit
182 * - 12345{bBkKmMgGtTpPeE} - decimal, scale determined by suffix and @unit
183 * - 12345.678{kKmMgGtTpPeE} - decimal, scale determined by suffix, and
184 * fractional portion is truncated to byte
185 * - 0x7fEE - hexadecimal, unit determined by @default_suffix
186 *
187 * The following cause a deprecation warning, and may be removed in the future
188 * - 0xabc{kKmMgGtTpP} - hex with scaling suffix
189 *
190 * The following are intentionally not supported
191 * - octal, such as 08
192 * - fractional hex, such as 0x1.8
193 * - floating point exponents, such as 1e3
194 *
195 * The end pointer will be returned in *end, if not NULL. If there is
196 * no fraction, the input can be decimal or hexadecimal; if there is a
197 * fraction, then the input must be decimal and there must be a suffix
198 * (possibly by @default_suffix) larger than Byte, and the fractional
199 * portion may suffer from precision loss or rounding. The input must
200 * be positive.
201 *
202 * Return -ERANGE on overflow (with *@end advanced), and -EINVAL on
203 * other error (with *@end left unchanged).
204 */
205 static int do_strtosz(const char *nptr, const char **end,
206 const char default_suffix, int64_t unit,
207 uint64_t *result)
208 {
209 int retval;
210 const char *endptr, *f;
211 unsigned char c;
212 bool hex = false;
213 uint64_t val, valf = 0;
214 int64_t mul;
215
216 /* Parse integral portion as decimal. */
217 retval = qemu_strtou64(nptr, &endptr, 10, &val);
218 if (retval) {
219 goto out;
220 }
221 if (memchr(nptr, '-', endptr - nptr) != NULL) {
222 endptr = nptr;
223 retval = -EINVAL;
224 goto out;
225 }
226 if (val == 0 && (*endptr == 'x' || *endptr == 'X')) {
227 /* Input looks like hex, reparse, and insist on no fraction. */
228 retval = qemu_strtou64(nptr, &endptr, 16, &val);
229 if (retval) {
230 goto out;
231 }
232 if (*endptr == '.') {
233 endptr = nptr;
234 retval = -EINVAL;
235 goto out;
236 }
237 hex = true;
238 } else if (*endptr == '.') {
239 /*
240 * Input looks like a fraction. Make sure even 1.k works
241 * without fractional digits. If we see an exponent, treat
242 * the entire input as invalid instead.
243 */
244 double fraction;
245
246 f = endptr;
247 retval = qemu_strtod_finite(f, &endptr, &fraction);
248 if (retval) {
249 endptr++;
250 } else if (memchr(f, 'e', endptr - f) || memchr(f, 'E', endptr - f)) {
251 endptr = nptr;
252 retval = -EINVAL;
253 goto out;
254 } else {
255 /* Extract into a 64-bit fixed-point fraction. */
256 valf = (uint64_t)(fraction * 0x1p64);
257 }
258 }
259 c = *endptr;
260 mul = suffix_mul(c, unit);
261 if (mul > 0) {
262 if (hex) {
263 warn_report("Using a multiplier suffix on hex numbers "
264 "is deprecated: %s", nptr);
265 }
266 endptr++;
267 } else {
268 mul = suffix_mul(default_suffix, unit);
269 assert(mul > 0);
270 }
271 if (mul == 1) {
272 /* When a fraction is present, a scale is required. */
273 if (valf != 0) {
274 endptr = nptr;
275 retval = -EINVAL;
276 goto out;
277 }
278 } else {
279 uint64_t valh, tmp;
280
281 /* Compute exact result: 64.64 x 64.0 -> 128.64 fixed point */
282 mulu64(&val, &valh, val, mul);
283 mulu64(&valf, &tmp, valf, mul);
284 val += tmp;
285 valh += val < tmp;
286
287 /* Round 0.5 upward. */
288 tmp = valf >> 63;
289 val += tmp;
290 valh += val < tmp;
291
292 /* Report overflow. */
293 if (valh != 0) {
294 retval = -ERANGE;
295 goto out;
296 }
297 }
298
299 retval = 0;
300
301 out:
302 if (end) {
303 *end = endptr;
304 } else if (*endptr) {
305 retval = -EINVAL;
306 }
307 if (retval == 0) {
308 *result = val;
309 }
310
311 return retval;
312 }
313
314 int qemu_strtosz(const char *nptr, const char **end, uint64_t *result)
315 {
316 return do_strtosz(nptr, end, 'B', 1024, result);
317 }
318
319 int qemu_strtosz_MiB(const char *nptr, const char **end, uint64_t *result)
320 {
321 return do_strtosz(nptr, end, 'M', 1024, result);
322 }
323
324 int qemu_strtosz_metric(const char *nptr, const char **end, uint64_t *result)
325 {
326 return do_strtosz(nptr, end, 'B', 1000, result);
327 }
328
329 /**
330 * Helper function for error checking after strtol() and the like
331 */
332 static int check_strtox_error(const char *nptr, char *ep,
333 const char **endptr, bool check_zero,
334 int libc_errno)
335 {
336 assert(ep >= nptr);
337
338 /* Windows has a bug in that it fails to parse 0 from "0x" in base 16 */
339 if (check_zero && ep == nptr && libc_errno == 0) {
340 char *tmp;
341
342 errno = 0;
343 if (strtol(nptr, &tmp, 10) == 0 && errno == 0 &&
344 (*tmp == 'x' || *tmp == 'X')) {
345 ep = tmp;
346 }
347 }
348
349 if (endptr) {
350 *endptr = ep;
351 }
352
353 /* Turn "no conversion" into an error */
354 if (libc_errno == 0 && ep == nptr) {
355 return -EINVAL;
356 }
357
358 /* Fail when we're expected to consume the string, but didn't */
359 if (!endptr && *ep) {
360 return -EINVAL;
361 }
362
363 return -libc_errno;
364 }
365
366 /**
367 * Convert string @nptr to an integer, and store it in @result.
368 *
369 * This is a wrapper around strtol() that is harder to misuse.
370 * Semantics of @nptr, @endptr, @base match strtol() with differences
371 * noted below.
372 *
373 * @nptr may be null, and no conversion is performed then.
374 *
375 * If no conversion is performed, store @nptr in *@endptr and return
376 * -EINVAL.
377 *
378 * If @endptr is null, and the string isn't fully converted, return
379 * -EINVAL. This is the case when the pointer that would be stored in
380 * a non-null @endptr points to a character other than '\0'.
381 *
382 * If the conversion overflows @result, store INT_MAX in @result,
383 * and return -ERANGE.
384 *
385 * If the conversion underflows @result, store INT_MIN in @result,
386 * and return -ERANGE.
387 *
388 * Else store the converted value in @result, and return zero.
389 */
390 int qemu_strtoi(const char *nptr, const char **endptr, int base,
391 int *result)
392 {
393 char *ep;
394 long long lresult;
395
396 assert((unsigned) base <= 36 && base != 1);
397 if (!nptr) {
398 if (endptr) {
399 *endptr = nptr;
400 }
401 return -EINVAL;
402 }
403
404 errno = 0;
405 lresult = strtoll(nptr, &ep, base);
406 if (lresult < INT_MIN) {
407 *result = INT_MIN;
408 errno = ERANGE;
409 } else if (lresult > INT_MAX) {
410 *result = INT_MAX;
411 errno = ERANGE;
412 } else {
413 *result = lresult;
414 }
415 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
416 }
417
418 /**
419 * Convert string @nptr to an unsigned integer, and store it in @result.
420 *
421 * This is a wrapper around strtoul() that is harder to misuse.
422 * Semantics of @nptr, @endptr, @base match strtoul() with differences
423 * noted below.
424 *
425 * @nptr may be null, and no conversion is performed then.
426 *
427 * If no conversion is performed, store @nptr in *@endptr and return
428 * -EINVAL.
429 *
430 * If @endptr is null, and the string isn't fully converted, return
431 * -EINVAL. This is the case when the pointer that would be stored in
432 * a non-null @endptr points to a character other than '\0'.
433 *
434 * If the conversion overflows @result, store UINT_MAX in @result,
435 * and return -ERANGE.
436 *
437 * Else store the converted value in @result, and return zero.
438 *
439 * Note that a number with a leading minus sign gets converted without
440 * the minus sign, checked for overflow (see above), then negated (in
441 * @result's type). This is exactly how strtoul() works.
442 */
443 int qemu_strtoui(const char *nptr, const char **endptr, int base,
444 unsigned int *result)
445 {
446 char *ep;
447 long long lresult;
448
449 assert((unsigned) base <= 36 && base != 1);
450 if (!nptr) {
451 if (endptr) {
452 *endptr = nptr;
453 }
454 return -EINVAL;
455 }
456
457 errno = 0;
458 lresult = strtoull(nptr, &ep, base);
459
460 /* Windows returns 1 for negative out-of-range values. */
461 if (errno == ERANGE) {
462 *result = -1;
463 } else {
464 if (lresult > UINT_MAX) {
465 *result = UINT_MAX;
466 errno = ERANGE;
467 } else if (lresult < INT_MIN) {
468 *result = UINT_MAX;
469 errno = ERANGE;
470 } else {
471 *result = lresult;
472 }
473 }
474 return check_strtox_error(nptr, ep, endptr, lresult == 0, errno);
475 }
476
477 /**
478 * Convert string @nptr to a long integer, and store it in @result.
479 *
480 * This is a wrapper around strtol() that is harder to misuse.
481 * Semantics of @nptr, @endptr, @base match strtol() with differences
482 * noted below.
483 *
484 * @nptr may be null, and no conversion is performed then.
485 *
486 * If no conversion is performed, store @nptr in *@endptr and return
487 * -EINVAL.
488 *
489 * If @endptr is null, and the string isn't fully converted, return
490 * -EINVAL. This is the case when the pointer that would be stored in
491 * a non-null @endptr points to a character other than '\0'.
492 *
493 * If the conversion overflows @result, store LONG_MAX in @result,
494 * and return -ERANGE.
495 *
496 * If the conversion underflows @result, store LONG_MIN in @result,
497 * and return -ERANGE.
498 *
499 * Else store the converted value in @result, and return zero.
500 */
501 int qemu_strtol(const char *nptr, const char **endptr, int base,
502 long *result)
503 {
504 char *ep;
505
506 assert((unsigned) base <= 36 && base != 1);
507 if (!nptr) {
508 if (endptr) {
509 *endptr = nptr;
510 }
511 return -EINVAL;
512 }
513
514 errno = 0;
515 *result = strtol(nptr, &ep, base);
516 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
517 }
518
519 /**
520 * Convert string @nptr to an unsigned long, and store it in @result.
521 *
522 * This is a wrapper around strtoul() that is harder to misuse.
523 * Semantics of @nptr, @endptr, @base match strtoul() with differences
524 * noted below.
525 *
526 * @nptr may be null, and no conversion is performed then.
527 *
528 * If no conversion is performed, store @nptr in *@endptr and return
529 * -EINVAL.
530 *
531 * If @endptr is null, and the string isn't fully converted, return
532 * -EINVAL. This is the case when the pointer that would be stored in
533 * a non-null @endptr points to a character other than '\0'.
534 *
535 * If the conversion overflows @result, store ULONG_MAX in @result,
536 * and return -ERANGE.
537 *
538 * Else store the converted value in @result, and return zero.
539 *
540 * Note that a number with a leading minus sign gets converted without
541 * the minus sign, checked for overflow (see above), then negated (in
542 * @result's type). This is exactly how strtoul() works.
543 */
544 int qemu_strtoul(const char *nptr, const char **endptr, int base,
545 unsigned long *result)
546 {
547 char *ep;
548
549 assert((unsigned) base <= 36 && base != 1);
550 if (!nptr) {
551 if (endptr) {
552 *endptr = nptr;
553 }
554 return -EINVAL;
555 }
556
557 errno = 0;
558 *result = strtoul(nptr, &ep, base);
559 /* Windows returns 1 for negative out-of-range values. */
560 if (errno == ERANGE) {
561 *result = -1;
562 }
563 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
564 }
565
566 /**
567 * Convert string @nptr to an int64_t.
568 *
569 * Works like qemu_strtol(), except it stores INT64_MAX on overflow,
570 * and INT64_MIN on underflow.
571 */
572 int qemu_strtoi64(const char *nptr, const char **endptr, int base,
573 int64_t *result)
574 {
575 char *ep;
576
577 assert((unsigned) base <= 36 && base != 1);
578 if (!nptr) {
579 if (endptr) {
580 *endptr = nptr;
581 }
582 return -EINVAL;
583 }
584
585 /* This assumes int64_t is long long TODO relax */
586 QEMU_BUILD_BUG_ON(sizeof(int64_t) != sizeof(long long));
587 errno = 0;
588 *result = strtoll(nptr, &ep, base);
589 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
590 }
591
592 /**
593 * Convert string @nptr to an uint64_t.
594 *
595 * Works like qemu_strtoul(), except it stores UINT64_MAX on overflow.
596 */
597 int qemu_strtou64(const char *nptr, const char **endptr, int base,
598 uint64_t *result)
599 {
600 char *ep;
601
602 assert((unsigned) base <= 36 && base != 1);
603 if (!nptr) {
604 if (endptr) {
605 *endptr = nptr;
606 }
607 return -EINVAL;
608 }
609
610 /* This assumes uint64_t is unsigned long long TODO relax */
611 QEMU_BUILD_BUG_ON(sizeof(uint64_t) != sizeof(unsigned long long));
612 errno = 0;
613 *result = strtoull(nptr, &ep, base);
614 /* Windows returns 1 for negative out-of-range values. */
615 if (errno == ERANGE) {
616 *result = -1;
617 }
618 return check_strtox_error(nptr, ep, endptr, *result == 0, errno);
619 }
620
621 /**
622 * Convert string @nptr to a double.
623 *
624 * This is a wrapper around strtod() that is harder to misuse.
625 * Semantics of @nptr and @endptr match strtod() with differences
626 * noted below.
627 *
628 * @nptr may be null, and no conversion is performed then.
629 *
630 * If no conversion is performed, store @nptr in *@endptr and return
631 * -EINVAL.
632 *
633 * If @endptr is null, and the string isn't fully converted, return
634 * -EINVAL. This is the case when the pointer that would be stored in
635 * a non-null @endptr points to a character other than '\0'.
636 *
637 * If the conversion overflows, store +/-HUGE_VAL in @result, depending
638 * on the sign, and return -ERANGE.
639 *
640 * If the conversion underflows, store +/-0.0 in @result, depending on the
641 * sign, and return -ERANGE.
642 *
643 * Else store the converted value in @result, and return zero.
644 */
645 int qemu_strtod(const char *nptr, const char **endptr, double *result)
646 {
647 char *ep;
648
649 if (!nptr) {
650 if (endptr) {
651 *endptr = nptr;
652 }
653 return -EINVAL;
654 }
655
656 errno = 0;
657 *result = strtod(nptr, &ep);
658 return check_strtox_error(nptr, ep, endptr, false, errno);
659 }
660
661 /**
662 * Convert string @nptr to a finite double.
663 *
664 * Works like qemu_strtod(), except that "NaN" and "inf" are rejected
665 * with -EINVAL and no conversion is performed.
666 */
667 int qemu_strtod_finite(const char *nptr, const char **endptr, double *result)
668 {
669 double tmp;
670 int ret;
671
672 ret = qemu_strtod(nptr, endptr, &tmp);
673 if (!ret && !isfinite(tmp)) {
674 if (endptr) {
675 *endptr = nptr;
676 }
677 ret = -EINVAL;
678 }
679
680 if (ret != -EINVAL) {
681 *result = tmp;
682 }
683 return ret;
684 }
685
686 /**
687 * Searches for the first occurrence of 'c' in 's', and returns a pointer
688 * to the trailing null byte if none was found.
689 */
690 #ifndef HAVE_STRCHRNUL
691 const char *qemu_strchrnul(const char *s, int c)
692 {
693 const char *e = strchr(s, c);
694 if (!e) {
695 e = s + strlen(s);
696 }
697 return e;
698 }
699 #endif
700
701 /**
702 * parse_uint:
703 *
704 * @s: String to parse
705 * @value: Destination for parsed integer value
706 * @endptr: Destination for pointer to first character not consumed
707 * @base: integer base, between 2 and 36 inclusive, or 0
708 *
709 * Parse unsigned integer
710 *
711 * Parsed syntax is like strtoull()'s: arbitrary whitespace, a single optional
712 * '+' or '-', an optional "0x" if @base is 0 or 16, one or more digits.
713 *
714 * If @s is null, or @base is invalid, or @s doesn't start with an
715 * integer in the syntax above, set *@value to 0, *@endptr to @s, and
716 * return -EINVAL.
717 *
718 * Set *@endptr to point right beyond the parsed integer (even if the integer
719 * overflows or is negative, all digits will be parsed and *@endptr will
720 * point right beyond them).
721 *
722 * If the integer is negative, set *@value to 0, and return -ERANGE.
723 *
724 * If the integer overflows unsigned long long, set *@value to
725 * ULLONG_MAX, and return -ERANGE.
726 *
727 * Else, set *@value to the parsed integer, and return 0.
728 */
729 int parse_uint(const char *s, unsigned long long *value, char **endptr,
730 int base)
731 {
732 int r = 0;
733 char *endp = (char *)s;
734 unsigned long long val = 0;
735
736 assert((unsigned) base <= 36 && base != 1);
737 if (!s) {
738 r = -EINVAL;
739 goto out;
740 }
741
742 errno = 0;
743 val = strtoull(s, &endp, base);
744 if (errno) {
745 r = -errno;
746 goto out;
747 }
748
749 if (endp == s) {
750 r = -EINVAL;
751 goto out;
752 }
753
754 /* make sure we reject negative numbers: */
755 while (qemu_isspace(*s)) {
756 s++;
757 }
758 if (*s == '-') {
759 val = 0;
760 r = -ERANGE;
761 goto out;
762 }
763
764 out:
765 *value = val;
766 *endptr = endp;
767 return r;
768 }
769
770 /**
771 * parse_uint_full:
772 *
773 * @s: String to parse
774 * @value: Destination for parsed integer value
775 * @base: integer base, between 2 and 36 inclusive, or 0
776 *
777 * Parse unsigned integer from entire string
778 *
779 * Have the same behavior of parse_uint(), but with an additional check
780 * for additional data after the parsed number. If extra characters are present
781 * after the parsed number, the function will return -EINVAL, and *@v will
782 * be set to 0.
783 */
784 int parse_uint_full(const char *s, unsigned long long *value, int base)
785 {
786 char *endp;
787 int r;
788
789 r = parse_uint(s, value, &endp, base);
790 if (r < 0) {
791 return r;
792 }
793 if (*endp) {
794 *value = 0;
795 return -EINVAL;
796 }
797
798 return 0;
799 }
800
801 int qemu_parse_fd(const char *param)
802 {
803 long fd;
804 char *endptr;
805
806 errno = 0;
807 fd = strtol(param, &endptr, 10);
808 if (param == endptr /* no conversion performed */ ||
809 errno != 0 /* not representable as long; possibly others */ ||
810 *endptr != '\0' /* final string not empty */ ||
811 fd < 0 /* invalid as file descriptor */ ||
812 fd > INT_MAX /* not representable as int */) {
813 return -1;
814 }
815 return fd;
816 }
817
818 /*
819 * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
820 * Input is limited to 14-bit numbers
821 */
822 int uleb128_encode_small(uint8_t *out, uint32_t n)
823 {
824 g_assert(n <= 0x3fff);
825 if (n < 0x80) {
826 *out = n;
827 return 1;
828 } else {
829 *out++ = (n & 0x7f) | 0x80;
830 *out = n >> 7;
831 return 2;
832 }
833 }
834
835 int uleb128_decode_small(const uint8_t *in, uint32_t *n)
836 {
837 if (!(*in & 0x80)) {
838 *n = *in;
839 return 1;
840 } else {
841 *n = *in++ & 0x7f;
842 /* we exceed 14 bit number */
843 if (*in & 0x80) {
844 return -1;
845 }
846 *n |= *in << 7;
847 return 2;
848 }
849 }
850
851 /*
852 * helper to parse debug environment variables
853 */
854 int parse_debug_env(const char *name, int max, int initial)
855 {
856 char *debug_env = getenv(name);
857 char *inv = NULL;
858 long debug;
859
860 if (!debug_env) {
861 return initial;
862 }
863 errno = 0;
864 debug = strtol(debug_env, &inv, 10);
865 if (inv == debug_env) {
866 return initial;
867 }
868 if (debug < 0 || debug > max || errno != 0) {
869 warn_report("%s not in [0, %d]", name, max);
870 return initial;
871 }
872 return debug;
873 }
874
875 /*
876 * Return human readable string for size @val.
877 * @val can be anything that uint64_t allows (no more than "16 EiB").
878 * Use IEC binary units like KiB, MiB, and so forth.
879 * Caller is responsible for passing it to g_free().
880 */
881 char *size_to_str(uint64_t val)
882 {
883 static const char *suffixes[] = { "", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei" };
884 uint64_t div;
885 int i;
886
887 /*
888 * The exponent (returned in i) minus one gives us
889 * floor(log2(val * 1024 / 1000). The correction makes us
890 * switch to the higher power when the integer part is >= 1000.
891 * (see e41b509d68afb1f for more info)
892 */
893 frexp(val / (1000.0 / 1024.0), &i);
894 i = (i - 1) / 10;
895 div = 1ULL << (i * 10);
896
897 return g_strdup_printf("%0.3g %sB", (double)val / div, suffixes[i]);
898 }
899
900 char *freq_to_str(uint64_t freq_hz)
901 {
902 static const char *const suffixes[] = { "", "K", "M", "G", "T", "P", "E" };
903 double freq = freq_hz;
904 size_t idx = 0;
905
906 while (freq >= 1000.0) {
907 freq /= 1000.0;
908 idx++;
909 }
910 assert(idx < ARRAY_SIZE(suffixes));
911
912 return g_strdup_printf("%0.3g %sHz", freq, suffixes[idx]);
913 }
914
915 int qemu_pstrcmp0(const char **str1, const char **str2)
916 {
917 return g_strcmp0(*str1, *str2);
918 }
919
920 static inline bool starts_with_prefix(const char *dir)
921 {
922 size_t prefix_len = strlen(CONFIG_PREFIX);
923 return !memcmp(dir, CONFIG_PREFIX, prefix_len) &&
924 (!dir[prefix_len] || G_IS_DIR_SEPARATOR(dir[prefix_len]));
925 }
926
927 /* Return the next path component in dir, and store its length in *p_len. */
928 static inline const char *next_component(const char *dir, int *p_len)
929 {
930 int len;
931 while ((*dir && G_IS_DIR_SEPARATOR(*dir)) ||
932 (*dir == '.' && (G_IS_DIR_SEPARATOR(dir[1]) || dir[1] == '\0'))) {
933 dir++;
934 }
935 len = 0;
936 while (dir[len] && !G_IS_DIR_SEPARATOR(dir[len])) {
937 len++;
938 }
939 *p_len = len;
940 return dir;
941 }
942
943 static const char *exec_dir;
944
945 void qemu_init_exec_dir(const char *argv0)
946 {
947 #ifdef G_OS_WIN32
948 char *p;
949 char buf[MAX_PATH];
950 DWORD len;
951
952 if (exec_dir) {
953 return;
954 }
955
956 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
957 if (len == 0) {
958 return;
959 }
960
961 buf[len] = 0;
962 p = buf + len - 1;
963 while (p != buf && *p != '\\') {
964 p--;
965 }
966 *p = 0;
967 if (access(buf, R_OK) == 0) {
968 exec_dir = g_strdup(buf);
969 } else {
970 exec_dir = CONFIG_BINDIR;
971 }
972 #else
973 char *p = NULL;
974 char buf[PATH_MAX];
975
976 if (exec_dir) {
977 return;
978 }
979
980 #if defined(__linux__)
981 {
982 int len;
983 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
984 if (len > 0) {
985 buf[len] = 0;
986 p = buf;
987 }
988 }
989 #elif defined(__FreeBSD__) \
990 || (defined(__NetBSD__) && defined(KERN_PROC_PATHNAME))
991 {
992 #if defined(__FreeBSD__)
993 static int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PATHNAME, -1};
994 #else
995 static int mib[4] = {CTL_KERN, KERN_PROC_ARGS, -1, KERN_PROC_PATHNAME};
996 #endif
997 size_t len = sizeof(buf) - 1;
998
999 *buf = '\0';
1000 if (!sysctl(mib, ARRAY_SIZE(mib), buf, &len, NULL, 0) &&
1001 *buf) {
1002 buf[sizeof(buf) - 1] = '\0';
1003 p = buf;
1004 }
1005 }
1006 #elif defined(__APPLE__)
1007 {
1008 char fpath[PATH_MAX];
1009 uint32_t len = sizeof(fpath);
1010 if (_NSGetExecutablePath(fpath, &len) == 0) {
1011 p = realpath(fpath, buf);
1012 if (!p) {
1013 return;
1014 }
1015 }
1016 }
1017 #elif defined(__HAIKU__)
1018 {
1019 image_info ii;
1020 int32_t c = 0;
1021
1022 *buf = '\0';
1023 while (get_next_image_info(0, &c, &ii) == B_OK) {
1024 if (ii.type == B_APP_IMAGE) {
1025 strncpy(buf, ii.name, sizeof(buf));
1026 buf[sizeof(buf) - 1] = 0;
1027 p = buf;
1028 break;
1029 }
1030 }
1031 }
1032 #endif
1033 /* If we don't have any way of figuring out the actual executable
1034 location then try argv[0]. */
1035 if (!p && argv0) {
1036 p = realpath(argv0, buf);
1037 }
1038 if (p) {
1039 exec_dir = g_path_get_dirname(p);
1040 } else {
1041 exec_dir = CONFIG_BINDIR;
1042 }
1043 #endif
1044 }
1045
1046 const char *qemu_get_exec_dir(void)
1047 {
1048 return exec_dir;
1049 }
1050
1051 char *get_relocated_path(const char *dir)
1052 {
1053 size_t prefix_len = strlen(CONFIG_PREFIX);
1054 const char *bindir = CONFIG_BINDIR;
1055 const char *exec_dir = qemu_get_exec_dir();
1056 GString *result;
1057 int len_dir, len_bindir;
1058
1059 /* Fail if qemu_init_exec_dir was not called. */
1060 assert(exec_dir[0]);
1061 if (!starts_with_prefix(dir) || !starts_with_prefix(bindir)) {
1062 return g_strdup(dir);
1063 }
1064
1065 result = g_string_new(exec_dir);
1066
1067 /* Advance over common components. */
1068 len_dir = len_bindir = prefix_len;
1069 do {
1070 dir += len_dir;
1071 bindir += len_bindir;
1072 dir = next_component(dir, &len_dir);
1073 bindir = next_component(bindir, &len_bindir);
1074 } while (len_dir && len_dir == len_bindir && !memcmp(dir, bindir, len_dir));
1075
1076 /* Ascend from bindir to the common prefix with dir. */
1077 while (len_bindir) {
1078 bindir += len_bindir;
1079 g_string_append(result, "/..");
1080 bindir = next_component(bindir, &len_bindir);
1081 }
1082
1083 if (*dir) {
1084 assert(G_IS_DIR_SEPARATOR(dir[-1]));
1085 g_string_append(result, dir - 1);
1086 }
1087 return g_string_free(result, false);
1088 }